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Abstract

In the subscription-based publishing industry, customer churn represents a significant challenge to
business sustainability, with acquiring new customers being substantially more costly than retaining
existing ones. This study examines the development of an automated churn prediction pipeline for
S.P. AbonneeService, a B2B subscription service provider managing over 200 titles and 350,000 end-
consumers across multiple publishing categories. The research implements a comprehensive
machine learning framework utilizing the CRISP-DM methodology, evaluating six algorithms (Naive
Bayes, Logistic Regression, Random Forest, XGBoost, LightGBM, SVM) across three resampling
techniques and three temporal validation strategies using five years of historical subscription data
from three distinct publishing companies. The automated preprocessing pipeline addresses
heterogeneous data structures, seasonal variance, and class imbalance through systematic feature
engineering, temporal validation, and synthetic minority oversampling. Experimental results
demonstrate that LightGBM with SMOTE resampling achieves superior performance across all
evaluated contexts, with AUC-PR values exceeding 0.95 and precision rates above 0.95 for top-
performing configurations. The study establishes that automated churn prediction systems can
deliver exceptional predictive performance while maintaining interpretability essential for actionable
retention strategies, enabling subscription publishing companies to implement advanced predictive
capabilities that directly support customer retention.

Keywords: churn prediction; machine learning; subscription publishing; automated pipeline; class
imbalance; SMOTE; temporal validation; gradient boosting; customer retention

1. Introduction

1.1. Background and Significance

In the subscription-based publishing industry, customer churn, defined as the percentage of
customers who discontinue their subscriptions within a given time period [1], poses a significant
challenge to business sustainability. The subscription business model has gained prominence across
various sectors in recent years, with the publishing industry experiencing a notable shift from
traditional one-time purchases to recurring revenue structures [2]. This shift has made subscriber
retention a critical factor for revenue stability and growth potential, as research continues to
demonstrate that acquiring new customers is substantially more costly than retaining existing ones

(3].
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Churn prediction is a critical analytical approach within subscription-based industries, enabling
organizations to proactively identify customers at risk of discontinuing their service. By leveraging
machine learning and advanced data analytics, companies can analyze historical customer behavior,
transactional patterns, demographics, and interactions to detect early indicators of churn [4]. This
predictive capability is especially valuable in subscription models, where recurring revenue and
long-term customer relationships are central to business sustainability.

This study examines S.P. AbonneeService, a well-established subscription-based service
company within the publishing sector, as its case company. With over 20 years of industry
experience, S.P. AbonneeService has developed an extensive portfolio encompassing more than 200
titles (individual publications such as magazines, journals, and newspapers) and 350,000 end-
consumers across various publishing categories, making it a significant industry participant. This
substantial customer portfolio presents both an opportunity and a challenge for retention strategies,
as even minor improvements in churn reduction can translate to considerable revenue preservation
given the scale of their operations.

Traditional churn prediction typically focuses on single datasets where manual tuning and
adjustment are feasible; however, in B2B contexts like S.P. AbonneeService, this approach is no longer
viable. Extensive manual recalibration for each client takes a significant amount of time, which is why
an automated churn prediction pipeline is vital for B2B companies such as S.P. AbonneeService.
Automated pipelines effectively address the computational challenges presented by multi-client
environments through adaptive preprocessing and model selection mechanisms that maintain
prediction accuracy across different data distributions, eliminating the need for extensive human
intervention with each implementation. Research demonstrates that such automated frameworks can
reduce the resource-intensive nature of feature engineering, which typically dominates the
development effort in production inference pipelines, while maintaining or even improving
predictive performance across diverse client datasets [6,7]. From a strategic perspective, these
capabilities would enable S.P. AbonneeService to deliver consistent, scalable churn prediction
services across their entire client portfolio, enhancing their value proposition while contributing to
the broader academic understanding of generalizable retention methodologies in subscription-based
industries.

1.2. Current State of Research

Churn prediction methodologies typically utilize two primary approaches: survival analysis and
binary classification, each offering distinct advantages for subscription-based industries. Survival
analysis, initially developed for clinical trials and medical research, offers sophisticated temporal
modeling capabilities that are particularly valuable when dealing with censored data. Censored data
refers to situations where the event of interest (churn) has not occurred by the end of the observation
period [14]. This approach commonly utilizes techniques such as the Kaplan-Meier estimator to
predict the probability distribution of time until churn, enabling organizations to not only understand
whether customers will churn but also when such events are more likely to occur. Research
demonstrates that survival analysis can reveal substantial customer lifetime values, with studies
showing average survival times extending beyond 200 days in specific subscription contexts,
providing business-critical insights for revenue forecasting and timing retention strategies [14].

Binary classification approaches, conversely, focus on categorical prediction by assigning
customers to one of two states: likely to churn or likely to remain active within a specified prediction
window. This methodology emphasizes learning functions that minimize misclassification
probability through various machine learning algorithms, including logistic regression, support
vector machines, and ensemble methods such as random forests [14]. Binary classification proves
particularly valuable for operational decision-making, as it enables clear “intervene or don't
intervene” determinations that translate directly into actionable retention strategies. Recent empirical
studies demonstrate that advanced binary classification models can achieve ROC AUC scores
exceeding 0.96 for six-month churn prediction horizons, indicating robust predictive performance
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across diverse subscription environments [14]. The choice between survival analysis and binary
classification often depends on organizational requirements, with survival analysis providing richer
insights into temporal dynamics. In contrast, binary classification offers a more straightforward
implementation for automated intervention systems.

Traditional statistical approaches have been largely superseded by machine learning techniques
that demonstrate superior predictive capabilities. A comprehensive survey spanning an entire
decade of research reveals that machine learning applications in telecom churn prediction have
become progressively more refined, moving beyond basic classification to incorporate more nuanced
behavioral analysis [9]. These advances have extended beyond telecommunications to various
subscription-based industries, including banking, publishing, and digital services [12].

1.2.1. Evolution of Machine Learning Techniques

The evolution of machine learning applications in churn prediction has undergone a significant
transition from traditional logistic regression models to sophisticated ensemble methods, which
demonstrate superior predictive capabilities. Early approaches primarily relied on logistic regression
and Naive Bayes classifiers, which provided interpretable results but often struggled with complex
non-linear relationships in customer behavior data [5,28]. Logistic regression models typically
achieved accuracy rates around 80-90%, demonstrating reasonable performance but with limitations
in handling non-linear separability in complex datasets [9,12,28]. Support Vector Machines (SVM)
emerged as an improvement, particularly when enhanced with optimization techniques such as Grey
Wolf Optimization, consistently outperforming standard models like logistic regression, Naive
Bayes, and decision trees in telecommunications churn prediction [5,9].

The introduction of ensemble methods has marked a significant shift in churn prediction
accuracy and robustness. Random Forest algorithms have gained widespread adoption due to their
stability, interpretability, and effectiveness in handling moderately imbalanced datasets, with studies
reporting accuracy rates ranging from 89% to 95% and demonstrating a strong capability in managing
large telecommunications datasets [5,9,28]. Gradient boosting algorithms, particularly XGBoost and
LightGBM, have shown exceptional performance across multiple studies, with XGBoost achieving
accuracy rates of 99.99% and perfect ROC AUC scores of 1.0 in recent evaluations [28]. LightGBM has
demonstrated superior performance compared to traditional methods, such as SVM, Random Forest,
and even XGBoost, in financial dataset contexts, particularly when enhanced with focal loss functions
to address class imbalance challenges. This approach achieves a churn detection rate of 0.94 with an
AUC score of 0.99 [5]. These ensemble methods excel at capturing complex patterns and interactions
in customer data while maintaining reasonable computational efficiency, making them particularly
suitable for production environments where both accuracy and scalability are critical [27,28].

1.2.2. Data Handling and Validation

The effectiveness of churn prediction models depends significantly on feature selection and data
preparation processes. Recent studies have highlighted that these preliminary stages often determine
model performance more than the choice of algorithm itself [10]. Research from 2022 emphasizes that
while manual feature selection remains common in the telecom industry, automated selection
methods are gaining prominence, with Fisher Score (a filter method) and Random Forest (an
embedded method) emerging as the most effective approaches [10].

Temporal validation frameworks are a crucial consideration in churn prediction development,
as traditional random sampling approaches can lead to data leakage and overly optimistic
performance estimates. Research has demonstrated the importance of chronological data splitting,
where models are trained on historical data and tested on future periods to emulate real-world
deployment scenarios [28]. The most comprehensive temporal validation approach identified in
current literature involves rolling-window cross-validation, which enables continuous training on
expanding historical data while testing on subsequent time periods, thereby ensuring models learn
from past customer behavior patterns and can adapt to future trends [28]. This methodology helps

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0712.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 July 2025 d0i:10.20944/preprints202507.0712.v1

4 of 39

identify concept drift and triggers adaptive retraining when model performance degrades beyond
predefined thresholds, typically measured by drops in ROC AUC or F1-score exceeding 5% [28].

Cross-validation techniques have been extensively utilized in churn prediction research, with k-
fold cross-validation (typically k =5 or k = 10) being the most common approach for model validation
and hyperparameter tuning [11,12,14,28]. Stratified sampling methods have been recognized as
essential for maintaining the original churn ratio in training and test sets, preventing models from
being biased toward the majority class [12,28]. However, despite these advances, current research
reveals that specialized temporal validation strategies explicitly designed for subscription-based
business contexts remain limited, with most studies adapting general machine learning validation
techniques rather than developing domain-specific approaches.

Class imbalance handling techniques have become increasingly sophisticated, addressing the
fundamental challenge that churned customers typically represent a minority class in most
subscription datasets. The Synthetic Minority Over-sampling Technique (SMOTE) has emerged as
the most widely adopted approach, generating synthetic samples to balance class distributions and
enhance model performance, particularly when combined with ensemble methods such as XGBoost
and Random Forest [2,5,12,27,28]. Research demonstrates that SMOTE implementation with
ensemble learning enhances classification performance by addressing class imbalance and improves
F1-Score through various classification algorithms and voting strategies [5,27]. Advanced variants
such as Adaptive Synthetic Sampling (ADASYN) have been developed to focus on generating
synthetic instances around minority class instances that are more challenging to learn, employing
weighting systems based on learning difficulty [5,27]. Hybrid approaches combining SMOTE with
Edited Nearest Neighbors (ENN) have demonstrated superior performance, with hybrid SMOTE-
ENN approaches achieving F1 scores exceeding 95% in telecommunications datasets [5].

Recent research has explored additional sampling techniques, including Gaussian Noise
Upsampling (GNUS) and various undersampling methods such as Random Undersampling,
NearMiss, and Tomek Links [5,27]. The selection of appropriate sampling techniques has been shown
to depend significantly on the specific degree of class imbalance and the chosen classification
algorithm. Studies indicate that XGBoost consistently outperforms Random Forest across all
sampling methods, particularly showing substantial improvements when combined with GNUS in
extremely imbalanced scenarios [27].

1.2.3. Evaluation Metrics

Appropriate evaluation metrics for imbalanced classification scenarios have become
increasingly important as traditional accuracy measures can be misleading when dealing with
skewed class distributions. Recent research emphasizes the importance of comprehensive evaluation
sets of metrics, including precision, recall, F1-score, and the Matthews Correlation Coefficient (MCC),
to provide balanced assessments of model performance [3,5,9,27,28]. Precision measures how many
predicted churn customers were actual churners, minimizing false positives, while recall assesses
how well models capture actual churned customers, aiming to reduce false negatives [12,28]. The F1-
score, as the harmonic mean of precision and recall, provides a balanced evaluation, particularly
suitable for imbalanced datasets where both types of errors have essential business implications
[3,27,28].

The Matthews Correlation Coefficient (MCC) has gained particular prominence as it considers
all four quadrants of the confusion matrix, providing a more comprehensive measure that ranges
from -1 to 1, where values closer to 1 indicate superior predictive performance even in highly
imbalanced datasets [27,28]. The Area Under the Precision-Recall Curve (AUC-PR) has emerged as
particularly valuable for churn prediction, as it focuses on the minority class performance and
provides more informative insights than traditional ROC curves when positive class prediction is
critical [27]. ROC AUC remains essential for assessing discriminatory power across various
thresholds, with scores closer to 1.0 indicating superior model effectiveness in distinguishing
between churn and non-churn cases [3,12,28]. Log loss has become essential for evaluating
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probabilistic predictions, with lower values indicating more accurate and well-calibrated probability
estimates, which are crucial for ranking customers by their churn risk [28].

1.2.4. Automated Pipeline

The emergence of automated machine learning (AutoML) represents one of the most significant
recent developments in churn prediction research. Traditional model development requires extensive
manual tuning, which becomes impractical in multi-client B2B environments, such as S.P.
AbonneeService. To address this limitation, researchers have developed automated pipeline
frameworks that streamline the model development process [7].

1.2.5. Research Gaps and Domain-Specific Challenges

Despite these advances, significant gaps remain in current churn prediction research,
particularly regarding the cross-publisher applicability and handling of seasonal variance. The
scholarly publishing industry has received limited attention, with the first empirical study on
customer churn prediction in this sector not appearing until 2022 [11]. This study highlighted the
unique characteristics of academic publishing subscriptions and proposed methods for predicting
customer defection based on 6.5 years of subscription data from a major educational publisher [11].

Recent research has begun addressing the challenge of seasonality in subscription-based
businesses. A February 2025 study proposes a simplified and numerically stable approach to the
BG/NBD churn prediction model, specifically designed for industries where customer behavior is
influenced by seasonal events [8]. This model modifies the traditional definition of churn to account
for purchase patterns over extended periods, making it potentially valuable for publishing businesses
with seasonal subscription behaviors.

Building on the research gaps identified above, our analysis reveals several interconnected
challenges that must be addressed when developing effective churn prediction models for S.P.
AbonneeService:

e  Seasonality: Subscription-based publishing exhibits significant seasonal fluctuations in
customer behavior that complicate churn prediction efforts. As noted in recent research,
customer behavior is often heavily influenced by seasonal events, creating irregular patterns that
standard prediction models struggle to capture accurately [8]. For 5.P. AbonneeService, this is
displayed as fluctuating engagement metrics across different times of the year, with subscription
renewal decisions frequently clustering around specific calendar periods rather than being
evenly distributed. These temporal patterns create complex challenges for machine learning
models that must distinguish between temporary seasonal disengagement and genuine pre-
churn behavior.

e  Dataset heterogeneity: S.P. AbonneeService operates as a B2B service provider across more than
200 titles and 350,000 end-consumers spanning multiple publishing categories. This inherently
creates significant data heterogeneity challenges, as each publisher partner maintains a unique
customer base with distinct behavioral patterns, engagement metrics, and churn triggers.
Subscription terms, pricing models, and content delivery mechanisms vary substantially among
publishers, resulting in inconsistent data structures and relationship patterns. Additionally, the
varying lengths of partnership histories result in uneven data maturity levels, with some
publishers providing rich historical datasets while others offer limited behavioral timelines.
Further complicating matters, publishers with extensive histories often include conversion data
from customers who transferred from previous service providers. This data is frequently poorly
structured, inconsistently formatted, and missing key relationship details critical for accurate
churn prediction.

e C(lass imbalance: Across all publishers in our dataset, an average of 54.51% of customers
(excluding trial memberships and non-actionable cancellations) are classified as inactive. For
publishers with longer partnership histories, this imbalance becomes particularly challenging
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for predictive modeling as the distribution of active versus inactive customers can vary
significantly. This challenge aligns with broader research findings, where imbalanced datasets
often lead to biased model performance, reducing overall effectiveness [5]. When data is skewed
toward one class, traditional models tend to favor the dominant class, producing good accuracy
metrics but poor performance in identifying the minority class [5].

e Interpretability requirements: In today's business environment, stakeholders increasingly
demand transparency and understanding of predictive analytics outcomes [3]. As Maan and
Maan [3] emphasize, “explainability and transparency are of major concerns identified by
Customers across business domains”. For S.P. AbonneeService, interpretable predictions are
essential for translating predictions into actionable retention strategies. Management requires
clear insights into why specific customers are flagged as churn risks, enabling the design of
targeted interventions that address the root causes rather than just the symptoms. This
transparency requirement aligns with growing industry recognition that “there is a dire need to
design, develop and deploy machine learning models which are ethical in their purpose, design
and usage, covering key aspects of transparency, explainability and interpretability” [3].

e  Temporal validation limitations: Although existing research has established the importance of
temporal validation through rolling-window cross-validation approaches [28], comprehensive
frameworks designed explicitly for subscription-based business contexts remain limited.
Current validation methodologies primarily adapt general machine learning techniques, rather
than addressing the unique temporal patterns and seasonal behaviors characteristic of
subscription publishing environments. This creates a need for more specialized validation
strategies that can effectively handle the complex temporal dynamics inherent in multi-client
publishing contexts.

1.3. Research Question

This study addresses the critical challenge of developing scalable, automated churn prediction
capabilities for multi-client subscription publishing environments. Given the complex operational
realities identified in the current research landscape, this investigation focuses on creating practical
solutions that can function effectively across diverse publisher portfolios. The primary research
question guiding this study is: How can an AI model be developed to predict customer churn,
enabling the effective implementation of proactive retention measures?

The question emphasizes the explicit proactive application of predictions, recognizing that
prediction accuracy alone is insufficient without corresponding actionable insights for implementing
retention strategies.

To systematically address this primary question, this study adopts the Cross-Industry Standard
Process for Data Mining (CRISP-DM) methodology, which has served as the de facto standard for
data mining projects across industries since its introduction in 2000. CRISP-DM provides a structured
framework consisting of six iterative phases: Business Understanding, Data Understanding, Data
Preparation, Modeling, Evaluation, and Deployment [13]. This methodology is particularly well-
suited for the multi-client B2B environment of S.P. AbonneeService, as it emphasizes thorough
business and data understanding, and provides a systematic approach that is essential for automated
churn prediction systems operating on a heterogeneous dataset. By following CRISP-DM's structured
approach, this research ensures that both theoretical rigor and practical implementation requirements
are addressed throughout the model development lifecycle.

1.4. Delimitations and Scope

This research establishes specific boundaries to ensure focused investigation and clear
evaluation criteria for the automated churn prediction system. The study focuses exclusively on
binary classification approaches to churn prediction, where customers are classified as either likely
to churn or likely to remain active within the specified prediction window. This methodological
choice aligns directly with S.P. AbonneeService's operational requirements, as binary predictions
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enable clear “intervene or don't intervene” decisions that translate immediately into actionable
retention strategies. Alternative methodological approaches, including survival analysis techniques,
fall outside the scope of this investigation. The research emphasizes machine learning techniques
specifically chosen for their balance between predictive performance and interpretability
requirements, prioritizing models that can provide clear, actionable insights to business stakeholders
rather than pursuing potentially marginal performance improvements through less interpretable
deep learning approaches.

Given that S.P. AbonneeService's client portfolio consists entirely of subscription-based
publishers within traditional publishing categories, such as magazines, newspapers, and general
literature, the research scope naturally aligns with these publishing sectors. The research exclusively
addresses multi-client B2B environments, where service providers like S.P. AbonneeService manage
subscription services for multiple independent publishers, as opposed to direct-to-consumer or
single-publisher environments.

This study focuses on generating predictions for a one-month prediction horizon, aligning with
the most prevalent subscription billing cycles within S.P. AbonneeService's client portfolio while
providing sufficient lead time for implementing targeted retention measures. The analysis is
restricted to actionable end-consumers, specifically excluding trial membership customers and those
whose subscription cancellations result from unactionable circumstances such as payment failures or
administrative issues. This customer segmentation approach ensures that the predictive model
focuses on behavioral churn patterns that can be addressed through targeted retention interventions,
maximizing the practical value of predictions for retention strategy implementation.

2. Materials and Methods

Figure 1 provides a comprehensive overview of the automated churn prediction pipeline
developed for multi-client subscription publishing environments. The workflow illustrates the
systematic progression from raw database exports through the seven-stage preprocessing pipeline,
followed by the experimental evaluation framework that systematically combines temporal
validation strategies, machine learning algorithms, and resampling techniques to generate 54 distinct
experimental configurations. This integrated pipeline addresses the fundamental challenges of data
heterogeneity, temporal dependencies, and class imbalance inherent in subscription publishing
contexts, with each component described in detail in the subsequent sections.

Preprocessing Pipeline

Data Cleaning & . A
Standardization Churn Prediction Pipeline
e
r R
Feature Engineering Temporal Validation
& Enrichment - Rolling Window GV
- Expanding Window CV
I - Blocked CV
Data Filtering &
Refinement
Machine Learning Models Model Evaluation
- Naive Bayes -AUC-PR
Missing Value - Logistic Regression . - SPARTA
Raw Data Imputation - Random Forest > 5?: Ex[t))_enl?_enlal > - Precision
Export - XGBoost ombinations - Recall
- LightGBM -MCC
Dimensionality -SvM - Log Loss

Reduction

Resampling Techniques
- No Resampling
- SMOTE
- Random Under-sampling

Outlier and
Skewness Handling

Multicollinearity
Handling

Figure 1. Comprehensive overview of the Churn Prediction Pipeline.
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2.1. Data Description

The foundation of this study rests upon the export data from S.P. AbonneeService's database
systems. This dataset represents a complete cross-sectional snapshot of subscription-related
information, encompassing behavioral, transactional, and demographic patterns essential for churn
prediction modeling.

The dataset architecture is organized into four sections that collectively capture the subscription
lifecycle and dynamics of the customer relationship. These categories include Subscriber Data,
Subscription Data, Invoice Data, and Statistical Data, each serving distinct analytical purposes. This
approach enables a comprehensive analysis of customer behavior patterns while preserving the
details necessary for accurate churn prediction across heterogeneous publisher environments.

2.1.1. Subscriber Data

The subscriber data component encompasses comprehensive demographic, contact, and
preference information for both subscription recipients and financial payers within the subscription
ecosystem. This dual-entity structure acknowledges the complexity of modern subscription
relationships, particularly in gift subscription scenarios where the beneficiary and financial
responsible party represent distinct individuals with separate behavioral profiles and
communication preferences.

Recipient subscriber data captures complete customer profiles including personal identification
details, comprehensive address information spanning street-level specificity through international
postal systems, and multi-channel contact information encompassing various email addresses,
telephone numbers, and traditional correspondence methods. The demographic component includes
gender classification, formal titles, and complete name structures that accommodate international
naming conventions and cultural variations across S.P. AbonneeService's diverse customer base.

Financial and administrative elements within subscriber data include banking information
necessary for payment processing, tax identification numbers for compliance purposes, and detailed
communication preferences that govern customer contact permissions.

Payer subscriber data maintains an identical structure to recipient data, populated exclusively
in scenarios where the subscription financial responsibility differs from that of the subscription
beneficiary. This approach enables complete analysis for gift subscription scenarios while
maintaining data integrity through consistent field structures and validation requirements across
both subscriber entity types.

2.1.2. Subscription Data

Subscription data represents the core analytical component of the dataset, containing detailed
information about individual subscription instances and their lifecycle characteristics. Each
subscription record maintains a unique identification spanning over 200 titles across multiple
publishing categories within S.P. AbonneeService's scope.

Publication-specific information, including content type, delivery method, and editorial focus,
enables analysis across different forms of publishing. Subscription acquisition data captures the
complete customer journey, from the initial contact method to detailed source attribution,
promotional campaign identification, and registration methodology, enabling effective marketing
analysis and informed decision-making.

Pricing and payment structures within subscription data include detailed tariff classifications,
payment frequency specifications, and delivery quantity tracking, which accommodates varying
subscription models ranging from weekly publications to quarterly journals. The payment processing
component tracks both completed transactions and obligations.

Subscription lifecycle management data captures the temporal evolution of customer
relationships through comprehensive tracking of start and end dates, renewal behavior patterns, and
administrative status modifications. Cancellation data provides detailed attribution, including
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methodology employed, underlying reasons for discontinuation, and timing patterns that reveal
seasonal and behavioral trends essential for predictive modeling.

2.1.3. Invoice Data

The invoice data component provides a focused snapshot of the most recent billing interaction
for each subscription, representing the current financial status rather than comprehensive historical
billing records.

Current invoice information includes detailed billing identification, transaction timing, and
comprehensive payment status classification that distinguishes between various stages of the billing
lifecycle. Payment status tracking encompasses initial invoicing confirmation, successful payment
completion, automated banking debits, and identification of outstanding balances, providing
essential indicators of customer financial engagement and potential payment-related churn triggers.

Collection and reminder data within the invoice component tracks customer response patterns
to payment requests, including detailed timing of reminder communications and customer payment
behavior following collection efforts. This information provides critical insights into financial issues
and payment pattern disruptions that frequently precede subscription cancellation decisions, making
it particularly valuable for predictive modeling focused on payment-related churn scenarios.

2.1.4. Statistical Data

The statistical data component serves a dual purpose, containing both processed derivatives of
the primary data categories and unique metrics that cannot be derived from the base data alone. The
processed elements provide standardized versions of subscriber, subscription, and invoice
information.

The primary value of statistical data lies in its behavioral and interaction metrics, which extend
beyond transactional records to capture service quality indicators and patterns of customer
relationships. Delivery performance tracking encompasses detailed complaint histories and service
interruption patterns, reflecting operational effectiveness and customer satisfaction levels. These
metrics provide essential context for understanding non-financial churn triggers related to service
quality and operational performance. Customer service interaction data within the statistical
component reveals customer engagement patterns by facilitating the number of interactions with
customer service.

Historical subscription patterns captured within statistical data offer complex insights into
customer behavior that extend beyond current subscription status. These metrics include
subscription duration tracking, renewal pattern analysis, and cross-portfolio subscription behavior,
which reveals customer lifecycle patterns essential for developing a comprehensive retention
strategy.

2.2. Data Preprocessing

The raw data extracted from S.P. AbonneeService’s systems undergoes an extensive automated
preprocessing pipeline to ensure data quality, consistency, and suitability for the full churn
prediction pipeline. This pipeline is designed to be robust across diverse publisher datasets and
prioritizes the creation of interpretable features. The sequence of operations is carefully structured:
initial standardization and cleaning prepare the data for reliable feature engineering, which is then
followed by refinement, missing value imputation, and advanced numerical processing to optimize
the dataset for machine learning algorithms.

2.2.1. Initial Data Cleaning and Standardization

The first stage focuses on foundational data integrity. All raw data fields are subjected to type
conversion: date-like strings are parsed into standardized datetime objects; numeric fields, including
those representing currency with associated symbols and locale-specific decimal separators, are
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converted to numerical types; boolean-like text (e.g., “Ja”/“Nee”, which is Dutch for “Yes”/“No”) is
mapped to true boolean values; and fields intended as categorical are defined as categorical variables,
with common string representations of missingness (e.g., “nan”, “none”, empty strings) unified to a
standard null representation. For instance, gender indicators are transformed to a consistent case.
Any remaining columns not explicitly typed are converted to a string format. A minimal rule-based
normalization, driven by configurable patterns, is then applied to specific fields to rectify common
inconsistencies, although current configurations apply this sparingly. This initial standardization is
crucial as it ensures that all subsequent operations act upon data of expected and consistent types,

preventing errors and improving the reliability of derived features.

2.2.2. Feature Engineering and Enrichment

Following initial cleaning, several feature engineering steps are undertaken to create new, more
informative variables.

First, a set of binary indicators is generated from existing data characteristics. For example, the
presence of contact information, such as an email address or phone number, or the use of specific
payment methods, such as direct debit, is converted into boolean flags. This binarization enhances
model interpretability by creating explicit signals for key customer attributes, thereby improving the
model's clarity and transparency.

Second, more complex derived features are created to capture crucial aspects of subscriber
behavior and lifecycle. Subscriber birth dates are transformed into age categories; this categorization
can be static or adaptive to the data distribution, based on pipeline configuration, to ensure
meaningful group sizes. Additionally, behavioral patterns such as serial churn tendencies are
identified by analyzing historical subscription patterns. The specific criteria for flagging a customer
as a serial churner, namely an average subscription duration of less than one year, more than two
cancelled subscriptions, and more than three total subscriptions, were established based on industry
experience and the recommendation of S.P. AbonneeService's CTO, Marc Dierikx [15]. A significant
step involves calculating churn indicators: a binary churn event flag is determined based on
subscription end dates and renewal statuses, and a corresponding time-to-event (or time-to-
censoring for active subscriptions) is computed relative to a defined study end date, which can be
utilized for future survival analysis. This provides the target variable and temporal context for the
churn model. Summaries of customer interactions, including the total number of service issues or
issues per year (calculated using Bayesian smoothing and percentile capping to handle variance and
outliers), are also generated.

Third, composite scores are engineered by combining several binarized features with predefined
weights. These scores aim to quantify abstract concepts, including customer reachability (based on
available contact channels and permissions), engagement (based on communication opt-ins),
business customer profile strength (based on the provision of business-specific details, such as VAT
numbers), and payment reliability (based on payment method and reminder history). The specific
features included in these composite scores and their respective weights were determined in
consultation with Marc Dierikx [15] to reflect business understanding and their relative importance.
These engineered features provide higher-level abstractions that can be more directly interpretable
and predictive.

2.2.3. Data Filtering and Refinement

To focus the analysis on relevant customer segments, specific data filtering rules are applied.
Rows corresponding to non-actionable subscription types or particular business-to-business
intermediary accounts, as defined in the configuration based on criteria provided by Marc Dierikx
[15], are removed. Additionally, scenarios where the financial payer is a distinct entity from the
subscription recipient are filtered out to simplify the modeling scope, focusing on direct subscriber
relationships. This step ensures the model is trained on a dataset representative of the target
population for retention efforts.
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2.2.4. Missing Value Imputation

The pipeline then addresses missing data through a multi-faceted imputation strategy. The
placement of this comprehensive imputation stage within the pipeline is a considered choice. Initial
data cleaning and type conversion (Section 2.2.1) standardize various raw representations of
missingness to null values. Early feature engineering steps, particularly binarization (Section 2.2.2),
often rely on the distinction between present and absent data, thus implicitly using the original
missingness context (e.g., a customer either has a listed phone number or not). However, the creation
of other derived features, such as calculating age from birth dates, can introduce new missing values
if the source data is incomplete. Therefore, the main imputation phase is strategically positioned after
these initial feature creation steps but critically before the advanced numerical processing stages
(Section 2.2.6), such as skewness correction and outlier treatment, and subsequent model training.
These later stages generally require complete, non-null datasets to function correctly and produce
reliable results. This ordering ensures that as much information as possible is derived while
preserving the original missingness context where beneficial, before filling gaps to prepare for
numerically intensive algorithms.

For geographical information, missing province data for subscribers is imputed using a
hierarchical approach. First, suppose the subscriber's country code indicates a non-domestic location,
a distinct "Foreign_[CountryCode]" category is assigned. In this case, the reason is that province-level
data is not consistently recorded for international subscribers, and the relatively low volume of such
subscribers makes detailed imputation impractical and less reliable. For domestic (Dutch) addresses
with missing provinces, the system attempts to infer the province by first looking up the most
common province associated with the subscriber's listed city or place name from non-missing
records. If this fails, it then attempts to infer the province based on the most common province
associated with the initial digits of their postal code. Any remaining domestic addresses with
unidentifiable provinces are assigned an "Unknown_NL" category, while truly unclassifiable cases
default to a general "Unknown" province.

Beyond these targeted imputations, a general configurable strategy handles remaining missing
values. Depending on the configuration (e.g., AUTOFILL_MISSING), missing numerical data may
be filled with zero, booleans with false, and categoricals with a distinct “Unknown” category. Specific
columns, such as counts of items sent or paid, may have custom default fill values (e.g., 1). The critical
subscription cancellation date is explicitly preserved as missing if KEEP_OPZEGDATUM is enabled,
which will mainly be used for auditing purposes in later steps.

2.2.5. Dimensionality Reduction and Noise Management

To manage data sparsity and reduce noise from less frequent categories, frequency-based
grouping is applied to selected categorical features (e.g., acquisition or campaign codes). Categories
that fall below a minimum frequency threshold and collectively represent less than a specified
percentage of the dataset are consolidated into a generic “Other” category.

Irrelevant data sections (identified by column name prefixes) and explicitly listed redundant
columns are then removed. Subsequently, features exhibiting low variance are identified and
removed. This includes columns with constant values or, if REMOVE_NEAR_UNIFORMITY is
enabled, near-constant values, where uniformity is assessed dynamically based on the majority class
proportion for categorical and boolean data, and the coefficient of variation for numerical data, scaled
according to the dataset size. Auditing variables, key identifiers, and churn-related target variables
are exempt from this removal.

Finally, a configurable step allows for the removal of any rows that still contain missing values
after all imputation and feature engineering steps, ensuring a complete dataset for modeling. The
option to retain records where only the cancellation date is missing is available, as it serves as an
auditing variable.
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2.2.6. Advanced Numerical Feature Processing

Numerical features undergo a dedicated three-stage processing sequence:

1. Semantic Categorization: Numerical features are automatically categorized into types such as
monetary, count, ratio (bounded 0-1), or unbounded ratio/usage metric. This categorization
leverages statistical properties (distribution, presence of negatives, zero-inflation, skewness,
kurtosis, coefficient of variation, decimal precision). It can be guided by manually defined
categories for specific known features (e.g., financial transaction amounts are 'monetary").

2. Skewness Correction: Based on the assigned category and observed skewness (magnitude and
direction), appropriate transformations are applied. For instance, monetary data often benefits
from log or Yeo-Johnson transforms, count data from square root or Freeman-Tukey, and
bounded ratio data from arcsine or logit transforms [34,35]. The pipeline iteratively tries a
sequence of suitable transformations, selecting the one that most effectively normalizes the
distribution or reduces skew, validated by statistical testing.

3. Outlier Treatment: Outliers are detected using methods such as Isolation Forest through the
pyod library, with detection thresholds dynamically adjusted based on feature category and
whether the feature was previously transformed [32,33]. Detected outliers are then handled in a
category-specific manner; for example, monetary outliers might be winsorized adaptively based
on skewness, while count outliers might be capped at a high percentile of non-zero values.

This structured approach to numerical processing ensures that transformations and outlier
handling are contextually appropriate, enhancing model performance and stability.

2.2.7. Multicollinearity Management

As a final step, multicollinearity is addressed to improve model interpretability and stability.
Highly correlated numerical features (above a configurable Spearman correlation threshold, e.g., 0.7)
are grouped. Within each group, the feature with the highest Information Value (IV) related to the
churn target is retained, while the others are removed. Features with very low IV (e.g., <0.02) are also
considered for removal. Auditing identifiers and target variables are protected from this process. This
ensures that the final feature set is both predictive and less redundant.

The overall order of these preprocessing steps is critical: initial cleaning enables reliable feature
engineering; derived features then undergo imputation and refinement; and numerical processing is
performed last on a complete and well-defined set of numerical inputs, followed by multicollinearity
reduction on the finalized feature set.

Figure 2 illustrates the complete automated preprocessing pipeline described in the preceding
sections, demonstrating the systematic transformation from raw database exports containing 205
columns to a refined dataset of approximately 25 predictive features. The flowchart shows the
sequential progression through data cleaning and standardization, feature engineering and
enrichment (including composite score creation and behavioral pattern identification), data filtering
and refinement for actionable customer segments, missing value imputation including hierarchical
geographical approaches, dimensionality reduction through frequency-based categorical grouping,
advanced numerical processing with semantic categorization and skewness correction, outlier
treatment using Isolation Forest, and multicollinearity management through Information Value-
based feature selection. This systematic approach ensures consistent processing across heterogeneous
publisher datasets while maintaining feature interpretability essential for business stakeholder
understanding.
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Figure 2. Visualization of the Preprocessing Pipeline

2.3. Temporal Validation Strategies

To evaluate model performance on time-ordered subscription data and ensure that predictions
are validated against future, unseen periods, this study implements several temporal cross-validation
strategies. A fundamental requirement for modeling time-dependent phenomena, such as customer
churn, is the strict prevention of data leakage, where information from future periods may
inadvertently influence model training. All employed validation strategies are derived from a
common base class named TemporalSplitter. This architectural choice ensures consistency across
methods, mandating, for example, a minimum number of samples to guarantee sufficient data within
each validation split and operating on data that is pre-sorted by a primary temporal column (the
subscription entry date). The TemporalSplitter framework generates training and testing indices
based on key date columns, relative to a dynamically determined "snapshot date" for each validation
split. The key date columns used are the subscription entry date and the subscription cancellation
date.

A crucial consideration in churn prediction, which is addressed by these temporal validation
methods, is that the same customer entities can legitimately appear in both the training and test sets
of a given split. The distinction lies in the temporal scope of the information used: the training set
captures historical behavior and status up to the snapshot date, while the test set evaluates the
model's ability to predict outcomes (i.e., churn events) for these same customers in a period strictly
after this snapshot date. The target variable in the test set is thus always chronologically after any
information used for training, appropriately simulating a real-world deployment scenario where a
model, trained on past data, predicts future churn.

2.3.1. Rolling Window Cross-Validation

The Rolling Window Cross-Validation strategy is designed to assess model performance on
dynamically changing data patterns, reflecting environments where recent data may be more
indicative of future behavior. This method follows the principle of training on a fixed-duration
window of past data and testing on the immediately subsequent period.

The process for generating splits can be conceptualized as follows:

Let D be the dataset sorted chronologically by the subscription entry date.

Let Tsiqre be the earliest subscription entry date in D.

Let Wy qin be the duration of the training window.

Let Atg,p be the duration by which the window slides forward (step size), which also typically
defines the prediction horizon for the test set.

Let Ngpts be the total number of splits generated.

For each split i = 1,2, ..., Nepyits:

The snapshot date, S;, is defined as:

Si = Tstare + Wiie + (0 —1) X Atseep

The training period for the split i encompasses data from [S; — Wiygin, Si)-

The testing period for the split i encompasses data from [Si, S; + ATstep).

Customer data included for training in the split i consists of subscriptions that meet two
criteria: (1) their entry date is before S;, and (2) they are known to be active at some point during or
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after the training window starts. More specifically, they either remain active at the snapshot date S;
(no churn date recorded) or churned at any time on or after S; — W;.q;,- The model is then evaluated
on its ability to predict churn for these same customers during the testing period, [S;,S; + ATsep),
excluding those who had already churned before ;.

For the Rolling Window Cross-Validation implementation, the training window duration
Wirain = 6 months with a step size Atg,, = 1 month. This configuration ensures that each model
iteration trains on a consistent 6-month historical period, advancing the temporal window by one-
month intervals, and provides overlapping validation periods that capture gradual shifts in customer
behavior patterns. The temporal column specification utilizes the subscription entry date as the
primary ordering criterion, with churn events identified through the subscription cancellation date.

The rationale for the Rolling Window approach lies in its suitability for environments where
customer behavior may evolve rapidly. By consistently training on a fixed-length recent history, this
strategy tests the model's adaptability to emerging trends and its performance on the most current
behavioral patterns. It simulates a deployment scenario where models are periodically retrained
using only a recent, limited segment of historical data, prioritizing recency over the sheer volume of
historical information. The implementation ensures that each split contains a sufficient number of
samples for both training and testing to be statistically meaningful.

2.3.2. Expanding Window Cross-Validation

The Expanding Window Cross-Validation strategy is employed to evaluate models that may
benefit from a progressively larger historical context, under the assumption that more data generally
leads to better model generalization.

The split generation process is as follows:

Let D, Tstare, and Atgep, be defined as in the Rolling Window method.

Let Wi, be the duration of the initial training window.

Let Wpqyx be an optional maximum duration for the training window. If not set, the window
expands indefinitely from Tg;q¢.

For each split i = 1,2, ..., Ngpjies:

The snapshot date, S;, is defined as:

Si = Tstare + Winie + (0 = 1) X Atgpep

The start of the training period for the split i, Tt(:l)lm_smn, is:

{maX(Tstart: Si — Wmax) if Winax IS definEd

Tstart Lf Wmax is not defined

7® -

train_start —

train_start’ Si)‘

The testing period for splitiis [S;,S; + ATep)

The training period for split i is [T(i)

Similar to the rolling window, training data for the split i includes subscriptions active or
churned within its training window, having started before S;. Testing evaluates predictions for these
customers in the subsequent testing period, excluding those who have already churned.

The Expanding Window Cross-Validation implementation employs an initial window size
Winie = 6 months, expanding by Atg,, =1 month increments with a maximum window duration
Wiax = 12 months. This parameter set enables models to progressively incorporate additional
historical context while minimizing excessive computational overhead and mitigating potential bias
from outdated behavioral patterns. The expanding approach captures the cumulative learning
benefit of increased training data while maintaining temporal relevance through the 12-month
maximum window constraint. Just like the Rolling Window approach, temporal ordering is based on
the subscription entry date, and churn identification is done through the subscription cancellation
date.

This strategy is particularly beneficial when long-term historical patterns and seasonality are
considered essential for accurate churn prediction. The optional maximum window duration
provides a practical balance, allowing the model to leverage extensive history while mitigating the
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risks of outdated patterns biasing the model or leading to excessive computational load. As before,
the system also ensures each split meets a minimum sample requirement.

2.3.3. Blocked Cross-Validation

The Blocked Cross-Validation method offers a stringent test of a model's generalization
capability across distinct, temporally distant periods by dividing the dataset into non-overlapping
segments. This strategy is beneficial for assessing long-term model stability.

The formation of blocks is defined as:

Let D and T,y be defined as previously.

Let Nyjocrs be the desired number of train-test blocks.

Let Wipqin be the duration of the training period within each block.

Let Wies: be the duration of the testing period within each block.

Let W4, be an optional duration of a gap period between the training and testing periods
within each block (defaulting to zero if not specified).

For each block k = 0,1, ..., Nyjoexs — 1:

Note: We use superscript notation (k) to index blocks while subscripts denote variable types.

The start of the block k, B® s

start’/

k
B( ) Tstart + k x (Wtrain + %ap + Wtest)

start —

The training period for the block k is [Bs(fgrt, Bs(grt + Wirain)-

The snapshot date for the block k is S = Bs(fgrt + Wirgin-

The testing period for the block k is [Sk + Wyap, Sk + Wyap + Wtest).

Customer inclusion logic remains consistent: training utilizes subscriptions known up to S
(active or churned within the training period of the block k), and testing assesses predictions for
these customers during the block's testing period, after accounting for any churns before the test
period begins.

The Blocked Cross-Validation implementation utilizes non-overlapping temporal blocks with
training periods Wi,q;,, = 12 months and testing periods W;,;; = 1 month, generating Npjocrs = 4
independent validation blocks with no temporal gap (W4, = 0). This configuration provides a
stringent evaluation of model generalization across distinct temporal periods while ensuring
sufficient training data within each block. The 12:1 month train-test ratio balances comprehensive
model training with focused prediction evaluation over meaningful prediction horizons. Again, just
like the Rolling Window and Expanding Window approaches, temporal ordering is based on the
subscription entry date, and churn identification is done through the subscription cancellation date.

The primary rationale for Blocked Cross-Validation is its ability to assess model stability and
robustness when faced with potentially different underlying data distributions or significant shifts in
customer behavior that may occur over extended periods. The optional gap period further ensures
the independence of the test set by preventing leakage from events near the train-test boundary. The
total number of blocks generated may be adjusted if the dataset's temporal span is insufficient to form
the requested number of blocks of the specified durations, while still respecting minimum sample
size constraints for each split. This method differs from the previous two in that it does not necessarily
utilize overlapping data between the training sets of consecutive blocks, thereby providing a more
challenging validation scenario.

Figure 3 summarizes the three temporal validation approaches employed in this study,
illustrating the key differences in training window management, temporal boundary handling, and
split generation strategies discussed above. The visualization illustrates how each method offers
distinct advantages for model evaluation: rolling window approaches prioritize recent behavioral
patterns, expanding window methods leverage cumulative historical information, and blocked cross-
validation ensures the assessment of generalization across non-overlapping periods.
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Figure 3. Visualization of the employed Temporal Validation Strategies

2.4. Temporally-Aware Feature Engineering and Preprocessing

This section describes the systematic transformation of raw input features into a numerical
format suitable for machine learning algorithms. Unlike the data preprocessing described in Section
2.2, which focuses on cleaning raw database exports and creating business-relevant derived features,
this feature engineering process operates on already-cleaned features and is executed within each
temporal validation fold to ensure temporal integrity, particularly relevant for time-dependent
features. While the earlier preprocessing establishes data quality and consistency across the entire
dataset, this stage ensures that temporal boundaries are respected and that features are optimally
formatted for machine learning algorithms.

The ChurnFeatureEngineer component manages this pipeline, which consists of two main
stages: temporally aware feature creation, followed by general feature preprocessing. The sequential
execution of these stages is critical for maintaining temporal validity while maximizing the predictive
value of derived features.

2.4.1. Temporally-Aware Feature Creation

The temporal feature engineering process addresses a fundamental challenge in time-series
prediction: ensuring that feature calculations reflect only information available at the time of
prediction while capturing meaningful temporal patterns. The TemporalFeatureEncoder component
implements this through dynamic feature generation, which adapts to the temporal boundaries of
each training fold.

Time-dependent features, such as recency metrics, are dynamically generated for each training
fold. These calculations are performed relative to the training end-date of that specific training fold,
preventing data leakage by ensuring that only information available up to that point is used. This
approach differs from static feature engineering approaches, which may incorporate future
information, thereby compromising the temporal validity of the prediction model and introducing
data leakage.
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For specified datetime columns (e.g., the insertion and starting date of a subscription), features
are created representing the time elapsed between the event date in the column and the end date of
the current fold. These features, listed as [column]_days_since, provide the model with critical
recency information that captures the temporal distance between customer actions and the prediction
point. The calculation methodology ensures that recent customer activities receive an appropriately
weighted temporal representation while maintaining consistency across different training folds.

Standard date components are extracted from datetime columns to capture potential
seasonalities and cyclical patterns inherent in subscription-based business models. These include the
month, day of the week, quarter, and a binary flag indicating if the date falls on a weekend. The
extraction of these cyclical components enables the model to learn temporal patterns that may
influence customer behavior, such as seasonal subscription preferences or day-of-week effects on
customer engagement.

The original datetime columns are removed after these temporal features are generated,
ensuring that the subsequent processing pipeline operates exclusively on numerical representations
while preserving all temporal information in a format that is algorithmically accessible.

2.4.2. General Feature Preprocessing

Following the creation of temporal features, the complete feature set undergoes standardized
preprocessing to ensure optimal compatibility with machine learning algorithms. This stage is
implemented through a ColumnTransformer pipeline from scikit-learn that applies appropriate
transformations based on pre-identified column types [16].

Numeric types

All features identified as numeric, including the newly created temporal features and any
original numeric features, are standardized using the StandardScaler from scikit-learn [17]. This
transformation scales features to have zero mean and unit variance, which is beneficial for many
machine learning algorithms that are sensitive to feature scale differences. Standardization is critical,
given the diverse scales inherent in the temporal features (e.g., [column]_days_since values ranging
from 0 to several thousand) and the original dataset's numerical variables.

Categorical types

Features identified as categorical are converted into a numerical format using OneHotEncoder
[18]. This process creates binary (0/1) columns for each unique category present in the feature, with
the optional removal of the first category's column to prevent perfect multicollinearity. Perfect
multicollinearity occurs when categorical columns become linearly dependent, which can lead to
numerical instability in certain machine learning algorithms. The encoder is configured with
handling unknown categories, ensuring that new categories appearing in test data that were not
observed in the training data are represented by zeros across all one-hot encoded columns, thereby
preventing pipeline failures while maintaining long-term model stability.

Boolean types

Features already in boolean (0/1) format are passed through without further transformation,
maintaining their interpretability while ensuring compatibility with the numerical output format
required by the machine learning algorithms.

The ChurnFeatureEngineer pipeline, after completing both temporal feature creation and
general preprocessing stages, outputs a purely numerical NumPy array of features ready for model
training. The pipeline maintains feature name, enabling interpretability analysis and feature
importance evaluation in subsequent modeling stages. This numerical array format ensures
integration with the temporal validation framework and resampling techniques in the churn
prediction pipeline.

2.5. Machine Learning Model Selection

To address the complex challenge of churn prediction across heterogeneous publisher datasets,
this study implements a comprehensive collection of machine learning algorithms, each selected to
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provide distinct analytical perspectives on customer behavior patterns and use cases. The model
selection strategy prioritizes the balance between predictive performance and interpretability
requirements, ensuring that generated predictions can be translated into actionable retention
strategies.

The chosen algorithms represent a wide range of fundamental machine learning algorithms,
including linear methods for baseline performance and interpretability, probabilistic approaches for
uncertainty quantification, ensemble techniques for robust feature interaction modeling, gradient
boosting for high-performance non-linear pattern detection, and kernel methods for complex
decision boundary modeling. Each algorithm addresses specific aspects of the churn prediction
challenge, such as feature interaction complexity, while maintaining computational efficiency
suitable for deployment.

All models incorporate explicit class imbalance handling mechanisms, recognizing that churn
prediction inherently involves imbalanced datasets where active customers significantly outnumber
those who churn. This differs from the resampling techniques described in section 2.6, as these model-
level approaches adjust the algorithms' internal behavior during training (such as loss function
weighting and splitting criteria) rather than modifying the training dataset distribution itself. These
algorithmic adjustments complement potential resampling strategies by ensuring that minority class
patterns receive appropriate attention regardless of the data distribution provided to the model. The
parameter selection strategy emphasizes ranges that strike a balance between computational
efficiency and predictive performance, enabling comprehensive hyperparameter optimization while
maintaining practical deployment constraints.

2.5.1. Probabilistic Baseline Model: Naive Bayes

The Gaussian Naive Bayes classifier provides a probabilistic baseline that assumes feature
independence while maintaining computational efficiency and strong theoretical foundations. This
model serves as a reference point for comparing more sophisticated approaches mentioned later on,
offering insights into the predictive value achievable under simplified distributional assumptions.
The implementation utilizes the GaussianNB classifier from scikit-learn [19].

The Naive Bayes classifier estimates churn probability through Bayes' theorem combined with
the independence assumption:

Pxly=1D-Py=1)
P(x)
Under the Gaussian assumption and feature independence, the likelihood term becomes:

— — - 1 (xj - ujc)2
P(xly—c)—l_[ exp| ————

, 20'2
i 2
j=1 2|I6jc

j
where pj. and ch represent the mean and variance of the feature j for class c, estimated from the

Py =1|x) =

training data.

Despite its simplifying assumptions, Naive Bayes often performs surprisingly well in practice,
particularly when the independence assumption is approximately satisfied or when the decision
boundary can be effectively approximated by the multiplicative probability model [9]. The
algorithm's efficiency and probabilistic output make it valuable for establishing baseline performance
expectations and providing interpretable probability estimates for business stakeholders.

The model requires no hyperparameter tuning, focusing evaluation on the fundamental
predictive signal available in the feature set under simplified assumptions. This characteristic makes
it particularly valuable for assessing whether more complex models provide meaningful
improvements over basic probabilistic modeling.

2.5.2. Linear Baseline Model: Logistic Regression

Logistic regression serves as the primary linear baseline for churn prediction, providing
interpretable coefficients that directly quantify the relationship between customer characteristics and
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the probability of churn. This algorithm addresses the binary classification nature of churn prediction
by utilizing the logistic function, ensuring bounded probability outputs while maintaining linear
interpretability in the log-odds space. The implementation uses the LogisticRegression class from
scikit-learn [20].

The logistic regression model estimates the probability of churn for a customer i as:

P(y; = 1lx) =

1 + o~ (Bo*Zfy Bjxis)

where x; represents the feature vector for the customer i, B, is the intercept term, and ;
represents the coefficient for the feature j. The linear combination B, + 25';1 Bjx;; represents the log
odds of churn, enabling the direct interpretation of feature effects on churn probability.

The implementation utilizes the SAGA (Stochastic Average Gradient Augmented) solver, which
provides computational efficiency for large datasets while supporting both L1 and L2 regularization
[20]. The regularization term prevents overfitting through penalized likelihood maximization:

D

Lreg/u{’a/rized = Lt’ilze&;ﬁcyod - AZ'B]"O(
j=1
where A controls regularization strength (inverse of the C parameter), and a determines the penalty
type (1 for L1, 2 for L2). The balanced class weighting approach automatically adjusts for class
imbalance by weighting the loss function inversely proportional to class frequencies, ensuring that
the minority class (churned customers) receives appropriate attention during model training.

The hyperparameter space utilizes regularization strengths of 1 and 10, encompassing strong to
moderate regularization scenarios, while maintaining computational efficiency through the SAGA
solver's advanced optimization algorithms. This configuration provides a robust linear baseline that
serves as both a standalone predictor and a benchmark for evaluating the added value of more
complex non-linear approaches.

2.5.3. Ensemble Method: Random Forest

Random Forest addresses the variance and overfitting limitations of individual decision trees
through ensemble averaging, while providing built-in feature importance measures that enhance
model interpretability. This algorithm combines bootstrap aggregating (bagging) with random
feature selection to create diverse decision trees that collectively provide robust predictions. The
implementation utilizes the RandomForestClassifier from scikit-learn [21].

Each tree T}, in the forest is trained on a bootstrap sample of the training data, with each split
considering only a random subset of features. The final prediction combines individual tree
predictions:

K

- 1O -

Py =110 =% ) By = 11%)
k=1

where K represents the number of trees and P, represents the probability estimate from the tree k.
The algorithm's built-in feature importance calculation provides valuable insights for business
understanding:

K
IR CRICRITGEY
k=1teTy
where p(t) represents the proportion of samples reaching the node t, AI(t) measures the impurity
decrease at the node t, v(t) indicates the feature used for splitting at the node t, and 1[v(t) =] is
an indicator function for a feature j.

The hyperparameter configuration balances ensemble size with computational efficiency,
utilizing 100 or 300 estimators to ensure prediction stability while maintaining reasonable training
times. The maximum depth constraint (10 levels or unlimited) controls individual tree complexity,
preventing excessive overfitting while allowing sufficient model flexibility. Balanced class weighting
ensures appropriate handling of class imbalance by adjusting the impurity criteria to account for
unequal class frequencies.
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Random Forest's resistance to overfitting, natural handling of mixed data types, and
interpretable feature importance measures make it particularly suitable for the heterogeneous data
environment of the case company.

2.5.4. Extreme Gradient Boosting: XGBoost

XGBoost (Extreme Gradient Boosting) represents an advanced implementation of the gradient
boosting framework, incorporating regularization techniques and optimized tree construction. The
implementation utilizes the XGBClassifier from the xgboost library [22]. The algorithm uses iterative
ensemble construction, where each new model corrects the errors of the previous ensemble through
additive modeling;:

Fp(x) = Fp1 (0) + Yihm (%)
where F,, represents the ensemble after m iterations, h,, is the new weak learner, and vy, is the
step size determined through optimization.

For binary classification, XGBoost optimizes an objective function combining logistic loss with

n M
L= 10uI)+ ). b
i=1 m=1

where the regularization term Q(h,,) = yT + %AZ]T-zlez + aZ]T-=1|Wj| penalizes model complexity

explicit regularization:

through L1 and L2 penalties on leaf weights, with T representing the number of leaves and w;
denoting leaf weights.

XGBoost employs level-wise tree construction, building balanced trees breadth-first while
incorporating advanced pruning strategies. Class imbalance handling utilizes scikit-learn's
compute_sample_weight function with balanced weighting, maintaining consistency with other
algorithms' class_weight="balanced' approach by automatically adjusting sample importance based
on class frequencies [36].

The hyperparameter space utilizes a learning rate of 0.1, tree depth constraints set at 6 and 10
levels, and subsampling parameters of 0.8 for computational efficiency. GPU acceleration (if
available) will enhance performance for large-scale datasets, making XGBoost particularly effective
for capturing complex feature interactions.

2.5.5. Light Gradient Boosting: LightGBM

LightGBM (Light Gradient Boosting Machine) implements an optimized gradient boosting
framework prioritizing computational efficiency while maintaining predictive performance. The
implementation utilizes the LGBMClassifier from the lightgbm library [23]. The algorithm shares the
fundamental additive modeling approach described in section 2.5.4. Gradient Boosting Method: XG
but employs distinct tree construction strategies for enhanced efficiency.

The key innovation lies in leaf-wise tree growth, selecting the leaf yielding maximum loss

reduction rather than expanding all nodes at the same depth:

leafpest = arg max ALoss(leaf)
leaf€leaves

This strategy typically produces more asymmetric but deeper trees, achieving better accuracy
with fewer nodes and improved computational efficiency.

LightGBM incorporates Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB) optimization techniques [29]. GOSS reduces computational complexity by retaining
high-gradient samples while randomly sampling low-gradient samples, compensating for sampling
bias through adjusted gradient calculations. EFB bundles mutually exclusive sparse features,
significantly reducing memory usage without substantial information loss.

Unlike XGBoost's scale_pos_weight approach, LightGBM addresses class imbalance through
balanced class weighting, which modifies splitting criteria gain calculations proportionally to the
inverse class frequencies, ensuring the appropriate consideration of minority class patterns during
tree construction.
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The implementation utilizes identical parameter ranges to XGBoost for direct performance
comparison while leveraging computational advantages through GPU acceleration and advanced
memory optimization.

2.5.6. Kernel Method: Support Vector Machine

The Support Vector Machine (SVM) offers sophisticated decision boundary modeling through
kernel transformations, allowing for the detection of complex, non-linear patterns while maintaining
a theoretical foundation in statistical learning theory. The implementation employs the SVC class
from scikit-learn [24]. The algorithm constructs optimally separating hyperplanes by maximizing the
margin between classes in the transformed feature space.

The SVM optimization problem seeks to minimize:

i~ w2 +C i
min~> |wl i
i=1
Subject to:
yiwTo(x) +b) 215§, §=0
where ¢(x;) represents the kernel transformation, w is the weight vector, b is the bias term, §; are
slack variables, and C controls the regularization strength.

The dual formulation enables kernel-based transformations:
n

) =) @ik x) + b
i=1
where «; are Lagrange multipliers and K(x;, x) represents the kernel function.
The implementation includes the radial basis function (RBF) kernel. The RBF kernel:
K(x;,%;) = exp(—vlx; — x;|2)

Enables complex non-linear boundary modeling through Gaussian similarity measures.

The balanced class weighting approach adjusts the penalty parameter C for each class
proportionally to the inverse of class frequencies, ensuring appropriate attention to minority class
samples during optimization. The probability estimation requirement enables integration with the
ensemble evaluation framework through Platt scaling, which fits a sigmoid function to the SVM
decision values [24].

Hyperparameter optimization focuses on the regularization strength C (values 1 and 10) to
balance between margin maximization and training error minimization, while the gamma parameter
utilizes the 'scale’ setting for automatic adjustment based on feature dimensionality.

The SVM approach provides sophisticated pattern recognition capabilities, particularly valuable
for detecting subtle customer behavior patterns that may indicate churn risk, complementing the
ensemble of algorithms through its unique approach to classification boundary optimization.

2.5.7. Minimal Hyperparameter Optimization Strategy

The hyperparameter optimization strategy employed in this study prioritizes computational
efficiency while maintaining systematic exploration of parameters across the diverse model
ensemble. The approach utilizes a minimal grid search methodology that strikes a balance between
thorough parameter evaluation and practical deployment constraints, which are essential for multi-
client B2B environments.

The optimization framework systematically evaluates all parameter combinations defined in the
model configurations through the Cartesian product expansion of specified parameter options. This
approach generates parameter grids that cover a range of parameters while ensuring computational
tractability for operational deployment.

The optimization process employs a simple train/validation split methodology, partitioning the
training data into 80% for parameter optimization training and 20% for validation assessment. This
approach prioritizes speed over exhaustive validation, avoiding computationally expensive cross-
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validation procedures that would significantly impact deployment feasibility across multiple client
datasets.

Parameter selection utilizes AUC-PR (Area Under the Precision-Recall Curve) as the primary
optimization metric, which is particularly appropriate for imbalanced churn prediction scenarios, as
it focuses on the minority class performance and provides a robust evaluation regardless of class
distribution [27]. The optimization algorithm iterates through all parameter combinations, training
models on the optimization subset and evaluating performance on the validation subset, retaining
the parameter configuration that achieves maximum AUC-PR performance.

Hyperparameter optimization is executed within each temporal training fold to ensure that
parameter selection respects chronological boundaries and reflects only information available at the
time of prediction, thereby preventing data leakage while maintaining consistency across temporal
evaluation periods.

2.5.8. Model Integration and Ensemble Strategy

The comprehensive model selection strategy ensures robust churn prediction through
algorithmic diversity while maintaining interpretability requirements for business implementation.
Each algorithm contributes distinct analytical perspectives: probabilistic approaches establish the
baseline for comparing model performance under simplified assumptions, linear methods provide
interpretable coefficients and transparent decision boundaries, ensemble methods deliver robust
feature interaction modeling, gradient boosting captures complex non-linear patterns, and kernel
methods enable sophisticated boundary optimization.

The hyperparameter optimization strategy complements this algorithmic diversity through
systematic parameter exploration that balances computational efficiency with performance
maximization. The minimal grid search approach enables comprehensive evaluation of various
parameter combinations while maintaining practical deployment constraints. The optimization
process operates within each temporal training fold, ensuring that parameter selection reflects only
information available at the time of prediction while maintaining consistency across temporal
evaluation periods.

The integration of model-level class imbalance handling with systematic hyperparameter
optimization ensures consistent performance across diverse customer distributions encountered
within the heterogeneous publisher portfolio. These model-level approaches adjust algorithms'
internal behavior during training through loss function weighting and splitting criteria
modifications, complementing potential resampling strategies described in section 2.6.

This integrated approach to model selection and hyperparameter optimization provides
comprehensive coverage of machine learning paradigms while maintaining practical deployment
constraints, ensuring that the resulting churn prediction system can deliver accurate, interpretable,
and actionable insights across a heterogeneous publisher portfolio.

2.6. Resampling Techniques

Class imbalance represents a fundamental challenge in churn prediction, where the distribution
of active versus churned customers typically exhibits significant skew toward the majority class. This
imbalance can substantially impact model performance, as standard machine learning algorithms
tend to optimize for overall accuracy rather than detecting minority classes, resulting in models that
achieve high accuracy scores while failing to identify customers at risk of churning. To address this
critical limitation, this study implements a comprehensive evaluation of resampling techniques that
systematically modify the training data distribution to improve minority class recognition without
compromising the temporal integrity of the validation framework.

The resampling strategy encompasses three distinct approaches: a baseline configuration that
maintains original class distributions, synthetic oversampling that generates minority class examples,
and undersampling that reduces majority class representation. Each technique addresses different
aspects of the class imbalance challenge while maintaining compatibility with the temporal
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validation framework described in Section 2.3. The implementation utilizes the imbalanced-learn
library, which provides specialized tools for handling imbalanced datasets while ensuring seamless
integration with scikit-learn pipelines and temporal cross-validation procedures [30].

Critically, all resampling operations are applied exclusively to training data within each
temporal fold, ensuring that test data maintains its original distribution to provide a realistic
performance evaluation. This approach prevents data leakage while enabling fair comparison of
resampling effectiveness across different temporal periods and varying degrees of class imbalance
inherent in a heterogeneous publisher portfolio.

2.6.1. No Resampling Baseline

The no-resampling configuration serves as a baseline for evaluating the impact of data
manipulation techniques on model performance. This approach maintains the original class
distribution present in the training data, providing insight into the natural predictive signal available
without the need for synthetic data generation or sample removal. The implementation utilizes a
custom NoResampling class that includes compatibility with imbalanced-learn pipelines while
returning the input data unchanged.

The baseline approach is particularly valuable for understanding the trade-offs between
prediction accuracy and class balance, as it reveals whether resampling techniques provide genuine
predictive improvements or merely redistribute prediction errors across classes.

2.6.2. Synthetic Minority Over-Sampling Technique (SMOTE)

SMOTE addresses class imbalance through intelligent synthetic sample generation that
preserves the underlying data structure while expanding the representation of the minority class. The
technique operates by identifying instances of the minority class and generating synthetic samples
along the line segments connecting these instances to their k-nearest neighbors in the feature space.
The implementation utilizes the SMOTE class from imbalanced-learn [25].

The synthetic sample generation process can be formally described as follows. For each minority
class sample x; SMOTE identifies its k nearest minority class neighbors, denoted as Ni(x;) =
{xi1, Xi2, ..., Xii }. A synthetic sample x;,, is then generated by:

Xsyn = X; + A+ (xl-j - xl-)
where x;; is a randomly selected neighbor from Ny(x;) and A is a random number uniformly
distributed between 0 and 1: A ~ U(0,1). This interpolation ensures that synthetic samples lie along
the line segments connecting existing minority class samples to their nearest neighbors, maintaining
local feature relationships while expanding the representation of minority class regions.

The k-nearest neighbor selection utilizes Euclidean distance in the standardized feature space:

d(x;, %) =

Where p represents the number of features and x;; denotes the value of feature f for sample x;.
The default configuration employs k = 5 neighbors, striking a balance between preserving local
structure and generating synthetic diversity.

SMOTE's effectiveness stems from its ability to create synthetic samples that reflect the local
density and structure of minority class regions, enabling models to learn more robust decision
boundaries around churning customers [5,27]. Unlike random oversampling, which duplicates
existing samples, SMOTE's interpolative approach reduces the risk of overfitting while providing
models with richer training examples that better represent the minority class distribution.

2.6.3. Random Under-Sampling

Random under-sampling addresses class imbalance by systematically removing majority class
samples, thereby creating balanced training sets by reducing the number of non-churning customers
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rather than increasing the representation of churning customers. The implementation employs the
RandomUnderSampler class from imbalanced-learn [26], which performs random selection without
replacement from the majority class population.

The under-sampling process operates by defining a target sampling ratio and randomly
selecting samples from the majority class to achieve the desired class distribution. For a dataset with
Nmq; Majority class samples and n,,;;, minority class samples, the balanced configuration removes
samples to achieve:

nfnaal;;nced = Mmin
The random selection process ensures that each majority class sample has an equal probability
of retention:
P(x; selected) = Tmin
maj
where x; represents a majority class sample. This uniform probability distribution prevents
systematic bias in the retained majority class samples while maintaining the representative
characteristics of the original majority class distribution.
The mathematical expectation of the sampling process preserves the population mean:
E[Xretained] = E[Xoriginal]

However, for finite samples, the sample variance exhibits increased uncertainty due to the
reduced sample size. The sample variance SZ,;4ineq Serves as an unbiased estimator of the population
variance, but with increased variance around the true value:

Var[sgetained] > Var[Sgriginal]

This increased uncertainty reflects the fundamental trade-off in under-sampling: computational
efficiency and class balance are achieved at the cost of statistical precision and potential information
loss from discarded majority class samples.

Random under-sampling offers computational advantages by reducing training set sizes,
thereby enabling faster model training and lower memory requirements. However, this efficiency
gain introduces the risk of information loss, as potentially valuable patterns of the majority class may
be eliminated during the random selection process. This technique proves particularly effective when
the majority class samples contain significant redundancy or when computational constraints limit
the feasibility of synthetic oversampling approaches. This sampling strategy employs automatic
balancing, where the algorithm determines optimal sample sizes to achieve approximately equal
class representation.

Figure 4 demonstrates the distributional effects of the resampling approaches on the class
imbalance challenge described in the preceding sections. The visualization illustrates how SMOTE
preserves and expands minority class representation through synthetic sample generation, while
maintaining the local data structure. In contrast, the random under-sampling approach reduces
majority class representation through systematic sample removal. These contrasting methodologies
offer distinct advantages for model training. SMOTE's interpolative approach minimizes the risk of
overfitting while providing richer training examples that better represent the minority class
distribution. In contrast, random under-sampling offers computational efficiency and balanced
training sets, but introduces potential information loss from discarded majority class samples.
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Figure 4. Visualization of employed Resampling Methods.

2.7. Model Evaluation Framework

The evaluation of churn prediction models in a multi-client B2B environment presents unique
challenges that extend beyond traditional single-dataset validation approaches. The heterogeneous
nature of publisher portfolios, combined with temporal dependencies and class imbalance
characteristics inherent in subscription-based data, requires a comprehensive evaluation framework
that can reliably assess model performance across various contexts. This evaluation framework must
balance statistics with interpretability, ensuring that performance metrics accurately reflect business-
relevant performance while also guiding decision-making.

The evaluation methodology implemented in this study addresses these challenges through a
multi-faceted assessment strategy that combines temporal robustness metrics with performance
measurement across multiple complementary metrics. Each metric serves a distinct analytical
purpose: probabilistic metrics assess the quality of uncertainty quantification, threshold-dependent
metrics evaluate operational decision-making capabilities, and business-oriented metrics directly
support business-relevant performance. The framework operates within the temporal validation
structure described in Section 2.3, ensuring that all performance assessments respect chronological
boundaries and prevent data leakage while providing realistic estimates of deployment performance
across varying temporal contexts.

2.7.1. Foundational Threshold-Dependent Metrics: Precision and Recall

Traditional binary classification metrics provide the foundational building blocks for advanced
performance assessment in churn prediction scenarios. Precision and recall represent the core
threshold-dependent measures that enable comprehensive evaluation of model performance under
realistic deployment conditions, serving as essential components for both composite metrics and
business decision-making processes.

These foundational metrics are calculated using the confusion matrix components derived from
binary predictions at a specified threshold. For a given prediction threshold, precision quantifies the

reliability of positive predictions and directly relates to intervention efficiency in retention strategies:
TP

TP + FP
where TP represents true positives (correctly identified churning customers) and FP represents

Precision =

false positives (customers incorrectly flagged as churn risks). High precision indicates that customers
flagged as churn risks are likely to actually churn, enabling efficient resource allocation and
minimizing unnecessary intervention costs.

Recall, also known as sensitivity, measures the proportion of actual positive cases correctly
identified, reflecting the model's ability to provide comprehensive coverage of at-risk customers:
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TP

TP +FN
where FN represents false negatives (churning customers not identified by the model). High recall

Recall =

ensures that retention strategies can address the majority of potential churn events, maximizing the
opportunity for successful intervention.

The inherent trade-off between precision and recall represents one of the most significant
challenges for companies in churn prediction deployment. Increasing the prediction threshold
typically improves precision by reducing false positives but decreases recall by increasing false
negatives. This trade-off necessitates careful threshold selection based on business priorities, making
these foundational metrics essential for understanding model behavior across different operating
points.

2.7.2. Primary Performance Metric: Area Under Precision-Recall Curve

The Area Under Precision-Recall Curve (AUC-PR) serves as the primary metric for model
comparison and selection, leveraging the foundational precision and recall metrics described in
Section 2.7.1 to provide a threshold-independent assessment of model performance. Unlike the
commonly used Area Under ROC Curve (AUC-ROC), which can provide overly optimistic
assessments when negative classes dominate the dataset, AUC-PR focuses exclusively on the model's
ability to distinguish positive cases (churning customers) from the overall population, which
perfectly fits the imbalanced nature of churn prediction data [27].

The precision-recall curve is constructed by varying the prediction threshold across all possible
values and plotting the resulting precision-recall pairs as defined in Section 2.7.1. The AUC-PR is

calculated as the area under this curve:
1

AUC-PR =f Precision(Recall) dRecall
0

In practice, this integral is computed numerically since machine learning models produce
discrete probability predictions rather than continuous curves. The standard approach uses the
trapezoidal rule, which approximates the curved area by connecting consecutive precision-recall
points with straight lines and summing the resulting trapezoidal areas [31]. AUC-PR values range
from 0 to 1, where higher values indicate superior model performance. A random classifier achieves
an AUC-PR equal to the positive class prevalence, while a perfect classifier achieves AUC-PR = 1.

This metric provides a comprehensive assessment of the precision-recall trade-off across all
possible operating points, enabling fair comparison across different models and temporal periods
regardless of the specific threshold chosen for deployment.

2.7.3. Business-Oriented Metric: SPARTA Score

The SPARTA (SP Abonnee Retentie Toekomst Analyse, which is Dutch for SP Subscriber
Retention Future Analysis, and the internal acronym for this project) score represents a composite
metric that combines the foundational precision and recall measures defined in Section 2.7.1
according to business operational priorities. This metric addresses the practical reality that precision
and recall carry different operational costs and benefits in churn prediction deployments, requiring
a weighted combination that reflects business constraints rather than statistical optimization alone.

The SPARTA score is calculated as a weighted combination of the precision and recall metrics:

SPARTA = 0.7 X Precision + 0.3 X Recall

The weights prioritize precision over recall, which reflects the operational constraint that
retention interventions require significant resources and that false positive predictions impose a
bigger risk by not “letting sleeping dogs lie” [15]. Conversely, false negative predictions represent
opportunity costs that, while significant, do not require immediate resource allocation.

This 70:30 weighting ratio was established through an interview with S.P. AbonneeService's
CTO, Marc Dieriky, to reflect realistic intervention capacity constraints [15]. The precision emphasis
ensures that retention teams can effectively manage intervention workloads while the recall
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component maintains sensitivity to actual churn events, preventing excessive focus on precision at
the expense of coverage.

The SPARTA score provides values between 0 and 1, where higher scores indicate better
alignment with business operational requirements. Unlike purely statistical metrics, SPARTA
directly supports decision-making about model deployment and intervention threshold selection,
making it particularly valuable for translating statistical performance into actionable business
insights.

2.7.4. Correlation-Based Performance Assessment: Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC) offers a comprehensive evaluation of binary
classification performance, taking into account all four components of the confusion matrix, making
it particularly robust for imbalanced datasets where other metrics may yield misleading results. MCC
is calculated as:

_ (TP xTN) — (FP X FN)
J(TP+FP)(TP + FN)(TN + FP)(TN + FN)
where TN represents true negatives. MCC values range from -1 to +1, where +1 indicates perfect

prediction, 0 represents random performance, and -1 indicates total disagreement between
predictions and actual outcomes.

The MCC's strength lies in its balanced treatment of both positive and negative classes,
providing reliable performance assessment even when class distributions vary significantly across
temporal periods or publisher portfolios [27,28]. This characteristic makes MCC particularly valuable
for assessing model stability across a heterogeneous data environment.

Unlike precision and recall, which focus exclusively on positive class performance, MCC
provides insight into the model's overall classification ability, including its capacity to identify
customers who will not churn correctly. This comprehensive perspective offers a deeper
understanding of model behavior across the entire customer spectrum, helping to identify potential
biases or systematic errors in prediction patterns.

2.7.5. Probabilistic Performance Assessment: Log Loss

Log loss, also known as cross-entropy loss, provides a probabilistic assessment of model
performance that evaluates the quality of probability estimates rather than binary classification
decisions. This metric is particularly valuable for understanding model calibration and confidence
assessment, which are essential for assessing model stability and risk-based retention strategies that
require a nuanced understanding of churn probabilities rather than simple binary predictions.

Log loss is calculated as:

N
1
LogLoss = _NZ[YL' log(p;) + (1 —y) log(1 — p;)]
i=1
where N represents the number of samples, y; is the true binary label for the sample i, and p; is

the predicted probability of the positive class for the sample i. Lower log loss values indicate better
probability estimation, with perfect probability estimates achieving log loss = 0.

The inclusion of log loss in the evaluation framework supports assessment of model uncertainty
quantification, enabling identification of models that provide well-calibrated probability estimates.
Such calibration is essential for business applications where retention interventions should be
proportional to churn risk, requiring reliable probability estimates rather than simple binary
classifications.

Log loss also provides insight into model overfitting and generalization capabilities, as poorly
generalized models often exhibit extreme probability estimates that result in high log loss values on
test data. This characteristic makes log loss valuable for hyperparameter optimization and model
selection processes.
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2.7.6. Temporal Performance Aggregation

The aggregation of performance metrics across temporal validation splits provides essential
insights into model stability and generalization capabilities across varying temporal contexts. The
aggregation strategy employed in this study calculates descriptive statistics for each metric across all
temporal splits, providing a comprehensive assessment of both average performance and
performance variability.

For each metric M, the following aggregate statistics are computed across K temporal splits:

Mean performance: M = %Zfﬂ M,

—.\2
Performance standard deviation: o, = ﬁZ’k(:l(Mk -M)

Coefficient of variation: CVy, = %“

The coefficient of variation provides a normalized measure of performance stability, enabling
comparison across different metrics and models regardless of their absolute performance levels.
Lower CV values indicate more consistent performance across temporal periods, suggesting better
generalization capabilities and reduced sensitivity to temporal variations in customer behavior
patterns.

A composite stability score is calculated as the inverse of the average coefficient of variation
across key metrics (AUC-PR, SPARTA, and MCC), providing a single measure of overall temporal
robustness:

1
Stability =1 - 3 (CVauc-pr + CVsparra + CVicc)

The selection of these three metrics ensures comprehensive coverage while avoiding
redundancy: AUC-PR provides threshold-independent ranking performance, SPARTA incorporates
business-weighted precision and recall assessment, and MCC offers balanced correlation-based
evaluation. Precision and recall are excluded from direct inclusion as they are already represented
through their weighted combination in the SPARTA score. Log loss is excluded due to its unbounded
upper range (0 to infinity), which differs from the bounded ranges of the other metrics (AUC-PR and
SPARTA: 0-1; MCC: -1 to +1) and could distort the averaged coefficient of variation calculation.

This temporal aggregation approach enables identification of models that perform consistently
across diverse temporal contexts, supporting selection of robust solutions suitable for deployment
across the heterogeneous publisher portfolio characteristic of S.P. AbonneeService's operational
environment.

2.8. Implementation

This section outlines the technical architecture of the pipeline, including the software stack,
computational resources, and deployment considerations. It will describe the automation features
designed to handle diverse publisher datasets, including data ingestion protocols, preprocessing
workflows, model training, and result delivery mechanisms. The paragraph will detail the
technologies and libraries used for implementation, explaining how they were integrated to create a
cohesive system that balances flexibility with standardization.

2.8.1. Environment and Libraries

The churn prediction pipeline was implemented in Python 3.12.0 and executed within a Google
Colab Pro environment to leverage advanced computational resources. This environment was
equipped with a high-memory configuration providing approximately 51 GB of RAM and
accelerated by a Tesla T4 GPU with 15 GB of VRAM and CUDA 12.4 support, which significantly
reduced training times for compatible algorithms. The software stack was built on a foundation of
established open-source libraries, including Pandas for data manipulation, NumPy for numerical
operations, and scikit-learn for the core machine learning framework [37-39]. Advanced modeling
capabilities were provided by XGBoost and LightGBM, both of which were configured to utilize GPU
acceleration for enhanced performance [22,23]. Class imbalance was addressed using the imbalanced-
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learn library, while PyOD facilitated outlier detection, and NetworkX supported multicollinearity
analysis [30,40,41]. For efficient data storage and retrieval, the pipeline utilized the memory-efficient
Parquet file format.

2.8.2. Pipeline Architecture

The pipeline architecture is designed as a modular, automated system that processes data from
initial ingestion to final prediction evaluation, as detailed throughout Section 2. The workflow begins
with an automated data ingestion, which includes robust protocols for handling heterogeneous CSV
files with varying encodings and column structures. These initial raw files are transformed and
standardized into a consistent Parquet format, as described in Section 2.2. The core of the
implementation lies within the experimental evaluation loop, which systematically executes each
combination of temporal validation strategy, machine learning model, and resampling technique.
This automated process ensures temporal integrity by executing feature engineering within each
cross-validation fold. For each temporal split, the ChurnFeatureEngineer (Section 2.4.1) is fitted on
the training data to calculate time-dependent features relative to that specific fold’s snapshot date,
thereby preventing data leakage. An imblearn.Pipeline then bundles the chosen resampling method
and machine learning model, ensuring that resampling is applied exclusively to the transformed
training data before the model is trained [42].

Orchestration and progress tracking for the 54 experimental combinations are managed using
tqdm, providing clear, real-time feedback on execution progress without overwhelming the console.
The final output of the pipeline is a comprehensive CSV file that can be delivered to the client. This
file contains a list of subscribers predicted to churn within the next month, ranked by their churn
probability score, enabling targeted and prioritized retention efforts.

2.8.3. Deployment

While this research focuses on the experimental evaluation and validation of the pipeline, its
modular design facilitates future production deployment. A potential deployment architecture
would involve containerizing the pipeline using Docker for a consistent environment and
reproducible results. A FastAPI backend can be developed to expose the prediction model via a REST
API, enabling on-demand predictions. For stakeholder interaction and results visualization, a
Streamlit dashboard could provide an intuitive front-end interface. The entire model lifecycle, from
experiment tracking and versioning to deployment and monitoring, could be managed using
MLFlow, ensuring a robust and scalable MLOps framework suitable for the dynamic needs of a
multi-client B2B service provider like S.P. AbonneeService.

3. Results

The experimental evaluation encompassed five years of historical subscription data spanning
January 2020 through February or April 2025 (end month depends on the company), collected from
three distinct publishing companies within S.P. AbonneeService's client portfolio. The dataset
comprised 25,241 total subscriber records distributed across companies of varying operational
characteristics and customer base compositions. Company 1 represented the largest dataset with
14,832 subscribers, characterized by elevated churn rates and substantial monthly acquisition
volumes exceeding 150 new members, reflecting a dynamic customer environment with high
turnover patterns. Company 2 contributed 3,927 subscriber records distinguished by extensive
customer tenure histories, including long-term subscribers with membership durations exceeding 25
years, indicating strong customer loyalty and retention patterns. Company 3 provided 6,482
subscriber records exhibiting stable churn rates within industry norms, combined with moderate
acquisition patterns of fewer than 100 new members monthly, representing a mature subscription
environment with balanced customer lifecycle dynamics.
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Each company dataset underwent comprehensive analysis through the complete experimental
matrix described in Section 2, encompassing six machine learning algorithms (Naive Bayes, Logistic
Regression, Random Forest, XGBoost, LightGBM, SVM) evaluated across nine distinct configurations
combining three resampling techniques (No Resampling, SMOTE, Random Under-Sampling) with
three temporal validation strategies (Blocked Cross-Validation, Expanding Window Cross-
Validation, Rolling Window Cross-Validation). This systematic approach generated 54 (3 X 6 X
3Individual model evaluations per company, totaling 162 distinct experimental configurations
across the complete multi-client analysis framework. The diversity in company characteristics and
dataset sizes provides a robust assessment of algorithmic effectiveness across varying context
characteristics of the heterogeneous publisher environment within the subscription publishing
domain of S.P. AbonneeService.

In the performance reporting sections that follow, evaluation metrics are presented in tabular
format for each experimental configuration. To facilitate comparative interpretation, where relevant,
the highest-performing result per column is boldfaced, while the lowest-performing result is rendered
in italics. This visual distinction supports efficient identification of relative model effectiveness across
diverse algorithmic, resampling, and validation combinations.

3.1. Aggregate Performance Analysis Across Publishers

The top-performing configurations demonstrate the dominance of LightGBM with SMOTE
across multiple temporal validation strategies, as shown in Table 3.1. The highest-performing
configuration achieves a mean AUC-PR of 0.99 with LightGBM-SMOTE-Blocked-CV, accompanied
by a SPARTA score of 0.948 and a stability score of 0.944. LightGBM configurations occupy six of the
top ten positions, with SMOTE resampling appearing in seven configurations. Standard deviations
range from 0.013 for the top performer to 0.178 for the tenth-ranked Random Forest configuration,
while SPARTA scores span from 0.745 to 0.948 across the top ten configurations.

Table 3.1. Top 10 Model Configurations by Mean AUC-PR.

Rank Model Resampling Temporal x AUC-PR Std Dev SPARTA  Stability

1 LightGBM  SMOTE Blocked-CV 0.99 0.013 0.948 0.944
2 LightGBM None Rolling 0.964 0.095 0.816 0.83
3  LightGBM None Expanding 0.96 0.101 0.816 0.83
4  LightGBM  SMOTE Rolling 0.958 0.058 0.93 0.901
5 LightGBM  SMOTE Expanding 0.955 0.059 0.921 0.896
6 XGBoost SMOTE  Expanding 0.948 0.081 0.909 0.876
7  LightGBM None  Blocked-CV 0.947 0.058 0.745 0.82
8 XGBoost SMOTE Rolling 0.938 0.088 0.903 0.867
9 XGBoost SMOTE  Blocked-CV 0.933 0.084 0.881 0.859
10 Random None Expanding 0.849 0.178 0.792 0.767
Forest

3.2. Temporal Validation Strategy Performance

The temporal validation strategies demonstrate remarkably similar mean performance across
key metrics, with the expanding and rolling window approaches achieving identical mean AUC-PR
values of 0.487. In contrast, blocked cross-validation shows slightly lower performance at 0.482, as
presented in Table 3.2. However, notable differences emerge in performance stability, where blocked
cross-validation exhibits substantially lower coefficient of variation across all metrics, particularly for
precision (0.286) and recall (0.118) compared to the expanding (0.751, 0.438) and rolling (0.746, 0.436)
approaches, respectively.
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Table 3.2. Performance Metrics by Temporal Validation Method.

x AUC- AUC-PR x Precision X Recall RecallCV ¥ MCC MCCCV
PR Cv Precision Ccv
Rolling 0.487 0.421 0.325 0.746 0.804 0.436 0.366 0.694
Expanding 0.487 0.402 0.325 0.751 0.802 0.438 0.363 0.676

Blo((:ﬂ;/ed— 0.482 0.258 0.316 0.286 0.801 0.118 0.35 0.287

Temporal

3.3. Model Performance

The algorithmic comparison reveals substantial performance differentiation across all evaluated
metrics, as detailed in Table 3.3. LightGBM achieves the highest mean AUC-PR (0.696) and
demonstrates superior precision (0.589) and recall (0.918) performance, though Naive Bayes exhibits
the lowest AUC-PR coefficient of variation (0.176) compared to LightGBM's 0.264. Random Forest
maintains moderate performance across metrics with a mean AUC-PR of 0.611 and balanced
precision-recall characteristics (0.527, 0.764). XGBoost shows competitive precision (0.527) but
elevated recall variability (CV: 0.206). Traditional approaches demonstrate notably poor
performance, with SVM exhibiting extreme variability across all metrics (precision CV: 1.416, recall
CV: 1.234) and Logistic Regression achieving the lowest mean AUC-PR (0.145) despite moderate
stability characteristics.

Table 3.3. Performance Summary by Model (Averaged).

x AUC- AUC-PR x Precision X Recall RecallCV ¥ MCC MCCCV

Model PR CvV Precision Ccv
Naive 0.454 0176 0.042 0.528 0.916 0.137 0.09 0.408
Bayes

Log. Reg. 0.145 0.607 0.09 0.557 0.808 0.102 0.195 0.364
Rand. 0611 0315 0.507 0.387 0.764 0.141 0.515 0.25
Forest

XGBoost 0.55 0.326 0.527 0.272 0.839 0.206 0.502 0.248

LightGBM  0.696 0.264 0.589 0.299 0.918 0.121 0.625 0.24
SVM 0.48 0.461 0.226 1416 0.581 1.234 0.278 1.703

3.4. Resampling Strategy Performance

The resampling technique evaluation demonstrates substantial differences across precision,
recall, and stability characteristics, as presented in Table 3.4. SMOTE achieves the highest mean
precision (0.586) and demonstrates superior stability across all metrics, with the lowest coefficient of
variation for AUC-PR (0.204), precision (0.282), and MCC (0.244). Random under-sampling exhibits
the highest mean recall (0.875) but suffers from extremely low precision (0.062) and substantial
performance variability. The no resampling baseline shows moderate precision (0.318) but
demonstrates the highest variability in precision (CV: 1.042) and recall (CV: 0.728), while achieving
relatively low recall performance (0.736).

Table 3.4. Impact of Resampling Methods on Key Metrics.

Resampli ¥ AUC- AUC-PR x Precision X Recall Recall CV ¥ MCC MCCCV

ng PR CV Precision CV
None 0.613 0.301 0.318 1.042 0.736 0.728 0.386 0.922
SMOTE 0.683 0.204 0.586 0.282 0.785 0.158 0.55 0.244
Rand. 0.533 0.875 0.172 0.147 0.552

Und. 0.183 0.566 0.062
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3.5. Company-Specific Performance Results

The company-specific analysis reveals consistent algorithmic preferences despite varying
dataset characteristics and customer base compositions, as demonstrated in Tables 3.5.1, 3.5.2, and
3.5.3. LightGBM with SMOTE dominates the top-performing configurations across all three
companies, though with notable variations in optimal temporal validation strategies. Company 1
achieves peak performance with blocked cross-validation (AUC-PR: 0.991), while Companies 2 and
3 show superior results with rolling window approaches (AUC-PR: 0.988 for both). The performance
variance between top and fifth-ranked configurations differs substantially across companies:
Company 1 exhibits a wide performance range (AUC-PR difference: 0.093). In contrast, Companies 2
and 3 demonstrate remarkably consistent top-tier performance with minimal differences (0.016 and
0.006, respectively).

Table 3.5.1. Top 5 Configurations for Company 1.

Rlin Model ~Resampling Temporal AUC-PR  SPARTA  Precision Recall
1 LightGBM  SMOTE Blocked-CV 0.991 0.951 1 0.835
2 LightGBM None Rolling 0.951 0.763 0.662 0.999
3  LightGBM None Expanding 0.937 0.759 0.656 0.999
4  XGBoost SMOTE  Expanding 0.906 0.871 0.969 0.642
5 LightGBM  SMOTE Rolling 0.898 0.862 0.978 0.593

Table 3.5.2. Top 5 Configurations for Company 2.

Rlin Model ~Resampling Temporal AUC-PR SPARTA  Precision Recall
1 LightGBM  SMOTE Rolling 0.988 0.971 0.991 0.923
2 LightGBM  SMOTE  Expanding 0.988 0.969 0.991 0.918
3 LightGBM  SMOTE Blocked-CV 0.984 0.962 1 0.875
4 LightGBM None Blocked-CV 0.984 0.797 0.709 1
5 XGBoost SMOTE  Expanding 0.972 0.935 0.99 0.804

Table 3.5.3. Top 5 Configurations for Company 3.

Rlin Model ~Resampling Temporal AUC-PR SPARTA  Precision Recall
1 LightGBM  SMOTE Blocked-CV 0.994 0.932 0.992 0.793
2 LightGBM None Blocked-CV 0.993 0.778 0.683 1
3  LightGBM None Expanding 0.991 0.869 0.813 1
4 LightGBM  SMOTE  Expanding 0.989 0.954 0.994 0.863
5 LightGBM  SMOTE Rolling 0.988 0.956 0.991 0.874

3.6. Computational Efficiency

The computational performance analysis reveals significant variations in training efficiency
across algorithmic and resampling combinations, as presented in Table 3.6. Naive Bayes
demonstrates exceptional computational efficiency, with average training times of less than 0.2
seconds across all configurations, while Logistic Regression exhibits the highest computational
overhead, averaging 17.86 seconds per split. The gradient boosting algorithms (XGBoost and
LightGBM) exhibit moderate computational requirements, with LightGBM averaging 5.01 seconds
per split. SMOTE consistently increases training time across all algorithms, although the impact
varies substantially by the base algorithm's complexity.
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Table 3.6. Average Training Time Per Split By Model and Configuration.

Model No Resampling (s) SMOTE (s) Random Under. (s) Avg Split Time (s)
Naive Bayes 0.15 0.18 0.15 0.16
Logistic Reg. 20.99 31.68 0.92 17.86

Random 237 283 1.87 2.36

Forest

XGBoost 0* 4.19 1.98 3.09
LightGBM 5.4 6.57 3.06 5.01
SVM 3.77 10.85 0.3 4.97

* All configs for XGBoost with No Resampling failed (see 3.7. Failed Experiments).

3.7. Failed Experiments

The experimental failure analysis reveals a systematic pattern concentrated exclusively within
XGBoost configurations lacking resampling techniques, as detailed in Tables 3.7.1 and 3.7.2. All nine
failed experiments involve XGBoost without resampling across different temporal validation
methods and companies, representing a 33.3% failure rate for XGBoost configurations. No failures
occurred with alternative algorithms or when resampling techniques were applied, indicating that
XGBoost configurations without resampling were unable to complete the experimental pipeline
under the given dataset conditions.

Table 3.7.1. Individual Failed Experimental Configurations.

i Company Model Resampling  Temporal Description
Bl - 1 soli
1 Company 1 XGBoost None ocked-CV No successful splits
processed
E i ful spli
2 Company 1 XGBoost None xpanding No successful splits
processed
3 Company 1 XGBoost None Rolling No successful splits
processed
Blocked-CV 1 spli
4 Company 2 XGBoost None ocked-C No successful splits
processed
5 Company 2 XGBoost None Expanding No successful splits
processed
Rolli ful spli
6 Company 2 XGBoost None olling No successful splits
processed
Blocked-CV ful split
7  Company 3 XGBoost None ocked-C No successful splits
processed
8 Company 3 XGBoost None Expanding No successful splits
processed
Rolli 1 spli
9 Company 3 XGBoost None olling No successful splits
processed

Table 3.7.2. Summary of Failed Experiments by Configuration Components.

Component Category Total Configs Failed Configs  Failure Rate (%)
Company Company 1 54 3 5.6
Company Company 2 54 3 5.6
Company Company 3 54 3 5.6

Model Naive Bayes 27 0 0
Model Logistic Reg. 27 0 0
Model Random Forest 27 0 0
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Model XGBoost 27 9 33.3
Model LightGBM 27 0 0
Model SVM 27 0 0
Resampling None 54 9 16.7
Resampling SMOTE 54 0 0
Resampling Random Under. 54 0 0
Temporal Rolling 54 3 5.6
Temporal Expanding 54 3 5.6
Temporal Blocked-CV 54 3 5.6

4. Discussion

4.1. Interpretation of Results and Practical Implications

The experimental results provide significant insights that both confirm established patterns in
churn prediction literature and reveal unexpected findings specific to the subscription publishing
domain, with direct implications for automated pipeline deployment in multi-client B2B
environments.

4.1.1. Algorithmic Performance and Deployment Strategy

The substantial superiority of LightGBM across all evaluated contexts, achieving AUC-PR
values exceeding 0.95, significantly exceeds typical performance gaps reported in previous churn
prediction literature [5,28]. This consistent advantage provides clear implementation guidance:
LightGBM should serve as the primary algorithm for automated churn prediction across all client
portfolios, eliminating the need for complex algorithm selection procedures in production
environments.

The complete failure of XGBoost configurations without resampling likely stems from the
custom class weight implementation required for XGBoost's integration with scikit-learn's balanced
weighting approach, highlighting critical implementation considerations for gradient boosting
methods in scenarios of extreme class imbalance.

4.1.2. Resampling Strategy Effectiveness and Resource Allocation

SMOTE's substantial precision advantage (0.586 versus 0.318 for no resampling) directly
translates to more efficient resource allocation for retention, as higher precision means customers
flagged for intervention are more likely to churn. This efficiency gain becomes particularly valuable
in B2B environments where retention teams must manage intervention campaigns across multiple
client portfolios with limited resources.

The abysmal precision performance of random under-sampling (0.062), despite achieving the
highest recall (0.875), becomes particularly pronounced given the acquisition patterns observed in
publisher datasets. With monthly acquisition volumes of 100-150+ subscribers and churn
representing only a small fraction, random under-sampling effectively reduces training data to
extremely small sample sizes, eliminating substantial amounts of potentially valuable majority class
information. This finding provides clear guidance that random under-sampling should be avoided
in subscription publishing contexts where training data volumes are inherently limited by low churn
rates.

4.1.3. Temporal Validation Strategy Selection

The temporal validation results reveal that blocked cross-validation achieves superior stability
(coefficient of variation approximately 50% lower than rolling/expanding approaches) despite
slightly reduced mean performance. This difference likely stems from the use of blocked cross-
validation, which employs only four non-overlapping temporal splits, compared to approximately
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60 overlapping splits used by other approaches. Publishers prioritizing consistent, predictable
performance should utilize blocked cross-validation, while those requiring maximum prediction
accuracy may prefer rolling window validation despite increased variability.

The nearly identical mean performance between rolling and expanding window approaches
suggests that additional historical information beyond a certain threshold does not provide
substantial predictive improvements for subscription churn, supporting fixed-window training
approaches that prioritize computational efficiency over maximum data utilization.

4.1.4. Cross-Company Consistency and Scalability

The remarkable consistency of algorithmic preferences across the three publishing companies
represents one of the most significant findings, providing strong evidence for the generalizability of
automated churn prediction in subscription publishing environments [15]. Despite substantial
differences in customer base characteristics, operational scales, and churn patterns, LightGBM with
SMOTE consistently occupied top-performing configurations across all environments.

This consistency enables S.P. AbonneeService to implement standardized automated pipelines
across diverse client portfolios without requiring extensive customization for individual publishers.
The performance variance patterns observed suggest that high-churn environments may require
more sophisticated model selection procedures, while stable subscription contexts achieve reliable
performance across diverse configuration options.

4.1.5. Business Integration and System Extension Opportunities

The superior precision demonstrated by optimal configurations (exceeding 0.95 for top-
performing combinations) enables publishers to implement highly targeted retention interventions
with confidence that flagged customers represent genuine churn risks. The stability characteristics
achieved by SMOTE across temporal periods enable consistent retention workflow processes without
requiring frequent recalibration.

The robust algorithmic foundation creates opportunities for extending automated prediction
capabilities beyond basic churn prediction to applications including churn reason prediction,
engagement level forecasting, and lifetime value estimation. The comprehensive preprocessing
pipeline developed for heterogeneous publisher data also enables broader data integration
initiatives, such as recent invoice coupling and RFM analysis.

4.2. Legal Implementation Considerations

The practical deployment of automated churn prediction systems within subscription
publishing environments needs careful consideration of legal and regulatory frameworks that extend
beyond technical performance optimization, particularly given the processing of personal subscriber
data and the automated nature of the prediction system.

4.2.1. GDPR Compliance

The implementation of the churn prediction pipeline must align with fundamental GDPR
principles, particularly regarding the lawful basis for processing and data subject rights protections.
The system's utilization of subscriber behavioral, demographic, and transactional data for predictive
retention analysis requires the establishment of a lawful basis under Article 6 GDPR [48]. Legitimate
interest (Article 6(1)(f)) represents the most appropriate basis, provided that balancing tests
demonstrate that the business benefits of churn prediction, which include improved customer
retention and service optimization, do not disproportionately override individual privacy rights and
freedoms [48]. The preprocessing pipeline described in Section 2.2, which implements systematic
data minimization through feature selection methodologies and automated redundancy removal,
directly supports compliance with the data minimization principle under Article 5(1)(c) and privacy-
by-design requirements mandated under Article 25 [47,52].
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Automated decision-making provisions under Article 22 GDPR require particular attention, as
the system processes personal data to make predictions about individual subscribers [51]. While
churn prediction typically supports human decision-making rather than fully automated decisions
with legal or similarly significant effects, organizations must ensure appropriate human oversight.
Data subject rights under Chapter 111, including rights of access (Article 15) and objection (Article 21),
must be implementable within the technical architecture of the prediction system, and/or the
encompassing data architecture [49,50].

4.2.2. EU AI Act Compliance

Assessment through the EU Al Act Compliance Checker indicates that the automated churn
prediction system falls under Al literacy obligations, requiring S.P. AbonneeService to "... take
measures to ensure, to their best extent, a sufficient level of Al literacy of their staff and other persons
dealing with the operation and use of Al systems on their behalf, taking into account their technical
knowledge, experience, education and training and the context the Al systems are to be used in, and
considering the persons or groups of persons on whom the Al systems are to be used." [43,44]. This
obligation necessitates staff training involved in model deployment, prediction interpretation, and
decision-making processes related to retention.

The system is likely to qualify as a limited-risk Al system under the Al Act. Transparency
obligations under Article 50, which require natural persons to be informed when interacting with an
Al system, primarily apply to publisher clients who directly receive and utilize Al-generated
predictions via CSV outputs [46]. However, the application of these transparency requirements to
B2B deployment scenarios, where Al predictions inform subsequent business decisions rather than
directly influencing customer interactions, remains unclear in current legal interpretations and
regulatory guidance.

The interpretable feature importance measures provided by ensemble methods, particularly
Random Forest and LightGBM (Section 2.5.3), facilitate compliance with transparency requirements
for direct system users while supporting algorithmic accountability across the prediction pipeline,
which aligns with Article 13 [45].

Future research should examine regulatory guidelines and standardize compliance that balances
automated prediction capabilities with legal requirements for algorithmic transparency and data
subject protection in subscription-based service contexts.

5. Conclusion

This research successfully demonstrates that effective Al-driven churn prediction for
subscription publishing environments requires a comprehensive, automated pipeline that integrates
various machine learning paradigms with robust data preprocessing and regulatory compliance
frameworks. The optimal solution combines Light GBM with SMOTE resampling within temporally
validated training procedures, achieving exceptional predictive performance (AUC-PR > 0.95) while
maintaining the interpretability essential for actionable business insights. The automated
preprocessing pipeline addresses the fundamental challenges of heterogeneous publisher data
through systematic standardization, feature engineering, and class imbalance handling, enabling
consistent deployment across diverse client portfolios without requiring manual customization.

The proactive implementation of retention measures is enabled through high-precision
predictions that minimize the waste of intervention resources while providing confidence in
customer risk assessment. The temporal validation framework ensures that predictions reflect
realistic deployment scenarios, while adherence to the GDPR and EU Al Act frameworks ensures
sustainable deployment within regulatory environments. The research establishes that automated
churn prediction systems can deliver both technical excellence and practical business value when
designed with comprehensive consideration of data heterogeneity, temporal dependencies, class
imbalance, and regulations, enabling subscription publishing companies to implement advanced
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predictive capabilities that directly support customer retention strategies while maintaining
operational efficiency and legal compliance standards.
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