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Abstract: Urbanization and climate change are increasing the risks of natural hazards, particularly in 

cities with significant socio-economic disparities. Existing hazard risk assessment frameworks often 

neglect socio-economic dimensions, limiting their utility in addressing community-level 

vulnerabilities. This study proposes an integrated machine learning and indicator-based framework 

for assessing flood susceptibility and socio-economic vulnerability, with a focus on data-scarce 

settings, using a case study of the City of Kigali. Socio-economic vulnerability was quantified through 

a composite index incorporating sensitivity and adaptive capacity. Multisource data were integrated 

and modeled using machine learning models, which included Multilayer Perceptron, Random 

Forest, Support Vector Machine, and XGBoost. In terms of model performance, the MLP has achieved 

high performance with an AUC score of 0.902 and F1-Score of 0.86. The results indicate intensified 

vulnerability in central and southern Kigali, with noticeable socio-economic disadvantages and high 

flood susceptibility. The resulting maps were validated using historical flood data, other socio-

economic studies in the area, and local knowledge. The scalability of the framework was evaluated 

in Kampala, Uganda, and Dar es Salaam, Tanzania, demonstrating scalability with context-specific 

adaptations. This approach offers a robust methodology for integrating flood susceptibility and 

socio-economic vulnerability, enabling data-driven prioritization of interventions. The findings 

contribute to advancing urban resilience strategies, particularly in regions constrained by limited 

data availability. 

Keywords: socio-economic vulnerability; susceptibility; flood hazard; machine learning; framework 

 

1. Introduction 

Urbanization and climate change are significantly impacting human health, socio-economic 

stability, and sustainability. Urbanization, the process resulting from the increase in urban residents 

and expansion of the built-up areas, is often driven by economic opportunities and improved living 

standards, including access to employment, education, and healthcare [1]. However, many urban 

residents, particularly in the Global South, face critical challenges, such as inadequate housing, 

contaminated water, insufficient sanitation, and poor waste management [2]. The rapid urbanization 
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has outpaced the capacity of urban planning processes to effectively address these challenges, 

exacerbating risks faced by urban residents [3]. With the frequent occurrence of natural hazards 

induced by climate change, rapid urbanization exacerbates various risks, which lead to adverse 

outcomes from exposure to natural hazards plus the vulnerabilities inherent in the affected urban 

population [4]. In this context, risk is understood as an outcome of the interaction between natural 

hazard, exposure, and vulnerability [5]. Therefore, extreme natural physical events that result in loss 

of lives, injuries, or other health effects, as well as harm to property, infrastructure, livelihoods, and 

ecosystems, are referred to as natural hazards [6]. For instance, because of their physical positions 

and the concentration of human activity, urban areas are vulnerable to hazards like storms, floods, 

and cyclones. The consequences of such hazards can be devastating, leading to loss of lives and 

economic disruptions in essential services. Exposure to hazards describes the degree to which urban 

residents are subjected to these hazardous events [5]. In rapidly growing cities, factors such as high 

population density associated with inadequate infrastructure and informal settlements often make 

their residents vulnerable, particularly during extreme weather events [7]. 

Vulnerability in this study is defined as the predisposition to suffer adverse effects from 

exposure to natural hazards, as expressed by the Intergovernmental Panel on Climate Change (IPCC) 

[8]. Vulnerability encompasses several dimensions, including physical, social, economic, and 

attitudinal vulnerability [9]. Physical vulnerability refers to the direct harm, like injuries or fatalities, 

caused by hazards such as extreme weather [9]. Social vulnerability refers to the increased risk from 

natural hazards due to factors like demographic characteristics (age, gender, level of education), 

community cohesion, and resource access [10]. The economic vulnerability involves the financial 

losses from hazards and the resources available for recovery, while attitudinal vulnerability 

highlights how attitudes and behaviors can affect preparedness and response [11,12]. In this study, 

the primary focus is on social and economic vulnerability, as these dimensions are critical for 

understanding how different individuals or groups experience and cope with natural hazards. The 

choice of these dimensions is influenced by the fact that vulnerability is also understood further 

through three interrelated components: sensitivity, susceptibility, and adaptive capacity [5,13]. 

Sensitivity reflects how severely a community or individual is affected by changes brought about by 

hazards [8]. For instance, populations with limited access to healthcare facilities and services may 

suffer more profoundly during health crises or natural disasters [14,15]. Susceptibility denotes 

inherent weaknesses that predispose communities or individuals to adverse effects; for example, low-

income groups or poorest communities may lack resources or social support systems that could 

mitigate harm during emergencies [8]. Adaptive capacity is a critical aspect of vulnerability that 

describes the ability of communities or individuals to adjust in response to harmful events or mitigate 

potential damage [8,16]. This capacity is influenced by various factors, including socio-economic 

status [7]. In this regard, urban areas with strong socio-economic status are frequently better able to 

respond to and adapt to hazards. 

Urban socio-economically deprived individuals and communities often reside in areas prone to 

natural hazards, which significantly heightens their exposure to various risks [7]. This exposure is 

especially hazardous because these populations often possess limited capacity for mitigation or 

adaptation, rendering them highly vulnerable to natural hazards [16]. Natural hazards occurrence is 

becoming more frequent and more severe as urbanization and climate change continue to grow. This 

occurrence poses a severe threat to public health, particularly in Global South areas with high socio-

economic sensitivity and poor adaptive capacity [17]. Understanding socio-economic vulnerability 

associated with the climate change related hazards is crucial for developing effective strategies aimed 

at preventing risks and mitigating damages caused by natural hazards toward enhanced socio-

economic conditions and public health outcomes [7,10]. However, this understanding is missing due 

to the high reliance on extensive data that is often unavailable in many cities of the Global South. 

Consequently, the assessment of socio-economic vulnerability to natural hazards is frequently 

ignored despite its importance to identify how natural hazards affect the urban population [7,18]. 
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Countries in the Global South lack the required data for assessing socio-economic vulnerability 

to natural hazards, which complicates their ability to implement effective disaster risk reduction 

strategies [19]. One of the primary issues is the lack of comprehensive and reliable data, which is 

critical for understanding the socio-economic conditions of vulnerable populations [20]. Many areas 

do not have systematic data collection mechanisms, leading to gaps in information regarding 

population demographics, income levels, health outcomes, and access to basic services [19]. This 

absence of data hinders the development of accurate vulnerability assessments and makes it difficult 

for policymakers to identify the most at-risk communities and tailor interventions accordingly [21]. 

Moreover, the quality of available data is often questionable. In many cases, existing data are 

outdated or incomplete, failing to capture the changing socio-economic conditions. For instance, 

socio-economic data of informal settlement dwellers are often not included in national statistics, 

leading to an underestimation of the risks faced by their residents [21]. In this regard, reliance on 

national-level data obscures local vulnerabilities, as small spatial scale disparities in socio-economic 

conditions and exposure to hazards are not adequately represented at large spatial scales. 

Additionally, socio-political factors further complicate the data collection efforts. In many Global 

South countries, political instability, corruption, and inadequate governance can impede effective 

data gathering and sharing [22]. Furthermore, the data challenge results from a lack of political will 

to prioritize socio-economic vulnerability in risk assessment and management or a lack of budget for 

data collection initiatives [22]. As natural hazards become more prevalent in urban areas, reliable 

data is needed to support risk assessments and adaptation strategies. 

Recent advancements in technology offer potential solutions to data challenges. Remote sensing 

and machine learning techniques have shown a promising capacity to obtain and process large-scale 

datasets for hazard modeling. Several studies have applied these technologies to address various 

urban challenges such as flooding, landslides, and gullies development in urban areas. For instance, 

[7,23,24] have use remote sensing-based satellite imagery in combination with machine learning for 

measuring flood susceptibility. Refs. [25–28] applied machine learning to evaluate multi-hazards 

including flooding and landslides. Despite these advancements, most of the studies utilizing remote 

sensing and machine learning have primarily focused on hazard assessment rather than integrating 

socio-economic vulnerability into their risk frameworks. While few studies have attempted this 

integration ([12,13,29,30]), they often develop approaches and frameworks tailored to specific input 

data sets and localized areas, which limits their broader applicability in both data-rich and data-

scarce regions. This underscores the need for new approaches that can bridge the gap between hazard 

modeling and socio-economic vulnerability assessment. 

Therefore, this study proposed a flexible and scalable framework for mapping socio-economic 

vulnerability to natural hazards in urban areas, specifically designed to support more effective and 

equitable public health interventions in data-scarce urban environments. The significance of this 

research lies in its potential to address gaps in understanding how socio-economic factors influence 

vulnerability to natural hazards, particularly in rapidly urbanizing regions of the Global South. By 

focusing on the City of Kigali, the proposed framework was applied to map flood susceptibility and 

socio-economic vulnerability to flooding. The obtained maps were locally validated through a 

combination of historical flood data comparison, comparative analysis with existing socio-economic 

studies, adherence to established methodologies, and qualitative assessments using local knowledge. 

In order to evaluate the scalability of the proposed framework and enable comparative analysis 

across several urban contexts, it was applied to the cities of Dar es Salaam, and Kampala, in Tanzania 

and Uganda, respectively. The results derived from this study contribute to a deeper understanding 

of socio-economic vulnerabilities in urban areas prone to natural hazards, ultimately informing 

policy decisions and resource allocation for targeted interventions for enhanced resilience and 

improved public health outcomes. 

This paper is structured in the following manner: materials and methods for this study are 

presented in the next part, which also gives a summary of the proposed framework and how it was 

utilized to map Kigali's socioeconomic susceptibility to floods. This is followed by a section on the 
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scalability and transferability of the proposed framework, which highlights its relevance in different 

urban settings. The results and discussion section present key findings and their implications, and 

limitations of the study. Finally, a concluding section summarizes the results and emphasizes the 

importance of the study and integration of socio-economic vulnerability assessments into urban 

planning and disaster risk management strategies. 

2. Materials and Methods 

2.1. Description of the Proposed Framework 

The proposed framework is a result of a review of recent research on hazard risk modeling and 

mapping and socio-economic vulnerability assessment [7,12,18,24,28,30–34]. As seen in Figure 1, the 

framework is composed of three primary components. The first component, which is shown in blue 

on the left side of Figure 1, consists of measuring hazard susceptibility by combining machine 

learning models with data from remote sensing. This component enables users to model 

susceptibility for one or multiple hazards by leveraging data that is readily available for the area of 

interest. The flexibility inherent in this component allows practitioners to select the most suitable 

machine learning algorithms depending on the specific characteristics of geographical area, the 

hazards being modeled, and available data. Various machine learning methods, including Random 

Forest (RF), Gradient-Boosted Decision Trees (XGBoost), Support Vector Machines (SVM), and 

Artificial Neural Networks (ANN), have demonstrated good performance in hazard susceptibility 

assessments in various studies [23,24,35–38]. The application of these models facilitates an 

understanding of hazard dynamics. 

The second component, presented in green on the Figure 1’s right side, involves analyzing socio-

economic data to evaluate socio-economic vulnerability. This component emphasizes the use of 

diverse socio-economic indicators and multivariate analysis techniques, such as regression models, 

Principal Component Analysis (PCA), Analytic Hierarchy Process (AHP), and Composite Indicator 

(CI) approaches [10,33,39]. These methodologies enable to quantify sensitivity and adaptive capacity 

effectively. The final component, represented at the bottom in orange, creates a socio-economic 

vulnerability index by combining hazard susceptibility with quantified sensitivity and adaptive 

capacity. This combination is crucial for assessing and mapping socio-economic vulnerability 

associated with natural hazards, as demonstrated by various studies [7,9,13,40]. Therefore, the 

proposed framework would support the development of effective hazard management strategies and 

inform policy decisions aimed at enhancing community resilience. 

 

Figure 1. Proposed framework for mapping urban socio-economic vulnerability to natural hazards. 
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2.2. Application of the Proposed Framework to Mapping Socio-Economic Vulnerability to Flooding in the 

City of Kigali 

The case study of the City of Kigali, Rwanda, where flooding is a frequent natural hazard, was 

used to evaluate the proposed framework. The following sections present the case study area, a 

description of the data used and their sources, historical flooding data, data about factors influencing 

floods, and socio-economic data. These are followed by the estimation of flood susceptibility by 

training and testing various machine learning models. The best-performing model was used to obtain 

the flood susceptibility index. Additionally, the study applied Indicator-based approaches to 

compute Sensitivity and Adaptive Capacity using socio-economic data. The obtained result was 

finally used to compute and map socio-economic vulnerability to flooding by integrating flood 

susceptibility. Details on each step are presented in the following sections. 

2.2.1. Description of City of Kigali 

The City of Kigali is the largest city of Rwanda, and serves as the capital and focal point of 

economic activities. In terms of administration, the City of Kigali is comprised of three districts 

(Figure 1), which are further subdivided into 35 sectors, which account for 161 cells and 1,176 villages. 

The village represents the lowest and smallest administrative unit, which is referred to neighborhood 

in this study [41]. Located near the geographic center of the country, Kigali is a city that is exhibiting 

rapid urban growth and economic transformation. Spanning over 730 square kilometers, it is home 

to more than 1.7 million people and is pivotal to Rwanda's socio-economic landscape [41]. The city 

exhibits a diverse array of land-use types, including commercial, residential, industrial, agricultural, 

and public facilities, alongside wetlands and water bodies [42]. Over the past two decades, Kigali has 

undergone significant urban expansion and development. The city has seen a rapid increase in built-

up areas whereby the urban landscape is a mosaic of modern high-rise buildings, residential 

neighborhoods, commercial zones, and informal settlements [43,44]. This is particularly true in the 

urban central core, where continuous modernization is observed through the presence of modern 

buildings and upgraded road networks. This rapid urbanization has often outpaced the development 

of adequate infrastructure [45]. Consequently, majority of informal settlements are frequently found 

in the most vulnerable areas, which are highlighted by Kigali’s urban fabric and include steep 

hillsides and flood-prone valleys [42]. These areas lack proper sanitation, drainage, and other basic 

services, exacerbating the vulnerability of their residents to natural hazards [46]. Despite significant 

economic progress, substantial socio-economic inequalities persist, with large segments of the 

population living in poverty [43,47]. Many residents, particularly those living in informal settlements, 

do not have access to essential services including sanitation facilities, clean water, and healthcare 

[46,48]. These socio-economic disparities mean that the poorest and most vulnerable populations are 

disproportionately affected by natural hazards. They often reside in the most at-risk areas and have 

the least capacity to recover from adverse events, creating a cycle of vulnerability and poor health 

outcomes. 

Kigali's geography is characterized by its hills and valleys, with elevations ranging from 

approximately 1,300 meters to over 1,600 meters above sea level, which influences the city's drainage 

patterns [42]. The steep slopes accelerate water flows, resulting in a higher volume of water that 

accumulates in valleys, which, when combined with seasonal severe rainfalls, frequently leads to 

flooding [49]. Flooding in Kigali, like in other areas, is a complex natural hazard characterized by the 

overflow of water beyond its normal limits, often resulting from heavy and prolonged rainfall [50]. 

Flooding is particularly noticeable in urban areas due to rapid urban growth, which has reduced 

vegetation cover and increased impervious surfaces and runoff, and hence exacerbating the risk of 

flooding in places with lower elevation. Furthermore, the combination of increased surface runoff 

due to urbanization and inadequate drainage systems hinders groundwater recharge and leads to 

the accumulation of excess water during rain events [51]. 
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Figure 2. Location map of the City of Kigali. Data source: National Land Authority, National Institute of 

Statistics of Rwanda, and Ministry of Infrastructure 

The consequences of flooding in Kigali, like in other urban areas, are severe and multifaceted. 

Immediate impacts include loss of life and destruction of buildings, utilities, roads, bridges, and other 

infrastructure. Additionally, flooding can compromise water supply systems, increasing exposure to 

contaminated water and facilitating the spread of infectious diseases such as dengue, malaria, 

measles, meningitis, and typhoid [52]. Furthermore, flooding impacts individuals with chronic health 

conditions by damaging critical infrastructure and creating barriers to accessing essential health 

services [14,15]. 

2.2.2. Overview of Data 

The study used a data-driven approach following the proposed framework to map socio-

economic vulnerability to flooding for public health interventions in Kigali. In the City of Kigali, 

historical flood data has not been recorded as geospatial data, making it challenging to extract 

geospatial flood information directly from reports. To overcome this, data on previous floods was 

extracted using Synthetic Aperture Radar (SAR) imagery from Sentinel-1 using the same methods as 

studies for flood modeling [53,54]. Based on flood incidents reported by the Rwandan Ministry in 

Charge of Emergency Management, two SAR images were selected: one acquired prior to a period of 

heavy rainfall on December 22, 2019, and the other taken following a flood event on December 25, 

2019. Image ratioing and Otsu's thresholding methods [55] were applied to detected and delineate 

floodwater, from which 456 flood points and 484 non-flood points were randomly generated (A 

figure illustrating their distribution is a presented in Figure A1 in Appendix A). These were divided 

into 80% training and 20% testing datasets. Non-flooded points were assigned a value of 0, whereas 

the target class value points were given a value of 1. In addition, nine flood-influencing factors were 

identified after a review of various studies on flood susceptibility assessment and considering the 

geographic appearances of the study area. Table 1 describes the factors that influence floods and the 

associated data sources used in this study.  
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Table 1. Flood influencing factors. 

Flood-Influencing 

Factor 

Description Data source 

Elevation Lower elevation areas are more prone to water 

accumulation, which increases the likelihood of flooding, 

while higher elevations typically experience less flooding 

as water drains downhill [56]. 

Extracted from DEM (10 m 

resolution) obtained from the 

National Land Authority (NLA) of 

Rwanda. 

Slope Moderate slopes may lead to water accumulation, 

increasing flood risk, while steep slopes promote rapid 

runoff, potentially resulting in flash floods [56]. 

Extracted from DEM (10 m 

resolution) obtained from the 

National Land Authority (NLA) of 

Rwanda. 

Aspect Different aspects can influence vegetation growth and soil 

moisture levels, impacting flood dynamics; for example, 

south-facing slopes may dry out faster than north-facing 

ones [36,57–59]. 

Extracted from DEM (10 m 

resolution) obtained from the 

National Land Authority (NLA) of 

Rwanda. 

Land cover Land cover influences the flow and accumulation of water. 

For instance, vegetation is important in reducing water 

runoff and enhancing soil infiltration, which helps mitigate 

flooding [60]. In contrast, impervious surfaces and barren 

or open land exacerbate flooding by accelerating water 

runoff and decreasing water infiltration [61]. 

Data were obtained from land cover 

map of the City of Kigali 

Normalized 

Difference Vegetation 

Index (NDVI) 

High NDVI values indicate dense vegetation that can 

absorb and slow water movement and mitigate flooding 

effects; low NDVI values suggest sparse vegetation cover 

correlating with higher flood susceptibility [62]. 

Extracted from Sentinel-2 satellite 

images. 

Normalized 

Difference Built-up 

Index (NDBI) 

High NDBI values indicate extensive urban development 

with impermeable surfaces that exacerbate flooding by 

increasing surface runoff during heavy rains [63]. 

Extracted from Sentinel-2 satellite 

images. 

Cumulative Rainfall Excessive cumulative rainfall can overwhelm drainage 

systems, particularly in areas with low drainage density or 

poor soil permeability, leading to increased flooding risks 

[64]. 

Computed from Climate Hazards 

Group Infrared Precipitation with 

Station (CHIRPS) data. 

Drainage Density Low drainage density can hinder effective water 

channeling during floods, increasing the likelihood of 

flooding in those areas [65]. 

Computed from drainage networks 

data obtained from the City of 

Kigali. 

Distance from 

drainage 

 

Areas that are close to drainage systems, including rivers 

and streams, are more prone to experience flooding in the 

event that the drainage system is overloaded with water 

[62]. 

Computed based on drainage 

network data obtained from the 

City of Kigali. We considered a 

distance of 10 m from each river and 

stream based on Law n°48/2018 of 

13/08/2018 on the environment in 

Rwanda [66]. 
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The min-max approach was used to normalize all factors to the range [0,1] after they were 

transformed to raster with a spatial resolution of 10m (Equation 1). 

Xnorm=
X-Xmin

Xmax-Xmin
  

       (1) 

Where X is the original value, Xnorm is the normalized value, Xmin is the dataset's minimal value, 

and Xmax is its highest value. This provides data ranging from 0 as low value and 1 as maximum value 

for all factors except for land cover, whereby low values represent class water class followed by forest, 

green spaces, and agricultural land toward built-up and bare land classes. Normalization is used in 

data analysis as a critical preprocessing step because the study used various datasets containing 

variables that were measured on different scales. Therefore, by applying normalization, all variables 

in datasets were transformed to a common scale to ensure that no single variable disproportionately 

influences the results due to its scale [67]. In addition, a correlation analysis was used to detect 

multicollinearity among these factors (Figure B2 in the Appendix B illustrates the correlation matrix 

for all factors). The goal of this correlation analysis was to identify and remove highly correlated 

factors that could adversely affect model performance and interpretation, leading to unreliable 

predictions [68]. Multicollinearity was quantified by correlation coefficient, which provides insight 

into the relationships between input factors. A correlation coefficient greater than 0.7 typically 

indicates a strong correlation, suggesting potential multicollinearity issues. Thus, any factor 

exceeding a correlation coefficient of 0.7 was not included. Figure 3 presents factors that were 

included in susceptibility modeling. The results on the correlation analysis are presented in Appendix 

B. 

 

Figure 3. Visualization of flood influencing factors: (a) Slope, (b) Elevation, (c) Aspect, (d) Drainage density, (e) 

Land cover, (f) NDVI, (g) NDBI, (h) Rainfall, (i) Distance to drainage. 
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2.2.3. Flood Susceptibility Estimation with Machine Learning Models 

Machine Learning models like Naïve Bayes (NB), K-Nearest Neighbors (KNN), Logistic 

Regression (LR), RF, SVM and XGBoost and ANN, have been widely used for analyzing and 

assessing natural hazards risks [25–28,30,69]. All models present advantages as well as 

disadvantages, and no single model is known to be the best generalized model for the assessment 

and analysis of hazard risks. Four machine learning models—RF, SVM, XGBoost, and Multilayer 

Perceptron (MLP)—were employed in this study. The choice of these models was guided by existing 

literature on modeling hazard risks, and which highlighted their ability to combine the raster images 

of environmental factors influencing flood occurrence [24]. These models are suitable for mapping 

flood susceptibility because they are able to learn complex and non-linear associations between 

various input data spatial data. Additionally, these models were selected based on the datasets that 

were locally available for the study. Accuracy, Precision, Recall, F1-Score, and the area under the 

receiver operating characteristic curve (AUC) were used to assess the performance of models. These 

metrics are widely used in machine learning to assess the performance of models, especially in 

classification tasks [24,25,30,35,68]. Each model was optimized using k-fold cross-validation and 

hyperparameter tuning. Consequently, flood susceptibility indices were obtained using the model 

that performed the best based on the evaluation metrics on the testing dataset. The obtained indices 

were used to create a map of flood susceptibility index, whereby for comprehensive visualization, 

indices obtained were grouped in intervals for ease based on the natural breaks classifying method. 

In addition, flood susceptibility was aggregated at neighborhood-level. This aggregation facilitates 

understanding of susceptibility at small administrative level, which help the framework to provide 

more actionable information required for local authorities and stakeholders to formulate targeted 

interventions [70].  

2.2.4. Mapping Socio-Economic Vulnerability to Flood 

Mapping of socio-economic vulnerability to natural hazards consisted of the selection of socio-

economic factors, data collection, data analysis/construction socio-economic vulnerability 

index/score, and socio-economic vulnerability mapping. Socio-economic indicators employed in this 

study were selected after a review of literature and available data sets. The indicators included are 

described in Table 2. 

Table 2. Socio-economic indicators. 

Categories Socio-economic 

Factors/indicators 

Description Data source 

Exposure 

sensitivity 

Population density Higher population density often leads to 

increased exposure to hazards such as 

flooding [6]. In densely populated regions, 

the concentration of individuals exacerbates 

the effects of these hazards, as more people 

are simultaneously affected by limited 

resources and emergency services during 

disasters [71]. 

Obtained from Worldpop a 

database for global population 

and their characteristics at high 

resolution. 
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Population below 5 years Young children are not physically able to 

resist during the flood event since their 

bodies adapt less efficiently than adults, 

increasing their risk during flood event 

[72].   

Obtained from Worldpop. 

Population above 65 

years 

Older people are particularly sensitive to 

natural hazards people are not physically 

able to resist during the flood event and are 

likely suffering from pre-existing health 

conditions that can be exacerbated by 

environmental factors, making them a high-

risk group during disasters [40]. 

Obtained from Worldpop. 

Adaptive 

capacity 

Road network  The road network is crucial for 

understanding human and socio-economic 

interactions, particularly in accessing 

essential services [73]. Access to road 

networks facilitates quicker responses 

during emergencies and enhances the 

overall adaptive capacity of communities 

[74]. 

Extracted from OpenStreetMap 

(OSM), a global open-source 

database where volunteers map 

geographic elements [75]. 

Access to primary 

healthcare facilities,  

Access to healthcare facilities enables 

quicker medical responses during disasters. 

When facilities are within reach, individuals 

can receive timely treatment for injuries or 

health issues that arise during emergencies 

[76]. Primary healthcare facilities serve as 

the initial point of entry for individuals 

seeking healthcare services.  

Computed from the spatial 

distribution of primary 

healthcare facilities available 

from the Ministry of Health of 

Rwanda and downloaded from 

the national spatial data 

geoportal. 

Points of interest (POIs) Socio-economic related POIs, including 

economic and social activities, were used to 

describe the availability of socio-economic 

activities across the city of Kigali [77]. In 

total, 804 POIs were extracted and grouped 

into eight categories, namely hospitality 

services, education, amenities, shopping 

centers, financial services, culture and 

recreation, auto services, and health. 

POIs were obtained from OSM.  

Following the selection of indicators and the collection of data for each indicator, the values were 

normalized using the Min-Max method (see equation 1), which results in values between 0 and 1, 
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with 0 denoting the lowest value and high denoting the highest value for each indicator. This allowed 

for the generation of comparable datasets. Figure 4 illustrates these normalized values and their 

geographic implications, providing a clear depiction of how various socio-economic factors 

contribute to overall vulnerability levels. 

 

Figure 4. Socio-economic factors/indicators: (a) population below 5 years, (b) population above 65 years, (c) 

Population density, (d) Point of interests, (e) Road network density, (f) Access to primary healthcare facilities. 

To construct a socio-economic vulnerability score, the study initially tried PCA, which is known 

as the best for avoiding expert bias while speeding up the process of the assessment [13]. To ensure 

that the available datasets were suitable for PCA, the study conducted the Kaiser-Meyer-Olkin 

(KMO) test. The results indicated that the datasets were not suitable for PCA whereby KMO was 

below 0.8, a threshold for which the PCA is considered reliable [78]. Benefitting from the flexibility 

of the proposed framework, the study employed an indicator-based approach to compute the socio-

economic vulnerability index as an alternative. The overall socio-economic vulnerability (SEVi) was 

calculated by combining flood susceptibility (FSi), sensitivity (Si), and adaptive capacity (ACi) into a 

unified index, following equation (2) adopted from [12]: 

SEVi = FSi + Si - ACi 

 

(2) 

Whereby sensitivity Si for each area i was calculated as the sum of the proportions of Popd, Pop<5, 

and Pop>65 represent the normalized proportions of the population density, population under 5 years 

and over 65 years in each area, respectively, given by equation (3) adopted from [10]: 

Si = Popd + 

Pop<5 + Pop>65 

           

(3) 

Adaptive capacity ACi was determined by access to key infrastructure and services that support 

community resilience to environmental hazards. Therefore, the adaptive capacity index was 

calculated by following equation (4): 

ACi = PHFi + 

POIi + RNi 

 

           

(4) 

Where PHFi, POIi, and RNi are the normalized values representing access to healthcare, the 

density of POIs, and road network infrastructure in area i. Obtained SEVi was normalized using 
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equation (1). Since flood susceptibility was aggregated at neighborhood level, socio-economic 

vulnerability was also aggregated at the same scale to keep spatial consistency, allow understanding 

of spatial distribution of vulnerability at small administrative unity for facilitating communication of 

information. 

2.2.5. Validation of Flood Susceptibility and Socio-Economic Vulnerability Maps 

The flood susceptibility map was validated against historical flood data by assessing the 

correspondence between identified susceptible areas and actual past flood events, as illustrated in 

Figure C1 of Appendix C. Additionally, the socio-economic vulnerability map was validated through 

comparative analysis with existing studies that have mapped socio-economic inequalities and 

poverty within the same study area. This validation process was further strengthened by referencing 

methodologies from other successful flood susceptibility modeling and socio-economic vulnerability 

assessments, ensuring adherence to established standards. Furthermore, qualitative validation was 

achieved through visual inspections and local knowledge, which helped confirm that the outputs 

were consistent with the area's social, economic, geographic, and environmental conditions. 

2.3. Scalability and Transferability of the Framework  

To evaluate whether the proposed framework is transferable, the study focused on historical 

flooding data from Kampala and Dar es Salaam, which were extracted from Sentinel-1 imagery, 

specifically targeting flood events that occurred between May 2019 and September 2020 in Kampala 

and October 2020 in Dar es Salaam (https://floodlist.com/africa, accessed on July 2024). To facilitate 

this analysis, Digital DEMs from the Shuttle Radar Topography Mission (SRTM) were utilized to 

derive essential topographic features, including slope, elevation, aspect, and drainage density. 

Furthermore, cumulative rainfall data were sourced from CHIRP, while land cover information was 

obtained from ESRI. The NDVI and NDBI were calculated using Sentinel-2 images. The scalability 

and transferability were limited to testing machine learning models and tuning and validation to 

ensure accurate predictions. 

Initially, the MLP model trained on data from Kigali was applied to predict flooding in both 

Kampala and Dar es Salaam. This step aimed to evaluate how the model can adapt to different 

geographical contexts. Following this initial application, the model trained on Kigali was fine-tuned 

by using subsets of data specific to Kampala and Dar es Salaam. This iterative process was aimed at 

learning how model capability improves while being exposed to local conditions through data 

variation for flood susceptibility mapping. Furthermore, the scalability of the proposed framework 

was evaluated by training MLP, SVM, RF, and XGBoost models in both cities, systematically splitting 

the available data into training (80%) and testing (20%) sets. This methodological approach allows 

for a comprehensive analysis of how effectively the framework can be adapted and applied across 

different urban contexts, even when the transferability is not well-suitable. 

4. Results and Discussion 

4.1. Flood Susceptibility Map 

The results presented in Table 3 indicate the performance of the model based on AUC, Accuracy, 

Precision, Recall, and F1-Score metrics. Figure 5 presents variation of AUC on test data for all models. 

The results show that the MLP model exhibits the best performance with an AUC of 0.902, indicating 

it has the highest ability to distinguish between positive and negative cases. This performance is 

complemented by its Accuracy of 0.85, meaning it accurately predicts 85% of cases. MLP also excels 

with a Precision score of 0.83. MLP also presents a high Recall of 0.90, indicating they are equally 

effective at capturing true positive cases. Finally, the MLP again outperforms others with an F1 Score 

of 0.86, reflecting its overall effectiveness in balancing precision and recall. Following closely, the 

SVM model demonstrates nearly equivalent performance to MLP, though it has slightly higher 

prediction errors. The RF model performs slightly behind SVM in terms of AUC but still shows 
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excellent classification ability, as witnessed by its metrics. Finally, the XGBoost model is marginally 

less effective than the other models, though its performance is still commendable. While all models 

show strong performance with minimal differences, making them all viable candidates for 

classification tasks, MLP stood out slightly in all metrics. Thus, it was selected as the best model and 

was applied to the entire study area to compute flood susceptibility. 

Table 3. Performance of Models Based on AUC, Accuracy, Precision, Recall, and F1-Score. 

Model AUC Accuracy Precision Recall F1-Score 

MLP 0.902 0.85 0.83 0.90 0.86 

SVM 0.885 0.82 0.79 0.90 0.84 

RF 0.884 0.80 0.78 0.87 0.82 

XGBoost 0.883 0.80 0.77 0.88 0.82 

 

Figure 5. The receiver operating characteristic curves (AUC) on the testing dataset for the models. 

While MLP and SVM demonstrate high performance, they are less interpretable and require 

additional methods to understand the factors that significantly contribute to their predictive 

capabilities. MLPs, like other artificial neural networks, are often regarded as black box models due 

to their complex architectures, which offer minimal inherent interpretability [79]. Similarly, the non-

linear kernel SVM model used in this study also lacks transparency and interpretability [80]. This 

makes their adoption to the domain application for decision makers very hard. In contrast, RF and 

XGBoost emerge as more interpretable models. Both models have a straightforward analysis of 

feature importance, allowing users to easily identify which features most significantly influence 
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predictions. Figures 6(a) and 6(b) illustrate the feature importance for RF and XGBoost, respectively. 

The results shown in these figures indicate that slope and elevation play crucial roles in predicting 

flood susceptibility across the City of Kigali. 

 

Figure 6. Features/factors importance score for (a) RF model, and (b) XGBoost model. 

Figure 7 also indicates partial dependence plots for slope and elevation for RF model. The results 

in the figure illustrates that for the slope, the predicted probability of the flooding is high for lower 

slope values but decreases sharply as the slope exceeds approximately 0.1, eventually stabilizing at 

higher values. While for Elevation, the figure indicates a strong negative relationship with the 

predicted outcome, where the probability is high at very low elevations but decreases substantially 

as elevation increases, remaining constant at higher elevation levels. 

 

Figure 7. partial dependence plots for slope and elevation (RF model). 

The result presented in Figure 8 (a) and (b) present flood susceptibility map generated using 

MLP model, and its respective aggregation at the neighborhood level. These results highlight part of 

the city with darker brown shades, which represent higher susceptibility to flooding, while lighter 

shades indicate lower susceptibility. The central and southern parts of the region show the highest 

susceptibility, which makes them more prone to flooding. On the contrary, the northern and 

northeastern parts show lower flood susceptibility. This result illustrates that the MLP model was 

able to identify areas with high flood susceptibility, which closely aligns with historically flooded 

locations. This model's strong predictive capabilities are rooted in its ability to map complex non-

linear relationships between environmental factors such as topography, land use, and hydrological 

conditions, as highlighted by [25,27,28]. By integrating diverse data inputs such as topography, land 
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use, and hydrological conditions, the model generates a comprehensive susceptibility map, which 

not only identifies high-risk zones but also provides critical insights for developing further actions 

targeted to protect the public against health risks associated with flood exposure. This ability of the 

model to predict flood susceptibility would allow decision-makers to enhance disaster preparedness, 

mitigate health risks, and implement community-level responses. Thus, the result emphasizes the 

need for targeted public health actions, as floods can significantly impact both physical infrastructure 

and public health by increasing the risk of waterborne diseases, injuries, and disruptions to healthcare 

access, as shown by malaria [14,81]. The resulting map would serve as a valuable tool for planners 

and public health officials, helping them prioritize flood prevention measures such as enhanced 

drainage systems, flood barriers, and land use regulations in high-risk areas while also guiding 

emergency preparedness and healthcare resource allocation. 

 

Figure 8. (a) Flood susceptibility map generated using MLP model. (b) Flood susceptibility aggregated at the 

neighborhood level. 

4.2. Socio-Economic Vulnerability Map  

The result presented in Figure 9 (a) and (b) present socio-economic vulnerability to flooding 

across the City of Kigali. They reveal how flood susceptibility, a prevalent environmental hazard in 

Kigali due to its hilly terrain and frequent heavy rainfall, disproportionately affects socio-

economically vulnerable populations. The darker shaded areas on the map represent higher socio-

economic vulnerability resulting from high flood susceptibility and sensitivity and with relatively 

low adaptive capacity. These areas are characterized by informal settlements, lower income levels, 

inadequate infrastructure, and limited access to essential services such as access to healthcare 

facilities, as highlighted [46,48]. In contrast, the central parts of Kigali, which exhibit lower 

vulnerability, benefit from improved urban planning, robust infrastructure, and more resilient 

housing, as shown by [43,47,49]. The spatial variation of socio-economic vulnerability across the city 

indicates that the presence a higher concentration of the population, especially young and elderly 

residents, reside in high-socio-economic vulnerable areas prone to flooding, such as next to wetlands 

or in informal settlements with poor drainage systems. These locations amplify the risks associated 

with heavy rainfall and flooding, potentially leading to catastrophic outcomes like property loss, 

displacement, and increased exposure to health hazards. 
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Figure 9. (a) Socio-economic vulnerability map generated using the Composite Index approach. (b) Socio-

economic vulnerability aggregated at the neighborhood level. 

Socio-economic vulnerability to flooding highlights the limited capacity to respond and recover 

from flooding and often leads to widespread health problems, including outbreaks of waterborne 

diseases such as cholera, typhoid, and dysentery [7,13]. Floodwaters can contaminate drinking water 

supplies and overwhelm already fragile sanitation systems, creating a favorable environment for 

disease transmission [51]. Moreover, stagnant water resulting from poor drainage systems can 

become a breeding ground for mosquitoes, increasing the incidence of vector-borne diseases like 

malaria [52]. Thus, in urban populations with less adaptive capacity, such as residents with limited 

socio-economic means and limited access to healthcare access, these health issues can escalate 

rapidly, with a lack of timely medical intervention exacerbating the situation [14,15]. To address these 

issues, public health and urban planning policy can benefit from highlighting socio-economic 

vulnerability to flood hazard. The solutions can be achieved by focusing on targeted interventions 

that combine socio-economic upliftment with flood mitigation. Public health strategies should aim to 

improve access to healthcare in vulnerable areas, particularly by equipping health facilities to 

respond to flood-related health crises. Urban planning policy should ensure more equitable urban 

development initiatives that integrate socio-economic and environmental data to reduce 

vulnerability to flooding across the city. This includes ensuring that infrastructure investments are 

distributed more evenly, focusing particularly on informal settlements and other highly vulnerable 

areas. By addressing the root causes of socio-economic vulnerability to flooding, such as poverty and 

lack of access to services, the city can mitigate the public health impacts of flood hazards like flooding, 

which not only enhances the city's resilience to climate change but also contributes to long-term 

improvements in public health outcomes. 

4.3. Scalability and Transferability 

First, the study applied models trained on Kigali data to make predictions in Kampala and Dar 

es Salaam; the AUC and MAE obtained are presented in Table 4. In Kampala, the XGBoost model 

achieved the highest AUC of 0.519 and a relatively low MAE of 0.484, whereas in Dar es Salaam, the 

MLP model had the highest AUC at 0.402 and an MAE of 0.523. This indicates that the models trained 

on the Kigali dataset struggled to generalize across different urban settings, highlighting the need for 

continuous refinement of machine learning algorithms by incorporating local data and expert 

knowledge into model training processes. As urban environments evolve and data becomes more 

accessible, leveraging this information can lead to improved predictive Accuracy for flood events, 

ultimately contributing to better urban planning and flood disaster management strategies. 
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Table 4. AUC and MAE values for Kampala and Dar es Salam. 

City Model AUC MAE 

Kampala MLP 0.475 0.511 

RF 0.473 0.530 

SVM 0.455 0.547 

XGBoost 0.519 0.484 

Dar es Salaam MLP 0.402 0.523 

RF 0.403 0.590 

SVM 0.447 0.535 

XGBoost 0.387 0.605 

Then we fine-tuned network weights of MLP, which performed well on Kigali using small sub-

sets of data from target cities (using 10%, 20%, 30%, 40%, and 50% of all available data for each city), 

performances reduced slightly to AUC of 0.491 and MAE of 0.520 for Kampala but improved slightly 

to AUC of 0.590 and MAE of 0.491 for Dar es Salaam. This lower performance of the employed models 

highlights potential limitations in their transferability, which can be due to the fact that cities are 

different in morphology and do not exhibit similar geographic/topographic characteristics. However, 

environmental conditions and urban dynamics differ significantly between cities [20,82]. For 

instance, all the cities used in this study to test the proposed framework exhibit different 

topographic/geographic patterns, socio-economic conditions, and climate. Thus, differences in the 

spatial distribution of flood hazard, infrastructure, or population density could affect model 

performance. Thus, the success of transferring models across cities may be constrained by variations 

in data availability, quality, or granularity.  

However, despite the difficulties of transferability of the machine learning model trained on 

Kigali to Kampala and Dar es Salaam, the framework itself demonstrated scalability whereby when 

we trained the machine learning models using data from each respective city, the results on the test 

set revealed better performance of the models as shown in figure 10 (a and b). Additionally, the 

framework is designed to incorporate various data sources and machine learning models, enabling 

it to be applied in diverse urban environments. Its architecture allows for the integration of city-

specific data, which shows its adaptability to different urban contexts. 
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Figure 10. The receiver operating characteristic curve (AUC) curves on the testing dataset for the models (a) 

Kampala and (b) Dar es Salaam (Source: Data analysis). 

4.4. Limitations of the Study 

The study assessed and mapped social-economic vulnerability related to flood hazards using an 

assessment framework that leverages machine learning and indicator-based approaches. The study 

used different spatial data that depict different spatial aspects of flood susceptibility and urban socio-

economic features. The results provide more targeted and accurate reference information for flood 

hazard adaptation and mitigation strategies. However, it should be noted that there are still 

limitations to its application: some additional variables associated with socio-economic vulnerability, 

such as education and income, were not included in this study since they were not available at a small 

scale in the study area. Although the above limitation exists in the current work, the proposed 

framework is designed to be flexible to allow application to areas with limited data. However, the 

availability of more data would provide more valuable outputs for supporting decision-making for 

planners and managers to positively deal with hazardous urban environments.  

5. Conclusions 

The effect of environmental hazards in urban areas has posed highly vulnerable situations for 

urban dwellers, especially dwellers with deprived socio-economic conditions. The vulnerability is 

highly accelerated by climate change, resulting in frequent extreme environmental hazards such as 

flooding, urban heat stress, and pollution. In this study, we proposed a scalable and transferable 

framework for mapping socio-economic vulnerability to urban environmental hazards in a data 

scarce urban environment. The framework integrates demographic and socio-economic factors, 

which are linked to remote sensing based urban environmental hazard factors using machine 

learning and spatial analysis. The framework was tested to map socio-economic vulnerability to 

flooding in the City of Kigali. Moreover, the scalability and transferability of the proposed framework 

were tested in Kampala, Uganda, and Dar es Salaam, Tanzania.  

The results of this study indicated that the central, south, and west parts of Kigali are highly 

susceptible to flooding events. However, the central part is subject to the less socio-economic 

vulnerability associated with flooding hazards based on their enhanced socio-economic conditions, 

which enable dwellers of this area to adapt to the hazard event. However, areas with less socio-

economic conditions are highly affected by flooding hazards. The results also indicate that the 

framework can be used to feature several hazards, allowing the assessment of socio-economic 

vulnerability related to multi-hazards in urban areas. Though the model trained in Kigali did not 

demonstrate efficient results when transferred to Kampala and Dar es Salaam, tuning the model with 

data portions from these respective cities improved efficiency, demonstrating the possibility of fine-

tuning models toward transferability. The results of this study demonstrated the potential of 

employing multi-sourced, freely accessible data for mapping socio-economic vulnerability to 

environmental hazards in urban settings, which is essential to control vulnerable populations and 

establish strategic planning toward having more livable cities. Moreover, strengthening the ability of 

medical service supply and reducing inequality is also an effective vulnerability reduction strategy. 
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Appendix A 

 

Figure A1. Spatial distribution of 456 flood events recorded between December 22, 2019, and December 25, 2019, 

across the City of Kigali. 

Appendix B 

Figure B1 illustrates the correlation matrix among environmental factors. The strength and 

direction of the correlations are represented by the color gradient, with red indicating strong positive 

correlations, blue for strong negative correlations, and lighter shades for weaker correlations. 
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Figure A2. Heatmap depicting the correlation matrix among environmental factors. (Note: Drainage d is 

distance to drainage). 

Appendix C 

Figure C1 presents the validation of flood susceptibility map generated in this study against 

historical flood data.  

 

Figure A3. Spatial distribution of flood events overlayed on flood susceptibility map. 
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