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Abstract: The continuous monitoring of modern electric distribution networks (EDNs) is essential
for accurate situational awareness and state estimation. This paper proposed a robust and resilient
three-layer methodology for state estimate of the EDNs based on an optimal placement algorithm
of the remote terminal units integrated into the supervisory, control, and acquisition system
(SCADA) at the level of the electric distribution substations (EDSs) to perform on-site measure-
ments. The first layer allows the determination of the classes of the EDSs with similar features of the
load profiles identified through a correlation matrix using the K-means clustering algorithm. The
second layer identifies the “candidate” classes and decides the pilot EDSs with on-site SCADA
measurements. The optimal placement corresponds to the minimization of the load estimation er-
rors obtained using the multiple linear regression models between the EDSs from the classes not
included in the set of the “candidate” classes and the pilot EDSs. The third layer allows the state
estimation of the EDN based on the load values measured in the pilot EDEs and the other EDSs
obtained through the regression models. The base testing and validating of the proposed framework
was a real urban medium voltage electric distribution network. The results obtained highlighted
that the accuracy had been ensured for on-site measurements in 12 of 39 EDSs (representing 30%
approximately of EDSs integrated into the SCADA system), leading to a mean average percentage
error of 2.6% for the load estimation and below 1% for the state variables at the level of the EDN.

Keywords: SCADA; Optimal Placement; Electric Distribution Stations; Clustering; State Estimation;
Medium Voltage; Electric Distribution Networks

1. Introduction
1.1. Motivation of the Research

Due to the increasing need for distribution automation, the monitoring and control concepts
integrated into the modern electric distribution networks (EDNs) have significantly changed from
manual to digital in the past few years [1]. Such a challenge has led to the accelerated transition of
the smart SCADA (Supervisory Control and Data Acquisition) system, a computer-based system to
monitor and control the various components of the EDNs.

During the late 20th century, the EDNs started incorporating the SCADA system. This type of
system comprises various components, such as sensors, communication units, and programmable
logic controllers. The EDNs incorporate multiple problems, such as power interruptions caused by
weather conditions and equipment failure. A SCADA system is a tool to manage these networks to
improve their efficiency and reliability. The functions of a SCADA system are carried out by collect-
ing and analyzing data from various sources such as power devices, circuit breakers, and remote

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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terminal units (RTUs). These data are then processed and sent to a Control Centre. When an outage
occurs, the system sends an alarm to the operators [2].

Although most electric distribution networks can integrate the SCADA system, the Distribution
Network Operators (DNOs) cannot fully incorporate all of them due to the high investment. This
economic aspect could be the main reason for partially integrating the SCADA system into the electric
distribution network. For example, Figure 1 presents the status of the integration in the SCADA sys-
tem in the electric distribution substations (Medium Voltage/Low Voltage) at 45 DNOs from the Eu-
ropean Union Countries given in [3]. The data analysis highlights an integration degree of 30 % at
most DNOs (93%). Only 3 of 45 DNOs (7%) have exceeded this value.
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Figure 1. The integration degree of the MV/LV EDSs in SCADA system.

The DNOs can use the SCADA system to monitor and control various system elements, such as
power transformers, electric lines, etc. With the help of data acquisition capabilities, it can also pro-
vide significant insight into the operation of the power system. SCADA systems are commonly used
on the distribution side to automate the various components of the networks. They contain the fol-
lowing in their structure: a remote terminal unit (RTU), a master control centre, and a telecommuni-
cation network. All European DNOs use the SCADA system, which includes one or more functions:
substation control, feeder control, or end-user load control [4], see Figure 2.

Substation control. The SCADA system monitors the status of a substation's various equipment.
It then sends control signals to remote-control units. It also collects historical data about the facility
and provides alarms in case of faults or electrical faults. The survey indicates that about 96% of DSOs
use a SCADA system to control their substations. These operators mainly use it to maintain bus volt-
age, load balancing, circulating current, overload protection, and transformer fault detection.

Feeder control. Automated switching systems can improve the reliability of electric distribution
networks using sophisticated algorithms and control systems. In a survey conducted by DSOs, over
80% of them use a supervisory control and data acquisition (SCADA) system for their feeder control.
They also reported using a similar system for voltage control and variable-rate electricity. Automated
switching systems can improve electric distribution networks' operational flexibility and reliability.
More than 80% reported using SCADA systems for automatic feeder switching, feeder voltage con-
trol, and VAR control.

End-user load control. Automation on the end-user side enables various functions, such as re-
mote load control and automatic meter reading. It helps manage the power consumption of commer-
cial, industrial, and residential customers. This type of automation can also detect the presence of
energy theft. It can automatically disconnect the service and reconnect if the DNO has the issue dis-
appeared.
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Figure 2. The share of usual control types integrated into a SCADA system: (a) main control types, (b) — functions

integrated inside each control type.

Of the total DNOs representing the base of the study presented in the study [3], 70% utilized a
SCADA system for end-user load control. Among the DNOs that use this function, 62% utilized a
similar system for remote load control and generating bills and 76% for automatic meter reading.

Following best practices is essential for DNOs to improve their SCADA system integration.
These practices help it identify the various components of the system that need to be integrated and
establish a clear understanding of the EDNs' requirements. In addition to conducting a comprehen-
sive analysis of the current infrastructure, these practices can also help implement in the optimal
locations (EDSs) for its integration. But, without the proper mathematical tools, DNOs often face is-
sues regarding the state estimate process of the EDNs. Today, various algorithms and methods are
available to satisfy these requirements.

1.2. Literature Review

Determination of the optimal number of electric distribution substations (EDSs) integrated into
the SCADA system to perform on-site measurements used in the state estimation process of the EDNss
represents a challenge both from a technical and economic point of view for DNOs. It involves de-
veloping a robust framework incorporating algorithms to model the EDN's conditions accurately.
This paragraph focuses on the various methods used in this process.

The representative load profiles are estimated using Adaptive Neuro-Fuzzy Inference Systems
in reference [5] to analyze historical data. Different characteristics, such as the current value of the
load, the previous 24-hour load, and the weekly system model factors, have been used to generate
the best fit for a particular week or day. The proposed algorithm has been tested on a medium voltage
EDN, leading to a MAPE value of around 4%. Xie et al. proposed in [6] a control and prevention
method for operating a distribution network based on ultra-short-term load forecasting. The DNO
then estimated the steady state of the network, and the risk assessment was performed. Finally, the
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risk assessment results were sorted and screened before identifying the most critical incidents. Benato
et al. proposed in [7] a general expression used to estimate the various factors that affect the power
demand of a distribution network during a restoration process. It also considers the relationship be-
tween the frequency behavior and the distributed generation.

Reference [8] proposed a decentralized load estimating method integrated as support in the real-
time optimization of a distribution network's voltage and load characteristics. The process is based
on local data and limited information from its neighbor areas, enabling the selection and partitioning
of the load profiles. It aims to limit the communication needs while ensuring the accuracy of the
estimates. Kong et al. [9] developed a dynamic estimation method used to monitor the operation of
an active distributed power network. It considered the various features of the operation scenario of
the distribution network and its distribution generation. The method contains two phases associated
with an adaptive estimation and an integrated multi-model algorithm. The first phase is to improve
and incorporate the two standard estimators into a framework. The second phase identifies the op-
eration modes and produces joint estimates.

Wang et al. developed a novel method that can estimate the baseline load for residential electric
loads in different conditions [10]. It uses a deep learning approach to select the appropriate customer
baseline load based on the historical data of the customers and non-participants. This method can
also benefit from the concurrent load data collected from the participants in the Demand Response
program and non-participants. Reference [11] considered the various aspects of electric load, such as
the control mode and the vehicle's capability to run on a network, producing a comprehensive esti-
mate of the total energy consumption of plug-in electric vehicles. It then considers the aggregate de-
mand of different load categories at the feeder-head. The authors from reference [12] developed an
optimal prediction interval estimation method used for various information regarding the feeders. It
can be applied using reinforcement learning, which enables the integration of two online tasks.

The hybrid approach has been proposed in [13] to provide a short-term load forecasting solution.
It uses a weighted least squares state estimation, neural network, and adaptive Neuro-Fuzzy Infer-
ence system. Thus, the Decision Maker can determine the optimal ranges for the membership func-
tions used by the fuzzy system. The proposed framework in [14] for the baseline load estimation used
the Fuzzy C-Means features and the fuzzy membership matrix. Correlation theory allows [15] to de-
velop fuzzy load models using an algorithm for a supply of HV/MV EDS used as a reference. The
algorithm's starting point was a statistical analysis of the data collected from the MV/LV EDSs. The
decision maker estimated the hourly loads in each MV/LV EDS based on the simple regression mod-
els established, which had HV/MYV EDS as the reference.

Rong proposed in [16] a different method with three steps for loop distribution networks. He
considered aspects regarding network reduction, state estimation, and load forecasting. The analysis
results revealed that the average error has been around 3%. A hybrid approach proposed in [17] led
to a lower value than 5% for MAPE. Ding et al. built neural network-based models used in the load
forecasting process of the MV/LV substations but with a relatively large MAPE (10% approximately)
[18]. The benchmark process utilized the multiple linear regression model. All approaches used the
SCADA database to estimate the load in the EDSs from the EDNs. An unsupervised learning tech-
nique has been proposed in [19] for the profiling process to estimate the electric distribution system
load profiles. The errors for an EDN with 34 EDSs had the values of about 5%.

All approaches supposed that the data comes from the SCADA system with all EDSs from the
EDN integrated, which implies a 100% monitoring degree. This assumption contradicts the results
presented in the study from [3], where the integration degree in the SCADA system of the MV/LV
EDSs at the level of most DNOs is approximately 30%.

1.3. Original Contributions

In this context, the main contribution is designing and developing a three-layer framework for
optimal placement of SCADA measurements with clustering-based EDS selection to estimate the
state of the medium voltage distribution networks. Each layer integrates original approaches to solv-
ing the assumed objectives:
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e  The first layer allows the determination of the classes of the EDSs with similar features from the
viewpoint of requested loads based on the K-means clustering algorithm.

e  The second layer identifies the "candidate" classes and the pilot EDSs (representing the optimal
solution) with the SCADA measurements placed. The optimal placement corresponds to the
minimization of the estimation errors obtained using the multiple linear regression models be-
tween the EDSs from the classes not included in the set of the "candidate" classes and the pilot
EDSs.

e  The third layer allows the state estimation of the EDNs based on the load values measured in
the pilot EDEs (with the SCADA system implemented) and the other EDSs obtained through the
regression models. Also, the layer contains a module that verifies that it satisfies all the technical
constraints, having integrated the functions to implement the strategies for optimal operation of
the EDNs.

The results obtained in the case of a real urban EDN with 39 EDSs demonstrated that the pro-

posed framework could have lower integration costs (the optimal solution corresponds to 12 of 39

EDSs integrated into the SCADA system) and substantially improve the state estimation of the EDN.

1.4. Paper Structure

The rest of the paper includes the following sections: Section 2 presents the characteristics asso-
ciated with the proposed framework containing details on the mathematical tools used to fulfil the
objectives of each layer, Section 3 consists of the case study where the tests on urban EDNs with 39
EDSs highlight the performances of the proposed approach, and Section 4 integrates the conclusions.

2. Materials and Methods

This section presents the information about the algorithms, methods and performance metrics
included in the proposed three-layer iterative framework for the optimal placement of SCADA meas-
urements with clustering-based EDS selection to estimate the state of the MV EDNs. Figure 3 illus-
trates the flow chart of the proposed framework.

The three-layer framework improves the solution by continuously updating the subsets of the
decision variables. The details presented below regarding each layer include the developed mathe-
matical tool.
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Figure 3. The flow-chart of the proposed three-layer methodology.

2.1. Layer 1

Step 1. The information collected from the electric distribution substations (the active and reactive
power profiles) following the measurement campaigns carried out by the DNOs represents input
data. These profiles are recorded in the database and uploaded in the matrices [P] and [Q] having the
sizes TxNeps, where T represents the period used in the measurement campaigns to record the data
with various sampling steps (usually 60 minutes) and NEDS correspond with the number of the EDSs

from the analysed EDN.
Ao Ba R R
Pl By Pa o B B,
_PZ‘",I Pr',z | P7:,n PT,NEDS_

O G2 - Qi o Qi

[Q]: Qt,l Qz,z Qt,n Qt’NEDS (1)

Or1 9r» Or.n QT,NEDS |

Step 2. The correlation coefficients are calculated between each two EDSs (n and m, n # m, n, m €
{Neps}) from the analysed EDN and recorded in the matrix [CC], having the size (NepsxNEeps).

CoE,.P,
CCp p :07") (‘v’)n,me{NEDS}; n#m (2)

Op, Ok,

where Cov(Pm, Pn) represents the covariance between the active power profiles from the set of the
EDSs, generically noted n and m; orn and opm - the standard deviation of active powers associated
with the EDSs m and n recorded in the time interval T.

1 5P B 1%
0y =7 2P RS B=Z YR nelNeps) @
=1

Step 3. The classes corresponding to the EDSs with similar features of the correlation coefficients are
identified based on a clustering process. The optimal partition in the classes will be determined using
the K-Means clustering algorithm [20] and an internal test based on a performance indicator, namely
the Silhouette Coefficient (SC) [21]. The clustering process includes the following phases:

1. The NEDS vectors associated with the columns of the matrix [CC] should be integrated into K
classes:

[ccl=lcc, cc, - cc, - ccy, | (4)
cc, =lcc,, cc,, o CC,y ) m=T. N ®)

2.  Determination the maximum number in which the NEDS electric distribution substations can
be distributed using the relation [22]:
Kpax = NEDS ©)

m

3. The vectors CCn, n=1, ..., Neps, will be randomly assigned in the K classes of the EDSs.
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4. The centroids Cx, k=1, ..., Kand K =2, ..., Kmax, representing vectors with the size (Nepsx1) are
calculated.

s
C, =——Y 7)

EDS j=1
where: nk — the number of the EDSs from the classes k, k=1, ..., Kand K =2, ..., Kmax; CCj(k) — the
vector associated with an EDS, generically noted j inside the class k from partition K, K=2, ..., Kmax.

5. The repartition of the EDSs in in one of the K classes, K=2, ..., Kmax, will be based on the mini-
mization of an objective function OF having the following expression:

K ny 2
min(OF ) = min(zzuccg") -C, H ] )
k=1 j=1

6. The positions of the Cx centroids are re-adjusting through their recalculation using relation (7).
In the case when all vectors CCn, n=1, ..., Neps, are considered and re-labelled, Step 5 is repeated.

7. The silhouette coefficient for each partition K = 2, ..., Kmax, will be calculated using the formula

[23]:
1 N gps X, — v,
(K) =V
c = Kok
s N gpg ,Z:; (max {x,.,yl. }j max 9)
D dist(v;,v;) > disi(v;,v;)
— .
N w0
xi = J/,- —min
ny =1 X#Y ny

where: nx and ny — the number of the vectors CC belonging to the EDSs from the classes X and Y
associated with the partition K, K=2, ..., Kmax; dist(vi, vj) — the distance calculated between the vectors
vi and vj from the matrix [CC].

8. The value of the silhouette coefficient SC(k) for each partition K =2, ..., Kmax is recorded in the
vector [SC] and the maximum value is identified:

e, pmes | = max {sC T (11)

where csmx represents the maximum value of silhouette coefficient; pmax is the position from the vector
[SC] where the maximum value has been identified.

9. Determination of the optimal partition containing Kopt classes:

Kop=p"+1 (12)

2.2. Layer 2

Step 1. Determining the “candidate” classes (notated with k¢, ke € {Kopt}) for placement of SCADA
measurements based on a ranking established according to correlation coefficients, in reverse order
beginning with those which have the highest values. The Decision Maker will impose a threshold
(CClhreshold) for an average value of CC to choose the “candidate” classes [24].

Step 2. Identifying the set of the pilot EDSs which will be integrated in the SCADA system belonging
to each “candidate” class.

{Nf,%j}: e €k | CG > CCreghora) (13)

where n« represents the number of the EDSs from each “candidate” class ke, , ke € {Kopt}.
The pilot EDSs will represent the optimal places where be performed the SCADA measurements
such that the load flow calculations to be carried out in the medium voltage distribution networks.
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Step 3. Building the accurate, robust, and interpretable multiple linear regression models to estimate
the active powers in the EDSs from the others classes that were not included in the set of the “candi-
date” classes. The models will use the pilot EDSs as regressors identified at Step 2.

ny
B = Bow+ 2 ByuBly), t=1.T
(14)

me{k, s pe{ N i {Nups }={Npim }O{N, }

where: {Nknc} — the set of the EDSs non-included in the “candidate” classes; {NpilotEPS} — the set of the
pilot EDSs with SCADA measurements integrated; {Neps} — the set of the EDSs from the analysed
EDN; Pym® - the value of the active power estimated in the EDS "m" from the set {Nknc}, in [kW]; Pip®
- the value of the active power measured in the pilot EDS “p” from the set {Npiot®5}, in [kW]; Bom —
the constant coefficient of the linear regression model for each EDS from the set {Nnc}; Bpm— the coef-
ficients corresponding with each regressor associated with the pilot EDS “p” from the set {NpilotfP5} in
the linear regression model for each EDS from the set {Nknc}.

Step 4. Analyzing the performance of the regression models based on the following metrics: percent-
age error (PE), average percentage error (APE), and mean absolute percentage error (MAPE):

Pz(r) _Pz(e)
PE,, =" - 1100, 1 =1,...T, me {Nkm } [2] (15)
Bom
1 T
APE, == PE,, me{N, | [] (16)
t=1
1 NEDS
MAPE = > 4PE,, [%] (17)
EDS n=1

2.3. Layer 3

Step 1. Determination of the hourly reactive powers using the active powers measured in the pilot
EDSs and estimated in the EDSs non-integrated in the “candidate” classes and the regression models
established in Step 2 from Layer 1.

Q,(f,):f(P,(:)’ﬁm), me{km,}, t=1...T (18
0! = (P8, ). pelWES) =17 (19)

Step 2. Power Flow Calculation using the Newton-Raphson method to estimate the state of the EDN.
The state variables recorded refer to the voltages on the MV side of the HV/MV EDS, the active and
reactive power flows, the power/energy losses, and the active/reactive powers injected in the slack
bus (the MV bus of the HV/MV EDS).

Step 3. Verifying the technical constraints regarding the voltages and loading of the lines. If there are
violations of some limits, then the DNO can apply technical measures to bring the state values to the
admissible limits provided in the performance standards or imposed by the manufacturers.

3. Results

A real urban MV EDN has been used to test the proposed framework. The END, supplied from
an HV/MV (110/20 kV) EDS, contains three MV feeders with 39 MV/LV (20/0.4 kV) EDSs. Figure 4
presents the topology of the test MV EDN.

Table Al from Appendix A includes each branch's length between two EDSs associated with
each feeder. The EDN has the cross-section of the first branch (EDS - 1, EDS -14, and EDS - 29), with
a size of 185 [mm?] (ro = 0.157 [QQ/km] and xo0 = 0.112 [Q/km]), which is different from the other
branches, equal to 150 [mm?] ((ro = 0.194 [Q/km] and xo = 0.115 [Q/km]). Also, the branch length is in
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the range [0.1 — 0.5] km, with a total length for the second feeder of 6.07 km higher than the other two
feeders (3.36 km for the first feeder and 3.54 km for the third feeder, respectively). Figure 5 presents
the synthesis of this information.

The rated power of the transformers, denoted with S:, from the EDSs supplied by the three feed-
ers is between 400 and 1000 kVA, see Table A2 from Appendix A. The total installed powers (calcu-
lated as the sum of the rated powers of the distribution transformers supplied by each feeder) are
7.15 MVA for the first feeder, 12.21 MVA for the second feeder, and 9.52 MVA for the third feeder,
resulting in a total power of the EDN of 28.88 MV A, see Figure 6.

Step 1 of the first layer from the proposed methodology considers the building of a database
with the active and reactive power profiles recorded in the matrix form, as seen in the relationships
(1), based on a measurement campaign performed by the DNO during a week in the most loaded
period.

EDS 20KV

Feeder 1 Feeder 3

14

15

16

17

18

20 38 w—t—

19wt

Figure 4. The topology of the test 39-bus MV EDN.
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Figure 5. The total length of each feeder from the test 39-bus MV EDN.
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Figure 6. The total installed power of each feeder from the test 39-bus MV EDN.

Figures 7and 8 present the boxplots of the active and reactive powers associated with the meas-
urement campaign.
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Figure 8. The boxplots of the reactive powers from the EDSs.
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A boxplot is a method that shows the locality, skewness, and spread groups of data through
their respective quartiles. In addition to the box, there are also whiskers, which are lines that extend
from the box to indicate variability outside the lower and upper limits of the range. These are referred
to as box-and-whiskers and box-and-whiskers, respectively [25,26].

Tables A3 and A4, from Appendix A, show the quartiles associated with the boxplot represen-
tation and two other statistical indicators (mean and standard deviation). The analysis of the infor-
mation highlights that there are 14 EDSs with a high variation of the powers (9, 10, 12, 14, 17, 22, 27,
29, 30, 31, 33, 34, 38, and 39), 7 EDSs with slight variations (1, 2, 3, 4, 23, 24, and 25), and 18 EDSs with
normal variations.

Step 2 of the first layer involves the calculation of the correlation coefficient between each of the
two EDSs from the analysed EDN, which is recorded in the matrix [CC] and has a size [39x39]. Figure
9 presents the heatmap chart associated with matrix [CC] containing the values between -0.1 and 0.99.
The vast majority of values are above 0.6. Still, there are also values close to 0 or even negative, which
means that as one variable increases, the other decreases proportionally. Application of the K-means
algorithm-based clustering process included in the last step of the first layer led to the classes corre-
sponding to the EDSs with similar features of the correlation coefficients.

Figure 9. The heatmap chart associated with correlation coefficients.

The maximum number of the clusters (named classes in the following) corresponded to a parti-
tion in 6 clusters. The internal test used the Silhouette Coefficient, and the algorithm identified the
optimal number equal to 5 (for which the silhouette coefficient has the highest value, SC = 0.7168),
see Figure 10. The representation of the silhouette coefficient for the optimal partition, Kopt = 5, is
given in Figure 11.

Figure 12 highlights each class's percentage and the number of EDS it integrates. The analysis of
the data indicates that the representative class is C5, containing 12 EDSs (30.77%), followed by classes
C1 (10 EDSs, 25.64%), C2 (10 EDSs, 25.64%), C3 (5 EDSs, 12.82%), and C4 (2 EDSs, 5.13%).
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Figure 10. The values of silhouette coefficient for the partitions K =2 to Kmax = 6.
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Figure 11. The silhouette coefficient associated with the optimal partition, Kopt = 5.
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Figure 12. The silhouette coefficient associated with the optimal partition, Kopt = 5.

The allocation of the EDSs in each class can be observed in Figure 13.
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Figure 13. The allocation of the EDSs to each class.

Two (Feeder 1 and Feeder 2) from three feeders have the EDSs associated with all classes, and
one feeder (Feeder 3) contains the EDSs allocated to only three classes (C1, C2, and C5). Table 1 pre-
sents the statistical indicators corresponding to the quartiles (Q0 — Q4), mean (M), and standard de-
viation (SD) for the obtained classes following the clustering process.

Table 1. The statistical indicators associated with the obtained classes for the optimal partition.

Class Qo Q1 Q2 Q3 Q4 M SD
C1 0.69 0.71 0.73 0.75 0.8 0.74 0.04
C2 0.51 0.57 0.595 0.68 0.71 0.62 0.07
C3 0.57 0.59 0.63 0.64 0.65 0.62 0.03
C4 0.40 0.40 0.40 0.40 0.40 0.40 0
C5 0.75 0.77 0.79 0.81 0.82 0.79 0.02

The class with the values of the highest average correlation coefficient is C5, the range is [0.75,
0.82], and the smallest values are associated with C4 (0.4). The trend of the mean is the same, with
the highest value recorded for class C5 (M = 0.79), followed by C1 (M =0.74), C2 M =0.62), C3 (M =
0.62), and C4 (M =0.4). The highest variation of the correlation coefficient belongs to class C2 (between
0.57 and 0.68), followed by C3 (between 0.59 and 0.64), C1 (between 0.71 and 0.75), and C5 (between
0.77 and 0.81), see Figure 14. The class C4 (having only 2 EDSs) was not taken into account, being
unrepresentative for the analysis.
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Figure 14. The boxplot of the average correlations coefficients from the obtained classes.

Step 1 of the second layer aims to set the threshold for CC at 0.75 to choose the candidate classes.
This value is widely used in the literature for the minimum threshold value. The only class that meets
this condition for the average correlation coefficient is C5. Thus, the EDSs from this class, identified
with blue in Figure 13, will represent the optimal locations to integrate the SCADA system.

In the third step, the algorithm determines the multiple linear regression models to estimate the
powers in the EDSs from the other classes not included in the set of the “candidate” classes. The
models use as regressors the EDSs identified in the previous step.

Table 2 and Figure 15 present the APEs obtained based on the previously determined regression
models for each EDS without integration into the SCADA system.

Table 2. APEs calculated for the three methods, in [%].

No. EDS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
SLR Method 8.6 14.713.319.415.818.512.0 4.2 6.4 52 212309128 7.3 58 17.8 16.6 11.8 9.6 16.9
TLPs Method 80 48 3.1 6.8 851229410259 80 11423355 8711678 89 100 74 144
C-MLR Method 2.7 4.1 3.7 48 43 5.7 21 0.0 0.0 0.0 39 48 23 0.0 0.0 28 39 3.7 25 33

No. EDS 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
SLR Method 22.021.511.810.822.3 8.4 27.010.8 5.7 8.3 19.013.2 4.6 129 6.8 81 4.1 7.8 6.2
TPLs Method 8613278 7513.011.2254 64 7.7 19.6 10.6 9.6 11.2 9.7 9.0 10.0 9.6 6.0 6.5
C-MLR Method 4.3 50 54 27 52 24 63 3.6 0.0 0.0 3.3 28 0.0 44 0.0 0.0 0.0 1.5 0.0
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Figure 15. The radar representation of APEs, in [%].

The APEs are equal to 0 for the EDSs from the candidate class (in our case, class C5), identified
in bold in the table, because the system uploads the measurements from the SCADA system during
the analysis period for these EDSs.

The results obtained with the proposed hybrid clustering-multiple linear regression (C-MLR)
method have been compared with two other methods from the literature to demonstrate the perfor-
mance of the proposed approach: the simple linear regression (SLR) method and the typical load
profiles (TLPs) method. Estimating the powers from the EDSs based on the SLR method proposed in
[15] contains the linear regression models between the reference, considered the MV bus of the supply
HV/MV EDS, and the MV/LV EDSs from the EDN. Regarding the second method [19], each EDS has
assigned a typical active and reactive profile depending on the energy consumption category ob-
tained due to a clustering process.

The results indicate a substantial improvement in the estimation process of the APE values at
the EDSs level with the proposed method compared to the SLR and TLPs methods. Table 4 and Figure
16, containing the statistical indicators associated with the quartiles Q0 — Q4, confirms this conclusion
with a decrease of the maximum value from 30.9 % (calculated for SLR method) and 14.4% (calculated
for TLPs method) to 6.3% and a median value (quartile Q2) from 11.8 % (calculated for SLR method)
and 9.0 % (calculated for TLPs method) to 2.8 %. The SLR method led to the highest variation of the
APEs in the range [4.1%, 30.9%], followed by the TLPs method with a range [3.1%, 25.4%]. The pro-
posed method has the least variation, in the range [0.0%, 6.3%].

Regarding the MAPESs, Figure 17 presents the values of MAPEs calculated for the three methods.
The value of MAPE decreases from 12.8% in the case of the SLR method to 9.9% in the case of the
TLPs method and 2.6% (3 % approximately) in the case of the proposed C-MLR method (10% approx-
imately).

0

5~

]
=

|

MAPE [%]

1
Slmple Linlar Regression Method Profiling Method Proposed Method

Figure 16. The boxplot representation of the APEs, in [%].

Table 3. The statistical indicators associated with the APEs.

Class Qo Q1 Q2 Q3 Q4
SLR Method 4.1 7.4 11.8 17.6 30.9
TLPs Method 3.1 7.6 9.0 11.2 254

C-MLR Method 0.0 0.00 2.8 4.2 6.3
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Figure 17. The radar representation of MAPEs, in [%].

In the following, Layer 3 of the methodology will use the results obtained with the proposed C-
MLR method to estimate the state of the EDN associated with a day.

Because the voltages calculated at the level of the EDSs with the Newton-Raphson method based
on the estimated powers are very close to the real data, being located between the allowable limits
[+10%, -10%] compared with the nominal voltage, only the state variables obtained from the power
flow calculations using the real and estimated active and reactive powers from the MV/LV EDSs as-
sociated with the injected active and reactive powers (Pinjand Qinj) from the slack bus (the 20 kV bus
of the HV/MV EDS), the requested active and reactive powers (Preq and Qreq) at the level of the MV/LV
EDSs from the EDN, the active and reactive power losses (AP and AQ), and capacitive reactive power
of the cables (Qcp) are analysed. Tables 5A and 6A from Appendix A present the hourly values ob-
tained for these state variables. Table 4 contain the hourly percentage errors calculated for each state
variable.

Table 4. The percentage errors calculated for the state variables, in [%].

Hour Pinj Qinj Preq Oreq AP AQ Qecap
1 0.13 0.50 0.13 0.49 0.36 0.87 0.00
2 0.03 0.04 0.04 0.05 0.30 0.27 0.00
3 2.14 2.54 2.19 2.34 2.10 2.23 0.00
4 0.16 0.16 0.16 0.11 0.19 0.59 0.00
5 0.14 0.11 0.14 0.11 0.07 0.00 0.00
6 0.07 0.02 0.06 0.01 0.20 0.21 0.09
7 1.39 1.52 1.38 1.38 2.85 2.34 0.05
8 1.31 1.43 1.31 1.32 2.24 2.28 0.02
9 0.42 047 0.42 0.38 1.13 1.05 0.09
10 0.93 0.94 0.93 0.88 1.51 1.54 0.07
11 0.48 1.04 0.48 0.98 0.91 0.93 0.03
12 0.55 0.63 0.56 0.60 0.49 0.57 0.02
13 0.08 0.08 0.08 0.08 0.37 0.54 0.06
14 0.45 047 0.45 0.45 0.06 0.13 0.09
15 0.25 0.27 0.25 0.25 0.80 0.80 0.06
16 0.30 0.14 0.30 0.13 0.78 0.77 0.06
17 0.45 0.46 0.44 0.44 1.08 1.04 0.08
18 1.20 1.36 1.20 1.29 2.13 2.17 0.11
19 0.33 0.39 0.33 0.37 0.57 0.61 0.05
20 0.58 0.61 0.58 0.59 0.90 1.19 0.03
21 0.18 0.80 0.18 0.77 0.30 0.34 0.06
22 0.70 0.80 0.70 0.76 1.03 1.09 0.05
23 0.14 0.15 0.14 0.14 0.30 0.28 0.00

N
=~

0.73 0.61 0.73 0.58 1.09 1.15 0.06
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The data analysis highlights that higher errors than 1% are associated with 4 hours (3, 7, 8, and
18) for all state variables (less acp). However, the maximum value does not exceed 3% in the case of
the active power loss at hour 7. Exceeding the 1% threshold is sporadically present, as other variables
are, but they are tiny.

Table 5 and Figure 18 present the values corresponding to statistical indicators, which offer a
clear image of the accuracy of the state estimation of the EDN. Each state variable has one or a maxi-
mum of two outliers, but the values cannot be considered as high as long as they are below a thresh-

old accepted by the DNOs.
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Figure 18. The boxplot representation of the percentage errors calculated for the state variables.

Table 5. The statistical indicators of the percentage errors calculated for the state variables, in [%].

State variable Qo Q1 Q2 Q3 Q4
Injected active power 0.03 0.15 0.44 0.72 2.14
Injected reactive power 0.02 0.16 0.49 0.87 2.54
Requested active power 0.04 0.15 0.43 0.72 2.19
Requested active power 0.01 0.14 0.47 0.83 2.34
Active power loss 0.06 0.30 0.79 1.11 2.85
Reactive power loss 0.00 0.44 0.84 1.17 2.34
Capacitive reactive power 0.00 0.01 0.05 0.07 0.11

However, all state variables have MAPEs below 1%, as seen in Figure 19, which means an out-
standing performance of the estimation process.

1.20
1.00 0.91 0.96
_ 0.80
g 0.65 0.60
w 0.60 0.55 0.55
=
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0.20
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Figure 19. MAPEs of the state variables.
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Finally, the proposed framework can offer the DNOs the state estimate synthesis based on the
aggregated values quantified as energy amounts for the analysed period. Table 6 presents the values
of the state variables obtained in both cases (real and estimated) and the errors.

Table 6. The aggregated values of the state variables associated with the analysed period.
Wr inj WQ inj Wr req WQ req AWr AWQ WQcap

Case [MWh] [MVArh] [MWh] [MVArh] [MWh] [MVArh] [MVArh]
Real Data 316.203 199964 315.111 211.294 1.092 0.692 12.030
Estimated Data 315.766 199950 314.670 211.286 1.096 0.693 12.028
Error [%] 0.138 0.007 0.140 0.004 0.330 0.032 0.014

The information presented in the table confirm again the accuracy of the estimation process
where the state variables have the errors below 0.15%.

4. Conclusions and Discussions

A state estimation process analyses an electric network's operating conditions. It involves gath-
ering all known information about the network to determine the most likely state. This process is
commonly utilized in transmission networks to improve observability and optimize operating re-
gimes. Although the estimation state process is frequently used in transmission networks, it has not
been widely adopted in the distribution sector due to the lack of proper supervision and monitoring.
Despite this, it can represent an essential EDN management component for DNOs.

In this context, determining the optimal number of EDSs integrated into a SCADA system to
perform on-site measurements used in the state estimation process of the EDNs represents a chal-
lenge both from a technical and economic point of view for DNOs. It involves developing a robust
framework incorporating algorithms to model the EDN's conditions accurately.

Thus, a three-layer framework for optimal placement of SCADA measurements with clustering-
based EDS selection to estimate the state of the EDNs has been proposed. This framework has under-
gone rigorous testing to ensure its reliability and accuracy. The first layer includes the determination
of the classes of the EDSs with similar features from the viewpoint of requested loads based on the
K-means clustering algorithm. The second layer identifies the "candidate” classes and the pilot EDSs
(representing the optimal solution) with the SCADA measurements placed. The optimal placement
process aims to minimise the estimation errors based on the multiple linear regression models be-
tween the EDSs from the classes not included in the set of the "candidate” classes and the pilot EDSs.
The third layer allows the state estimation of the EDNs based on the load values measured in the
pilot EDEs (with the SCADA system implemented) and the other EDSs obtained through the regres-
sion models. The framework was tested in the case of a real urban EDN with 39 EDSs, where accuracy
was ensured for on-site measurements in 12 of the 39 EDSs (representing 31% of EDSs integrated into
the SCADA system). This solution is similar to the conclusions of the study from [3], where the inte-
gration degree in the SCADA system of the MV/LV EDSs at the level of most European DNOs is
approximately 30%.

The power estimation process at the level of the EDSs for the analysed period indicated a de-
crease of MAPE from 12.8% in the case of the SLR method [15] to 9.9% in the case of the TLPs method
[19] and 2.6% (3 % approximately) in the case of the proposed C-MLR method (10% approximately).
This improvement in accuracy can significantly enhance the power estimation process, leading to
more reliable network operations. Reading the state variables determined by a power flow calcula-
tion, the obtained MAPEs have been below 1%, which means an outstanding performance of the
estimation process. Finally, the aggregated values quantified as energy amounts for the analysed pe-
riod confirmed the accuracy of the estimation process, where the errors were below 0.15%.

The framework has been tested only in the EDNs without the distributed generation sources in
this research stage. However, the authors are not stopping here. They are now working on an im-
proved version that includes power injections from distributed generation sources. The degree of
uncertainty at the level of the requested/injected powers is also being considered.
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Abbreviations
The following abbreviations are used in this manuscript:
EDN electric distribution networks
DNO distribution network operator
SCADA  supervisory, control, and acquisition system
EDS electric distribution substations
MV medium Voltage
HV high Voltage
LV low Voltage
RTU remote terminal unit
MAPE mean absolute percentage error
APE average percentage error
PE percentage error
SLR simple linear regression
TLP typical load profile

C-MLR clustering-multiple linear regression
Appendix A

Table A1. The length of the branches associated with the three feeders.

Length Feeder Length Feeder Length Feeder

Branch Branch Branch

[km] Allocated [mm?] Allocated [mm?] Allocated

EDS-1 0500 Feeder2 26-27 0390 Feeder2 20-21 0.510 Feederl
1-2 0200 Feeder2 27-28 0410 Feeder2 21-22 0.450 Feederl
2-3 0250 Feeder2 5-10 0.500 Feeder2 EDS-29 0.400 Feeder3
3-4 0100 Feeder2 10-11 0.390 Feeder2 29-30 0.230 Feeder3
4-5 0300 Feeder2 11-12 0.180 Feeder2 30-31 0.490 Feeder3
5-6 0450 Feeder2 12-13 0.270 Feeder2 31-32 0.170 Feeder3
6-7 0280 Feeder2 EDS-14 0.600 Feeder1l 32-33 0.340 Feeder3
7-8 0310 Feeder2 14-15 0.180 Feeder1l 33-34 0.480 Feeder3
8-9 0210 Feeder2 15-16 0290 Feeder1l 34-35 0.210 Feeder3
2-23 0350 Feeder2 16-17 0350 Feeder1l 35-36 0.350 Feeder3
23-24 0260 Feeder2 17-18 0.230 Feeder1l 36-37 0.370 Feeder3
24-25 0400 Feeder2 18-19 0400 Feeder1l 37-38 0.210 Feeder3
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25-26 0320 Feeder2 19-20 0.350 Feederl 38-39 0.290 Feeder3

Table A2. The rated power of the transformers from the EDSs supplied by the three feeders.

No.of S Feeder No.of Sn Feeder No.of Sn Feeder
EDS [kVA] Allocated EDS [kVA] Allocated EDS [kVA] Allocated
1 400 Feeder2 14 1000 Feeder1 27 630 Feeder 2

2 400 Feeder 2 15 1000 Feeder 1 28 630 Feeder 2
3 400 Feeder?2 16 630  Feeder1 29 1000 Feeder 3
4 400 Feeder?2 17 1000  Feeder 1 30 630 Feeder 3
5 630 Feeder 2 18 630  Feeder1 31 1000 Feeder 3
6 630 Feeder 2 19 630  Feeder1 32 630 Feeder 3
7 630 Feeder2 20 630  Feeder1 33 1000 Feeder 3
8 630 Feeder 2 21 630  Feeder1 34 1000 Feeder 3
9 1000 Feeder 2 22 1000 Feeder 1 35 1000 Feeder 3
10 1000 Feeder 2 23 400 Feeder2 36 630 Feeder 3
11 630 Feeder2 24 400 Feeder 2 37 630 Feeder 3
12 1000 Feeder 2 25 400 Feeder2 38 1000 Feeder 3
13 1000 Feeder 2 26 1000 Feeder 2 39 1000 Feeder 3

Table A3. The statistical indicators (quartiles - Q0, Q1, Q2, Q3, Q4, mean — M, and standard deviation - SD) of
the active powers from the EDSs, in [kW].

No. EDS Qo Q1 Q2 Q3 Q4 M SD
1 111.20 139.95 191.90 229.80 244.00 183.67 46.17
2 112.90 130.65 177.55 221.90 245.20 177.90 45.78
3 123.80 138.55 187.70 243.15 275.40 193.04 53.58
4 95.50 103.75 160.35 188.55 258.30 156.95 52.64
5 143.70 172.05 250.15 325.65 393.30 255.70 83.99
6 161.50 210.85 303.80 369.10 441.40 296.61 93.10
7 206.90 258.50 291.20 393.20 425.80 315.41 71.99
8 178.60 246.70 329.90 388.35 420.30 315.61 81.69
9 220.10 279.90 462.20 551.70 612.30 432.07 137.87
10 200.20 295.35 477.70 578.85 662.50 448.07 155.78
11 164.50 182.40 256.70 328.60 378.20 256.35 77.00
12 161.40 242.00 382.25 615.00 699.70 415.58 192.82
13 219.80 353.80 433.75 534.15 651.80 433.48 132.37
14 178.00 289.70 445.05 543.10 617.00 417.76 145.61
15 274.40 382.50 442.90 491.30 588.10 439.88 95.17
16 157.40 227.20 329.85 392.95 437.70 308.80 93.91
17 289.80 341.10 423.45 580.90 639.80 459.34 128.20
18 168.60 206.45 306.85 368.90 462.80 294.01 90.84
19 223.10 246.45 334.15 352.20 440.60 316.39 67.25
20 222.80 278.40 355.00 386.15 456.80 338.20 71.07
21 131.70 165.20 214.60 292.85 393.70 230.90 82.16

N
N

256.70 334.50 400.40 614.45 684.10 457.84 148.16
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23 118.90 146.75 187.35 240.45 293.00 196.85 54.32
24 103.30 124.30 158.00 207.80 233.60 164.08 43.94
25 112.30 127.60 165.90 210.25 277.00 173.38 48.85
26 313.40 431.25 487.60 564.75 667.50 497.71 104.64
27 114.40 128.60 294.10 425.75 436.90 281.59 131.65
28 166.80 226.30 276.80 351.80 440.40 287.74 83.08
29 244.30 377.65 485.40 598.30 637.00 473.80 130.00
30 117.40 169.35 305.40 380.65 459.10 291.58 115.43
31 206.20 258.20 326.75 485.50 623.70 377.59 140.52
32 213.90 286.25 345.70 415.85 448.30 341.44 73.85
33 202.40 292.75 476.85 598.40 681.10 454.65 166.10
34 210.40 245.85 516.30 569.10 652.50 444.13 160.50
35 276.70 362.70 441.65 511.15 615.50 441.42 101.59
36 193.60 253.45 374.55 402.20 434.20 334.51 82.24
37 168.30 210.70 266.00 318.30 335.90 266.10 57.38
38 230.80 325.55 457.30 526.90 571.00 425.03 114.75
39 293.00 358.95 530.85 639.30 665.40 499.63 137.32

Table A4. The statistical indicators (quartiles - Q0, Q1, Q2, Q3, Q4, mean — M, and standard deviation - SD) of
the reactive powers from the EDSs, in [kVAr].

No.EDS QO 01 Q2 Q3 04 M SD
1 6892 8673 11893 14242  151.22 113.83 28.61
2 69.97 8097 11004 13752  151.96 110.26 28.37
3 7672 8587 11633  150.69  170.68 119.64 33.21
4 59.19 6430  99.38 11685  160.08 97.27 32.62
5 89.06  106.63 15503  201.82 24375 158.47 52.05
6 100.09  130.67 18828 22875  273.56 183.82 57.70
7 12823 16020 18047  243.68  263.89 195.47 44.62
8 110.69  152.89 20445  240.68  260.48 195.60 50.63
9 13641 17347 28645 34191 37947 26777 85.45
10 124.07  183.04 29605 35874  410.58 277.69 96.54
11 101.95  113.04  159.09  203.65  234.39 158.87 47.72
12 100.03 14998 23690  381.14 43364 25755 119.50
13 13622 21927 26881  331.04  403.95 268.64 82.04
14 11031 17954 27582 33658  382.38 258.90 90.24
15 170.06  237.05 27448 30448 36447  272.62 58.98
16 9755  140.81 20442 24353 27126 191.38 58.20
17 179.60 21139 26243 36001 396,51 284.67 79.45
18 10449 12795 190.17 22862  286.82 182.21 56.30
19 13826 15274  207.09 21827  273.06 196.08 41.68
20 138.08 17254 22001 23931 28310  209.60 44.04
21 81.62  102.38  133.00 18149  243.99 143.10 50.92
22 159.09  207.30  248.15  380.80 42397 28374 91.82

N
(O8]

73.69 90.95 116.11 149.02 181.59 122.00 33.67
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24 64.02 77.03 97.92 128.78 144.77 101.69 27.23
25 69.60 79.08 102.82 130.30 171.67 107.45 30.27
26 194.23 267.26 302.19 350.00 413.68 308.45 64.85
27 70.90 79.70 182.27 263.86 270.77 174.51 81.59
28 103.37 140.25 171.55 218.03 272.94 178.32 51.49
29 151.40 234.05 300.82 370.79 394.78 293.64 80.57
30 72.76 104.95 189.27 235.91 284.52 180.70 71.53
31 127.79 160.02 202.50 300.89 386.53 234.01 87.08
32 132.56 177.40 214.25 257.72 277.83 211.61 45.77
33 125.44 181.43 295.53 370.86 422.11 281.76 102.94
34 130.39 152.36 319.97 352.70 404.38 275.25 99.47
35 171.48 224.78 273.71 316.78 381.45 273.57 62.96
36 119.98 157.07  232.13 249.26 269.09 207.31 50.97
37 104.30 130.58 164.85 197.26 208.17 164.91 35.56
38 143.04 201.76 283.41 326.54 353.87 263.41 71.11
39 181.59 222.46 328.99 396.20 412.38 309.64 85.10

Table A5. The state variables calculated based on the active and reactive power profiles estimated with the C-

MLR method.
Hour Pinj Qinj Preq Qreq AP AQ Qeap
[MW] [MVAr]l [MW] [MVArl [MW] [MVArl [MVAr]
1 11.325 7.099 11.294 7.580 0.031 0.020 0.502
2 9.850 6.116 9.827 6.604 0.023 0.015 0.502
3 8.762 5.323 8.739 5.812 0.023 0.012 0.502
4 8.127 4.959 8.111 5.451 0.016 0.010 0.502
5 7.858 4.780 7.843 5272 0.015 0.010 0.502
6 7.888 4.798 7.873 5.291 0.015 0.010 0.502
7 8.584 5.265 8.566 5.756 0.018 0.011 0.502
8 10.431 6.507 10.404 6.992 0.027 0.017 0.502
9 11.836 7.453 11.800 7.932 0.036 0.023 0.502
10 12.779 8.080 12.737 8.555 0.042 0.026 0.501
11 13.727 8.767 13.679 9.238 0.048 0.030 0.501
12 14.622 9.319 14.567 9.785 0.055 0.035 0.501
13 15.585 9.970 15.524 10.432 0.061 0.039 0.501
14 16.688 10.711 16.618 11.167 0.070 0.045 0.500
15 17.428 11.208 17.352 11.660 0.076 0.048 0.500
16 17.469 11.236 17.393 11.688 0.076 0.048 0.500
17 17.022 10.936 16.950 11.391 0.072 0.046 0.500
18 16.520 10.609 16.452 11.066 0.068 0.043 0.500
19 15.490 9.902 15.431 10.365 0.060 0.038 0.501
20 14.957 9.667 14.902 10.133 0.055 0.035 0.501
21 15.628 9.999 15.567 10.461 0.060 0.038 0.501
22 15.270 9.758 15.213 10.222 0.057 0.036 0.501

N
€8]

14.381 9.161 14.331 9.630 0.050 0.032 0.501
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24 13.541 8.327 13.499 8.802 0.042 0.026 0.501

Table A6. The state variables calculated based on the real active and reactive power profiles.

Pinj Qinj Preq Qreq AP AQ Qcap

Hour | \IWl [MVArl MWl [MVArl [MW] [MVAf [MVArl
1 11340 7135 11309 7617 0031 0019 0502
2 9847 6113 9823 6601 0023 0015 0502
3 8953 5462 8934 5952 0019 0012 0502
4 8140 4967 8124 5457 0016 0010 0502
5 7869 4785 7854 5278 0015 0010 0502
6 7803 4799 7878 5292 0015 0010 0502
7 8705 5346 868 5837 0018 0012 0502
8 10296 6415 10269 6901 0026 0017 0502
9 11.885 7489 11849 7962 0036 0023 0502
10 12661 8005  12.620 8480 0041 0026 0501
11 13661 8677 13614 9148 0047 0030 0501
12 14703 9378 14648 9844 0055 0035 0501
13 15573 9962 15512 10424 0061 0039 0501
14 16763 10762 16693 11217 0070 0045  0.500
15 17472 11238 17395 11690 0077 0049  0.500
16 17416 11221 17340 11673 0076  0.048  0.500
17 17098 10987  17.025 11441 0073 0046  0.500
18 16323 10467 16257 10925 0066 0042 0501
19 15542 9941 15482 10404 0060 0038 0501
20 15044 9608 14988 10073 0056 0035 0501
21 15599 9919 15539 10382 0060  0.038  0.501
2 15378 9837 15320 10301 0058 0037 0501
23 14401 9175 14351 9644 0050 0032 0501
2% 13641 8276 13599 8752 0041 0026 0501
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