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Abstract: The continuous monitoring of modern electric distribution networks (EDNs) is essential 

for accurate situational awareness and state estimation. This paper proposed a robust and resilient 

three-layer methodology for state estimate of the EDNs based on an optimal placement algorithm 

of the remote terminal units integrated into the supervisory, control, and acquisition system 

(SCADA) at the level of the electric distribution substations (EDSs) to perform on-site measure-

ments. The first layer allows the determination of the classes of the EDSs with similar features of the 

load profiles identified through a correlation matrix using the K-means clustering algorithm. The 

second layer identifies the “candidate” classes and decides the pilot EDSs with on-site SCADA 

measurements. The optimal placement corresponds to the minimization of the load estimation er-

rors obtained using the multiple linear regression models between the EDSs from the classes not 

included in the set of the “candidate” classes and the pilot EDSs. The third layer allows the state 

estimation of the EDN based on the load values measured in the pilot EDEs and the other EDSs 

obtained through the regression models. The base testing and validating of the proposed framework 

was a real urban medium voltage electric distribution network. The results obtained highlighted 

that the accuracy had been ensured for on-site measurements in 12 of 39 EDSs (representing 30% 

approximately of EDSs integrated into the SCADA system), leading to a mean average percentage 

error of 2.6% for the load estimation and below 1% for the state variables at the level of the EDN. 

Keywords: SCADA; Optimal Placement; Electric Distribution Stations; Clustering; State Estimation; 

Medium Voltage; Electric Distribution Networks 

 

1. Introduction 

1.1. Motivation of the Research 

Due to the increasing need for distribution automation, the monitoring and control concepts 

integrated into the modern electric distribution networks (EDNs) have significantly changed from 

manual to digital in the past few years [1]. Such a challenge has led to the accelerated transition of 

the smart SCADA (Supervisory Control and Data Acquisition) system, a computer-based system to 

monitor and control the various components of the EDNs.  

During the late 20th century, the EDNs started incorporating the SCADA system. This type of 

system comprises various components, such as sensors, communication units, and programmable 

logic controllers. The EDNs incorporate multiple problems, such as power interruptions caused by 

weather conditions and equipment failure. A SCADA system is a tool to manage these networks to 

improve their efficiency and reliability. The functions of a SCADA system are carried out by collect-

ing and analyzing data from various sources such as power devices, circuit breakers, and remote 
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terminal units (RTUs). These data are then processed and sent to a Control Centre. When an outage 

occurs, the system sends an alarm to the operators [2]. 

Although most electric distribution networks can integrate the SCADA system, the Distribution 

Network Operators (DNOs) cannot fully incorporate all of them due to the high investment. This 

economic aspect could be the main reason for partially integrating the SCADA system into the electric 

distribution network. For example, Figure 1 presents the status of the integration in the SCADA sys-

tem in the electric distribution substations (Medium Voltage/Low Voltage) at 45 DNOs from the Eu-

ropean Union Countries given in [3]. The data analysis highlights an integration degree of 30 % at 

most DNOs (93%). Only 3 of 45 DNOs (7%) have exceeded this value.   

 

Figure 1. The integration degree of the MV/LV EDSs in SCADA system. 

The DNOs can use the SCADA system to monitor and control various system elements, such as 

power transformers, electric lines, etc. With the help of data acquisition capabilities, it can also pro-

vide significant insight into the operation of the power system. SCADA systems are commonly used 

on the distribution side to automate the various components of the networks. They contain the fol-

lowing in their structure: a remote terminal unit (RTU), a master control centre, and a telecommuni-

cation network. All European DNOs use the SCADA system, which includes one or more functions: 

substation control, feeder control, or end-user load control [4], see Figure 2. 

Substation control. The SCADA system monitors the status of a substation's various equipment. 

It then sends control signals to remote-control units. It also collects historical data about the facility 

and provides alarms in case of faults or electrical faults. The survey indicates that about 96% of DSOs 

use a SCADA system to control their substations. These operators mainly use it to maintain bus volt-

age, load balancing, circulating current, overload protection, and transformer fault detection. 

Feeder control. Automated switching systems can improve the reliability of electric distribution 

networks using sophisticated algorithms and control systems. In a survey conducted by DSOs, over 

80% of them use a supervisory control and data acquisition (SCADA) system for their feeder control. 

They also reported using a similar system for voltage control and variable-rate electricity. Automated 

switching systems can improve electric distribution networks' operational flexibility and reliability. 

More than 80% reported using SCADA systems for automatic feeder switching, feeder voltage con-

trol, and VAR control. 

End-user load control. Automation on the end-user side enables various functions, such as re-

mote load control and automatic meter reading. It helps manage the power consumption of commer-

cial, industrial, and residential customers. This type of automation can also detect the presence of 

energy theft. It can automatically disconnect the service and reconnect if the DNO has the issue dis-

appeared.  
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(a) 

 

(b) 

Figure 2. The share of usual control types integrated into a SCADA system: (a) main control types, (b) – functions 

integrated inside each control type. 

Of the total DNOs representing the base of the study presented in the study [3], 70% utilized a 

SCADA system for end-user load control. Among the DNOs that use this function, 62% utilized a 

similar system for remote load control and generating bills and 76% for automatic meter reading. 

Following best practices is essential for DNOs to improve their SCADA system integration. 

These practices help it identify the various components of the system that need to be integrated and 

establish a clear understanding of the EDNs' requirements. In addition to conducting a comprehen-

sive analysis of the current infrastructure, these practices can also help implement in the optimal 

locations (EDSs) for its integration. But, without the proper mathematical tools, DNOs often face is-

sues regarding the state estimate process of the EDNs. Today, various algorithms and methods are 

available to satisfy these requirements. 

1.2. Literature Review 

Determination of the optimal number of electric distribution substations (EDSs) integrated into 

the SCADA system to perform on-site measurements used in the state estimation process of the EDNs 

represents a challenge both from a technical and economic point of view for DNOs. It involves de-

veloping a robust framework incorporating algorithms to model the EDN's conditions accurately. 

This paragraph focuses on the various methods used in this process. 

The representative load profiles are estimated using Adaptive Neuro-Fuzzy Inference Systems 

in reference [5] to analyze historical data. Different characteristics, such as the current value of the 

load, the previous 24-hour load, and the weekly system model factors, have been used to generate 

the best fit for a particular week or day. The proposed algorithm has been tested on a medium voltage 

EDN, leading to a MAPE value of around 4%. Xie et al. proposed in [6] a control and prevention 

method for operating a distribution network based on ultra-short-term load forecasting. The DNO 

then estimated the steady state of the network, and the risk assessment was performed. Finally, the 
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risk assessment results were sorted and screened before identifying the most critical incidents. Benato 

et al. proposed in [7] a general expression used to estimate the various factors that affect the power 

demand of a distribution network during a restoration process. It also considers the relationship be-

tween the frequency behavior and the distributed generation. 

Reference [8] proposed a decentralized load estimating method integrated as support in the real-

time optimization of a distribution network's voltage and load characteristics. The process is based 

on local data and limited information from its neighbor areas, enabling the selection and partitioning 

of the load profiles. It aims to limit the communication needs while ensuring the accuracy of the 

estimates. Kong et al. [9] developed a dynamic estimation method used to monitor the operation of 

an active distributed power network. It considered the various features of the operation scenario of 

the distribution network and its distribution generation. The method contains two phases associated 

with an adaptive estimation and an integrated multi-model algorithm. The first phase is to improve 

and incorporate the two standard estimators into a framework. The second phase identifies the op-

eration modes and produces joint estimates. 

Wang et al. developed a novel method that can estimate the baseline load for residential electric 

loads in different conditions [10]. It uses a deep learning approach to select the appropriate customer 

baseline load based on the historical data of the customers and non-participants. This method can 

also benefit from the concurrent load data collected from the participants in the Demand Response 

program and non-participants. Reference [11] considered the various aspects of electric load, such as 

the control mode and the vehicle's capability to run on a network, producing a comprehensive esti-

mate of the total energy consumption of plug-in electric vehicles. It then considers the aggregate de-

mand of different load categories at the feeder-head. The authors from reference [12] developed an 

optimal prediction interval estimation method used for various information regarding the feeders. It 

can be applied using reinforcement learning, which enables the integration of two online tasks. 

The hybrid approach has been proposed in [13] to provide a short-term load forecasting solution. 

It uses a weighted least squares state estimation, neural network, and adaptive Neuro-Fuzzy Infer-

ence system. Thus, the Decision Maker can determine the optimal ranges for the membership func-

tions used by the fuzzy system. The proposed framework in [14] for the baseline load estimation used 

the Fuzzy C-Means features and the fuzzy membership matrix. Correlation theory allows [15] to de-

velop fuzzy load models using an algorithm for a supply of HV/MV EDS used as a reference. The 

algorithm's starting point was a statistical analysis of the data collected from the MV/LV EDSs. The 

decision maker estimated the hourly loads in each MV/LV EDS based on the simple regression mod-

els established, which had HV/MV EDS as the reference. 

Rong proposed in [16] a different method with three steps for loop distribution networks. He 

considered aspects regarding network reduction, state estimation, and load forecasting. The analysis 

results revealed that the average error has been around 3%. A hybrid approach proposed in [17] led 

to a lower value than 5% for MAPE. Ding et al. built neural network-based models used in the load 

forecasting process of the MV/LV substations but with a relatively large MAPE (10% approximately) 

[18]. The benchmark process utilized the multiple linear regression model. All approaches used the 

SCADA database to estimate the load in the EDSs from the EDNs. An unsupervised learning tech-

nique has been proposed in [19] for the profiling process to estimate the electric distribution system 

load profiles. The errors for an EDN with 34 EDSs had the values of about 5%. 

All approaches supposed that the data comes from the SCADA system with all EDSs from the 

EDN integrated, which implies a 100% monitoring degree. This assumption contradicts the results 

presented in the study from [3], where the integration degree in the SCADA system of the MV/LV 

EDSs at the level of most DNOs is approximately 30%. 

1.3. Original Contributions 

In this context, the main contribution is designing and developing a three-layer framework for 

optimal placement of SCADA measurements with clustering-based EDS selection to estimate the 

state of the medium voltage distribution networks. Each layer integrates original approaches to solv-

ing the assumed objectives: 
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 The first layer allows the determination of the classes of the EDSs with similar features from the 

viewpoint of requested loads based on the K-means clustering algorithm. 

 The second layer identifies the "candidate" classes and the pilot EDSs (representing the optimal 

solution) with the SCADA measurements placed. The optimal placement corresponds to the 

minimization of the estimation errors obtained using the multiple linear regression models be-

tween the EDSs from the classes not included in the set of the "candidate" classes and the pilot 

EDSs.   

 The third layer allows the state estimation of the EDNs based on the load values measured in 

the pilot EDEs (with the SCADA system implemented) and the other EDSs obtained through the 

regression models. Also, the layer contains a module that verifies that it satisfies all the technical 

constraints, having integrated the functions to implement the strategies for optimal operation of 

the EDNs.  

The results obtained in the case of a real urban EDN with 39 EDSs demonstrated that the pro-

posed framework could have lower integration costs (the optimal solution corresponds to 12 of 39 

EDSs integrated into the SCADA system) and substantially improve the state estimation of the EDN. 

1.4. Paper Structure 

The rest of the paper includes the following sections: Section 2 presents the characteristics asso-

ciated with the proposed framework containing details on the mathematical tools used to fulfil the 

objectives of each layer, Section 3 consists of the case study where the tests on urban EDNs with 39 

EDSs highlight the performances of the proposed approach, and Section 4 integrates the conclusions. 

2. Materials and Methods 

This section presents the information about the algorithms, methods and performance metrics 

included in the proposed three-layer iterative framework for the optimal placement of SCADA meas-

urements with clustering-based EDS selection to estimate the state of the MV EDNs. Figure 3 illus-

trates the flow chart of the proposed framework. 

The three-layer framework improves the solution by continuously updating the subsets of the 

decision variables. The details presented below regarding each layer include the developed mathe-

matical tool. 
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Figure 3. The flow-chart of the proposed three-layer methodology. 

2.1. Layer 1 

Step 1. The information collected from the electric distribution substations (the active and reactive 

power profiles) following the measurement campaigns carried out by the DNOs represents input 

data. These profiles are recorded in the database and uploaded in the matrices [P] and [Q] having the 

sizes TxNEDS, where T represents the period used in the measurement campaigns to record the data 

with various sampling steps (usually 60 minutes) and NEDS correspond with the number of the EDSs 

from the analysed EDN. 
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Step 2. The correlation coefficients are calculated between each two EDSs (n and m, n ≠ m, n, m ∈ 

{NEDS}) from the analysed EDN and recorded in the matrix [CC], having the size (NEDSxNEDS). 

    mn;}N{m,n
P,PCov

CC EDS
PP

mn
P,P

nm

mn






 (2) 

where Cov(Pm, Pn) represents the covariance between the active power profiles from the set of the 

EDSs, generically noted n and m; σPn and σPm - the standard deviation of active powers associated 

with the EDSs m and n recorded in the time interval T. 

  }N{nP
T

P;PP
T

EDS

n

t
n,tn

T

t
nn,tn  

 11

2 11
  (3) 

Step 3. The classes corresponding to the EDSs with similar features of the correlation coefficients are 

identified based on a clustering process. The optimal partition in the classes will be determined using 

the K-Means clustering algorithm [20] and an internal test based on a performance indicator, namely 

the Silhoue�e Coefficient (SC) [21]. The clustering process includes the following phases: 

1. The NEDS vectors associated with the columns of the matrix [CC] should be integrated into K 

classes: 

   
EDSNn CCCCCCCC 21CC   (4) 

  EDStN,n,n,nn N,...,n,CCCCCCCC
EDS

121    (5) 

2. Determination the maximum number in which the NEDS electric distribution substations can 

be distributed using the relation [22]: 

EDSmax NK   (6) 

3. The vectors CCn, n = 1, …, NEDS, will be randomly assigned in the K classes of the EDSs. 
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4. The centroids Ck, k = 1, …, K and K = 2, …, Kmax, representing vectors with the size (NEDSx1) are 

calculated.  





kn

j

)k(
j

EDS
k CC

N
C

1

1
 (7) 

where: nk – the number of the EDSs from the classes k, k = 1, …, K and K = 2, …,Kmax; CCj(k) – the 

vector associated with an EDS, generically noted j inside the class k from partition K, K = 2, …, Kmax. 

5. The repartition of the EDSs in in one of the K classes, K = 2, …, Kmax, will be based on the mini-

mization of an objective function OF having the following expression: 
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6. The positions of the Ck centroids are re-adjusting through their recalculation using relation (7). 

In the case when all vectors CCn, n = 1, …, NEDS, are considered and re-labelled, Step 5 is repeated. 

7. The silhoue�e coefficient for each partition K = 2, …, Kmax, will be calculated using the formula 

[23]: 
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(10) 

where: nX and nY – the number of the vectors CC belonging to the EDSs from the classes X and Y 

associated with the partition K, K = 2, …, Kmax; dist(vi, vj) – the distance calculated between the vectors 

vi and vj from the matrix [CC]. 

8. The value of the silhoue�e coefficient SC(k) for each partition K = 2, …, Kmax is recorded in the 

vector [SC] and the maximum value is identified:  

    SCmaxp,c maxmax
s   (11) 

where csmax represents the maximum value of silhoue�e coefficient; pmax is the position from the vector 

[SC] where the maximum value has been identified.  

9. Determination of the optimal partition containing Kopt classes: 

1max
opt p = K  (12) 

2.2. Layer 2 

Step 1. Determining the “candidate” classes (notated with kc, kc ∈ {Kopt}) for placement of SCADA 

measurements based on a ranking established according to correlation coefficients, in reverse order 

beginning with those which have the highest values. The Decision Maker will impose a threshold 

(CCthreshold) for an average value of CC to choose the “candidate” classes [24]. 

Step 2. Identifying the set of the pilot EDSs which will be integrated in the SCADA system belonging 

to each “candidate” class. 

   thresholdkck
EDS
pilot CCCC|knN   (13) 

where nk represents the number of the EDSs from each “candidate” class kc, , kc ∈ {Kopt}. 

The pilot EDSs will represent the optimal places where be performed the SCADA measurements 

such that the load flow calculations to be carried out in the medium voltage distribution networks. 
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Step 3. Building the accurate, robust, and interpretable multiple linear regression models to estimate 

the active powers in the EDSs from the others classes that were not included in the set of the “candi-

date” classes. The models will use the pilot EDSs as regressors identified at Step 2. 

}N{}N{}N{};N{p};k{m
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k
EDS
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EDS
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)r(
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 


1
1

0 
 (14) 

where: {Nknc} – the set of the EDSs non-included in the “candidate” classes; {NpilotEDS} – the set of the 

pilot EDSs with SCADA measurements integrated; {NEDS} – the set of the EDSs from the analysed 

EDN; Pt,m(e) - the value of the active power estimated in the EDS "m" from the set {Nknc}, in [kW]; Pt,p(r) 

- the value of the active power measured in the pilot EDS “p” from the set {NpilotEDS}, in [kW]; β0,m – 

the constant coefficient of the linear regression model for each EDS from the set {Nknc}; βp,m – the coef-

ficients corresponding with each regressor associated with the pilot EDS “p” from the set {NpilotEDS} in 

the linear regression model for each EDS from the set {Nknc}. 

Step 4. Analyzing the performance of the regression models based on the following metrics: percent-

age error (PE), average percentage error (APE), and mean absolute percentage error (MAPE): 
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2.3. Layer 3 

Step 1. Determination of the hourly reactive powers using the active powers measured in the pilot 

EDSs and estimated in the EDSs non-integrated in the “candidate” classes and the regression models 

established in Step 2 from Layer 1. 

  T,,t,km,),P(fQ ncm
)e()e(

m,tm,t
1   (18) 

  T,,t,Np,),P(fQ EDS
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)r()e(

p,tp,t
1   (19) 

Step 2. Power Flow Calculation using the Newton-Raphson method to estimate the state of the EDN. 

The state variables recorded refer to the voltages on the MV side of the HV/MV EDS, the active and 

reactive power flows, the power/energy losses, and the active/reactive powers injected in the slack 

bus (the MV bus of the HV/MV EDS). 

Step 3. Verifying the technical constraints regarding the voltages and loading of the lines. If there are 

violations of some limits, then the DNO can apply technical measures to bring the state values to the 

admissible limits provided in the performance standards or imposed by the manufacturers. 

3. Results 

A real urban MV EDN has been used to test the proposed framework. The END, supplied from 

an HV/MV (110/20 kV) EDS, contains three MV feeders with 39 MV/LV (20/0.4 kV) EDSs. Figure 4 

presents the topology of the test MV EDN. 

Table A1 from Appendix A includes each branch's length between two EDSs associated with 

each feeder. The EDN has the cross-section of the first branch (EDS – 1, EDS -14, and EDS – 29), with 

a size of 185 [mm2] (r0 = 0.157 [Ω/km] and x0 = 0.112 [Ω/km]), which is different from the other 

branches, equal to 150 [mm2] ((r0 = 0.194 [Ω/km] and x0 = 0.115 [Ω/km]). Also, the branch length is in 
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the range [0.1 – 0.5] km, with a total length for the second feeder of 6.07 km higher than the other two 

feeders (3.36 km for the first feeder and 3.54 km for the third feeder, respectively). Figure 5 presents 

the synthesis of this information. 

The rated power of the transformers, denoted with Sr, from the EDSs supplied by the three feed-

ers is between 400 and 1000 kVA, see Table A2 from Appendix A. The total installed powers (calcu-

lated as the sum of the rated powers of the distribution transformers supplied by each feeder) are 

7.15 MVA for the first feeder, 12.21 MVA for the second feeder, and 9.52 MVA for the third feeder, 

resulting in a total power of the EDN of 28.88 MVA, see Figure 6. 

Step 1 of the first layer from the proposed methodology considers the building of a database 

with the active and reactive power profiles recorded in the matrix form, as seen in the relationships 

(1), based on a measurement campaign performed by the DNO during a week in the most loaded 

period. 

 

Figure 4. The topology of the test 39-bus MV EDN. 

 

Figure 5. The total length of each feeder from the test 39-bus MV EDN. 
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Figure 6. The total installed power of each feeder from the test 39-bus MV EDN. 

Figures 7and 8 present the boxplots of the active and reactive powers associated with the meas-

urement campaign. 

 

Figure 7. The boxplots of the active powers from the EDSs. 

 

Figure 8. The boxplots of the reactive powers from the EDSs. 
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A boxplot is a method that shows the locality, skewness, and spread groups of data through 

their respective quartiles. In addition to the box, there are also whiskers, which are lines that extend 

from the box to indicate variability outside the lower and upper limits of the range. These are referred 

to as box-and-whiskers and box-and-whiskers, respectively [25,26]. 

Tables A3 and A4, from Appendix A, show the quartiles associated with the boxplot represen-

tation and two other statistical indicators (mean and standard deviation). The analysis of the infor-

mation highlights that there are 14 EDSs with a high variation of the powers (9, 10, 12, 14, 17, 22, 27, 

29, 30, 31, 33, 34, 38, and 39), 7 EDSs with slight variations (1, 2, 3, 4, 23, 24, and 25), and 18 EDSs with 

normal variations.   

Step 2 of the first layer involves the calculation of the correlation coefficient between each of the 

two EDSs from the analysed EDN, which is recorded in the matrix [CC] and has a size [39x39]. Figure 

9 presents the heatmap chart associated with matrix [CC] containing the values between -0.1 and 0.99. 

The vast majority of values are above 0.6. Still, there are also values close to 0 or even negative, which 

means that as one variable increases, the other decreases proportionally. Application of the K-means 

algorithm-based clustering process included in the last step of the first layer led to the classes corre-

sponding to the EDSs with similar features of the correlation coefficients.       

 

Figure 9. The heatmap chart associated with correlation coefficients. 

The maximum number of the clusters (named classes in the following) corresponded to a parti-

tion in 6 clusters. The internal test used the Silhoue�e Coefficient, and the algorithm identified the 

optimal number equal to 5 (for which the silhoue�e coefficient has the highest value, SC = 0.7168), 

see Figure 10. The representation of the silhoue�e coefficient for the optimal partition, Kopt = 5, is 

given in Figure 11. 

Figure 12 highlights each class's percentage and the number of EDS it integrates. The analysis of 

the data indicates that the representative class is C5, containing 12 EDSs (30.77%), followed by classes 

C1 (10 EDSs, 25.64%), C2 (10 EDSs, 25.64%), C3 (5 EDSs, 12.82%), and C4 (2 EDSs, 5.13%). 
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Figure 10. The values of silhoue�e coefficient for the partitions K = 2 to Kmax = 6. 

 

Figure 11. The silhoue�e coefficient associated with the optimal partition, Kopt = 5. 

 

Figure 12. The silhoue�e coefficient associated with the optimal partition, Kopt = 5. 

The allocation of the EDSs in each class can be observed in Figure 13.  
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Figure 13. The allocation of the EDSs to each class. 

Two (Feeder 1 and Feeder 2) from three feeders have the EDSs associated with all classes, and 

one feeder (Feeder 3) contains the EDSs allocated to only three classes (C1, C2, and C5). Table 1 pre-

sents the statistical indicators corresponding to the quartiles (Q0 – Q4), mean (M), and standard de-

viation (SD) for the obtained classes following the clustering process. 

Table 1. The statistical indicators associated with the obtained classes for the optimal partition. 

Class Q0 Q1 Q2 Q3 Q4 M SD 

C1 0.69 0.71 0.73 0.75 0.8 0.74 0.04 

C2 0.51 0.57 0.595 0.68 0.71 0.62 0.07 

C3 0.57 0.59 0.63 0.64 0.65 0.62 0.03 

C4 0.40 0.40 0.40 0.40 0.40 0.40 0 

C5 0.75 0.77 0.79 0.81 0.82 0.79 0.02 

The class with the values of the highest average correlation coefficient is C5, the range is [0.75, 

0.82], and the smallest values are associated with C4 (0.4). The trend of the mean is the same, with 

the highest value recorded for class C5 (M = 0.79), followed by C1 (M = 0.74), C2 (M = 0.62), C3 (M = 

0.62), and C4 (M = 0.4). The highest variation of the correlation coefficient belongs to class C2 (between 

0.57 and 0.68), followed by C3 (between 0.59 and 0.64), C1 (between 0.71 and 0.75), and C5 (between 

0.77 and 0.81), see Figure 14. The class C4 (having only 2 EDSs) was not taken into account, being 

unrepresentative for the analysis.    
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Figure 14. The boxplot of the average correlations coefficients from the obtained classes. 

Step 1 of the second layer aims to set the threshold for CC at 0.75 to choose the candidate classes. 

This value is widely used in the literature for the minimum threshold value. The only class that meets 

this condition for the average correlation coefficient is C5. Thus, the EDSs from this class, identified 

with blue in Figure 13, will represent the optimal locations to integrate the SCADA system.  

In the third step, the algorithm determines the multiple linear regression models to estimate the 

powers in the EDSs from the other classes not included in the set of the “candidate” classes. The 

models use as regressors the EDSs identified in the previous step. 

Table 2 and Figure 15 present the APEs obtained based on the previously determined regression 

models for each EDS without integration into the SCADA system.  

Table 2. APEs calculated for the three methods, in [%]. 

No. EDS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

SLR Method 8.6 14.7 13.3 19.4 15.8 18.5 12.0 4.2 6.4 5.2 21.2 30.9 12.8 7.3 5.8 17.8 16.6 11.8 9.6 16.9 

TLPs Method 8.0 4.8 3.1 6.8 8.5 12.2 9.4 10.2 5.9 8.0 11.4 23.3 5.5 8.7 11.6 7.8 8.9 10.0 7.4 14.4 

C-MLR Method 2.7 4.1 3.7 4.8 4.3 5.7 2.1 0.0 0.0 0.0 3.9 4.8 2.3 0.0 0.0 2.8 3.9 3.7 2.5 3.3 

No. EDS 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
SLR Method 22.0 21.5 11.8 10.8 22.3 8.4 27.0 10.8 5.7 8.3 19.0 13.2 4.6 12.9 6.8 8.1 4.1 7.8 6.2  
TPLs Method 8.6 13.2 7.8 7.5 13.0 11.2 25.4 6.4 7.7 19.6 10.6 9.6 11.2 9.7 9.0 10.0 9.6 6.0 6.5  
C-MLR Method 4.3 5.0 5.4 2.7 5.2 2.4 6.3 3.6 0.0 0.0 3.3 2.8 0.0 4.4 0.0 0.0 0.0 1.5 0.0  
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Figure 15. The radar representation of APEs, in [%]. 

The APEs are equal to 0 for the EDSs from the candidate class (in our case, class C5), identified 

in bold in the table, because the system uploads the measurements from the SCADA system during 

the analysis period for these EDSs.  

The results obtained with the proposed hybrid clustering-multiple linear regression (C-MLR) 

method have been compared with two other methods from the literature to demonstrate the perfor-

mance of the proposed approach: the simple linear regression (SLR) method and the typical load 

profiles (TLPs) method. Estimating the powers from the EDSs based on the SLR method proposed in 

[15] contains the linear regression models between the reference, considered the MV bus of the supply 

HV/MV EDS, and the MV/LV EDSs from the EDN. Regarding the second method [19], each EDS has 

assigned a typical active and reactive profile depending on the energy consumption category ob-

tained due to a clustering process.  

The results indicate a substantial improvement in the estimation process of the APE values at 

the EDSs level with the proposed method compared to the SLR and TLPs methods. Table 4 and Figure 

16, containing the statistical indicators associated with the quartiles Q0 – Q4, confirms this conclusion 

with a decrease of the maximum value from 30.9 % (calculated for SLR method) and 14.4% (calculated 

for TLPs method) to 6.3% and a median value (quartile Q2) from 11.8 % (calculated for SLR method) 

and 9.0 % (calculated for TLPs method) to 2.8 %. The SLR method led to the highest variation of the 

APEs in the range [4.1%, 30.9%], followed by the TLPs method with a range [3.1%, 25.4%]. The pro-

posed method has the least variation, in the range [0.0%, 6.3%].   

Regarding the MAPEs, Figure 17 presents the values of MAPEs calculated for the three methods. 

The value of MAPE decreases from 12.8% in the case of the SLR method to 9.9% in the case of the 

TLPs method and 2.6% (3 % approximately) in the case of the proposed C-MLR method (10% approx-

imately). 

 

 

Figure 16. The boxplot representation of the APEs, in [%]. 

Table 3. The statistical indicators associated with the APEs. 

Class Q0 Q1 Q2 Q3 Q4 

SLR Method 4.1 7.4 11.8 17.6 30.9 

TLPs Method 3.1 7.6 9.0 11.2 25.4 

C-MLR Method 0.0 0.00 2.8 4.2 6.3 
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Figure 17. The radar representation of MAPEs, in [%]. 

In the following, Layer 3 of the methodology will use the results obtained with the proposed C-

MLR method to estimate the state of the EDN associated with a day.  

Because the voltages calculated at the level of the EDSs with the Newton-Raphson method based 

on the estimated powers are very close to the real data, being located between the allowable limits 

[+10%, -10%] compared with the nominal voltage, only the state variables obtained from the power 

flow calculations using the real and estimated active and reactive powers from the MV/LV EDSs as-

sociated with the injected active and reactive powers (Pinj and Qinj) from the slack bus (the 20 kV bus 

of the HV/MV EDS), the requested active and reactive powers (Preq and Qreq) at the level of the MV/LV 

EDSs from the EDN, the active and reactive power losses (ΔP and ΔQ), and capacitive reactive power 

of the cables (Qcap) are analysed. Tables 5A and 6A from Appendix A present the hourly values ob-

tained for these state variables. Table 4 contain the hourly percentage errors calculated for each state 

variable. 

Table 4. The percentage errors calculated for the state variables, in [%]. 

Hour Pinj Qinj Preq Qreq ΔP ΔQ Qcap 

1 0.13 0.50 0.13 0.49 0.36 0.87 0.00 

2 0.03 0.04 0.04 0.05 0.30 0.27 0.00 

3 2.14 2.54 2.19 2.34 2.10 2.23 0.00 

4 0.16 0.16 0.16 0.11 0.19 0.59 0.00 

5 0.14 0.11 0.14 0.11 0.07 0.00 0.00 

6 0.07 0.02 0.06 0.01 0.20 0.21 0.09 

7 1.39 1.52 1.38 1.38 2.85 2.34 0.05 

8 1.31 1.43 1.31 1.32 2.24 2.28 0.02 

9 0.42 0.47 0.42 0.38 1.13 1.05 0.09 

10 0.93 0.94 0.93 0.88 1.51 1.54 0.07 

11 0.48 1.04 0.48 0.98 0.91 0.93 0.03 

12 0.55 0.63 0.56 0.60 0.49 0.57 0.02 

13 0.08 0.08 0.08 0.08 0.37 0.54 0.06 

14 0.45 0.47 0.45 0.45 0.06 0.13 0.09 

15 0.25 0.27 0.25 0.25 0.80 0.80 0.06 

16 0.30 0.14 0.30 0.13 0.78 0.77 0.06 

17 0.45 0.46 0.44 0.44 1.08 1.04 0.08 

18 1.20 1.36 1.20 1.29 2.13 2.17 0.11 

19 0.33 0.39 0.33 0.37 0.57 0.61 0.05 

20 0.58 0.61 0.58 0.59 0.90 1.19 0.03 

21 0.18 0.80 0.18 0.77 0.30 0.34 0.06 

22 0.70 0.80 0.70 0.76 1.03 1.09 0.05 

23 0.14 0.15 0.14 0.14 0.30 0.28 0.00 

24 0.73 0.61 0.73 0.58 1.09 1.15 0.06 
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The data analysis highlights that higher errors than 1% are associated with 4 hours (3, 7, 8, and 

18) for all state variables (less Qcap). However, the maximum value does not exceed 3% in the case of 

the active power loss at hour 7. Exceeding the 1% threshold is sporadically present, as other variables 

are, but they are tiny.  

Table 5 and Figure 18 present the values corresponding to statistical indicators, which offer a 

clear image of the accuracy of the state estimation of the EDN. Each state variable has one or a maxi-

mum of two outliers, but the values cannot be considered as high as long as they are below a thresh-

old accepted by the DNOs. 

 

Figure 18. The boxplot representation of the percentage errors calculated for the state variables. 

Table 5. The statistical indicators of the percentage errors calculated for the state variables, in [%]. 

State variable Q0 Q1 Q2 Q3 Q4 

Injected active power 0.03 0.15 0.44 0.72 2.14 

Injected reactive power 0.02 0.16 0.49 0.87 2.54 

Requested active power 0.04 0.15 0.43 0.72 2.19 

Requested active power 0.01 0.14 0.47 0.83 2.34 

Active power loss 0.06 0.30 0.79 1.11 2.85 

Reactive power loss 0.00 0.44 0.84 1.17 2.34 

Capacitive reactive power 0.00 0.01 0.05 0.07 0.11 

However, all state variables have MAPEs below 1%, as seen in Figure 19, which means an out-

standing performance of the estimation process. 

 

Figure 19. MAPEs of the state variables. 
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Finally, the proposed framework can offer the DNOs the state estimate synthesis based on the 

aggregated values quantified as energy amounts for the analysed period. Table 6 presents the values 

of the state variables obtained in both cases (real and estimated) and the errors. 

Table 6. The aggregated values of the state variables associated with the analysed period. 

Case 
WP inj 

[MWh] 

WQ inj 

[MVArh] 

WP req 

[MWh] 

WQ req 

[MVArh] 

ΔWP 

[MWh] 

ΔWQ 

[MVArh] 

WQcap 

[MVArh] 

Real Data 316.203 199.964 315.111 211.294 1.092 0.692 12.030 

Estimated Data 315.766 199.950 314.670 211.286 1.096 0.693 12.028 

Error [%] 0.138 0.007 0.140 0.004 0.330 0.032 0.014 

The information presented in the table confirm again the accuracy of the estimation process 

where the state variables have the errors below 0.15%. 

4. Conclusions and Discussions 

A state estimation process analyses an electric network's operating conditions. It involves gath-

ering all known information about the network to determine the most likely state. This process is 

commonly utilized in transmission networks to improve observability and optimize operating re-

gimes. Although the estimation state process is frequently used in transmission networks, it has not 

been widely adopted in the distribution sector due to the lack of proper supervision and monitoring. 

Despite this, it can represent an essential EDN management component for DNOs. 

In this context, determining the optimal number of EDSs integrated into a SCADA system to 

perform on-site measurements used in the state estimation process of the EDNs represents a chal-

lenge both from a technical and economic point of view for DNOs. It involves developing a robust 

framework incorporating algorithms to model the EDN's conditions accurately. 

Thus, a three-layer framework for optimal placement of SCADA measurements with clustering-

based EDS selection to estimate the state of the EDNs has been proposed. This framework has under-

gone rigorous testing to ensure its reliability and accuracy. The first layer includes the determination 

of the classes of the EDSs with similar features from the viewpoint of requested loads based on the 

K-means clustering algorithm. The second layer identifies the "candidate" classes and the pilot EDSs 

(representing the optimal solution) with the SCADA measurements placed. The optimal placement 

process aims to minimise the estimation errors based on the multiple linear regression models be-

tween the EDSs from the classes not included in the set of the "candidate" classes and the pilot EDSs. 

The third layer allows the state estimation of the EDNs based on the load values measured in the 

pilot EDEs (with the SCADA system implemented) and the other EDSs obtained through the regres-

sion models. The framework was tested in the case of a real urban EDN with 39 EDSs, where accuracy 

was ensured for on-site measurements in 12 of the 39 EDSs (representing 31% of EDSs integrated into 

the SCADA system). This solution is similar to the conclusions of the study from [3], where the inte-

gration degree in the SCADA system of the MV/LV EDSs at the level of most European DNOs is 

approximately 30%.  

The power estimation process at the level of the EDSs for the analysed period indicated a de-

crease of MAPE from 12.8% in the case of the SLR method [15] to 9.9% in the case of the TLPs method 

[19] and 2.6% (3 % approximately) in the case of the proposed C-MLR method (10% approximately). 

This improvement in accuracy can significantly enhance the power estimation process, leading to 

more reliable network operations. Reading the state variables determined by a power flow calcula-

tion, the obtained MAPEs have been below 1%, which means an outstanding performance of the 

estimation process. Finally, the aggregated values quantified as energy amounts for the analysed pe-

riod confirmed the accuracy of the estimation process, where the errors were below 0.15%.  

The framework has been tested only in the EDNs without the distributed generation sources in 

this research stage. However, the authors are not stopping here. They are now working on an im-

proved version that includes power injections from distributed generation sources. The degree of 

uncertainty at the level of the requested/injected powers is also being considered. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

EDN electric distribution networks 

DNO distribution network operator 

SCADA supervisory, control, and acquisition system 

EDS electric distribution substations 

MV medium Voltage 

HV high Voltage 

LV low Voltage 

RTU remote terminal unit 

MAPE mean absolute percentage error 

APE average percentage error 

PE percentage error 

SLR simple linear regression 

TLP typical load profile 

C-MLR clustering-multiple linear regression 

Appendix A 

Table A1. The length of the branches associated with the three feeders. 

Branch 
Length 

[km] 

Feeder 

Allocated 
Branch 

Length 

[mm2] 

Feeder 

Allocated 
Branch 

Length 

[mm2] 

Feeder 

Allocated 

EDS - 1 0.500 Feeder 2 26 - 27 0.390 Feeder 2 20 - 21 0.510 Feeder 1 

1 - 2 0.200 Feeder 2 27 - 28 0.410 Feeder 2 21 - 22 0.450 Feeder 1 

2 - 3 0.250 Feeder 2 5 - 10 0.500 Feeder 2 EDS - 29 0.400 Feeder 3 

3 - 4 0.100 Feeder 2 10 - 11 0.390 Feeder 2 29 - 30 0.230 Feeder 3 

4 - 5 0.300 Feeder 2 11 - 12 0.180 Feeder 2 30 - 31 0.490 Feeder 3 

5 - 6 0.450 Feeder 2 12 - 13 0.270 Feeder 2 31 - 32 0.170 Feeder 3 

6 -7 0.280 Feeder 2 EDS - 14 0.600 Feeder 1 32 - 33 0.340 Feeder 3 

7 - 8 0.310 Feeder 2 14 - 15 0.180 Feeder 1 33 - 34 0.480 Feeder 3 

8 - 9 0.210 Feeder 2 15 - 16 0.290 Feeder 1 34 - 35 0.210 Feeder 3 

2 - 23 0.350 Feeder 2 16 - 17 0.350 Feeder 1 35 - 36 0.350 Feeder 3 

23 - 24 0.260 Feeder 2 17 - 18 0.230 Feeder 1 36 - 37 0.370 Feeder 3 

24 - 25 0.400 Feeder 2 18 - 19 0.400 Feeder 1 37 - 38 0.210 Feeder 3 
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25 - 26 0.320 Feeder 2 19 - 20 0.350 Feeder 1 38 - 39 0.290 Feeder 3 

Table A2. The rated power of the transformers from the EDSs supplied by the three feeders. 

No. of 

EDS 

Sr 

[kVA] 

Feeder 

Allocated 

No. of 

EDS 

Sn 

[kVA] 

Feeder 

Allocated 

No. of 

EDS 

Sn 

[kVA] 

Feeder 

Allocated 

1 400 Feeder 2 14 1000 Feeder 1 27 630 Feeder 2 

2 400 Feeder 2 15 1000 Feeder 1 28 630 Feeder 2 

3 400 Feeder 2 16 630 Feeder 1 29 1000 Feeder 3 

4 400 Feeder 2 17 1000 Feeder 1 30 630 Feeder 3 

5 630 Feeder 2 18 630 Feeder 1 31 1000 Feeder 3 

6 630 Feeder 2 19 630 Feeder 1 32 630 Feeder 3 

7 630 Feeder 2 20 630 Feeder 1 33 1000 Feeder 3 

8 630 Feeder 2 21 630 Feeder 1 34 1000 Feeder 3 

9 1000 Feeder 2 22 1000 Feeder 1 35 1000 Feeder 3 

10 1000 Feeder 2 23 400 Feeder 2 36 630 Feeder 3 

11 630 Feeder 2 24 400 Feeder 2 37 630 Feeder 3 

12 1000 Feeder 2 25 400 Feeder 2 38 1000 Feeder 3 

13 1000 Feeder 2 26 1000 Feeder 2 39 1000 Feeder 3 

Table A3. The statistical indicators (quartiles - Q0, Q1, Q2, Q3, Q4, mean – M, and standard deviation - SD) of 

the active powers from the EDSs, in [kW]. 

No. EDS Q0 Q1 Q2 Q3 Q4 M SD 

1 111.20 139.95 191.90 229.80 244.00 183.67 46.17 

2 112.90 130.65 177.55 221.90 245.20 177.90 45.78 

3 123.80 138.55 187.70 243.15 275.40 193.04 53.58 

4 95.50 103.75 160.35 188.55 258.30 156.95 52.64 

5 143.70 172.05 250.15 325.65 393.30 255.70 83.99 

6 161.50 210.85 303.80 369.10 441.40 296.61 93.10 

7 206.90 258.50 291.20 393.20 425.80 315.41 71.99 

8 178.60 246.70 329.90 388.35 420.30 315.61 81.69 

9 220.10 279.90 462.20 551.70 612.30 432.07 137.87 

10 200.20 295.35 477.70 578.85 662.50 448.07 155.78 

11 164.50 182.40 256.70 328.60 378.20 256.35 77.00 

12 161.40 242.00 382.25 615.00 699.70 415.58 192.82 

13 219.80 353.80 433.75 534.15 651.80 433.48 132.37 

14 178.00 289.70 445.05 543.10 617.00 417.76 145.61 

15 274.40 382.50 442.90 491.30 588.10 439.88 95.17 

16 157.40 227.20 329.85 392.95 437.70 308.80 93.91 

17 289.80 341.10 423.45 580.90 639.80 459.34 128.20 

18 168.60 206.45 306.85 368.90 462.80 294.01 90.84 

19 223.10 246.45 334.15 352.20 440.60 316.39 67.25 

20 222.80 278.40 355.00 386.15 456.80 338.20 71.07 

21 131.70 165.20 214.60 292.85 393.70 230.90 82.16 

22 256.70 334.50 400.40 614.45 684.10 457.84 148.16 
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23 118.90 146.75 187.35 240.45 293.00 196.85 54.32 

24 103.30 124.30 158.00 207.80 233.60 164.08 43.94 

25 112.30 127.60 165.90 210.25 277.00 173.38 48.85 

26 313.40 431.25 487.60 564.75 667.50 497.71 104.64 

27 114.40 128.60 294.10 425.75 436.90 281.59 131.65 

28 166.80 226.30 276.80 351.80 440.40 287.74 83.08 

29 244.30 377.65 485.40 598.30 637.00 473.80 130.00 

30 117.40 169.35 305.40 380.65 459.10 291.58 115.43 

31 206.20 258.20 326.75 485.50 623.70 377.59 140.52 

32 213.90 286.25 345.70 415.85 448.30 341.44 73.85 

33 202.40 292.75 476.85 598.40 681.10 454.65 166.10 

34 210.40 245.85 516.30 569.10 652.50 444.13 160.50 

35 276.70 362.70 441.65 511.15 615.50 441.42 101.59 

36 193.60 253.45 374.55 402.20 434.20 334.51 82.24 

37 168.30 210.70 266.00 318.30 335.90 266.10 57.38 

38 230.80 325.55 457.30 526.90 571.00 425.03 114.75 

39 293.00 358.95 530.85 639.30 665.40 499.63 137.32 

Table A4. The statistical indicators (quartiles - Q0, Q1, Q2, Q3, Q4, mean – M, and standard deviation - SD) of 

the reactive powers from the EDSs, in [kVAr]. 

No. EDS Q0 Q1 Q2 Q3 Q4 M SD 

1 68.92 86.73 118.93 142.42 151.22 113.83 28.61 

2 69.97 80.97 110.04 137.52 151.96 110.26 28.37 

3 76.72 85.87 116.33 150.69 170.68 119.64 33.21 

4 59.19 64.30 99.38 116.85 160.08 97.27 32.62 

5 89.06 106.63 155.03 201.82 243.75 158.47 52.05 

6 100.09 130.67 188.28 228.75 273.56 183.82 57.70 

7 128.23 160.20 180.47 243.68 263.89 195.47 44.62 

8 110.69 152.89 204.45 240.68 260.48 195.60 50.63 

9 136.41 173.47 286.45 341.91 379.47 267.77 85.45 

10 124.07 183.04 296.05 358.74 410.58 277.69 96.54 

11 101.95 113.04 159.09 203.65 234.39 158.87 47.72 

12 100.03 149.98 236.90 381.14 433.64 257.55 119.50 

13 136.22 219.27 268.81 331.04 403.95 268.64 82.04 

14 110.31 179.54 275.82 336.58 382.38 258.90 90.24 

15 170.06 237.05 274.48 304.48 364.47 272.62 58.98 

16 97.55 140.81 204.42 243.53 271.26 191.38 58.20 

17 179.60 211.39 262.43 360.01 396.51 284.67 79.45 

18 104.49 127.95 190.17 228.62 286.82 182.21 56.30 

19 138.26 152.74 207.09 218.27 273.06 196.08 41.68 

20 138.08 172.54 220.01 239.31 283.10 209.60 44.04 

21 81.62 102.38 133.00 181.49 243.99 143.10 50.92 

22 159.09 207.30 248.15 380.80 423.97 283.74 91.82 

23 73.69 90.95 116.11 149.02 181.59 122.00 33.67 
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24 64.02 77.03 97.92 128.78 144.77 101.69 27.23 

25 69.60 79.08 102.82 130.30 171.67 107.45 30.27 

26 194.23 267.26 302.19 350.00 413.68 308.45 64.85 

27 70.90 79.70 182.27 263.86 270.77 174.51 81.59 

28 103.37 140.25 171.55 218.03 272.94 178.32 51.49 

29 151.40 234.05 300.82 370.79 394.78 293.64 80.57 

30 72.76 104.95 189.27 235.91 284.52 180.70 71.53 

31 127.79 160.02 202.50 300.89 386.53 234.01 87.08 

32 132.56 177.40 214.25 257.72 277.83 211.61 45.77 

33 125.44 181.43 295.53 370.86 422.11 281.76 102.94 

34 130.39 152.36 319.97 352.70 404.38 275.25 99.47 

35 171.48 224.78 273.71 316.78 381.45 273.57 62.96 

36 119.98 157.07 232.13 249.26 269.09 207.31 50.97 

37 104.30 130.58 164.85 197.26 208.17 164.91 35.56 

38 143.04 201.76 283.41 326.54 353.87 263.41 71.11 

39 181.59 222.46 328.99 396.20 412.38 309.64 85.10 

Table A5. The state variables calculated based on the active and reactive power profiles estimated with the C-

MLR method. 

Hour 
Pinj 

[MW] 

Qinj 

[MVAr] 

Preq 

[MW] 

Qreq 

[MVAr] 

ΔP 

[MW] 

ΔQ 

[MVAr] 

Qcap 

[MVAr] 

1 11.325 7.099 11.294 7.580 0.031 0.020 0.502 

2 9.850 6.116 9.827 6.604 0.023 0.015 0.502 

3 8.762 5.323 8.739 5.812 0.023 0.012 0.502 

4 8.127 4.959 8.111 5.451 0.016 0.010 0.502 

5 7.858 4.780 7.843 5.272 0.015 0.010 0.502 

6 7.888 4.798 7.873 5.291 0.015 0.010 0.502 

7 8.584 5.265 8.566 5.756 0.018 0.011 0.502 

8 10.431 6.507 10.404 6.992 0.027 0.017 0.502 

9 11.836 7.453 11.800 7.932 0.036 0.023 0.502 

10 12.779 8.080 12.737 8.555 0.042 0.026 0.501 

11 13.727 8.767 13.679 9.238 0.048 0.030 0.501 

12 14.622 9.319 14.567 9.785 0.055 0.035 0.501 

13 15.585 9.970 15.524 10.432 0.061 0.039 0.501 

14 16.688 10.711 16.618 11.167 0.070 0.045 0.500 

15 17.428 11.208 17.352 11.660 0.076 0.048 0.500 

16 17.469 11.236 17.393 11.688 0.076 0.048 0.500 

17 17.022 10.936 16.950 11.391 0.072 0.046 0.500 

18 16.520 10.609 16.452 11.066 0.068 0.043 0.500 

19 15.490 9.902 15.431 10.365 0.060 0.038 0.501 

20 14.957 9.667 14.902 10.133 0.055 0.035 0.501 

21 15.628 9.999 15.567 10.461 0.060 0.038 0.501 

22 15.270 9.758 15.213 10.222 0.057 0.036 0.501 

23 14.381 9.161 14.331 9.630 0.050 0.032 0.501 
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24 13.541 8.327 13.499 8.802 0.042 0.026 0.501 

Table A6. The state variables calculated based on the real active and reactive power profiles. 

Hour 
Pinj 

[MW] 

Qinj 

[MVAr] 

Preq 

[MW] 

Qreq 

[MVAr] 

ΔP 

[MW] 

ΔQ 

[MVAr] 

Qcap 

[MVAr] 

1 11.340 7.135 11.309 7.617 0.031 0.019 0.502 

2 9.847 6.113 9.823 6.601 0.023 0.015 0.502 

3 8.953 5.462 8.934 5.952 0.019 0.012 0.502 

4 8.140 4.967 8.124 5.457 0.016 0.010 0.502 

5 7.869 4.785 7.854 5.278 0.015 0.010 0.502 

6 7.893 4.799 7.878 5.292 0.015 0.010 0.502 

7 8.705 5.346 8.686 5.837 0.018 0.012 0.502 

8 10.296 6.415 10.269 6.901 0.026 0.017 0.502 

9 11.885 7.489 11.849 7.962 0.036 0.023 0.502 

10 12.661 8.005 12.620 8.480 0.041 0.026 0.501 

11 13.661 8.677 13.614 9.148 0.047 0.030 0.501 

12 14.703 9.378 14.648 9.844 0.055 0.035 0.501 

13 15.573 9.962 15.512 10.424 0.061 0.039 0.501 

14 16.763 10.762 16.693 11.217 0.070 0.045 0.500 

15 17.472 11.238 17.395 11.690 0.077 0.049 0.500 

16 17.416 11.221 17.340 11.673 0.076 0.048 0.500 

17 17.098 10.987 17.025 11.441 0.073 0.046 0.500 

18 16.323 10.467 16.257 10.925 0.066 0.042 0.501 

19 15.542 9.941 15.482 10.404 0.060 0.038 0.501 

20 15.044 9.608 14.988 10.073 0.056 0.035 0.501 

21 15.599 9.919 15.539 10.382 0.060 0.038 0.501 

22 15.378 9.837 15.320 10.301 0.058 0.037 0.501 

23 14.401 9.175 14.351 9.644 0.050 0.032 0.501 

24 13.641 8.276 13.599 8.752 0.041 0.026 0.501 
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