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Abstract 

In the subscription-based publishing industry, customer churn represents a significant challenge to 
business sustainability, with acquiring new customers being substantially more costly than retaining 
existing ones. This study examines the development of an automated churn prediction pipeline for 
S.P. AbonneeService, a B2B subscription service provider managing over 200 titles and 350,000 end-
consumers across multiple publishing categories. The research implements a comprehensive 
machine learning framework utilizing the CRISP-DM methodology, evaluating six algorithms (Naive 
Bayes, Logistic Regression, Random Forest, XGBoost, LightGBM, SVM) across three resampling 
techniques and three temporal validation strategies using five years of historical subscription data 
from three distinct publishing companies. The automated preprocessing pipeline addresses 
heterogeneous data structures, seasonal variance, and class imbalance through systematic feature 
engineering, temporal validation, and synthetic minority oversampling. Experimental results 
demonstrate that LightGBM with SMOTE resampling achieves superior performance across all 
evaluated contexts, with AUC-PR values exceeding 0.95 and precision rates above 0.95 for top-
performing configurations. The study establishes that automated churn prediction systems can 
deliver exceptional predictive performance while maintaining interpretability essential for actionable 
retention strategies, enabling subscription publishing companies to implement advanced predictive 
capabilities that directly support customer retention.  

Keywords: churn prediction; machine learning; subscription publishing; automated pipeline; class 
imbalance; SMOTE; temporal validation; gradient boosting; customer retention 
 

1. Introduction 

1.1. Background and Significance 

In the subscription-based publishing industry, customer churn, defined as the percentage of 
customers who discontinue their subscriptions within a given time period [1], poses a significant 
challenge to business sustainability. The subscription business model has gained prominence across 
various sectors in recent years, with the publishing industry experiencing a notable shift from 
traditional one-time purchases to recurring revenue structures [2]. This shift has made subscriber 
retention a critical factor for revenue stability and growth potential, as research continues to 
demonstrate that acquiring new customers is substantially more costly than retaining existing ones 
[3].  
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Churn prediction is a critical analytical approach within subscription-based industries, enabling 
organizations to proactively identify customers at risk of discontinuing their service. By leveraging 
machine learning and advanced data analytics, companies can analyze historical customer behavior, 
transactional patterns, demographics, and interactions to detect early indicators of churn [4]. This 
predictive capability is especially valuable in subscription models, where recurring revenue and 
long-term customer relationships are central to business sustainability.  

This study examines S.P. AbonneeService, a well-established subscription-based service 
company within the publishing sector, as its case company. With over 20 years of industry 
experience, S.P. AbonneeService has developed an extensive portfolio encompassing more than 200 
titles (individual publications such as magazines, journals, and newspapers) and 350,000 end-
consumers across various publishing categories, making it a significant industry participant. This 
substantial customer portfolio presents both an opportunity and a challenge for retention strategies, 
as even minor improvements in churn reduction can translate to considerable revenue preservation 
given the scale of their operations.  

Traditional churn prediction typically focuses on single datasets where manual tuning and 
adjustment are feasible; however, in B2B contexts like S.P. AbonneeService, this approach is no longer 
viable. Extensive manual recalibration for each client takes a significant amount of time, which is why 
an automated churn prediction pipeline is vital for B2B companies such as S.P. AbonneeService. 
Automated pipelines effectively address the computational challenges presented by multi-client 
environments through adaptive preprocessing and model selection mechanisms that maintain 
prediction accuracy across different data distributions, eliminating the need for extensive human 
intervention with each implementation. Research demonstrates that such automated frameworks can 
reduce the resource-intensive nature of feature engineering, which typically dominates the 
development effort in production inference pipelines, while maintaining or even improving 
predictive performance across diverse client datasets [6,7]. From a strategic perspective, these 
capabilities would enable S.P. AbonneeService to deliver consistent, scalable churn prediction 
services across their entire client portfolio, enhancing their value proposition while contributing to 
the broader academic understanding of generalizable retention methodologies in subscription-based 
industries.  

1.2. Current State of Research 

Churn prediction methodologies typically utilize two primary approaches: survival analysis and 
binary classification, each offering distinct advantages for subscription-based industries. Survival 
analysis, initially developed for clinical trials and medical research, offers sophisticated temporal 
modeling capabilities that are particularly valuable when dealing with censored data. Censored data 
refers to situations where the event of interest (churn) has not occurred by the end of the observation 
period [14]. This approach commonly utilizes techniques such as the Kaplan-Meier estimator to 
predict the probability distribution of time until churn, enabling organizations to not only understand 
whether customers will churn but also when such events are more likely to occur. Research 
demonstrates that survival analysis can reveal substantial customer lifetime values, with studies 
showing average survival times extending beyond 200 days in specific subscription contexts, 
providing business-critical insights for revenue forecasting and timing retention strategies [14].  

Binary classification approaches, conversely, focus on categorical prediction by assigning 
customers to one of two states: likely to churn or likely to remain active within a specified prediction 
window. This methodology emphasizes learning functions that minimize misclassification 
probability through various machine learning algorithms, including logistic regression, support 
vector machines, and ensemble methods such as random forests [14]. Binary classification proves 
particularly valuable for operational decision-making, as it enables clear “intervene or don't 
intervene” determinations that translate directly into actionable retention strategies. Recent empirical 
studies demonstrate that advanced binary classification models can achieve ROC AUC scores 
exceeding 0.96 for six-month churn prediction horizons, indicating robust predictive performance 
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across diverse subscription environments [14]. The choice between survival analysis and binary 
classification often depends on organizational requirements, with survival analysis providing richer 
insights into temporal dynamics. In contrast, binary classification offers a more straightforward 
implementation for automated intervention systems.  

Traditional statistical approaches have been largely superseded by machine learning techniques 
that demonstrate superior predictive capabilities. A comprehensive survey spanning an entire 
decade of research reveals that machine learning applications in telecom churn prediction have 
become progressively more refined, moving beyond basic classification to incorporate more nuanced 
behavioral analysis [9]. These advances have extended beyond telecommunications to various 
subscription-based industries, including banking, publishing, and digital services [12].  

1.2.1. Evolution of Machine Learning Techniques 

The evolution of machine learning applications in churn prediction has undergone a significant 
transition from traditional logistic regression models to sophisticated ensemble methods, which 
demonstrate superior predictive capabilities. Early approaches primarily relied on logistic regression 
and Naive Bayes classifiers, which provided interpretable results but often struggled with complex 
non-linear relationships in customer behavior data [5,28]. Logistic regression models typically 
achieved accuracy rates around 80-90%, demonstrating reasonable performance but with limitations 
in handling non-linear separability in complex datasets [9,12,28]. Support Vector Machines (SVM) 
emerged as an improvement, particularly when enhanced with optimization techniques such as Grey 
Wolf Optimization, consistently outperforming standard models like logistic regression, Naive 
Bayes, and decision trees in telecommunications churn prediction [5,9].  

The introduction of ensemble methods has marked a significant shift in churn prediction 
accuracy and robustness. Random Forest algorithms have gained widespread adoption due to their 
stability, interpretability, and effectiveness in handling moderately imbalanced datasets, with studies 
reporting accuracy rates ranging from 89% to 95% and demonstrating a strong capability in managing 
large telecommunications datasets [5,9,28]. Gradient boosting algorithms, particularly XGBoost and 
LightGBM, have shown exceptional performance across multiple studies, with XGBoost achieving 
accuracy rates of 99.99% and perfect ROC AUC scores of 1.0 in recent evaluations [28]. LightGBM has 
demonstrated superior performance compared to traditional methods, such as SVM, Random Forest, 
and even XGBoost, in financial dataset contexts, particularly when enhanced with focal loss functions 
to address class imbalance challenges. This approach achieves a churn detection rate of 0.94 with an 
AUC score of 0.99 [5]. These ensemble methods excel at capturing complex patterns and interactions 
in customer data while maintaining reasonable computational efficiency, making them particularly 
suitable for production environments where both accuracy and scalability are critical [27,28].  

1.2.2. Data Handling and Validation 

The effectiveness of churn prediction models depends significantly on feature selection and data 
preparation processes. Recent studies have highlighted that these preliminary stages often determine 
model performance more than the choice of algorithm itself [10]. Research from 2022 emphasizes that 
while manual feature selection remains common in the telecom industry, automated selection 
methods are gaining prominence, with Fisher Score (a filter method) and Random Forest (an 
embedded method) emerging as the most effective approaches [10].  

Temporal validation frameworks are a crucial consideration in churn prediction development, 
as traditional random sampling approaches can lead to data leakage and overly optimistic 
performance estimates. Research has demonstrated the importance of chronological data splitting, 
where models are trained on historical data and tested on future periods to emulate real-world 
deployment scenarios [28]. The most comprehensive temporal validation approach identified in 
current literature involves rolling-window cross-validation, which enables continuous training on 
expanding historical data while testing on subsequent time periods, thereby ensuring models learn 
from past customer behavior patterns and can adapt to future trends [28]. This methodology helps 
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identify concept drift and triggers adaptive retraining when model performance degrades beyond 
predefined thresholds, typically measured by drops in ROC AUC or F1-score exceeding 5% [28].  

Cross-validation techniques have been extensively utilized in churn prediction research, with k-
fold cross-validation (typically k = 5 or k = 10) being the most common approach for model validation 
and hyperparameter tuning [11,12,14,28]. Stratified sampling methods have been recognized as 
essential for maintaining the original churn ratio in training and test sets, preventing models from 
being biased toward the majority class [12,28]. However, despite these advances, current research 
reveals that specialized temporal validation strategies explicitly designed for subscription-based 
business contexts remain limited, with most studies adapting general machine learning validation 
techniques rather than developing domain-specific approaches.  

Class imbalance handling techniques have become increasingly sophisticated, addressing the 
fundamental challenge that churned customers typically represent a minority class in most 
subscription datasets. The Synthetic Minority Over-sampling Technique (SMOTE) has emerged as 
the most widely adopted approach, generating synthetic samples to balance class distributions and 
enhance model performance, particularly when combined with ensemble methods such as XGBoost 
and Random Forest [2,5,12,27,28]. Research demonstrates that SMOTE implementation with 
ensemble learning enhances classification performance by addressing class imbalance and improves 
F1-Score through various classification algorithms and voting strategies [5,27]. Advanced variants 
such as Adaptive Synthetic Sampling (ADASYN) have been developed to focus on generating 
synthetic instances around minority class instances that are more challenging to learn, employing 
weighting systems based on learning difficulty [5,27]. Hybrid approaches combining SMOTE with 
Edited Nearest Neighbors (ENN) have demonstrated superior performance, with hybrid SMOTE-
ENN approaches achieving F1 scores exceeding 95% in telecommunications datasets [5].  

Recent research has explored additional sampling techniques, including Gaussian Noise 
Upsampling (GNUS) and various undersampling methods such as Random Undersampling, 
NearMiss, and Tomek Links [5,27]. The selection of appropriate sampling techniques has been shown 
to depend significantly on the specific degree of class imbalance and the chosen classification 
algorithm. Studies indicate that XGBoost consistently outperforms Random Forest across all 
sampling methods, particularly showing substantial improvements when combined with GNUS in 
extremely imbalanced scenarios [27].  

1.2.3. Evaluation Metrics 

Appropriate evaluation metrics for imbalanced classification scenarios have become 
increasingly important as traditional accuracy measures can be misleading when dealing with 
skewed class distributions. Recent research emphasizes the importance of comprehensive evaluation 
sets of metrics, including precision, recall, F1-score, and the Matthews Correlation Coefficient (MCC), 
to provide balanced assessments of model performance [3,5,9,27,28]. Precision measures how many 
predicted churn customers were actual churners, minimizing false positives, while recall assesses 
how well models capture actual churned customers, aiming to reduce false negatives [12,28]. The F1-
score, as the harmonic mean of precision and recall, provides a balanced evaluation, particularly 
suitable for imbalanced datasets where both types of errors have essential business implications 
[3,27,28].  

The Matthews Correlation Coefficient (MCC) has gained particular prominence as it considers 
all four quadrants of the confusion matrix, providing a more comprehensive measure that ranges 
from -1 to 1, where values closer to 1 indicate superior predictive performance even in highly 
imbalanced datasets [27,28]. The Area Under the Precision-Recall Curve (AUC-PR) has emerged as 
particularly valuable for churn prediction, as it focuses on the minority class performance and 
provides more informative insights than traditional ROC curves when positive class prediction is 
critical [27]. ROC AUC remains essential for assessing discriminatory power across various 
thresholds, with scores closer to 1.0 indicating superior model effectiveness in distinguishing 
between churn and non-churn cases [3,12,28]. Log loss has become essential for evaluating 
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probabilistic predictions, with lower values indicating more accurate and well-calibrated probability 
estimates, which are crucial for ranking customers by their churn risk [28].  

1.2.4. Automated Pipeline 

The emergence of automated machine learning (AutoML) represents one of the most significant 
recent developments in churn prediction research. Traditional model development requires extensive 
manual tuning, which becomes impractical in multi-client B2B environments, such as S.P. 
AbonneeService. To address this limitation, researchers have developed automated pipeline 
frameworks that streamline the model development process [7].  

1.2.5. Research Gaps and Domain-Specific Challenges 

Despite these advances, significant gaps remain in current churn prediction research, 
particularly regarding the cross-publisher applicability and handling of seasonal variance. The 
scholarly publishing industry has received limited attention, with the first empirical study on 
customer churn prediction in this sector not appearing until 2022 [11]. This study highlighted the 
unique characteristics of academic publishing subscriptions and proposed methods for predicting 
customer defection based on 6.5 years of subscription data from a major educational publisher [11].  

Recent research has begun addressing the challenge of seasonality in subscription-based 
businesses. A February 2025 study proposes a simplified and numerically stable approach to the 
BG/NBD churn prediction model, specifically designed for industries where customer behavior is 
influenced by seasonal events [8]. This model modifies the traditional definition of churn to account 
for purchase patterns over extended periods, making it potentially valuable for publishing businesses 
with seasonal subscription behaviors. 

Building on the research gaps identified above, our analysis reveals several interconnected 
challenges that must be addressed when developing effective churn prediction models for S.P. 
AbonneeService:  

• Seasonality: Subscription-based publishing exhibits significant seasonal fluctuations in 
customer behavior that complicate churn prediction efforts. As noted in recent research, 
customer behavior is often heavily influenced by seasonal events, creating irregular patterns that 
standard prediction models struggle to capture accurately [8]. For S.P. AbonneeService, this is 
displayed as fluctuating engagement metrics across different times of the year, with subscription 
renewal decisions frequently clustering around specific calendar periods rather than being 
evenly distributed. These temporal patterns create complex challenges for machine learning 
models that must distinguish between temporary seasonal disengagement and genuine pre-
churn behavior.  

• Dataset heterogeneity: S.P. AbonneeService operates as a B2B service provider across more than 
200 titles and 350,000 end-consumers spanning multiple publishing categories. This inherently 
creates significant data heterogeneity challenges, as each publisher partner maintains a unique 
customer base with distinct behavioral patterns, engagement metrics, and churn triggers. 
Subscription terms, pricing models, and content delivery mechanisms vary substantially among 
publishers, resulting in inconsistent data structures and relationship patterns. Additionally, the 
varying lengths of partnership histories result in uneven data maturity levels, with some 
publishers providing rich historical datasets while others offer limited behavioral timelines. 
Further complicating matters, publishers with extensive histories often include conversion data 
from customers who transferred from previous service providers. This data is frequently poorly 
structured, inconsistently formatted, and missing key relationship details critical for accurate 
churn prediction.  

• Class imbalance: Across all publishers in our dataset, an average of 54.51% of customers 
(excluding trial memberships and non-actionable cancellations) are classified as inactive. For 
publishers with longer partnership histories, this imbalance becomes particularly challenging 
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for predictive modeling as the distribution of active versus inactive customers can vary 
significantly. This challenge aligns with broader research findings, where imbalanced datasets 
often lead to biased model performance, reducing overall effectiveness [5]. When data is skewed 
toward one class, traditional models tend to favor the dominant class, producing good accuracy 
metrics but poor performance in identifying the minority class [5].  

• Interpretability requirements: In today's business environment, stakeholders increasingly 
demand transparency and understanding of predictive analytics outcomes [3]. As Maan and 
Maan [3] emphasize, “explainability and transparency are of major concerns identified by 
Customers across business domains”. For S.P. AbonneeService, interpretable predictions are 
essential for translating predictions into actionable retention strategies. Management requires 
clear insights into why specific customers are flagged as churn risks, enabling the design of 
targeted interventions that address the root causes rather than just the symptoms. This 
transparency requirement aligns with growing industry recognition that “there is a dire need to 
design, develop and deploy machine learning models which are ethical in their purpose, design 
and usage, covering key aspects of transparency, explainability and interpretability” [3].  

• Temporal validation limitations: Although existing research has established the importance of 
temporal validation through rolling-window cross-validation approaches [28], comprehensive 
frameworks designed explicitly for subscription-based business contexts remain limited. 
Current validation methodologies primarily adapt general machine learning techniques, rather 
than addressing the unique temporal patterns and seasonal behaviors characteristic of 
subscription publishing environments. This creates a need for more specialized validation 
strategies that can effectively handle the complex temporal dynamics inherent in multi-client 
publishing contexts.  

1.3. Research Question 

This study addresses the critical challenge of developing scalable, automated churn prediction 
capabilities for multi-client subscription publishing environments. Given the complex operational 
realities identified in the current research landscape, this investigation focuses on creating practical 
solutions that can function effectively across diverse publisher portfolios. The primary research 
question guiding this study is: How can an AI model be developed to predict customer churn, 
enabling the effective implementation of proactive retention measures?  

The question emphasizes the explicit proactive application of predictions, recognizing that 
prediction accuracy alone is insufficient without corresponding actionable insights for implementing 
retention strategies.  

To systematically address this primary question, this study adopts the Cross-Industry Standard 
Process for Data Mining (CRISP-DM) methodology, which has served as the de facto standard for 
data mining projects across industries since its introduction in 2000. CRISP-DM provides a structured 
framework consisting of six iterative phases: Business Understanding, Data Understanding, Data 
Preparation, Modeling, Evaluation, and Deployment [13]. This methodology is particularly well-
suited for the multi-client B2B environment of S.P. AbonneeService, as it emphasizes thorough 
business and data understanding, and provides a systematic approach that is essential for automated 
churn prediction systems operating on a heterogeneous dataset. By following CRISP-DM's structured 
approach, this research ensures that both theoretical rigor and practical implementation requirements 
are addressed throughout the model development lifecycle.  

1.4. Delimitations and Scope 

This research establishes specific boundaries to ensure focused investigation and clear 
evaluation criteria for the automated churn prediction system. The study focuses exclusively on 
binary classification approaches to churn prediction, where customers are classified as either likely 
to churn or likely to remain active within the specified prediction window. This methodological 
choice aligns directly with S.P. AbonneeService's operational requirements, as binary predictions 
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enable clear “intervene or don't intervene” decisions that translate immediately into actionable 
retention strategies. Alternative methodological approaches, including survival analysis techniques, 
fall outside the scope of this investigation. The research emphasizes machine learning techniques 
specifically chosen for their balance between predictive performance and interpretability 
requirements, prioritizing models that can provide clear, actionable insights to business stakeholders 
rather than pursuing potentially marginal performance improvements through less interpretable 
deep learning approaches.  

Given that S.P. AbonneeService's client portfolio consists entirely of subscription-based 
publishers within traditional publishing categories, such as magazines, newspapers, and general 
literature, the research scope naturally aligns with these publishing sectors. The research exclusively 
addresses multi-client B2B environments, where service providers like S.P. AbonneeService manage 
subscription services for multiple independent publishers, as opposed to direct-to-consumer or 
single-publisher environments.  

This study focuses on generating predictions for a one-month prediction horizon, aligning with 
the most prevalent subscription billing cycles within S.P. AbonneeService's client portfolio while 
providing sufficient lead time for implementing targeted retention measures. The analysis is 
restricted to actionable end-consumers, specifically excluding trial membership customers and those 
whose subscription cancellations result from unactionable circumstances such as payment failures or 
administrative issues. This customer segmentation approach ensures that the predictive model 
focuses on behavioral churn patterns that can be addressed through targeted retention interventions, 
maximizing the practical value of predictions for retention strategy implementation.  

2. Materials and Methods 

Figure 1 provides a comprehensive overview of the automated churn prediction pipeline 
developed for multi-client subscription publishing environments. The workflow illustrates the 
systematic progression from raw database exports through the seven-stage preprocessing pipeline, 
followed by the experimental evaluation framework that systematically combines temporal 
validation strategies, machine learning algorithms, and resampling techniques to generate 54 distinct 
experimental configurations. This integrated pipeline addresses the fundamental challenges of data 
heterogeneity, temporal dependencies, and class imbalance inherent in subscription publishing 
contexts, with each component described in detail in the subsequent sections.  

 
Figure 1. Comprehensive overview of the Churn Prediction Pipeline. 
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2.1. Data Description 

The foundation of this study rests upon the export data from S.P. AbonneeService's database 
systems. This dataset represents a complete cross-sectional snapshot of subscription-related 
information, encompassing behavioral, transactional, and demographic patterns essential for churn 
prediction modeling.  

The dataset architecture is organized into four sections that collectively capture the subscription 
lifecycle and dynamics of the customer relationship. These categories include Subscriber Data, 
Subscription Data, Invoice Data, and Statistical Data, each serving distinct analytical purposes. This 
approach enables a comprehensive analysis of customer behavior patterns while preserving the 
details necessary for accurate churn prediction across heterogeneous publisher environments.  

2.1.1. Subscriber Data 

The subscriber data component encompasses comprehensive demographic, contact, and 
preference information for both subscription recipients and financial payers within the subscription 
ecosystem. This dual-entity structure acknowledges the complexity of modern subscription 
relationships, particularly in gift subscription scenarios where the beneficiary and financial 
responsible party represent distinct individuals with separate behavioral profiles and 
communication preferences.  

Recipient subscriber data captures complete customer profiles including personal identification 
details, comprehensive address information spanning street-level specificity through international 
postal systems, and multi-channel contact information encompassing various email addresses, 
telephone numbers, and traditional correspondence methods. The demographic component includes 
gender classification, formal titles, and complete name structures that accommodate international 
naming conventions and cultural variations across S.P. AbonneeService's diverse customer base.  

Financial and administrative elements within subscriber data include banking information 
necessary for payment processing, tax identification numbers for compliance purposes, and detailed 
communication preferences that govern customer contact permissions.  

Payer subscriber data maintains an identical structure to recipient data, populated exclusively 
in scenarios where the subscription financial responsibility differs from that of the subscription 
beneficiary. This approach enables complete analysis for gift subscription scenarios while 
maintaining data integrity through consistent field structures and validation requirements across 
both subscriber entity types.  

2.1.2. Subscription Data 

Subscription data represents the core analytical component of the dataset, containing detailed 
information about individual subscription instances and their lifecycle characteristics. Each 
subscription record maintains a unique identification spanning over 200 titles across multiple 
publishing categories within S.P. AbonneeService's scope.  

Publication-specific information, including content type, delivery method, and editorial focus, 
enables analysis across different forms of publishing. Subscription acquisition data captures the 
complete customer journey, from the initial contact method to detailed source attribution, 
promotional campaign identification, and registration methodology, enabling effective marketing 
analysis and informed decision-making.  

Pricing and payment structures within subscription data include detailed tariff classifications, 
payment frequency specifications, and delivery quantity tracking, which accommodates varying 
subscription models ranging from weekly publications to quarterly journals. The payment processing 
component tracks both completed transactions and obligations.  

Subscription lifecycle management data captures the temporal evolution of customer 
relationships through comprehensive tracking of start and end dates, renewal behavior patterns, and 
administrative status modifications. Cancellation data provides detailed attribution, including 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2025 doi:10.20944/preprints202507.0712.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0712.v1
http://creativecommons.org/licenses/by/4.0/


 9 of 39 

 

methodology employed, underlying reasons for discontinuation, and timing patterns that reveal 
seasonal and behavioral trends essential for predictive modeling.  

2.1.3. Invoice Data 

The invoice data component provides a focused snapshot of the most recent billing interaction 
for each subscription, representing the current financial status rather than comprehensive historical 
billing records.  

Current invoice information includes detailed billing identification, transaction timing, and 
comprehensive payment status classification that distinguishes between various stages of the billing 
lifecycle. Payment status tracking encompasses initial invoicing confirmation, successful payment 
completion, automated banking debits, and identification of outstanding balances, providing 
essential indicators of customer financial engagement and potential payment-related churn triggers.  

Collection and reminder data within the invoice component tracks customer response patterns 
to payment requests, including detailed timing of reminder communications and customer payment 
behavior following collection efforts. This information provides critical insights into financial issues 
and payment pattern disruptions that frequently precede subscription cancellation decisions, making 
it particularly valuable for predictive modeling focused on payment-related churn scenarios.  

2.1.4. Statistical Data 

The statistical data component serves a dual purpose, containing both processed derivatives of 
the primary data categories and unique metrics that cannot be derived from the base data alone. The 
processed elements provide standardized versions of subscriber, subscription, and invoice 
information.  

The primary value of statistical data lies in its behavioral and interaction metrics, which extend 
beyond transactional records to capture service quality indicators and patterns of customer 
relationships. Delivery performance tracking encompasses detailed complaint histories and service 
interruption patterns, reflecting operational effectiveness and customer satisfaction levels. These 
metrics provide essential context for understanding non-financial churn triggers related to service 
quality and operational performance. Customer service interaction data within the statistical 
component reveals customer engagement patterns by facilitating the number of interactions with 
customer service.  

Historical subscription patterns captured within statistical data offer complex insights into 
customer behavior that extend beyond current subscription status. These metrics include 
subscription duration tracking, renewal pattern analysis, and cross-portfolio subscription behavior, 
which reveals customer lifecycle patterns essential for developing a comprehensive retention 
strategy.  

2.2. Data Preprocessing 

The raw data extracted from S.P. AbonneeService’s systems undergoes an extensive automated 
preprocessing pipeline to ensure data quality, consistency, and suitability for the full churn 
prediction pipeline. This pipeline is designed to be robust across diverse publisher datasets and 
prioritizes the creation of interpretable features. The sequence of operations is carefully structured: 
initial standardization and cleaning prepare the data for reliable feature engineering, which is then 
followed by refinement, missing value imputation, and advanced numerical processing to optimize 
the dataset for machine learning algorithms.  

2.2.1. Initial Data Cleaning and Standardization 

The first stage focuses on foundational data integrity. All raw data fields are subjected to type 
conversion: date-like strings are parsed into standardized datetime objects; numeric fields, including 
those representing currency with associated symbols and locale-specific decimal separators, are 
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converted to numerical types; boolean-like text (e.g., “Ja”/“Nee”, which is Dutch for “Yes”/“No”) is 
mapped to true boolean values; and fields intended as categorical are defined as categorical variables, 
with common string representations of missingness (e.g., “nan”, “none”, empty strings) unified to a 
standard null representation. For instance, gender indicators are transformed to a consistent case. 
Any remaining columns not explicitly typed are converted to a string format. A minimal rule-based 
normalization, driven by configurable patterns, is then applied to specific fields to rectify common 
inconsistencies, although current configurations apply this sparingly. This initial standardization is 
crucial as it ensures that all subsequent operations act upon data of expected and consistent types, 
preventing errors and improving the reliability of derived features.  

2.2.2. Feature Engineering and Enrichment 

Following initial cleaning, several feature engineering steps are undertaken to create new, more 
informative variables.  

First, a set of binary indicators is generated from existing data characteristics. For example, the 
presence of contact information, such as an email address or phone number, or the use of specific 
payment methods, such as direct debit, is converted into boolean flags. This binarization enhances 
model interpretability by creating explicit signals for key customer attributes, thereby improving the 
model's clarity and transparency.  

Second, more complex derived features are created to capture crucial aspects of subscriber 
behavior and lifecycle. Subscriber birth dates are transformed into age categories; this categorization 
can be static or adaptive to the data distribution, based on pipeline configuration, to ensure 
meaningful group sizes. Additionally, behavioral patterns such as serial churn tendencies are 
identified by analyzing historical subscription patterns. The specific criteria for flagging a customer 
as a serial churner, namely an average subscription duration of less than one year, more than two 
cancelled subscriptions, and more than three total subscriptions, were established based on industry 
experience and the recommendation of S.P. AbonneeService's CTO, Marc Dierikx [15]. A significant 
step involves calculating churn indicators: a binary churn event flag is determined based on 
subscription end dates and renewal statuses, and a corresponding time-to-event (or time-to-
censoring for active subscriptions) is computed relative to a defined study end date, which can be 
utilized for future survival analysis. This provides the target variable and temporal context for the 
churn model. Summaries of customer interactions, including the total number of service issues or 
issues per year (calculated using Bayesian smoothing and percentile capping to handle variance and 
outliers), are also generated.  

Third, composite scores are engineered by combining several binarized features with predefined 
weights. These scores aim to quantify abstract concepts, including customer reachability (based on 
available contact channels and permissions), engagement (based on communication opt-ins), 
business customer profile strength (based on the provision of business-specific details, such as VAT 
numbers), and payment reliability (based on payment method and reminder history). The specific 
features included in these composite scores and their respective weights were determined in 
consultation with Marc Dierikx [15] to reflect business understanding and their relative importance. 
These engineered features provide higher-level abstractions that can be more directly interpretable 
and predictive.  

2.2.3. Data Filtering and Refinement 

To focus the analysis on relevant customer segments, specific data filtering rules are applied. 
Rows corresponding to non-actionable subscription types or particular business-to-business 
intermediary accounts, as defined in the configuration based on criteria provided by Marc Dierikx 
[15], are removed. Additionally, scenarios where the financial payer is a distinct entity from the 
subscription recipient are filtered out to simplify the modeling scope, focusing on direct subscriber 
relationships. This step ensures the model is trained on a dataset representative of the target 
population for retention efforts.  
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2.2.4. Missing Value Imputation 

The pipeline then addresses missing data through a multi-faceted imputation strategy. The 
placement of this comprehensive imputation stage within the pipeline is a considered choice. Initial 
data cleaning and type conversion (Section 2.2.1) standardize various raw representations of 
missingness to null values. Early feature engineering steps, particularly binarization (Section 2.2.2), 
often rely on the distinction between present and absent data, thus implicitly using the original 
missingness context (e.g., a customer either has a listed phone number or not). However, the creation 
of other derived features, such as calculating age from birth dates, can introduce new missing values 
if the source data is incomplete. Therefore, the main imputation phase is strategically positioned after 
these initial feature creation steps but critically before the advanced numerical processing stages 
(Section 2.2.6), such as skewness correction and outlier treatment, and subsequent model training. 
These later stages generally require complete, non-null datasets to function correctly and produce 
reliable results. This ordering ensures that as much information as possible is derived while 
preserving the original missingness context where beneficial, before filling gaps to prepare for 
numerically intensive algorithms.  

For geographical information, missing province data for subscribers is imputed using a 
hierarchical approach. First, suppose the subscriber's country code indicates a non-domestic location, 
a distinct "Foreign_[CountryCode]" category is assigned. In this case, the reason is that province-level 
data is not consistently recorded for international subscribers, and the relatively low volume of such 
subscribers makes detailed imputation impractical and less reliable. For domestic (Dutch) addresses 
with missing provinces, the system attempts to infer the province by first looking up the most 
common province associated with the subscriber's listed city or place name from non-missing 
records. If this fails, it then attempts to infer the province based on the most common province 
associated with the initial digits of their postal code. Any remaining domestic addresses with 
unidentifiable provinces are assigned an "Unknown_NL" category, while truly unclassifiable cases 
default to a general "Unknown" province.  

Beyond these targeted imputations, a general configurable strategy handles remaining missing 
values. Depending on the configuration (e.g., AUTOFILL_MISSING), missing numerical data may 
be filled with zero, booleans with false, and categoricals with a distinct “Unknown” category. Specific 
columns, such as counts of items sent or paid, may have custom default fill values (e.g., 1). The critical 
subscription cancellation date is explicitly preserved as missing if KEEP_OPZEGDATUM is enabled, 
which will mainly be used for auditing purposes in later steps.  

2.2.5. Dimensionality Reduction and Noise Management 

To manage data sparsity and reduce noise from less frequent categories, frequency-based 
grouping is applied to selected categorical features (e.g., acquisition or campaign codes). Categories 
that fall below a minimum frequency threshold and collectively represent less than a specified 
percentage of the dataset are consolidated into a generic “Other” category.  

Irrelevant data sections (identified by column name prefixes) and explicitly listed redundant 
columns are then removed. Subsequently, features exhibiting low variance are identified and 
removed. This includes columns with constant values or, if REMOVE_NEAR_UNIFORMITY is 
enabled, near-constant values, where uniformity is assessed dynamically based on the majority class 
proportion for categorical and boolean data, and the coefficient of variation for numerical data, scaled 
according to the dataset size. Auditing variables, key identifiers, and churn-related target variables 
are exempt from this removal.  

Finally, a configurable step allows for the removal of any rows that still contain missing values 
after all imputation and feature engineering steps, ensuring a complete dataset for modeling. The 
option to retain records where only the cancellation date is missing is available, as it serves as an 
auditing variable.  
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2.2.6. Advanced Numerical Feature Processing 

Numerical features undergo a dedicated three-stage processing sequence:  

1. Semantic Categorization: Numerical features are automatically categorized into types such as 
monetary, count, ratio (bounded 0-1), or unbounded ratio/usage metric. This categorization 
leverages statistical properties (distribution, presence of negatives, zero-inflation, skewness, 
kurtosis, coefficient of variation, decimal precision). It can be guided by manually defined 
categories for specific known features (e.g., financial transaction amounts are 'monetary').  

2. Skewness Correction: Based on the assigned category and observed skewness (magnitude and 
direction), appropriate transformations are applied. For instance, monetary data often benefits 
from log or Yeo-Johnson transforms, count data from square root or Freeman-Tukey, and 
bounded ratio data from arcsine or logit transforms [34,35]. The pipeline iteratively tries a 
sequence of suitable transformations, selecting the one that most effectively normalizes the 
distribution or reduces skew, validated by statistical testing.  

3. Outlier Treatment: Outliers are detected using methods such as Isolation Forest through the 
pyod library, with detection thresholds dynamically adjusted based on feature category and 
whether the feature was previously transformed [32,33]. Detected outliers are then handled in a 
category-specific manner; for example, monetary outliers might be winsorized adaptively based 
on skewness, while count outliers might be capped at a high percentile of non-zero values.  

This structured approach to numerical processing ensures that transformations and outlier 
handling are contextually appropriate, enhancing model performance and stability.  

2.2.7. Multicollinearity Management 

As a final step, multicollinearity is addressed to improve model interpretability and stability. 
Highly correlated numerical features (above a configurable Spearman correlation threshold, e.g., 0.7) 
are grouped. Within each group, the feature with the highest Information Value (IV) related to the 
churn target is retained, while the others are removed. Features with very low IV (e.g., < 0.02) are also 
considered for removal. Auditing identifiers and target variables are protected from this process. This 
ensures that the final feature set is both predictive and less redundant.  

The overall order of these preprocessing steps is critical: initial cleaning enables reliable feature 
engineering; derived features then undergo imputation and refinement; and numerical processing is 
performed last on a complete and well-defined set of numerical inputs, followed by multicollinearity 
reduction on the finalized feature set.  

Figure 2 illustrates the complete automated preprocessing pipeline described in the preceding 
sections, demonstrating the systematic transformation from raw database exports containing 205 
columns to a refined dataset of approximately 25 predictive features. The flowchart shows the 
sequential progression through data cleaning and standardization, feature engineering and 
enrichment (including composite score creation and behavioral pattern identification), data filtering 
and refinement for actionable customer segments, missing value imputation including hierarchical 
geographical approaches, dimensionality reduction through frequency-based categorical grouping, 
advanced numerical processing with semantic categorization and skewness correction, outlier 
treatment using Isolation Forest, and multicollinearity management through Information Value-
based feature selection. This systematic approach ensures consistent processing across heterogeneous 
publisher datasets while maintaining feature interpretability essential for business stakeholder 
understanding.  
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Figure 2. Visualization of the Preprocessing Pipeline 

2.3. Temporal Validation Strategies 

To evaluate model performance on time-ordered subscription data and ensure that predictions 
are validated against future, unseen periods, this study implements several temporal cross-validation 
strategies. A fundamental requirement for modeling time-dependent phenomena, such as customer 
churn, is the strict prevention of data leakage, where information from future periods may 
inadvertently influence model training. All employed validation strategies are derived from a 
common base class named TemporalSplitter. This architectural choice ensures consistency across 
methods, mandating, for example, a minimum number of samples to guarantee sufficient data within 
each validation split and operating on data that is pre-sorted by a primary temporal column (the 
subscription entry date). The TemporalSplitter framework generates training and testing indices 
based on key date columns, relative to a dynamically determined "snapshot date" for each validation 
split. The key date columns used are the subscription entry date and the subscription cancellation 
date.  

A crucial consideration in churn prediction, which is addressed by these temporal validation 
methods, is that the same customer entities can legitimately appear in both the training and test sets 
of a given split. The distinction lies in the temporal scope of the information used: the training set 
captures historical behavior and status up to the snapshot date, while the test set evaluates the 
model's ability to predict outcomes (i.e., churn events) for these same customers in a period strictly 
after this snapshot date. The target variable in the test set is thus always chronologically after any 
information used for training, appropriately simulating a real-world deployment scenario where a 
model, trained on past data, predicts future churn.  

2.3.1. Rolling Window Cross-Validation 

The Rolling Window Cross-Validation strategy is designed to assess model performance on 
dynamically changing data patterns, reflecting environments where recent data may be more 
indicative of future behavior. This method follows the principle of training on a fixed-duration 
window of past data and testing on the immediately subsequent period.  

The process for generating splits can be conceptualized as follows:  
Let 𝐷 be the dataset sorted chronologically by the subscription entry date.  
Let 𝑇௦௧௔௥௧ be the earliest subscription entry date in 𝐷.  
Let 𝑊௧௥௔௜௡ be the duration of the training window.  
Let ∆𝑡௦௧௘௣ be the duration by which the window slides forward (step size), which also typically 

defines the prediction horizon for the test set.  
Let 𝑁௦௣௟௜௧௦ be the total number of splits generated.  
For each split 𝑖 ൌ 1, 2, … ,𝑁௦௣௟௜௧௦:  
The snapshot date, 𝑆௜, is defined as:  𝑆௜  ൌ  𝑇௦௧௔௥௧  ൅  𝑊௜௡௜௧  ൅  ሺ𝑖 − 1ሻ  ൈ  ∆𝑡௦௧௘௣ 
The training period for the split 𝑖 encompasses data from ሾ𝑆௜  −  𝑊௧௥௔௜௡, 𝑆௜ሻ.  
The testing period for the split 𝑖 encompasses data from ൣ𝑆௜ , 𝑆௜  ൅  ∆𝑇௦௧௘௣൯.  
Customer data included for training in the split 𝑖  consists of subscriptions that meet two 

criteria: (1) their entry date is before 𝑆௜, and (2) they are known to be active at some point during or 
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after the training window starts. More specifically, they either remain active at the snapshot date 𝑆௜ 
(no churn date recorded) or churned at any time on or after 𝑆௜  −  𝑊௧௥௔௜௡. The model is then evaluated 
on its ability to predict churn for these same customers during the testing period, ൣ𝑆௜ , 𝑆௜  +  ∆𝑇௦௧௘௣൯, 
excluding those who had already churned before 𝑆௜.  

For the Rolling Window Cross-Validation implementation, the training window duration W୲୰ୟ୧୬  =  6 months with a step size Δ𝑡௦௧௘௣ = 1 month. This configuration ensures that each model 
iteration trains on a consistent 6-month historical period, advancing the temporal window by one-
month intervals, and provides overlapping validation periods that capture gradual shifts in customer 
behavior patterns. The temporal column specification utilizes the subscription entry date as the 
primary ordering criterion, with churn events identified through the subscription cancellation date.  

The rationale for the Rolling Window approach lies in its suitability for environments where 
customer behavior may evolve rapidly. By consistently training on a fixed-length recent history, this 
strategy tests the model's adaptability to emerging trends and its performance on the most current 
behavioral patterns. It simulates a deployment scenario where models are periodically retrained 
using only a recent, limited segment of historical data, prioritizing recency over the sheer volume of 
historical information. The implementation ensures that each split contains a sufficient number of 
samples for both training and testing to be statistically meaningful.  

2.3.2. Expanding Window Cross-Validation 

The Expanding Window Cross-Validation strategy is employed to evaluate models that may 
benefit from a progressively larger historical context, under the assumption that more data generally 
leads to better model generalization.  

The split generation process is as follows:  
Let 𝐷, 𝑇௦௧௔௥௧, and ∆𝑡௦௧௘௣ be defined as in the Rolling Window method.  
Let 𝑊௜௡௜௧ be the duration of the initial training window.  
Let 𝑊௠௔௫ be an optional maximum duration for the training window. If not set, the window 

expands indefinitely from 𝑇௦௧௔௥௧.  
For each split 𝑖 = 1, 2, … ,𝑁௦௣௟௜௧௦:  
The snapshot date, 𝑆௜, is defined as:  𝑆௜  =  𝑇௦௧௔௥௧  +  𝑊௜௡௜௧  +  ሺ𝑖 − 1ሻ  ×  ∆𝑡௦௧௘௣ 
The start of the training period for the split 𝑖, 𝑇௧௥௔௜௡_௦௧௔௥௧(௜) , is:  𝑇௧௥௔௜௡_௦௧௔௥௧(௜)  = ቊmax(𝑇௦௧௔௥௧, 𝑆௜  −  𝑊௠௔௫)   𝑖𝑓 𝑊௠௔௫ 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑇௦௧௔௥௧  𝑖𝑓 𝑊௠௔௫ 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

The training period for split i is ൣ𝑇௧௥௔௜௡_௦௧௔௥௧(௜) , 𝑆௜൯.  
The testing period for split i is ൣ𝑆௜ , 𝑆௜  +  ∆𝑇௦௧௘௣൯.  
Similar to the rolling window, training data for the split 𝑖  includes subscriptions active or 

churned within its training window, having started before 𝑆௜. Testing evaluates predictions for these 
customers in the subsequent testing period, excluding those who have already churned.  

The Expanding Window Cross-Validation implementation employs an initial window size 𝑊௜௡௜௧ = 6 months, expanding by Δ𝑡௦௧௘௣ = 1 month increments with a maximum window duration 𝑊௠௔௫ = 12  months. This parameter set enables models to progressively incorporate additional 
historical context while minimizing excessive computational overhead and mitigating potential bias 
from outdated behavioral patterns. The expanding approach captures the cumulative learning 
benefit of increased training data while maintaining temporal relevance through the 12-month 
maximum window constraint. Just like the Rolling Window approach, temporal ordering is based on 
the subscription entry date, and churn identification is done through the subscription cancellation 
date.  

This strategy is particularly beneficial when long-term historical patterns and seasonality are 
considered essential for accurate churn prediction. The optional maximum window duration 
provides a practical balance, allowing the model to leverage extensive history while mitigating the 
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risks of outdated patterns biasing the model or leading to excessive computational load. As before, 
the system also ensures each split meets a minimum sample requirement.  

2.3.3. Blocked Cross-Validation 

The Blocked Cross-Validation method offers a stringent test of a model's generalization 
capability across distinct, temporally distant periods by dividing the dataset into non-overlapping 
segments. This strategy is beneficial for assessing long-term model stability.  

The formation of blocks is defined as:  
Let 𝐷 and 𝑇௦௧௔௥௧ be defined as previously.  
Let 𝑁௕௟௢௖௞௦ be the desired number of train-test blocks.  
Let 𝑊௧௥௔௜௡ be the duration of the training period within each block.  
Let 𝑊௧௘௦௧ be the duration of the testing period within each block.  
Let 𝑊௚௔௣  be an optional duration of a gap period between the training and testing periods 

within each block (defaulting to zero if not specified).  
For each block 𝑘 = 0,1, … ,𝑁௕௟௢௖௞௦ − 1:  
Note: We use superscript notation (k) to index blocks while subscripts denote variable types. 
The start of the block 𝑘, 𝐵௦௧௔௥௧(௞) , is:  𝐵௦௧௔௥௧(௞) = 𝑇௦௧௔௥௧ + 𝑘 × ൫𝑊௧௥௔௜௡ + 𝑊௚௔௣ + 𝑊௧௘௦௧൯ 
The training period for the block 𝑘 is ൣ𝐵௦௧௔௥௧(௞) ,𝐵௦௧௔௥௧(௞) + 𝑊௧௥௔௜௡൯.  
The snapshot date for the block 𝑘 is 𝑆௞ = 𝐵௦௧௔௥௧(௞) + 𝑊௧௥௔௜௡.  
The testing period for the block 𝑘 is ൣ𝑆௞ + 𝑊௚௔௣, 𝑆௞ + 𝑊௚௔௣ + 𝑊௧௘௦௧൯.  
Customer inclusion logic remains consistent: training utilizes subscriptions known up to 𝑆௞ 

(active or churned within the training period of the block 𝑘), and testing assesses predictions for 
these customers during the block's testing period, after accounting for any churns before the test 
period begins.  

The Blocked Cross-Validation implementation utilizes non-overlapping temporal blocks with 
training periods 𝑊௧௥௔௜௡ = 12 months and testing periods 𝑊௧௘௦௧ = 1 month, generating 𝑁௕௟௢௖௞௦ = 4 
independent validation blocks with no temporal gap (𝑊௚௔௣ = 0 ). This configuration provides a 
stringent evaluation of model generalization across distinct temporal periods while ensuring 
sufficient training data within each block. The 12:1 month train-test ratio balances comprehensive 
model training with focused prediction evaluation over meaningful prediction horizons. Again, just 
like the Rolling Window and Expanding Window approaches, temporal ordering is based on the 
subscription entry date, and churn identification is done through the subscription cancellation date.  

The primary rationale for Blocked Cross-Validation is its ability to assess model stability and 
robustness when faced with potentially different underlying data distributions or significant shifts in 
customer behavior that may occur over extended periods. The optional gap period further ensures 
the independence of the test set by preventing leakage from events near the train-test boundary. The 
total number of blocks generated may be adjusted if the dataset's temporal span is insufficient to form 
the requested number of blocks of the specified durations, while still respecting minimum sample 
size constraints for each split. This method differs from the previous two in that it does not necessarily 
utilize overlapping data between the training sets of consecutive blocks, thereby providing a more 
challenging validation scenario.  

Figure 3 summarizes the three temporal validation approaches employed in this study, 
illustrating the key differences in training window management, temporal boundary handling, and 
split generation strategies discussed above. The visualization illustrates how each method offers 
distinct advantages for model evaluation: rolling window approaches prioritize recent behavioral 
patterns, expanding window methods leverage cumulative historical information, and blocked cross-
validation ensures the assessment of generalization across non-overlapping periods.  
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Figure 3. Visualization of the employed Temporal Validation Strategies 

2.4. Temporally-Aware Feature Engineering and Preprocessing 

This section describes the systematic transformation of raw input features into a numerical 
format suitable for machine learning algorithms. Unlike the data preprocessing described in Section 
2.2, which focuses on cleaning raw database exports and creating business-relevant derived features, 
this feature engineering process operates on already-cleaned features and is executed within each 
temporal validation fold to ensure temporal integrity, particularly relevant for time-dependent 
features. While the earlier preprocessing establishes data quality and consistency across the entire 
dataset, this stage ensures that temporal boundaries are respected and that features are optimally 
formatted for machine learning algorithms.  

The ChurnFeatureEngineer component manages this pipeline, which consists of two main 
stages: temporally aware feature creation, followed by general feature preprocessing. The sequential 
execution of these stages is critical for maintaining temporal validity while maximizing the predictive 
value of derived features.  

2.4.1. Temporally-Aware Feature Creation 

The temporal feature engineering process addresses a fundamental challenge in time-series 
prediction: ensuring that feature calculations reflect only information available at the time of 
prediction while capturing meaningful temporal patterns. The TemporalFeatureEncoder component 
implements this through dynamic feature generation, which adapts to the temporal boundaries of 
each training fold.  

Time-dependent features, such as recency metrics, are dynamically generated for each training 
fold. These calculations are performed relative to the training end-date of that specific training fold, 
preventing data leakage by ensuring that only information available up to that point is used. This 
approach differs from static feature engineering approaches, which may incorporate future 
information, thereby compromising the temporal validity of the prediction model and introducing 
data leakage.  
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For specified datetime columns (e.g., the insertion and starting date of a subscription), features 
are created representing the time elapsed between the event date in the column and the end date of 
the current fold. These features, listed as [column]_days_since, provide the model with critical 
recency information that captures the temporal distance between customer actions and the prediction 
point. The calculation methodology ensures that recent customer activities receive an appropriately 
weighted temporal representation while maintaining consistency across different training folds.  

Standard date components are extracted from datetime columns to capture potential 
seasonalities and cyclical patterns inherent in subscription-based business models. These include the 
month, day of the week, quarter, and a binary flag indicating if the date falls on a weekend. The 
extraction of these cyclical components enables the model to learn temporal patterns that may 
influence customer behavior, such as seasonal subscription preferences or day-of-week effects on 
customer engagement.  

The original datetime columns are removed after these temporal features are generated, 
ensuring that the subsequent processing pipeline operates exclusively on numerical representations 
while preserving all temporal information in a format that is algorithmically accessible.  

2.4.2. General Feature Preprocessing 

Following the creation of temporal features, the complete feature set undergoes standardized 
preprocessing to ensure optimal compatibility with machine learning algorithms. This stage is 
implemented through a ColumnTransformer pipeline from scikit-learn that applies appropriate 
transformations based on pre-identified column types [16].  

Numeric types 
All features identified as numeric, including the newly created temporal features and any 

original numeric features, are standardized using the StandardScaler from scikit-learn [17]. This 
transformation scales features to have zero mean and unit variance, which is beneficial for many 
machine learning algorithms that are sensitive to feature scale differences. Standardization is critical, 
given the diverse scales inherent in the temporal features (e.g., [column]_days_since values ranging 
from 0 to several thousand) and the original dataset's numerical variables.  

Categorical types 
Features identified as categorical are converted into a numerical format using OneHotEncoder 

[18]. This process creates binary (0/1) columns for each unique category present in the feature, with 
the optional removal of the first category's column to prevent perfect multicollinearity. Perfect 
multicollinearity occurs when categorical columns become linearly dependent, which can lead to 
numerical instability in certain machine learning algorithms. The encoder is configured with 
handling unknown categories, ensuring that new categories appearing in test data that were not 
observed in the training data are represented by zeros across all one-hot encoded columns, thereby 
preventing pipeline failures while maintaining long-term model stability.  

Boolean types 
Features already in boolean (0/1) format are passed through without further transformation, 

maintaining their interpretability while ensuring compatibility with the numerical output format 
required by the machine learning algorithms.  

The ChurnFeatureEngineer pipeline, after completing both temporal feature creation and 
general preprocessing stages, outputs a purely numerical NumPy array of features ready for model 
training. The pipeline maintains feature name, enabling interpretability analysis and feature 
importance evaluation in subsequent modeling stages. This numerical array format ensures 
integration with the temporal validation framework and resampling techniques in the churn 
prediction pipeline.  

2.5. Machine Learning Model Selection 

To address the complex challenge of churn prediction across heterogeneous publisher datasets, 
this study implements a comprehensive collection of machine learning algorithms, each selected to 
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provide distinct analytical perspectives on customer behavior patterns and use cases. The model 
selection strategy prioritizes the balance between predictive performance and interpretability 
requirements, ensuring that generated predictions can be translated into actionable retention 
strategies.  

The chosen algorithms represent a wide range of fundamental machine learning algorithms, 
including linear methods for baseline performance and interpretability, probabilistic approaches for 
uncertainty quantification, ensemble techniques for robust feature interaction modeling, gradient 
boosting for high-performance non-linear pattern detection, and kernel methods for complex 
decision boundary modeling. Each algorithm addresses specific aspects of the churn prediction 
challenge, such as feature interaction complexity, while maintaining computational efficiency 
suitable for deployment.  

All models incorporate explicit class imbalance handling mechanisms, recognizing that churn 
prediction inherently involves imbalanced datasets where active customers significantly outnumber 
those who churn. This differs from the resampling techniques described in section 2.6, as these model-
level approaches adjust the algorithms' internal behavior during training (such as loss function 
weighting and splitting criteria) rather than modifying the training dataset distribution itself. These 
algorithmic adjustments complement potential resampling strategies by ensuring that minority class 
patterns receive appropriate attention regardless of the data distribution provided to the model. The 
parameter selection strategy emphasizes ranges that strike a balance between computational 
efficiency and predictive performance, enabling comprehensive hyperparameter optimization while 
maintaining practical deployment constraints.  

2.5.1. Probabilistic Baseline Model: Naive Bayes 

The Gaussian Naive Bayes classifier provides a probabilistic baseline that assumes feature 
independence while maintaining computational efficiency and strong theoretical foundations. This 
model serves as a reference point for comparing more sophisticated approaches mentioned later on, 
offering insights into the predictive value achievable under simplified distributional assumptions. 
The implementation utilizes the GaussianNB classifier from scikit-learn [19].  

The Naive Bayes classifier estimates churn probability through Bayes' theorem combined with 
the independence assumption:  𝑃(𝑦 = 1|𝑥) = 𝑃(𝑥|𝑦 = 1) ⋅ 𝑃(𝑦 = 1)𝑃(𝑥)  

Under the Gaussian assumption and feature independence, the likelihood term becomes:  𝑃(𝑥|𝑦 = 𝑐) = ෑ 1ට2πσ௝௖ଶ
௣
௝ୀଵ exp൭−൫𝑥௝ − μ௝௖൯ଶ2σ௝௖ଶ ൱ 

where μ௝௖ and σ௝௖ଶ  represent the mean and variance of the feature 𝑗 for class 𝑐, estimated from the 
training data.  

Despite its simplifying assumptions, Naive Bayes often performs surprisingly well in practice, 
particularly when the independence assumption is approximately satisfied or when the decision 
boundary can be effectively approximated by the multiplicative probability model [9]. The 
algorithm's efficiency and probabilistic output make it valuable for establishing baseline performance 
expectations and providing interpretable probability estimates for business stakeholders.  

The model requires no hyperparameter tuning, focusing evaluation on the fundamental 
predictive signal available in the feature set under simplified assumptions. This characteristic makes 
it particularly valuable for assessing whether more complex models provide meaningful 
improvements over basic probabilistic modeling.  

2.5.2. Linear Baseline Model: Logistic Regression 

Logistic regression serves as the primary linear baseline for churn prediction, providing 
interpretable coefficients that directly quantify the relationship between customer characteristics and 
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the probability of churn. This algorithm addresses the binary classification nature of churn prediction 
by utilizing the logistic function, ensuring bounded probability outputs while maintaining linear 
interpretability in the log-odds space. The implementation uses the LogisticRegression class from 
scikit-learn [20].  

The logistic regression model estimates the probability of churn for a customer 𝑖 as:  𝑃(𝑦௜ = 1|𝑥௜) = 11 + 𝑒ିቀஒబା∑ ஒೕ௫೔ೕ೛ೕసభ ቁ 
where 𝑥௜  represents the feature vector for the customer 𝑖 , β଴  is the intercept term, and β௝ 
represents the coefficient for the feature 𝑗. The linear combination β଴ + ∑ β௝𝑥௜௝௣௝ୀଵ  represents the log 
odds of churn, enabling the direct interpretation of feature effects on churn probability.  

The implementation utilizes the SAGA (Stochastic Average Gradient Augmented) solver, which 
provides computational efficiency for large datasets while supporting both L1 and L2 regularization 
[20]. The regularization term prevents overfitting through penalized likelihood maximization:  ℒ𝓇ℯℊ𝓊ℓ𝒶𝓇𝒾𝓏ℯ𝒹 = ℒℓ𝒾𝓀ℯℓ𝒾𝒽ℴℴ𝒹 − λ෍หβ௝ห஑௣

௝ୀଵ  

where λ controls regularization strength (inverse of the C parameter), and α determines the penalty 
type (1 for L1, 2 for L2). The balanced class weighting approach automatically adjusts for class 
imbalance by weighting the loss function inversely proportional to class frequencies, ensuring that 
the minority class (churned customers) receives appropriate attention during model training.  

The hyperparameter space utilizes regularization strengths of 1 and 10, encompassing strong to 
moderate regularization scenarios, while maintaining computational efficiency through the SAGA 
solver's advanced optimization algorithms. This configuration provides a robust linear baseline that 
serves as both a standalone predictor and a benchmark for evaluating the added value of more 
complex non-linear approaches.  

2.5.3. Ensemble Method: Random Forest 

Random Forest addresses the variance and overfitting limitations of individual decision trees 
through ensemble averaging, while providing built-in feature importance measures that enhance 
model interpretability. This algorithm combines bootstrap aggregating (bagging) with random 
feature selection to create diverse decision trees that collectively provide robust predictions. The 
implementation utilizes the RandomForestClassifier from scikit-learn [21].  

Each tree 𝑇௞ in the forest is trained on a bootstrap sample of the training data, with each split 
considering only a random subset of features. The final prediction combines individual tree 
predictions:  𝑃෠(𝑦 = 1|𝑥) = 1𝐾෍𝑃௞෢(𝑦 = 1|𝑥)௄

௞ୀଵ  

where 𝐾 represents the number of trees and 𝑃௞෢ represents the probability estimate from the tree 𝑘.  
The algorithm's built-in feature importance calculation provides valuable insights for business 

understanding:  𝐼௝ = 1𝐾෍ ෍ 𝑝(𝑡)௧∈்ೖ
௄
௞ୀଵ ⋅ Δ𝐼(𝑡) ⋅ 1ሾ𝑣(𝑡) = 𝑗ሿ 

where 𝑝(𝑡) represents the proportion of samples reaching the node 𝑡, Δ𝐼(𝑡) measures the impurity 
decrease at the node 𝑡, 𝑣(𝑡) indicates the feature used for splitting at the node 𝑡, and 1ሾ𝑣(𝑡) = 𝑗ሿ is 
an indicator function for a feature 𝑗.  

The hyperparameter configuration balances ensemble size with computational efficiency, 
utilizing 100 or 300 estimators to ensure prediction stability while maintaining reasonable training 
times. The maximum depth constraint (10 levels or unlimited) controls individual tree complexity, 
preventing excessive overfitting while allowing sufficient model flexibility. Balanced class weighting 
ensures appropriate handling of class imbalance by adjusting the impurity criteria to account for 
unequal class frequencies.  
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Random Forest's resistance to overfitting, natural handling of mixed data types, and 
interpretable feature importance measures make it particularly suitable for the heterogeneous data 
environment of the case company.  

2.5.4. Extreme Gradient Boosting: XGBoost 

XGBoost (Extreme Gradient Boosting) represents an advanced implementation of the gradient 
boosting framework, incorporating regularization techniques and optimized tree construction. The 
implementation utilizes the XGBClassifier from the xgboost library [22]. The algorithm uses iterative 
ensemble construction, where each new model corrects the errors of the previous ensemble through 
additive modeling:  𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) + γ௠ℎ௠(𝑥) 
where 𝐹௠ represents the ensemble after 𝑚 iterations, ℎ௠ is the new weak learner, and γ௠ is the 
step size determined through optimization. 

For binary classification, XGBoost optimizes an objective function combining logistic loss with 
explicit regularization:  ℒ = ෍𝑙(𝑦௜ ,𝑦పෝ)௡

௜ୀଵ + ෍Ω(ℎ௠)ெ
௠ୀଵ  

where the regularization term Ω(ℎ௠) = γ𝑇 + ଵଶ λ∑ 𝑤௝ଶ௝்ୀଵ + α∑ ห𝑤௝ห௝்ୀଵ  penalizes model complexity 
through L1 and L2 penalties on leaf weights, with 𝑇 representing the number of leaves and 𝑤௝ 
denoting leaf weights.  

XGBoost employs level-wise tree construction, building balanced trees breadth-first while 
incorporating advanced pruning strategies. Class imbalance handling utilizes scikit-learn's 
compute_sample_weight function with balanced weighting, maintaining consistency with other 
algorithms' class_weight='balanced' approach by automatically adjusting sample importance based 
on class frequencies [36].  

The hyperparameter space utilizes a learning rate of 0.1, tree depth constraints set at 6 and 10 
levels, and subsampling parameters of 0.8 for computational efficiency. GPU acceleration (if 
available) will enhance performance for large-scale datasets, making XGBoost particularly effective 
for capturing complex feature interactions.  

2.5.5. Light Gradient Boosting: LightGBM 

LightGBM (Light Gradient Boosting Machine) implements an optimized gradient boosting 
framework prioritizing computational efficiency while maintaining predictive performance. The 
implementation utilizes the LGBMClassifier from the lightgbm library [23]. The algorithm shares the 
fundamental additive modeling approach described in section 2.5.4. Gradient Boosting Method: XG 
but employs distinct tree construction strategies for enhanced efficiency.  

The key innovation lies in leaf-wise tree growth, selecting the leaf yielding maximum loss 
reduction rather than expanding all nodes at the same depth:  𝑙𝑒𝑎𝑓௕௘௦௧ = arg max௟௘௔௙∈௟௘௔௩௘௦ Δ 𝐿𝑜𝑠𝑠(𝑙𝑒𝑎𝑓) 

This strategy typically produces more asymmetric but deeper trees, achieving better accuracy 
with fewer nodes and improved computational efficiency.  

LightGBM incorporates Gradient-based One-Side Sampling (GOSS) and Exclusive Feature 
Bundling (EFB) optimization techniques [29]. GOSS reduces computational complexity by retaining 
high-gradient samples while randomly sampling low-gradient samples, compensating for sampling 
bias through adjusted gradient calculations. EFB bundles mutually exclusive sparse features, 
significantly reducing memory usage without substantial information loss.  

Unlike XGBoost's scale_pos_weight approach, LightGBM addresses class imbalance through 
balanced class weighting, which modifies splitting criteria gain calculations proportionally to the 
inverse class frequencies, ensuring the appropriate consideration of minority class patterns during 
tree construction.  
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The implementation utilizes identical parameter ranges to XGBoost for direct performance 
comparison while leveraging computational advantages through GPU acceleration and advanced 
memory optimization.  

2.5.6. Kernel Method: Support Vector Machine 

The Support Vector Machine (SVM) offers sophisticated decision boundary modeling through 
kernel transformations, allowing for the detection of complex, non-linear patterns while maintaining 
a theoretical foundation in statistical learning theory. The implementation employs the SVC class 
from scikit-learn [24]. The algorithm constructs optimally separating hyperplanes by maximizing the 
margin between classes in the transformed feature space.  

The SVM optimization problem seeks to minimize:  min௪,௕,ஞ 12 |𝑤|ଶ + 𝐶෍ξ௜௡
௜ୀଵ  

Subject to:  𝑦௜(𝑤்ϕ(𝑥௜) + 𝑏) ≥ 1 − ξ௜ ,  ξ௜ ≥ 0 
where ϕ(𝑥௜) represents the kernel transformation, 𝑤 is the weight vector, 𝑏 is the bias term, ξ௜ are 
slack variables, and 𝐶 controls the regularization strength.  

The dual formulation enables kernel-based transformations:  𝑓(𝑥) = ෍α௜𝑦௜𝐾(𝑥௜ , 𝑥)௡
௜ୀଵ + 𝑏 

where α௜ are Lagrange multipliers and 𝐾(𝑥௜ , 𝑥) represents the kernel function.  
The implementation includes the radial basis function (RBF) kernel. The RBF kernel:  𝐾൫𝑥௜ , 𝑥௝൯ = exp൫−γ|𝑥௜ − 𝑥௝|ଶ൯ 
Enables complex non-linear boundary modeling through Gaussian similarity measures.  
The balanced class weighting approach adjusts the penalty parameter 𝐶  for each class 

proportionally to the inverse of class frequencies, ensuring appropriate attention to minority class 
samples during optimization. The probability estimation requirement enables integration with the 
ensemble evaluation framework through Platt scaling, which fits a sigmoid function to the SVM 
decision values [24].  

Hyperparameter optimization focuses on the regularization strength 𝐶  (values 1 and 10) to 
balance between margin maximization and training error minimization, while the gamma parameter 
utilizes the 'scale' setting for automatic adjustment based on feature dimensionality.  

The SVM approach provides sophisticated pattern recognition capabilities, particularly valuable 
for detecting subtle customer behavior patterns that may indicate churn risk, complementing the 
ensemble of algorithms through its unique approach to classification boundary optimization.  

2.5.7. Minimal Hyperparameter Optimization Strategy 

The hyperparameter optimization strategy employed in this study prioritizes computational 
efficiency while maintaining systematic exploration of parameters across the diverse model 
ensemble. The approach utilizes a minimal grid search methodology that strikes a balance between 
thorough parameter evaluation and practical deployment constraints, which are essential for multi-
client B2B environments.  

The optimization framework systematically evaluates all parameter combinations defined in the 
model configurations through the Cartesian product expansion of specified parameter options. This 
approach generates parameter grids that cover a range of parameters while ensuring computational 
tractability for operational deployment.  

The optimization process employs a simple train/validation split methodology, partitioning the 
training data into 80% for parameter optimization training and 20% for validation assessment. This 
approach prioritizes speed over exhaustive validation, avoiding computationally expensive cross-
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validation procedures that would significantly impact deployment feasibility across multiple client 
datasets.  

Parameter selection utilizes AUC-PR (Area Under the Precision-Recall Curve) as the primary 
optimization metric, which is particularly appropriate for imbalanced churn prediction scenarios, as 
it focuses on the minority class performance and provides a robust evaluation regardless of class 
distribution [27]. The optimization algorithm iterates through all parameter combinations, training 
models on the optimization subset and evaluating performance on the validation subset, retaining 
the parameter configuration that achieves maximum AUC-PR performance.  

Hyperparameter optimization is executed within each temporal training fold to ensure that 
parameter selection respects chronological boundaries and reflects only information available at the 
time of prediction, thereby preventing data leakage while maintaining consistency across temporal 
evaluation periods.  

2.5.8. Model Integration and Ensemble Strategy 

The comprehensive model selection strategy ensures robust churn prediction through 
algorithmic diversity while maintaining interpretability requirements for business implementation. 
Each algorithm contributes distinct analytical perspectives: probabilistic approaches establish the 
baseline for comparing model performance under simplified assumptions, linear methods provide 
interpretable coefficients and transparent decision boundaries, ensemble methods deliver robust 
feature interaction modeling, gradient boosting captures complex non-linear patterns, and kernel 
methods enable sophisticated boundary optimization.  

The hyperparameter optimization strategy complements this algorithmic diversity through 
systematic parameter exploration that balances computational efficiency with performance 
maximization. The minimal grid search approach enables comprehensive evaluation of various 
parameter combinations while maintaining practical deployment constraints. The optimization 
process operates within each temporal training fold, ensuring that parameter selection reflects only 
information available at the time of prediction while maintaining consistency across temporal 
evaluation periods.  

The integration of model-level class imbalance handling with systematic hyperparameter 
optimization ensures consistent performance across diverse customer distributions encountered 
within the heterogeneous publisher portfolio. These model-level approaches adjust algorithms' 
internal behavior during training through loss function weighting and splitting criteria 
modifications, complementing potential resampling strategies described in section 2.6.  

This integrated approach to model selection and hyperparameter optimization provides 
comprehensive coverage of machine learning paradigms while maintaining practical deployment 
constraints, ensuring that the resulting churn prediction system can deliver accurate, interpretable, 
and actionable insights across a heterogeneous publisher portfolio.  

2.6. Resampling Techniques 

Class imbalance represents a fundamental challenge in churn prediction, where the distribution 
of active versus churned customers typically exhibits significant skew toward the majority class. This 
imbalance can substantially impact model performance, as standard machine learning algorithms 
tend to optimize for overall accuracy rather than detecting minority classes, resulting in models that 
achieve high accuracy scores while failing to identify customers at risk of churning. To address this 
critical limitation, this study implements a comprehensive evaluation of resampling techniques that 
systematically modify the training data distribution to improve minority class recognition without 
compromising the temporal integrity of the validation framework.  

The resampling strategy encompasses three distinct approaches: a baseline configuration that 
maintains original class distributions, synthetic oversampling that generates minority class examples, 
and undersampling that reduces majority class representation. Each technique addresses different 
aspects of the class imbalance challenge while maintaining compatibility with the temporal 
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validation framework described in Section 2.3. The implementation utilizes the imbalanced-learn 
library, which provides specialized tools for handling imbalanced datasets while ensuring seamless 
integration with scikit-learn pipelines and temporal cross-validation procedures [30].  

Critically, all resampling operations are applied exclusively to training data within each 
temporal fold, ensuring that test data maintains its original distribution to provide a realistic 
performance evaluation. This approach prevents data leakage while enabling fair comparison of 
resampling effectiveness across different temporal periods and varying degrees of class imbalance 
inherent in a heterogeneous publisher portfolio.  

2.6.1. No Resampling Baseline 

The no-resampling configuration serves as a baseline for evaluating the impact of data 
manipulation techniques on model performance. This approach maintains the original class 
distribution present in the training data, providing insight into the natural predictive signal available 
without the need for synthetic data generation or sample removal. The implementation utilizes a 
custom NoResampling class that includes compatibility with imbalanced-learn pipelines while 
returning the input data unchanged.  

The baseline approach is particularly valuable for understanding the trade-offs between 
prediction accuracy and class balance, as it reveals whether resampling techniques provide genuine 
predictive improvements or merely redistribute prediction errors across classes.  

2.6.2. Synthetic Minority Over-Sampling Technique (SMOTE) 

SMOTE addresses class imbalance through intelligent synthetic sample generation that 
preserves the underlying data structure while expanding the representation of the minority class. The 
technique operates by identifying instances of the minority class and generating synthetic samples 
along the line segments connecting these instances to their k-nearest neighbors in the feature space. 
The implementation utilizes the SMOTE class from imbalanced-learn [25].  

The synthetic sample generation process can be formally described as follows. For each minority 
class sample 𝑥௜  SMOTE identifies its k nearest minority class neighbors, denoted as 𝑁௞(𝑥௜) ={𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௞}. A synthetic sample 𝑥௦௬௡ is then generated by:  𝑥௦௬௡ = 𝑥௜ +  λ ⋅ ൫𝑥௜௝ − 𝑥௜൯ 
where 𝑥௜௝  is a randomly selected neighbor from 𝑁௞(𝑥௜)  and λ  is a random number uniformly 
distributed between 0 and 1: λ ∼ 𝑈(0,1). This interpolation ensures that synthetic samples lie along 
the line segments connecting existing minority class samples to their nearest neighbors, maintaining 
local feature relationships while expanding the representation of minority class regions.  

The k-nearest neighbor selection utilizes Euclidean distance in the standardized feature space:  

𝑑൫𝑥௜ , 𝑥௝൯ = ඩ෍൫𝑥௜௙ − 𝑥௝௙൯ଶ௣
௙ୀଵ  

Where p represents the number of features and 𝑥௜௙ denotes the value of feature f for sample 𝑥௜. 
The default configuration employs k = 5 neighbors, striking a balance between preserving local 
structure and generating synthetic diversity.  

SMOTE's effectiveness stems from its ability to create synthetic samples that reflect the local 
density and structure of minority class regions, enabling models to learn more robust decision 
boundaries around churning customers [5,27]. Unlike random oversampling, which duplicates 
existing samples, SMOTE's interpolative approach reduces the risk of overfitting while providing 
models with richer training examples that better represent the minority class distribution.  

2.6.3. Random Under-Sampling 

Random under-sampling addresses class imbalance by systematically removing majority class 
samples, thereby creating balanced training sets by reducing the number of non-churning customers 
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rather than increasing the representation of churning customers. The implementation employs the 
RandomUnderSampler class from imbalanced-learn [26], which performs random selection without 
replacement from the majority class population.  

The under-sampling process operates by defining a target sampling ratio and randomly 
selecting samples from the majority class to achieve the desired class distribution. For a dataset with 𝑛௠௔௝ majority class samples and 𝑛௠௜௡ minority class samples, the balanced configuration removes 
samples to achieve:  𝑛௠௔௝௕௔௟௔௡௖௘ௗ = 𝑛௠௜௡ 

The random selection process ensures that each majority class sample has an equal probability 
of retention:  𝑃(𝑥௜ selected) = 𝑛௠௜௡𝑛௠௔௝ 
where 𝑥௜  represents a majority class sample. This uniform probability distribution prevents 
systematic bias in the retained majority class samples while maintaining the representative 
characteristics of the original majority class distribution.  

The mathematical expectation of the sampling process preserves the population mean:  𝐸ሾ𝑋௥௘௧௔௜௡௘ௗሿ = 𝐸ൣ𝑋௢௥௜௚௜௡௔௟൧ 
However, for finite samples, the sample variance exhibits increased uncertainty due to the 

reduced sample size. The sample variance 𝑆௥௘௧௔௜௡௘ௗଶ  serves as an unbiased estimator of the population 
variance, but with increased variance around the true value:  𝑉𝑎𝑟ሾ𝑆௥௘௧௔௜௡௘ௗଶ ሿ > 𝑉𝑎𝑟ൣ𝑆௢௥௜௚௜௡௔௟ଶ ൧ 

This increased uncertainty reflects the fundamental trade-off in under-sampling: computational 
efficiency and class balance are achieved at the cost of statistical precision and potential information 
loss from discarded majority class samples.  

Random under-sampling offers computational advantages by reducing training set sizes, 
thereby enabling faster model training and lower memory requirements. However, this efficiency 
gain introduces the risk of information loss, as potentially valuable patterns of the majority class may 
be eliminated during the random selection process. This technique proves particularly effective when 
the majority class samples contain significant redundancy or when computational constraints limit 
the feasibility of synthetic oversampling approaches. This sampling strategy employs automatic 
balancing, where the algorithm determines optimal sample sizes to achieve approximately equal 
class representation.  

Figure 4 demonstrates the distributional effects of the resampling approaches on the class 
imbalance challenge described in the preceding sections. The visualization illustrates how SMOTE 
preserves and expands minority class representation through synthetic sample generation, while 
maintaining the local data structure. In contrast, the random under-sampling approach reduces 
majority class representation through systematic sample removal. These contrasting methodologies 
offer distinct advantages for model training. SMOTE's interpolative approach minimizes the risk of 
overfitting while providing richer training examples that better represent the minority class 
distribution. In contrast, random under-sampling offers computational efficiency and balanced 
training sets, but introduces potential information loss from discarded majority class samples.  
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Figure 4. Visualization of employed Resampling Methods. 

2.7. Model Evaluation Framework 

The evaluation of churn prediction models in a multi-client B2B environment presents unique 
challenges that extend beyond traditional single-dataset validation approaches. The heterogeneous 
nature of publisher portfolios, combined with temporal dependencies and class imbalance 
characteristics inherent in subscription-based data, requires a comprehensive evaluation framework 
that can reliably assess model performance across various contexts. This evaluation framework must 
balance statistics with interpretability, ensuring that performance metrics accurately reflect business-
relevant performance while also guiding decision-making.  

The evaluation methodology implemented in this study addresses these challenges through a 
multi-faceted assessment strategy that combines temporal robustness metrics with performance 
measurement across multiple complementary metrics. Each metric serves a distinct analytical 
purpose: probabilistic metrics assess the quality of uncertainty quantification, threshold-dependent 
metrics evaluate operational decision-making capabilities, and business-oriented metrics directly 
support business-relevant performance. The framework operates within the temporal validation 
structure described in Section 2.3, ensuring that all performance assessments respect chronological 
boundaries and prevent data leakage while providing realistic estimates of deployment performance 
across varying temporal contexts.  

2.7.1. Foundational Threshold-Dependent Metrics: Precision and Recall 

Traditional binary classification metrics provide the foundational building blocks for advanced 
performance assessment in churn prediction scenarios. Precision and recall represent the core 
threshold-dependent measures that enable comprehensive evaluation of model performance under 
realistic deployment conditions, serving as essential components for both composite metrics and 
business decision-making processes.  

These foundational metrics are calculated using the confusion matrix components derived from 
binary predictions at a specified threshold. For a given prediction threshold, precision quantifies the 
reliability of positive predictions and directly relates to intervention efficiency in retention strategies:  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 

where 𝑇𝑃  represents true positives (correctly identified churning customers) and 𝐹𝑃  represents 
false positives (customers incorrectly flagged as churn risks). High precision indicates that customers 
flagged as churn risks are likely to actually churn, enabling efficient resource allocation and 
minimizing unnecessary intervention costs.  

Recall, also known as sensitivity, measures the proportion of actual positive cases correctly 
identified, reflecting the model's ability to provide comprehensive coverage of at-risk customers:  
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𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 

where 𝐹𝑁 represents false negatives (churning customers not identified by the model). High recall 
ensures that retention strategies can address the majority of potential churn events, maximizing the 
opportunity for successful intervention.  

The inherent trade-off between precision and recall represents one of the most significant 
challenges for companies in churn prediction deployment. Increasing the prediction threshold 
typically improves precision by reducing false positives but decreases recall by increasing false 
negatives. This trade-off necessitates careful threshold selection based on business priorities, making 
these foundational metrics essential for understanding model behavior across different operating 
points.  

2.7.2. Primary Performance Metric: Area Under Precision-Recall Curve 

The Area Under Precision-Recall Curve (AUC-PR) serves as the primary metric for model 
comparison and selection, leveraging the foundational precision and recall metrics described in 
Section 2.7.1 to provide a threshold-independent assessment of model performance. Unlike the 
commonly used Area Under ROC Curve (AUC-ROC), which can provide overly optimistic 
assessments when negative classes dominate the dataset, AUC-PR focuses exclusively on the model's 
ability to distinguish positive cases (churning customers) from the overall population, which 
perfectly fits the imbalanced nature of churn prediction data [27].  

The precision-recall curve is constructed by varying the prediction threshold across all possible 
values and plotting the resulting precision-recall pairs as defined in Section 2.7.1. The AUC-PR is 
calculated as the area under this curve:  𝐴𝑈𝐶-𝑃𝑅 = න 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙)ଵ

଴  𝑑𝑅𝑒𝑐𝑎𝑙𝑙 
In practice, this integral is computed numerically since machine learning models produce 

discrete probability predictions rather than continuous curves. The standard approach uses the 
trapezoidal rule, which approximates the curved area by connecting consecutive precision-recall 
points with straight lines and summing the resulting trapezoidal areas [31]. AUC-PR values range 
from 0 to 1, where higher values indicate superior model performance. A random classifier achieves 
an AUC-PR equal to the positive class prevalence, while a perfect classifier achieves AUC-PR = 1.  

This metric provides a comprehensive assessment of the precision-recall trade-off across all 
possible operating points, enabling fair comparison across different models and temporal periods 
regardless of the specific threshold chosen for deployment.  

2.7.3. Business-Oriented Metric: SPARTA Score 

The SPARTA (SP Abonnee Retentie Toekomst Analyse, which is Dutch for SP Subscriber 
Retention Future Analysis, and the internal acronym for this project) score represents a composite 
metric that combines the foundational precision and recall measures defined in Section 2.7.1 
according to business operational priorities. This metric addresses the practical reality that precision 
and recall carry different operational costs and benefits in churn prediction deployments, requiring 
a weighted combination that reflects business constraints rather than statistical optimization alone.  

The SPARTA score is calculated as a weighted combination of the precision and recall metrics:  𝑆𝑃𝐴𝑅𝑇𝐴 =  0.7 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  0.3 ×  𝑅𝑒𝑐𝑎𝑙𝑙 
The weights prioritize precision over recall, which reflects the operational constraint that 

retention interventions require significant resources and that false positive predictions impose a 
bigger risk by not “letting sleeping dogs lie” [15]. Conversely, false negative predictions represent 
opportunity costs that, while significant, do not require immediate resource allocation.  

This 70:30 weighting ratio was established through an interview with S.P. AbonneeService's 
CTO, Marc Dierikx, to reflect realistic intervention capacity constraints [15]. The precision emphasis 
ensures that retention teams can effectively manage intervention workloads while the recall 
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component maintains sensitivity to actual churn events, preventing excessive focus on precision at 
the expense of coverage.  

The SPARTA score provides values between 0 and 1, where higher scores indicate better 
alignment with business operational requirements. Unlike purely statistical metrics, SPARTA 
directly supports decision-making about model deployment and intervention threshold selection, 
making it particularly valuable for translating statistical performance into actionable business 
insights.  

2.7.4. Correlation-Based Performance Assessment: Matthews Correlation Coefficient 

The Matthews Correlation Coefficient (MCC) offers a comprehensive evaluation of binary 
classification performance, taking into account all four components of the confusion matrix, making 
it particularly robust for imbalanced datasets where other metrics may yield misleading results. MCC 
is calculated as:  𝑀𝐶𝐶 = (𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)ඥ(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 

where 𝑇𝑁 represents true negatives. MCC values range from -1 to +1, where +1 indicates perfect 
prediction, 0 represents random performance, and -1 indicates total disagreement between 
predictions and actual outcomes.  

The MCC's strength lies in its balanced treatment of both positive and negative classes, 
providing reliable performance assessment even when class distributions vary significantly across 
temporal periods or publisher portfolios [27,28]. This characteristic makes MCC particularly valuable 
for assessing model stability across a heterogeneous data environment.  

Unlike precision and recall, which focus exclusively on positive class performance, MCC 
provides insight into the model's overall classification ability, including its capacity to identify 
customers who will not churn correctly. This comprehensive perspective offers a deeper 
understanding of model behavior across the entire customer spectrum, helping to identify potential 
biases or systematic errors in prediction patterns.  

2.7.5. Probabilistic Performance Assessment: Log Loss 

Log loss, also known as cross-entropy loss, provides a probabilistic assessment of model 
performance that evaluates the quality of probability estimates rather than binary classification 
decisions. This metric is particularly valuable for understanding model calibration and confidence 
assessment, which are essential for assessing model stability and risk-based retention strategies that 
require a nuanced understanding of churn probabilities rather than simple binary predictions.  

Log loss is calculated as:  𝐿𝑜𝑔𝐿𝑜𝑠𝑠 = − 1𝑁෍ሾ𝑦௜ log(𝑝௜) + (1 − 𝑦௜) log(1 − 𝑝௜)ሿே
௜ୀଵ  

where 𝑁 represents the number of samples, 𝑦௜ is the true binary label for the sample 𝑖, and 𝑝௜ is 
the predicted probability of the positive class for the sample 𝑖. Lower log loss values indicate better 
probability estimation, with perfect probability estimates achieving log loss = 0.  

The inclusion of log loss in the evaluation framework supports assessment of model uncertainty 
quantification, enabling identification of models that provide well-calibrated probability estimates. 
Such calibration is essential for business applications where retention interventions should be 
proportional to churn risk, requiring reliable probability estimates rather than simple binary 
classifications.  

Log loss also provides insight into model overfitting and generalization capabilities, as poorly 
generalized models often exhibit extreme probability estimates that result in high log loss values on 
test data. This characteristic makes log loss valuable for hyperparameter optimization and model 
selection processes.  
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2.7.6. Temporal Performance Aggregation 

The aggregation of performance metrics across temporal validation splits provides essential 
insights into model stability and generalization capabilities across varying temporal contexts. The 
aggregation strategy employed in this study calculates descriptive statistics for each metric across all 
temporal splits, providing a comprehensive assessment of both average performance and 
performance variability.  

For each metric 𝑀, the following aggregate statistics are computed across 𝐾 temporal splits: 
Mean performance: 𝑀 = ଵ௄ ∑ 𝑀௞௄௞ୀଵ  

Performance standard deviation: σெ = ට ଵ௄ିଵ∑ ൫𝑀௞ −𝑀൯ଶ௄௞ୀଵ  

Coefficient of variation: 𝐶𝑉ெ = ஢ಾெ  
The coefficient of variation provides a normalized measure of performance stability, enabling 

comparison across different metrics and models regardless of their absolute performance levels. 
Lower CV values indicate more consistent performance across temporal periods, suggesting better 
generalization capabilities and reduced sensitivity to temporal variations in customer behavior 
patterns.  

A composite stability score is calculated as the inverse of the average coefficient of variation 
across key metrics (AUC-PR, SPARTA, and MCC), providing a single measure of overall temporal 
robustness:  𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 13 (𝐶𝑉஺௎஼-௉ோ + 𝐶𝑉ௌ௉஺ோ்஺ + 𝐶𝑉ெ஼஼) 

The selection of these three metrics ensures comprehensive coverage while avoiding 
redundancy: AUC-PR provides threshold-independent ranking performance, SPARTA incorporates 
business-weighted precision and recall assessment, and MCC offers balanced correlation-based 
evaluation. Precision and recall are excluded from direct inclusion as they are already represented 
through their weighted combination in the SPARTA score. Log loss is excluded due to its unbounded 
upper range (0 to infinity), which differs from the bounded ranges of the other metrics (AUC-PR and 
SPARTA: 0-1; MCC: -1 to +1) and could distort the averaged coefficient of variation calculation.  

This temporal aggregation approach enables identification of models that perform consistently 
across diverse temporal contexts, supporting selection of robust solutions suitable for deployment 
across the heterogeneous publisher portfolio characteristic of S.P. AbonneeService's operational 
environment.  

2.8. Implementation 

This section outlines the technical architecture of the pipeline, including the software stack, 
computational resources, and deployment considerations. It will describe the automation features 
designed to handle diverse publisher datasets, including data ingestion protocols, preprocessing 
workflows, model training, and result delivery mechanisms. The paragraph will detail the 
technologies and libraries used for implementation, explaining how they were integrated to create a 
cohesive system that balances flexibility with standardization.  

2.8.1. Environment and Libraries 

The churn prediction pipeline was implemented in Python 3.12.0 and executed within a Google 
Colab Pro environment to leverage advanced computational resources. This environment was 
equipped with a high-memory configuration providing approximately 51 GB of RAM and 
accelerated by a Tesla T4 GPU with 15 GB of VRAM and CUDA 12.4 support, which significantly 
reduced training times for compatible algorithms. The software stack was built on a foundation of 
established open-source libraries, including Pandas for data manipulation, NumPy for numerical 
operations, and scikit-learn for the core machine learning framework [37–39]. Advanced modeling 
capabilities were provided by XGBoost and LightGBM, both of which were configured to utilize GPU 
acceleration for enhanced performance [22,23]. Class imbalance was addressed using the imbalanced-
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learn library, while PyOD facilitated outlier detection, and NetworkX supported multicollinearity 
analysis [30,40,41]. For efficient data storage and retrieval, the pipeline utilized the memory-efficient 
Parquet file format.  

2.8.2. Pipeline Architecture 

The pipeline architecture is designed as a modular, automated system that processes data from 
initial ingestion to final prediction evaluation, as detailed throughout Section 2. The workflow begins 
with an automated data ingestion, which includes robust protocols for handling heterogeneous CSV 
files with varying encodings and column structures. These initial raw files are transformed and 
standardized into a consistent Parquet format, as described in Section 2.2. The core of the 
implementation lies within the experimental evaluation loop, which systematically executes each 
combination of temporal validation strategy, machine learning model, and resampling technique. 
This automated process ensures temporal integrity by executing feature engineering within each 
cross-validation fold. For each temporal split, the ChurnFeatureEngineer (Section 2.4.1) is fitted on 
the training data to calculate time-dependent features relative to that specific fold’s snapshot date, 
thereby preventing data leakage. An imblearn.Pipeline then bundles the chosen resampling method 
and machine learning model, ensuring that resampling is applied exclusively to the transformed 
training data before the model is trained [42].  

Orchestration and progress tracking for the 54 experimental combinations are managed using 
tqdm, providing clear, real-time feedback on execution progress without overwhelming the console. 
The final output of the pipeline is a comprehensive CSV file that can be delivered to the client. This 
file contains a list of subscribers predicted to churn within the next month, ranked by their churn 
probability score, enabling targeted and prioritized retention efforts.  

2.8.3. Deployment 

While this research focuses on the experimental evaluation and validation of the pipeline, its 
modular design facilitates future production deployment. A potential deployment architecture 
would involve containerizing the pipeline using Docker for a consistent environment and 
reproducible results. A FastAPI backend can be developed to expose the prediction model via a REST 
API, enabling on-demand predictions. For stakeholder interaction and results visualization, a 
Streamlit dashboard could provide an intuitive front-end interface. The entire model lifecycle, from 
experiment tracking and versioning to deployment and monitoring, could be managed using 
MLFlow, ensuring a robust and scalable MLOps framework suitable for the dynamic needs of a 
multi-client B2B service provider like S.P. AbonneeService.  

3. Results 

The experimental evaluation encompassed five years of historical subscription data spanning 
January 2020 through February or April 2025 (end month depends on the company), collected from 
three distinct publishing companies within S.P. AbonneeService's client portfolio. The dataset 
comprised 25,241 total subscriber records distributed across companies of varying operational 
characteristics and customer base compositions. Company 1 represented the largest dataset with 
14,832 subscribers, characterized by elevated churn rates and substantial monthly acquisition 
volumes exceeding 150 new members, reflecting a dynamic customer environment with high 
turnover patterns. Company 2 contributed 3,927 subscriber records distinguished by extensive 
customer tenure histories, including long-term subscribers with membership durations exceeding 25 
years, indicating strong customer loyalty and retention patterns. Company 3 provided 6,482 
subscriber records exhibiting stable churn rates within industry norms, combined with moderate 
acquisition patterns of fewer than 100 new members monthly, representing a mature subscription 
environment with balanced customer lifecycle dynamics.  
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Each company dataset underwent comprehensive analysis through the complete experimental 
matrix described in Section 2, encompassing six machine learning algorithms (Naive Bayes, Logistic 
Regression, Random Forest, XGBoost, LightGBM, SVM) evaluated across nine distinct configurations 
combining three resampling techniques (No Resampling, SMOTE, Random Under-Sampling) with 
three temporal validation strategies (Blocked Cross-Validation, Expanding Window Cross-
Validation, Rolling Window Cross-Validation). This systematic approach generated 54 (3 × 6 × 3 Individual model evaluations per company, totaling 162 distinct experimental configurations 
across the complete multi-client analysis framework. The diversity in company characteristics and 
dataset sizes provides a robust assessment of algorithmic effectiveness across varying context 
characteristics of the heterogeneous publisher environment within the subscription publishing 
domain of S.P. AbonneeService.  

In the performance reporting sections that follow, evaluation metrics are presented in tabular 
format for each experimental configuration. To facilitate comparative interpretation, where relevant, 
the highest-performing result per column is boldfaced, while the lowest-performing result is rendered 
in italics. This visual distinction supports efficient identification of relative model effectiveness across 
diverse algorithmic, resampling, and validation combinations.  

3.1. Aggregate Performance Analysis Across Publishers 

The top-performing configurations demonstrate the dominance of LightGBM with SMOTE 
across multiple temporal validation strategies, as shown in Table 3.1. The highest-performing 
configuration achieves a mean AUC-PR of 0.99 with LightGBM-SMOTE-Blocked-CV, accompanied 
by a SPARTA score of 0.948 and a stability score of 0.944. LightGBM configurations occupy six of the 
top ten positions, with SMOTE resampling appearing in seven configurations. Standard deviations 
range from 0.013 for the top performer to 0.178 for the tenth-ranked Random Forest configuration, 
while SPARTA scores span from 0.745 to 0.948 across the top ten configurations.  

Table 3.1. Top 10 Model Configurations by Mean AUC-PR. 

Rank Model Resampling Temporal 𝒙ഥ AUC-PR Std Dev SPARTA Stability 
1 LightGBM SMOTE Blocked-CV 0.99 0.013 0.948 0.944 
2 LightGBM None Rolling 0.964 0.095 0.816 0.83 
3 LightGBM None Expanding 0.96 0.101 0.816 0.83 
4 LightGBM SMOTE Rolling 0.958 0.058 0.93 0.901 
5 LightGBM SMOTE Expanding 0.955 0.059 0.921 0.896 
6 XGBoost SMOTE Expanding 0.948 0.081 0.909 0.876 
7 LightGBM None Blocked-CV 0.947 0.058 0.745 0.82 
8 XGBoost SMOTE Rolling 0.938 0.088 0.903 0.867 
9 XGBoost SMOTE Blocked-CV 0.933 0.084 0.881 0.859 

10 
Random 

Forest None Expanding 
0.849 0.178 0.792 0.767 

3.2. Temporal Validation Strategy Performance 

The temporal validation strategies demonstrate remarkably similar mean performance across 
key metrics, with the expanding and rolling window approaches achieving identical mean AUC-PR 
values of 0.487. In contrast, blocked cross-validation shows slightly lower performance at 0.482, as 
presented in Table 3.2. However, notable differences emerge in performance stability, where blocked 
cross-validation exhibits substantially lower coefficient of variation across all metrics, particularly for 
precision (0.286) and recall (0.118) compared to the expanding (0.751, 0.438) and rolling (0.746, 0.436) 
approaches, respectively.  
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Table 3.2. Performance Metrics by Temporal Validation Method. 

Temporal 𝒙ഥ AUC-
PR 

AUC-PR 
CV 

𝒙ഥ 
Precision 

Precision 
CV 

𝒙ഥ Recall Recall CV 𝒙ഥ MCC MCC CV 

Rolling 0.487 0.421 0.325 0.746 0.804 0.436 0.366 0.694 
Expanding 0.487 0.402 0.325 0.751 0.802 0.438 0.363 0.676 
Blocked-

CV 0.482 0.258 0.316 0.286 0.801 0.118 0.35 0.287 

3.3. Model Performance 

The algorithmic comparison reveals substantial performance differentiation across all evaluated 
metrics, as detailed in Table 3.3. LightGBM achieves the highest mean AUC-PR (0.696) and 
demonstrates superior precision (0.589) and recall (0.918) performance, though Naive Bayes exhibits 
the lowest AUC-PR coefficient of variation (0.176) compared to LightGBM's 0.264. Random Forest 
maintains moderate performance across metrics with a mean AUC-PR of 0.611 and balanced 
precision-recall characteristics (0.527, 0.764). XGBoost shows competitive precision (0.527) but 
elevated recall variability (CV: 0.206). Traditional approaches demonstrate notably poor 
performance, with SVM exhibiting extreme variability across all metrics (precision CV: 1.416, recall 
CV: 1.234) and Logistic Regression achieving the lowest mean AUC-PR (0.145) despite moderate 
stability characteristics.  

Table 3.3. Performance Summary by Model (Averaged). 

Model 𝒙ഥ AUC-
PR 

AUC-PR 
CV 

𝒙ഥ 
Precision 

Precision 
CV 

𝒙ഥ Recall Recall CV 𝒙ഥ MCC MCC CV 

Naive 
Bayes 

0.454 0.176 0.042 0.528 0.916 0.137 0.09 0.408 

Log. Reg. 0.145 0.607 0.09 0.557 0.808 0.102 0.195 0.364 
Rand. 
Forest 

0.611 0.315 0.527 0.387 0.764 0.141 0.515 0.25 

XGBoost 0.55 0.326 0.527 0.272 0.839 0.206 0.502 0.248 
LightGBM 0.696 0.264 0.589 0.299 0.918 0.121 0.625 0.24 

SVM 0.48 0.461 0.226 1.416 0.581 1.234 0.278 1.703 

3.4. Resampling Strategy Performance 

The resampling technique evaluation demonstrates substantial differences across precision, 
recall, and stability characteristics, as presented in Table 3.4. SMOTE achieves the highest mean 
precision (0.586) and demonstrates superior stability across all metrics, with the lowest coefficient of 
variation for AUC-PR (0.204), precision (0.282), and MCC (0.244). Random under-sampling exhibits 
the highest mean recall (0.875) but suffers from extremely low precision (0.062) and substantial 
performance variability. The no resampling baseline shows moderate precision (0.318) but 
demonstrates the highest variability in precision (CV: 1.042) and recall (CV: 0.728), while achieving 
relatively low recall performance (0.736).  

Table 3.4. Impact of Resampling Methods on Key Metrics. 

Resampli
ng 

𝒙ഥ AUC-
PR 

AUC-PR 
CV 

𝒙ഥ 
Precision 

Precision 
CV 

𝒙ഥ Recall Recall CV 𝒙ഥ MCC MCC CV 

None 0.613 0.301 0.318 1.042 0.736 0.728 0.386 0.922 
SMOTE 0.683 0.204 0.586 0.282 0.785 0.158 0.55 0.244 
Rand. 
Und. 0.183 0.566 0.062 0.533 0.875 0.172 0.147 0.552 
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3.5. Company-Specific Performance Results 

The company-specific analysis reveals consistent algorithmic preferences despite varying 
dataset characteristics and customer base compositions, as demonstrated in Tables 3.5.1, 3.5.2, and 
3.5.3. LightGBM with SMOTE dominates the top-performing configurations across all three 
companies, though with notable variations in optimal temporal validation strategies. Company 1 
achieves peak performance with blocked cross-validation (AUC-PR: 0.991), while Companies 2 and 
3 show superior results with rolling window approaches (AUC-PR: 0.988 for both). The performance 
variance between top and fifth-ranked configurations differs substantially across companies: 
Company 1 exhibits a wide performance range (AUC-PR difference: 0.093). In contrast, Companies 2 
and 3 demonstrate remarkably consistent top-tier performance with minimal differences (0.016 and 
0.006, respectively).  

Table 3.5.1. Top 5 Configurations for Company 1. 

Ran
k Model Resampling Temporal 

AUC-PR SPARTA Precision Recall 

1 LightGBM SMOTE Blocked-CV 0.991 0.951 1 0.835 
2 LightGBM None Rolling 0.951 0.763 0.662 0.999 
3 LightGBM None Expanding 0.937 0.759 0.656 0.999 
4 XGBoost SMOTE Expanding 0.906 0.871 0.969 0.642 
5 LightGBM SMOTE Rolling 0.898 0.862 0.978 0.593 

Table 3.5.2. Top 5 Configurations for Company 2. 

Ran
k 

Model Resampling Temporal AUC-PR SPARTA Precision Recall 

1 LightGBM SMOTE Rolling 0.988 0.971 0.991 0.923 
2 LightGBM SMOTE Expanding 0.988 0.969 0.991 0.918 
3 LightGBM SMOTE Blocked-CV 0.984 0.962 1 0.875 
4 LightGBM None Blocked-CV 0.984 0.797 0.709 1 
5 XGBoost SMOTE Expanding 0.972 0.935 0.99 0.804 

Table 3.5.3. Top 5 Configurations for Company 3. 

Ran
k Model Resampling Temporal 

AUC-PR SPARTA Precision Recall 

1 LightGBM SMOTE Blocked-CV 0.994 0.932 0.992 0.793 
2 LightGBM None Blocked-CV 0.993 0.778 0.683 1 
3 LightGBM None Expanding 0.991 0.869 0.813 1 
4 LightGBM SMOTE Expanding 0.989 0.954 0.994 0.863 
5 LightGBM SMOTE Rolling 0.988 0.956 0.991 0.874 

3.6. Computational Efficiency 

The computational performance analysis reveals significant variations in training efficiency 
across algorithmic and resampling combinations, as presented in Table 3.6. Naive Bayes 
demonstrates exceptional computational efficiency, with average training times of less than 0.2 
seconds across all configurations, while Logistic Regression exhibits the highest computational 
overhead, averaging 17.86 seconds per split. The gradient boosting algorithms (XGBoost and 
LightGBM) exhibit moderate computational requirements, with LightGBM averaging 5.01 seconds 
per split. SMOTE consistently increases training time across all algorithms, although the impact 
varies substantially by the base algorithm's complexity.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2025 doi:10.20944/preprints202507.0712.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0712.v1
http://creativecommons.org/licenses/by/4.0/


 33 of 39 

 

Table 3.6. Average Training Time Per Split By Model and Configuration. 

Model No Resampling (s) SMOTE (s) Random Under. (s) Avg Split Time (s) 
Naive Bayes 0.15 0.18 0.15 0.16 
Logistic Reg. 20.99 31.68 0.92 17.86 

Random 
Forest 2.37 2.83 

1.87 2.36 

XGBoost 0* 4.19 1.98 3.09 
LightGBM 5.4 6.57 3.06 5.01 

SVM 3.77 10.85 0.3 4.97 
* All configs for XGBoost with No Resampling failed (see 3.7. Failed Experiments). 

3.7. Failed Experiments 

The experimental failure analysis reveals a systematic pattern concentrated exclusively within 
XGBoost configurations lacking resampling techniques, as detailed in Tables 3.7.1 and 3.7.2. All nine 
failed experiments involve XGBoost without resampling across different temporal validation 
methods and companies, representing a 33.3% failure rate for XGBoost configurations. No failures 
occurred with alternative algorithms or when resampling techniques were applied, indicating that 
XGBoost configurations without resampling were unable to complete the experimental pipeline 
under the given dataset conditions.  

Table 3.7.1. Individual Failed Experimental Configurations. 

# Company Model Resampling Temporal Description 

1 Company 1 XGBoost None 
Blocked-CV No successful splits 

processed 

2 Company 1 XGBoost None Expanding No successful splits 
processed 

3 Company 1 XGBoost None Rolling No successful splits 
processed 

4 Company 2 XGBoost None 
Blocked-CV No successful splits 

processed 

5 Company 2 XGBoost None Expanding No successful splits 
processed 

6 Company 2 XGBoost None Rolling No successful splits 
processed 

7 Company 3 XGBoost None 
Blocked-CV No successful splits 

processed 

8 Company 3 XGBoost None Expanding No successful splits 
processed 

9 Company 3 XGBoost None Rolling No successful splits 
processed 

Table 3.7.2. Summary of Failed Experiments by Configuration Components. 

Component Category Total Configs Failed Configs Failure Rate (%) 
Company Company 1 54 3 5.6 
Company Company 2 54 3 5.6 
Company Company 3 54 3 5.6 

Model Naive Bayes 27 0 0 
Model Logistic Reg. 27 0 0 
Model Random Forest 27 0 0 
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Model XGBoost 27 9 33.3 
Model LightGBM 27 0 0 
Model SVM 27 0 0 

Resampling None 54 9 16.7 
Resampling SMOTE 54 0 0 
Resampling Random Under. 54 0 0 
Temporal Rolling 54 3 5.6 
Temporal Expanding 54 3 5.6 
Temporal Blocked-CV 54 3 5.6 

4. Discussion 

4.1. Interpretation of Results and Practical Implications 

The experimental results provide significant insights that both confirm established patterns in 
churn prediction literature and reveal unexpected findings specific to the subscription publishing 
domain, with direct implications for automated pipeline deployment in multi-client B2B 
environments. 

4.1.1. Algorithmic Performance and Deployment Strategy 

The substantial superiority of LightGBM across all evaluated contexts, achieving AUC-PR 
values exceeding 0.95, significantly exceeds typical performance gaps reported in previous churn 
prediction literature [5,28]. This consistent advantage provides clear implementation guidance: 
LightGBM should serve as the primary algorithm for automated churn prediction across all client 
portfolios, eliminating the need for complex algorithm selection procedures in production 
environments.  

The complete failure of XGBoost configurations without resampling likely stems from the 
custom class weight implementation required for XGBoost's integration with scikit-learn's balanced 
weighting approach, highlighting critical implementation considerations for gradient boosting 
methods in scenarios of extreme class imbalance.  

4.1.2. Resampling Strategy Effectiveness and Resource Allocation 

SMOTE's substantial precision advantage (0.586 versus 0.318 for no resampling) directly 
translates to more efficient resource allocation for retention, as higher precision means customers 
flagged for intervention are more likely to churn. This efficiency gain becomes particularly valuable 
in B2B environments where retention teams must manage intervention campaigns across multiple 
client portfolios with limited resources.  

The abysmal precision performance of random under-sampling (0.062), despite achieving the 
highest recall (0.875), becomes particularly pronounced given the acquisition patterns observed in 
publisher datasets. With monthly acquisition volumes of 100-150+ subscribers and churn 
representing only a small fraction, random under-sampling effectively reduces training data to 
extremely small sample sizes, eliminating substantial amounts of potentially valuable majority class 
information. This finding provides clear guidance that random under-sampling should be avoided 
in subscription publishing contexts where training data volumes are inherently limited by low churn 
rates.  

4.1.3. Temporal Validation Strategy Selection 

The temporal validation results reveal that blocked cross-validation achieves superior stability 
(coefficient of variation approximately 50% lower than rolling/expanding approaches) despite 
slightly reduced mean performance. This difference likely stems from the use of blocked cross-
validation, which employs only four non-overlapping temporal splits, compared to approximately 
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60 overlapping splits used by other approaches. Publishers prioritizing consistent, predictable 
performance should utilize blocked cross-validation, while those requiring maximum prediction 
accuracy may prefer rolling window validation despite increased variability.  

The nearly identical mean performance between rolling and expanding window approaches 
suggests that additional historical information beyond a certain threshold does not provide 
substantial predictive improvements for subscription churn, supporting fixed-window training 
approaches that prioritize computational efficiency over maximum data utilization.  

4.1.4. Cross-Company Consistency and Scalability 

The remarkable consistency of algorithmic preferences across the three publishing companies 
represents one of the most significant findings, providing strong evidence for the generalizability of 
automated churn prediction in subscription publishing environments [15]. Despite substantial 
differences in customer base characteristics, operational scales, and churn patterns, LightGBM with 
SMOTE consistently occupied top-performing configurations across all environments.  

This consistency enables S.P. AbonneeService to implement standardized automated pipelines 
across diverse client portfolios without requiring extensive customization for individual publishers. 
The performance variance patterns observed suggest that high-churn environments may require 
more sophisticated model selection procedures, while stable subscription contexts achieve reliable 
performance across diverse configuration options.  

4.1.5. Business Integration and System Extension Opportunities 

The superior precision demonstrated by optimal configurations (exceeding 0.95 for top-
performing combinations) enables publishers to implement highly targeted retention interventions 
with confidence that flagged customers represent genuine churn risks. The stability characteristics 
achieved by SMOTE across temporal periods enable consistent retention workflow processes without 
requiring frequent recalibration.  

The robust algorithmic foundation creates opportunities for extending automated prediction 
capabilities beyond basic churn prediction to applications including churn reason prediction, 
engagement level forecasting, and lifetime value estimation. The comprehensive preprocessing 
pipeline developed for heterogeneous publisher data also enables broader data integration 
initiatives, such as recent invoice coupling and RFM analysis.  

4.2. Legal Implementation Considerations 

The practical deployment of automated churn prediction systems within subscription 
publishing environments needs careful consideration of legal and regulatory frameworks that extend 
beyond technical performance optimization, particularly given the processing of personal subscriber 
data and the automated nature of the prediction system.  

4.2.1. GDPR Compliance 

The implementation of the churn prediction pipeline must align with fundamental GDPR 
principles, particularly regarding the lawful basis for processing and data subject rights protections. 
The system's utilization of subscriber behavioral, demographic, and transactional data for predictive 
retention analysis requires the establishment of a lawful basis under Article 6 GDPR [48]. Legitimate 
interest (Article 6(1)(f)) represents the most appropriate basis, provided that balancing tests 
demonstrate that the business benefits of churn prediction, which include improved customer 
retention and service optimization, do not disproportionately override individual privacy rights and 
freedoms [48]. The preprocessing pipeline described in Section 2.2, which implements systematic 
data minimization through feature selection methodologies and automated redundancy removal, 
directly supports compliance with the data minimization principle under Article 5(1)(c) and privacy-
by-design requirements mandated under Article 25 [47,52].  
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Automated decision-making provisions under Article 22 GDPR require particular attention, as 
the system processes personal data to make predictions about individual subscribers [51]. While 
churn prediction typically supports human decision-making rather than fully automated decisions 
with legal or similarly significant effects, organizations must ensure appropriate human oversight. 
Data subject rights under Chapter III, including rights of access (Article 15) and objection (Article 21), 
must be implementable within the technical architecture of the prediction system, and/or the 
encompassing data architecture [49,50].  

4.2.2. EU AI Act Compliance 

Assessment through the EU AI Act Compliance Checker indicates that the automated churn 
prediction system falls under AI literacy obligations, requiring S.P. AbonneeService to "… take 
measures to ensure, to their best extent, a sufficient level of AI literacy of their staff and other persons 
dealing with the operation and use of AI systems on their behalf, taking into account their technical 
knowledge, experience, education and training and the context the AI systems are to be used in, and 
considering the persons or groups of persons on whom the AI systems are to be used." [43,44]. This 
obligation necessitates staff training involved in model deployment, prediction interpretation, and 
decision-making processes related to retention.  

The system is likely to qualify as a limited-risk AI system under the AI Act. Transparency 
obligations under Article 50, which require natural persons to be informed when interacting with an 
AI system, primarily apply to publisher clients who directly receive and utilize AI-generated 
predictions via CSV outputs [46]. However, the application of these transparency requirements to 
B2B deployment scenarios, where AI predictions inform subsequent business decisions rather than 
directly influencing customer interactions, remains unclear in current legal interpretations and 
regulatory guidance.  

The interpretable feature importance measures provided by ensemble methods, particularly 
Random Forest and LightGBM (Section 2.5.3), facilitate compliance with transparency requirements 
for direct system users while supporting algorithmic accountability across the prediction pipeline, 
which aligns with Article 13 [45].  

Future research should examine regulatory guidelines and standardize compliance that balances 
automated prediction capabilities with legal requirements for algorithmic transparency and data 
subject protection in subscription-based service contexts.  

5. Conclusion 

This research successfully demonstrates that effective AI-driven churn prediction for 
subscription publishing environments requires a comprehensive, automated pipeline that integrates 
various machine learning paradigms with robust data preprocessing and regulatory compliance 
frameworks. The optimal solution combines LightGBM with SMOTE resampling within temporally 
validated training procedures, achieving exceptional predictive performance (AUC-PR > 0.95) while 
maintaining the interpretability essential for actionable business insights. The automated 
preprocessing pipeline addresses the fundamental challenges of heterogeneous publisher data 
through systematic standardization, feature engineering, and class imbalance handling, enabling 
consistent deployment across diverse client portfolios without requiring manual customization.  

The proactive implementation of retention measures is enabled through high-precision 
predictions that minimize the waste of intervention resources while providing confidence in 
customer risk assessment. The temporal validation framework ensures that predictions reflect 
realistic deployment scenarios, while adherence to the GDPR and EU AI Act frameworks ensures 
sustainable deployment within regulatory environments. The research establishes that automated 
churn prediction systems can deliver both technical excellence and practical business value when 
designed with comprehensive consideration of data heterogeneity, temporal dependencies, class 
imbalance, and regulations, enabling subscription publishing companies to implement advanced 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2025 doi:10.20944/preprints202507.0712.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0712.v1
http://creativecommons.org/licenses/by/4.0/


 37 of 39 

 

predictive capabilities that directly support customer retention strategies while maintaining 
operational efficiency and legal compliance standards.  
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