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Abstract: Urbanization and climate change are increasing the risks of natural hazards, particularly in
cities with significant socio-economic disparities. Existing hazard risk assessment frameworks often
neglect socio-economic dimensions, limiting their utility in addressing community-level
vulnerabilities. This study proposes an integrated machine learning and indicator-based framework
for assessing flood susceptibility and socio-economic vulnerability, with a focus on data-scarce
settings, using a case study of the City of Kigali. Socio-economic vulnerability was quantified through
a composite index incorporating sensitivity and adaptive capacity. Multisource data were integrated
and modeled using machine learning models, which included Multilayer Perceptron, Random
Forest, Support Vector Machine, and XGBoost. In terms of model performance, the MLP has achieved
high performance with an AUC score of 0.902 and F1-Score of 0.86. The results indicate intensified
vulnerability in central and southern Kigali, with noticeable socio-economic disadvantages and high
flood susceptibility. The resulting maps were validated using historical flood data, other socio-
economic studies in the area, and local knowledge. The scalability of the framework was evaluated
in Kampala, Uganda, and Dar es Salaam, Tanzania, demonstrating scalability with context-specific
adaptations. This approach offers a robust methodology for integrating flood susceptibility and
socio-economic vulnerability, enabling data-driven prioritization of interventions. The findings
contribute to advancing urban resilience strategies, particularly in regions constrained by limited
data availability.

Keywords: socio-economic vulnerability; susceptibility; flood hazard; machine learning; framework

1. Introduction

Urbanization and climate change are significantly impacting human health, socio-economic
stability, and sustainability. Urbanization, the process resulting from the increase in urban residents
and expansion of the built-up areas, is often driven by economic opportunities and improved living
standards, including access to employment, education, and healthcare [1]. However, many urban
residents, particularly in the Global South, face critical challenges, such as inadequate housing,
contaminated water, insufficient sanitation, and poor waste management [2]. The rapid urbanization

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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has outpaced the capacity of urban planning processes to effectively address these challenges,
exacerbating risks faced by urban residents [3]. With the frequent occurrence of natural hazards
induced by climate change, rapid urbanization exacerbates various risks, which lead to adverse
outcomes from exposure to natural hazards plus the vulnerabilities inherent in the affected urban
population [4]. In this context, risk is understood as an outcome of the interaction between natural
hazard, exposure, and vulnerability [5]. Therefore, extreme natural physical events that result in loss
of lives, injuries, or other health effects, as well as harm to property, infrastructure, livelihoods, and
ecosystems, are referred to as natural hazards [6]. For instance, because of their physical positions
and the concentration of human activity, urban areas are vulnerable to hazards like storms, floods,
and cyclones. The consequences of such hazards can be devastating, leading to loss of lives and
economic disruptions in essential services. Exposure to hazards describes the degree to which urban
residents are subjected to these hazardous events [5]. In rapidly growing cities, factors such as high
population density associated with inadequate infrastructure and informal settlements often make
their residents vulnerable, particularly during extreme weather events [7].

Vulnerability in this study is defined as the predisposition to suffer adverse effects from
exposure to natural hazards, as expressed by the Intergovernmental Panel on Climate Change (IPCC)
[8]. Vulnerability encompasses several dimensions, including physical, social, economic, and
attitudinal vulnerability [9]. Physical vulnerability refers to the direct harm, like injuries or fatalities,
caused by hazards such as extreme weather [9]. Social vulnerability refers to the increased risk from
natural hazards due to factors like demographic characteristics (age, gender, level of education),
community cohesion, and resource access [10]. The economic vulnerability involves the financial
losses from hazards and the resources available for recovery, while attitudinal vulnerability
highlights how attitudes and behaviors can affect preparedness and response [11,12]. In this study,
the primary focus is on social and economic vulnerability, as these dimensions are critical for
understanding how different individuals or groups experience and cope with natural hazards. The
choice of these dimensions is influenced by the fact that vulnerability is also understood further
through three interrelated components: sensitivity, susceptibility, and adaptive capacity [5,13].
Sensitivity reflects how severely a community or individual is affected by changes brought about by
hazards [8]. For instance, populations with limited access to healthcare facilities and services may
suffer more profoundly during health crises or natural disasters [14,15]. Susceptibility denotes
inherent weaknesses that predispose communities or individuals to adverse effects; for example, low-
income groups or poorest communities may lack resources or social support systems that could
mitigate harm during emergencies [8]. Adaptive capacity is a critical aspect of vulnerability that
describes the ability of communities or individuals to adjust in response to harmful events or mitigate
potential damage [8,16]. This capacity is influenced by various factors, including socio-economic
status [7]. In this regard, urban areas with strong socio-economic status are frequently better able to
respond to and adapt to hazards.

Urban socio-economically deprived individuals and communities often reside in areas prone to
natural hazards, which significantly heightens their exposure to various risks [7]. This exposure is
especially hazardous because these populations often possess limited capacity for mitigation or
adaptation, rendering them highly vulnerable to natural hazards [16]. Natural hazards occurrence is
becoming more frequent and more severe as urbanization and climate change continue to grow. This
occurrence poses a severe threat to public health, particularly in Global South areas with high socio-
economic sensitivity and poor adaptive capacity [17]. Understanding socio-economic vulnerability
associated with the climate change related hazards is crucial for developing effective strategies aimed
at preventing risks and mitigating damages caused by natural hazards toward enhanced socio-
economic conditions and public health outcomes [7,10]. However, this understanding is missing due
to the high reliance on extensive data that is often unavailable in many cities of the Global South.
Consequently, the assessment of socio-economic vulnerability to natural hazards is frequently
ignored despite its importance to identify how natural hazards affect the urban population [7,18].
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Countries in the Global South lack the required data for assessing socio-economic vulnerability
to natural hazards, which complicates their ability to implement effective disaster risk reduction
strategies [19]. One of the primary issues is the lack of comprehensive and reliable data, which is
critical for understanding the socio-economic conditions of vulnerable populations [20]. Many areas
do not have systematic data collection mechanisms, leading to gaps in information regarding
population demographics, income levels, health outcomes, and access to basic services [19]. This
absence of data hinders the development of accurate vulnerability assessments and makes it difficult
for policymakers to identify the most at-risk communities and tailor interventions accordingly [21].
Moreover, the quality of available data is often questionable. In many cases, existing data are
outdated or incomplete, failing to capture the changing socio-economic conditions. For instance,
socio-economic data of informal settlement dwellers are often not included in national statistics,
leading to an underestimation of the risks faced by their residents [21]. In this regard, reliance on
national-level data obscures local vulnerabilities, as small spatial scale disparities in socio-economic
conditions and exposure to hazards are not adequately represented at large spatial scales.
Additionally, socio-political factors further complicate the data collection efforts. In many Global
South countries, political instability, corruption, and inadequate governance can impede effective
data gathering and sharing [22]. Furthermore, the data challenge results from a lack of political will
to prioritize socio-economic vulnerability in risk assessment and management or a lack of budget for
data collection initiatives [22]. As natural hazards become more prevalent in urban areas, reliable
data is needed to support risk assessments and adaptation strategies.

Recent advancements in technology offer potential solutions to data challenges. Remote sensing
and machine learning techniques have shown a promising capacity to obtain and process large-scale
datasets for hazard modeling. Several studies have applied these technologies to address various
urban challenges such as flooding, landslides, and gullies development in urban areas. For instance,
[7,23,24] have use remote sensing-based satellite imagery in combination with machine learning for
measuring flood susceptibility. Refs. [25-28] applied machine learning to evaluate multi-hazards
including flooding and landslides. Despite these advancements, most of the studies utilizing remote
sensing and machine learning have primarily focused on hazard assessment rather than integrating
socio-economic vulnerability into their risk frameworks. While few studies have attempted this
integration ([12,13,29,30]), they often develop approaches and frameworks tailored to specific input
data sets and localized areas, which limits their broader applicability in both data-rich and data-
scarce regions. This underscores the need for new approaches that can bridge the gap between hazard
modeling and socio-economic vulnerability assessment.

Therefore, this study proposed a flexible and scalable framework for mapping socio-economic
vulnerability to natural hazards in urban areas, specifically designed to support more effective and
equitable public health interventions in data-scarce urban environments. The significance of this
research lies in its potential to address gaps in understanding how socio-economic factors influence
vulnerability to natural hazards, particularly in rapidly urbanizing regions of the Global South. By
focusing on the City of Kigali, the proposed framework was applied to map flood susceptibility and
socio-economic vulnerability to flooding. The obtained maps were locally validated through a
combination of historical flood data comparison, comparative analysis with existing socio-economic
studies, adherence to established methodologies, and qualitative assessments using local knowledge.
In order to evaluate the scalability of the proposed framework and enable comparative analysis
across several urban contexts, it was applied to the cities of Dar es Salaam, and Kampala, in Tanzania
and Uganda, respectively. The results derived from this study contribute to a deeper understanding
of socio-economic vulnerabilities in urban areas prone to natural hazards, ultimately informing
policy decisions and resource allocation for targeted interventions for enhanced resilience and
improved public health outcomes.

This paper is structured in the following manner: materials and methods for this study are
presented in the next part, which also gives a summary of the proposed framework and how it was
utilized to map Kigali's socioeconomic susceptibility to floods. This is followed by a section on the
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scalability and transferability of the proposed framework, which highlights its relevance in different
urban settings. The results and discussion section present key findings and their implications, and
limitations of the study. Finally, a concluding section summarizes the results and emphasizes the
importance of the study and integration of socio-economic vulnerability assessments into urban
planning and disaster risk management strategies.

2. Materials and Methods

2.1. Description of the Proposed Framework

The proposed framework is a result of a review of recent research on hazard risk modeling and
mapping and socio-economic vulnerability assessment [7,12,18,24,28,30-34]. As seen in Figure 1, the
framework is composed of three primary components. The first component, which is shown in blue
on the left side of Figure 1, consists of measuring hazard susceptibility by combining machine
learning models with data from remote sensing. This component enables users to model
susceptibility for one or multiple hazards by leveraging data that is readily available for the area of
interest. The flexibility inherent in this component allows practitioners to select the most suitable
machine learning algorithms depending on the specific characteristics of geographical area, the
hazards being modeled, and available data. Various machine learning methods, including Random
Forest (RF), Gradient-Boosted Decision Trees (XGBoost), Support Vector Machines (SVM), and
Artificial Neural Networks (ANN), have demonstrated good performance in hazard susceptibility
assessments in various studies [23,24,35-38]. The application of these models facilitates an
understanding of hazard dynamics.

The second component, presented in green on the Figure 1’s right side, involves analyzing socio-
economic data to evaluate socio-economic vulnerability. This component emphasizes the use of
diverse socio-economic indicators and multivariate analysis techniques, such as regression models,
Principal Component Analysis (PCA), Analytic Hierarchy Process (AHP), and Composite Indicator
(CI) approaches [10,33,39]. These methodologies enable to quantify sensitivity and adaptive capacity
effectively. The final component, represented at the bottom in orange, creates a socio-economic
vulnerability index by combining hazard susceptibility with quantified sensitivity and adaptive
capacity. This combination is crucial for assessing and mapping socio-economic vulnerability
associated with natural hazards, as demonstrated by various studies [7,9,13,40]. Therefore, the
proposed framework would support the development of effective hazard management strategies and
inform policy decisions aimed at enhancing community resilience.

Socio-economic indicators for
Adaptive Capacity (eg: income,
education, infrastructure, ...)

indicators (eg: population density,

MNatural hazard (eg: flood, cyclone,
elderly population, ...)

Socio-economic sensitivity
carthquake, landshide, ...)

cm ; Multivariate Analyjﬁ]s Techniques (eg:
Hlstomall damé‘m el PCA, AHP,...) or Indicator-based
s approachs (eg: CL,...)

Influencing factors (eg: heavy
rainfall, drainage density,
elevation, land use, ...)

Train and Evaluate ML models (eg:
Logistic Regression, RF, XGBoost, SVM
and ANN,...)

Adaptive Capacity (AC)

‘ Sensitivity (S;) ‘

‘ Best ML model

[ Hazard susceptibility (FHSj) (SEV;=HS, +S,-AC)
; i=HS;+S;-AC;

Socio-economic vulnerability

‘ Hazard map Socio-economic vulnerability map ‘

Figure 1. Proposed framework for mapping urban socio-economic vulnerability to natural hazards.
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2.2. Application of the Proposed Framework to Mapping Socio-Economic Vulnerability to Flooding in the
City of Kigali

The case study of the City of Kigali, Rwanda, where flooding is a frequent natural hazard, was
used to evaluate the proposed framework. The following sections present the case study area, a
description of the data used and their sources, historical flooding data, data about factors influencing
floods, and socio-economic data. These are followed by the estimation of flood susceptibility by
training and testing various machine learning models. The best-performing model was used to obtain
the flood susceptibility index. Additionally, the study applied Indicator-based approaches to
compute Sensitivity and Adaptive Capacity using socio-economic data. The obtained result was
finally used to compute and map socio-economic vulnerability to flooding by integrating flood
susceptibility. Details on each step are presented in the following sections.

2.2.1. Description of City of Kigali

The City of Kigali is the largest city of Rwanda, and serves as the capital and focal point of
economic activities. In terms of administration, the City of Kigali is comprised of three districts
(Figure 1), which are further subdivided into 35 sectors, which account for 161 cells and 1,176 villages.
The village represents the lowest and smallest administrative unit, which is referred to neighborhood
in this study [41]. Located near the geographic center of the country, Kigali is a city that is exhibiting
rapid urban growth and economic transformation. Spanning over 730 square kilometers, it is home
to more than 1.7 million people and is pivotal to Rwanda's socio-economic landscape [41]. The city
exhibits a diverse array of land-use types, including commercial, residential, industrial, agricultural,
and public facilities, alongside wetlands and water bodies [42]. Over the past two decades, Kigali has
undergone significant urban expansion and development. The city has seen a rapid increase in built-
up areas whereby the urban landscape is a mosaic of modern high-rise buildings, residential
neighborhoods, commercial zones, and informal settlements [43,44]. This is particularly true in the
urban central core, where continuous modernization is observed through the presence of modern
buildings and upgraded road networks. This rapid urbanization has often outpaced the development
of adequate infrastructure [45]. Consequently, majority of informal settlements are frequently found
in the most vulnerable areas, which are highlighted by Kigali’s urban fabric and include steep
hillsides and flood-prone valleys [42]. These areas lack proper sanitation, drainage, and other basic
services, exacerbating the vulnerability of their residents to natural hazards [46]. Despite significant
economic progress, substantial socio-economic inequalities persist, with large segments of the
population living in poverty [43,47]. Many residents, particularly those living in informal settlements,
do not have access to essential services including sanitation facilities, clean water, and healthcare
[46,48]. These socio-economic disparities mean that the poorest and most vulnerable populations are
disproportionately affected by natural hazards. They often reside in the most at-risk areas and have
the least capacity to recover from adverse events, creating a cycle of vulnerability and poor health
outcomes.

Kigali's geography is characterized by its hills and valleys, with elevations ranging from
approximately 1,300 meters to over 1,600 meters above sea level, which influences the city's drainage
patterns [42]. The steep slopes accelerate water flows, resulting in a higher volume of water that
accumulates in valleys, which, when combined with seasonal severe rainfalls, frequently leads to
flooding [49]. Flooding in Kigali, like in other areas, is a complex natural hazard characterized by the
overflow of water beyond its normal limits, often resulting from heavy and prolonged rainfall [50].
Flooding is particularly noticeable in urban areas due to rapid urban growth, which has reduced
vegetation cover and increased impervious surfaces and runoff, and hence exacerbating the risk of
flooding in places with lower elevation. Furthermore, the combination of increased surface runoff
due to urbanization and inadequate drainage systems hinders groundwater recharge and leads to
the accumulation of excess water during rain events [51].


https://doi.org/10.20944/preprints202502.0241.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 February 2025 d0i:10.20944/preprints202502.0241.v1

6 of 25

City of Kigali

Rwanda s t

. 2 T %
o & & & K {
‘,\J \ [ City of Kigali boundary
o \ & ? o | O District boundary
¥ kil | EZ2 Densely built-up area
b o | &° A / Urbanized areas
A ~7 N “u / Zone under urbanization

WA o s Okiometes g [ Rural areas

Figure 2. Location map of the City of Kigali. Data source: National Land Authority, National Institute of
Statistics of Rwanda, and Ministry of Infrastructure

The consequences of flooding in Kigali, like in other urban areas, are severe and multifaceted.
Immediate impacts include loss of life and destruction of buildings, utilities, roads, bridges, and other
infrastructure. Additionally, flooding can compromise water supply systems, increasing exposure to
contaminated water and facilitating the spread of infectious diseases such as dengue, malaria,
measles, meningitis, and typhoid [52]. Furthermore, flooding impacts individuals with chronic health
conditions by damaging critical infrastructure and creating barriers to accessing essential health
services [14,15].

2.2.2. Overview of Data

The study used a data-driven approach following the proposed framework to map socio-
economic vulnerability to flooding for public health interventions in Kigali. In the City of Kigali,
historical flood data has not been recorded as geospatial data, making it challenging to extract
geospatial flood information directly from reports. To overcome this, data on previous floods was
extracted using Synthetic Aperture Radar (SAR) imagery from Sentinel-1 using the same methods as
studies for flood modeling [53,54]. Based on flood incidents reported by the Rwandan Ministry in
Charge of Emergency Management, two SAR images were selected: one acquired prior to a period of
heavy rainfall on December 22, 2019, and the other taken following a flood event on December 25,
2019. Image ratioing and Otsu's thresholding methods [55] were applied to detected and delineate
floodwater, from which 456 flood points and 484 non-flood points were randomly generated (A
figure illustrating their distribution is a presented in Figure A1l in Appendix A). These were divided
into 80% training and 20% testing datasets. Non-flooded points were assigned a value of 0, whereas
the target class value points were given a value of 1. In addition, nine flood-influencing factors were
identified after a review of various studies on flood susceptibility assessment and considering the
geographic appearances of the study area. Table 1 describes the factors that influence floods and the
associated data sources used in this study.
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Table 1. Flood influencing factors.

Flood-Influencing Description Data source

Factor

Elevation Lower elevation areas are more prone to water Extracted from DEM (10 m
accumulation, which increases the likelihood of flooding, resolution) obtained from the
while higher elevations typically experience less flooding  National Land Authority (NLA) of
as water drains downhill [56]. Rwanda.

Slope Moderate slopes may lead to water accumulation, Extracted from DEM (10 m
increasing flood risk, while steep slopes promote rapid resolution) obtained from the
runoff, potentially resulting in flash floods [56]. National Land Authority (NLA) of

Rwanda.

Aspect Different aspects can influence vegetation growth and soil =~ Extracted from DEM (10 m
moisture levels, impacting flood dynamics; for example, resolution) obtained from the
south-facing slopes may dry out faster than north-facing National Land Authority (NLA) of
ones [36,57-59]. Rwanda.

Land cover Land cover influences the flow and accumulation of water.  Data were obtained from land cover
For instance, vegetation is important in reducing water —map of the City of Kigali
runoff and enhancing soil infiltration, which helps mitigate
flooding [60]. In contrast, impervious surfaces and barren
or open land exacerbate flooding by accelerating water
runoff and decreasing water infiltration [61].

Normalized High NDVI values indicate dense vegetation that can Extracted from Sentinel-2 satellite

images.

Index (NDVI) effects; low NDVI values suggest sparse vegetation cover
correlating with higher flood susceptibility [62].
Normalized High NDBI values indicate extensive urban development Extracted from Sentinel-2 satellite
Difference  Built-up with impermeable surfaces that exacerbate flooding by images.
Index (NDBI) increasing surface runoff during heavy rains [63].

Cumulative Rainfall

Excessive cumulative rainfall can overwhelm drainage
systems, particularly in areas with low drainage density or
poor soil permeability, leading to increased flooding risks

[64].

Computed from Climate Hazards
Group Infrared Precipitation with

Station (CHIRPS) data.

Drainage Density

Low drainage density can hinder effective water
channeling during floods, increasing the likelihood of

flooding in those areas [65].

Computed from drainage networks
data obtained from the City of

Kigali.

Distance from

drainage

Areas that are close to drainage systems, including rivers
and streams, are more prone to experience flooding in the
event that the drainage system is overloaded with water

[62].

Computed based on drainage
network data obtained from the
City of Kigali. We considered a
distance of 10 m from each river and
stream based on Law n°48/2018 of
13/08/2018 on the environment in

Rwanda [66].

reprints202502.0241.v1
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The min-max approach was used to normalize all factors to the range [0,1] after they were

transformed to raster with a spatial resolution of 10m (Equation 1).
X, = Awin

o Xmax'Xmin (1)

Where X is the original value, Xnom is the normalized value, Xmin is the dataset's minimal value,
and Xmax is its highest value. This provides data ranging from 0 as low value and 1 as maximum value
for all factors except for land cover, whereby low values represent class water class followed by forest,
green spaces, and agricultural land toward built-up and bare land classes. Normalization is used in
data analysis as a critical preprocessing step because the study used various datasets containing
variables that were measured on different scales. Therefore, by applying normalization, all variables
in datasets were transformed to a common scale to ensure that no single variable disproportionately
influences the results due to its scale [67]. In addition, a correlation analysis was used to detect
multicollinearity among these factors (Figure B2 in the Appendix B illustrates the correlation matrix
for all factors). The goal of this correlation analysis was to identify and remove highly correlated
factors that could adversely affect model performance and interpretation, leading to unreliable
predictions [68]. Multicollinearity was quantified by correlation coefficient, which provides insight
into the relationships between input factors. A correlation coefficient greater than 0.7 typically
indicates a strong correlation, suggesting potential multicollinearity issues. Thus, any factor
exceeding a correlation coefficient of 0.7 was not included. Figure 3 presents factors that were
included in susceptibility modeling. The results on the correlation analysis are presented in Appendix
B.

(h)

Figure 3. Visualization of flood influencing factors: (a) Slope, (b) Elevation, (c) Aspect, (d) Drainage density, (e)
Land cover, (f) NDVI, (g) NDBI, (h) Rainfall, (i) Distance to drainage.
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2.2.3. Flood Susceptibility Estimation with Machine Learning Models

Machine Learning models like Naive Bayes (NB), K-Nearest Neighbors (KNN), Logistic
Regression (LR), RF, SVM and XGBoost and ANN, have been widely used for analyzing and
assessing natural hazards risks [25-28,30,69]. All models present advantages as well as
disadvantages, and no single model is known to be the best generalized model for the assessment
and analysis of hazard risks. Four machine learning models—RF, SVM, XGBoost, and Multilayer
Perceptron (MLP)—were employed in this study. The choice of these models was guided by existing
literature on modeling hazard risks, and which highlighted their ability to combine the raster images
of environmental factors influencing flood occurrence [24]. These models are suitable for mapping
flood susceptibility because they are able to learn complex and non-linear associations between
various input data spatial data. Additionally, these models were selected based on the datasets that
were locally available for the study. Accuracy, Precision, Recall, F1-Score, and the area under the
receiver operating characteristic curve (AUC) were used to assess the performance of models. These
metrics are widely used in machine learning to assess the performance of models, especially in
classification tasks [24,25,30,35,68]. Each model was optimized using k-fold cross-validation and
hyperparameter tuning. Consequently, flood susceptibility indices were obtained using the model
that performed the best based on the evaluation metrics on the testing dataset. The obtained indices
were used to create a map of flood susceptibility index, whereby for comprehensive visualization,
indices obtained were grouped in intervals for ease based on the natural breaks classifying method.
In addition, flood susceptibility was aggregated at neighborhood-level. This aggregation facilitates
understanding of susceptibility at small administrative level, which help the framework to provide
more actionable information required for local authorities and stakeholders to formulate targeted
interventions [70].

2.2.4. Mapping Socio-Economic Vulnerability to Flood

Mapping of socio-economic vulnerability to natural hazards consisted of the selection of socio-
economic factors, data collection, data analysis/construction socio-economic vulnerability
index/score, and socio-economic vulnerability mapping. Socio-economic indicators employed in this
study were selected after a review of literature and available data sets. The indicators included are
described in Table 2.

Table 2. Socio-economic indicators.

Categories  Socio-economic Description Data source

Factors/indicators
Exposure Population density Higher population density often leads to Obtained from Worldpop a
sensitivity increased exposure to hazards such as database for global population

flooding [6]. In densely populated regions, and their characteristics at high
the concentration of individuals exacerbates  resolution.

the effects of these hazards, as more people

are simultaneously affected by limited

resources and emergency services during

disasters [71].
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Population below 5 years

Young children are not physically able to
resist during the flood event since their
bodies adapt less efficiently than adults,
increasing their risk during flood event

[72].

Obtained from Worldpop.

Population above 65

years

Older people are particularly sensitive to
natural hazards people are not physically
able to resist during the flood event and are
likely suffering from pre-existing health
conditions that can be exacerbated by
environmental factors, making them a high-

risk group during disasters [40].

Obtained from Worldpop.

Adaptive Road network

capacity

The road network is crucial for

understanding human and socio-economic
interactions, particularly in accessing
essential services [73]. Access to road
networks facilitates quicker responses
during emergencies and enhances the
overall adaptive capacity of communities

[74].

Extracted from OpenStreetMap
(OSM), a global open-source
database where volunteers map

geographic elements [75].

Access to primary

healthcare facilities,

Access to healthcare facilities enables
quicker medical responses during disasters.
When facilities are within reach, individuals
can receive timely treatment for injuries or
health issues that arise during emergencies
[76]. Primary healthcare facilities serve as

the initial point of entry for individuals

seeking healthcare services.

Computed from the spatial
distribution of primary
healthcare facilities available
from the Ministry of Health of
Rwanda and downloaded from
data

the national spatial

geoportal.

Points of interest (POls)

Socio-economic related POlIs, including
economic and social activities, were used to
describe the availability of socio-economic
activities across the city of Kigali [77]. In
total, 804 POIs were extracted and grouped
into eight categories, namely hospitality
services, education, amenities, shopping
culture and

centers, financial services,

recreation, auto services, and health.

POIs were obtained from OSM.

Following the selection of indicators and the collection of data for each indicator, the values were

normalized using the Min-Max method (see equation 1), which results in values between 0 and 1,

reprints202502.0241.v1
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with 0 denoting the lowest value and high denoting the highest value for each indicator. This allowed
for the generation of comparable datasets. Figure 4 illustrates these normalized values and their
geographic implications, providing a clear depiction of how various socio-economic factors
contribute to overall vulnerability levels.

(@) (b)

High - 1

Low:0

(d) (e)

Figure 4. Socio-economic factors/indicators: (a) population below 5 years, (b) population above 65 years, (c)

Population density, (d) Point of interests, (e) Road network density, (f) Access to primary healthcare facilities.

To construct a socio-economic vulnerability score, the study initially tried PCA, which is known
as the best for avoiding expert bias while speeding up the process of the assessment [13]. To ensure
that the available datasets were suitable for PCA, the study conducted the Kaiser-Meyer-Olkin
(KMO) test. The results indicated that the datasets were not suitable for PCA whereby KMO was
below 0.8, a threshold for which the PCA is considered reliable [78]. Benefitting from the flexibility
of the proposed framework, the study employed an indicator-based approach to compute the socio-
economic vulnerability index as an alternative. The overall socio-economic vulnerability (SEVi) was
calculated by combining flood susceptibility (FSi), sensitivity (Si), and adaptive capacity (ACi) into a
unified index, following equation (2) adopted from [12]:

SEVi = FSi + Si - ACi (2)

Whereby sensitivity Si for each area i was calculated as the sum of the proportions of Popd, Pop<s,
and Pop»es represent the normalized proportions of the population density, population under 5 years
and over 65 years in each area, respectively, given by equation (3) adopted from [10]:

Si = Popsa +
Pop<s + Pop>65 (3)

Adaptive capacity ACi was determined by access to key infrastructure and services that support
community resilience to environmental hazards. Therefore, the adaptive capacity index was
calculated by following equation (4):

ACi = PHFi +
POI; + RN )

Where PHF;, POI, and RNi are the normalized values representing access to healthcare, the
density of POIs, and road network infrastructure in area i. Obtained SEV: was normalized using
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equation (1). Since flood susceptibility was aggregated at neighborhood level, socio-economic
vulnerability was also aggregated at the same scale to keep spatial consistency, allow understanding
of spatial distribution of vulnerability at small administrative unity for facilitating communication of
information.

2.2.5. Validation of Flood Susceptibility and Socio-Economic Vulnerability Maps

The flood susceptibility map was validated against historical flood data by assessing the
correspondence between identified susceptible areas and actual past flood events, as illustrated in
Figure C1 of Appendix C. Additionally, the socio-economic vulnerability map was validated through
comparative analysis with existing studies that have mapped socio-economic inequalities and
poverty within the same study area. This validation process was further strengthened by referencing
methodologies from other successful flood susceptibility modeling and socio-economic vulnerability
assessments, ensuring adherence to established standards. Furthermore, qualitative validation was
achieved through visual inspections and local knowledge, which helped confirm that the outputs
were consistent with the area's social, economic, geographic, and environmental conditions.

2.3. Scalability and Transferability of the Framework

To evaluate whether the proposed framework is transferable, the study focused on historical
flooding data from Kampala and Dar es Salaam, which were extracted from Sentinel-1 imagery,
specifically targeting flood events that occurred between May 2019 and September 2020 in Kampala
and October 2020 in Dar es Salaam (https://floodlist.com/africa, accessed on July 2024). To facilitate
this analysis, Digital DEMs from the Shuttle Radar Topography Mission (SRTM) were utilized to
derive essential topographic features, including slope, elevation, aspect, and drainage density.
Furthermore, cumulative rainfall data were sourced from CHIRP, while land cover information was
obtained from ESRI. The NDVI and NDBI were calculated using Sentinel-2 images. The scalability
and transferability were limited to testing machine learning models and tuning and validation to
ensure accurate predictions.

Initially, the MLP model trained on data from Kigali was applied to predict flooding in both
Kampala and Dar es Salaam. This step aimed to evaluate how the model can adapt to different
geographical contexts. Following this initial application, the model trained on Kigali was fine-tuned
by using subsets of data specific to Kampala and Dar es Salaam. This iterative process was aimed at
learning how model capability improves while being exposed to local conditions through data
variation for flood susceptibility mapping. Furthermore, the scalability of the proposed framework
was evaluated by training MLP, SVM, RF, and XGBoost models in both cities, systematically splitting
the available data into training (80%) and testing (20%) sets. This methodological approach allows
for a comprehensive analysis of how effectively the framework can be adapted and applied across
different urban contexts, even when the transferability is not well-suitable.

4. Results and Discussion
4.1. Flood Susceptibility Map

The results presented in Table 3 indicate the performance of the model based on AUC, Accuracy,
Precision, Recall, and F1-Score metrics. Figure 5 presents variation of AUC on test data for all models.
The results show that the MLP model exhibits the best performance with an AUC of 0.902, indicating
it has the highest ability to distinguish between positive and negative cases. This performance is
complemented by its Accuracy of 0.85, meaning it accurately predicts 85% of cases. MLP also excels
with a Precision score of 0.83. MLP also presents a high Recall of 0.90, indicating they are equally
effective at capturing true positive cases. Finally, the MLP again outperforms others with an F1 Score
of 0.86, reflecting its overall effectiveness in balancing precision and recall. Following closely, the
SVM model demonstrates nearly equivalent performance to MLP, though it has slightly higher
prediction errors. The RF model performs slightly behind SVM in terms of AUC but still shows
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excellent classification ability, as witnessed by its metrics. Finally, the XGBoost model is marginally
less effective than the other models, though its performance is still commendable. While all models
show strong performance with minimal differences, making them all viable candidates for
classification tasks, MLP stood out slightly in all metrics. Thus, it was selected as the best model and
was applied to the entire study area to compute flood susceptibility.

Table 3. Performance of Models Based on AUC, Accuracy, Precision, Recall, and F1-Score.

Model AUC Accuracy Precision Recall F1-Score
MLP 0.902 0.85 0.83 0.90 0.86
SVM 0.885 0.82 0.79 0.90 0.84
RF 0.884 0.80 0.78 0.87 0.82
XGBoost 0.883 0.80 0.77 0.88 0.82
10 N 7
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False Positive Rate

Figure 5. The receiver operating characteristic curves (AUC) on the testing dataset for the models.

While MLP and SVM demonstrate high performance, they are less interpretable and require
additional methods to understand the factors that significantly contribute to their predictive
capabilities. MLPs, like other artificial neural networks, are often regarded as black box models due
to their complex architectures, which offer minimal inherent interpretability [79]. Similarly, the non-
linear kernel SVM model used in this study also lacks transparency and interpretability [80]. This
makes their adoption to the domain application for decision makers very hard. In contrast, RF and
XGBoost emerge as more interpretable models. Both models have a straightforward analysis of
feature importance, allowing users to easily identify which features most significantly influence
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predictions. Figures 6(a) and 6(b) illustrate the feature importance for RF and XGBoost, respectively.
The results shown in these figures indicate that slope and elevation play crucial roles in predicting
flood susceptibility across the City of Kigali.
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Figure 6. Features/factors importance score for (a) RF model, and (b) XGBoost model.

Figure 7 also indicates partial dependence plots for slope and elevation for RF model. The results
in the figure illustrates that for the slope, the predicted probability of the flooding is high for lower
slope values but decreases sharply as the slope exceeds approximately 0.1, eventually stabilizing at
higher values. While for Elevation, the figure indicates a strong negative relationship with the
predicted outcome, where the probability is high at very low elevations but decreases substantially
as elevation increases, remaining constant at higher elevation levels.

Partial Dependence of Slope Partial Dependence of Elevation

Partial Dependence

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 7. partial dependence plots for slope and elevation (RF model).

The result presented in Figure 8 (a) and (b) present flood susceptibility map generated using
MLP model, and its respective aggregation at the neighborhood level. These results highlight part of
the city with darker brown shades, which represent higher susceptibility to flooding, while lighter
shades indicate lower susceptibility. The central and southern parts of the region show the highest
susceptibility, which makes them more prone to flooding. On the contrary, the northern and
northeastern parts show lower flood susceptibility. This result illustrates that the MLP model was
able to identify areas with high flood susceptibility, which closely aligns with historically flooded
locations. This model's strong predictive capabilities are rooted in its ability to map complex non-
linear relationships between environmental factors such as topography, land use, and hydrological
conditions, as highlighted by [25,27,28]. By integrating diverse data inputs such as topography, land
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use, and hydrological conditions, the model generates a comprehensive susceptibility map, which
not only identifies high-risk zones but also provides critical insights for developing further actions
targeted to protect the public against health risks associated with flood exposure. This ability of the
model to predict flood susceptibility would allow decision-makers to enhance disaster preparedness,
mitigate health risks, and implement community-level responses. Thus, the result emphasizes the
need for targeted public health actions, as floods can significantly impact both physical infrastructure
and public health by increasing the risk of waterborne diseases, injuries, and disruptions to healthcare
access, as shown by malaria [14,81]. The resulting map would serve as a valuable tool for planners
and public health officials, helping them prioritize flood prevention measures such as enhanced
drainage systems, flood barriers, and land use regulations in high-risk areas while also guiding
emergency preparedness and healthcare resource allocation.

Flood susceptibility index
= 0.79-1.00
= 0.69-0.79
0.57-0.69
0.33-0.57
0.00-0.33

Flood susceptibility index *
. 0.79-1.00
. 0.69-079 ’

057-0.69
0.33-057 .
0.00-0.33

@ ~®

sl

Figure 8. (a) Flood susceptibility map generated using MLP model. (b) Flood susceptibility aggregated at the
neighborhood level.

4.2. Socio-Economic Vulnerability Map

The result presented in Figure 9 (a) and (b) present socio-economic vulnerability to flooding
across the City of Kigali. They reveal how flood susceptibility, a prevalent environmental hazard in
Kigali due to its hilly terrain and frequent heavy rainfall, disproportionately affects socio-
economically vulnerable populations. The darker shaded areas on the map represent higher socio-
economic vulnerability resulting from high flood susceptibility and sensitivity and with relatively
low adaptive capacity. These areas are characterized by informal settlements, lower income levels,
inadequate infrastructure, and limited access to essential services such as access to healthcare
facilities, as highlighted [46,48]. In contrast, the central parts of Kigali, which exhibit lower
vulnerability, benefit from improved urban planning, robust infrastructure, and more resilient
housing, as shown by [43,47,49]. The spatial variation of socio-economic vulnerability across the city
indicates that the presence a higher concentration of the population, especially young and elderly
residents, reside in high-socio-economic vulnerable areas prone to flooding, such as next to wetlands
or in informal settlements with poor drainage systems. These locations amplify the risks associated
with heavy rainfall and flooding, potentially leading to catastrophic outcomes like property loss,
displacement, and increased exposure to health hazards.
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Figure 9. (a) Socio-economic vulnerability map generated using the Composite Index approach. (b) Socio-

economic vulnerability aggregated at the neighborhood level.

Socio-economic vulnerability to flooding highlights the limited capacity to respond and recover
from flooding and often leads to widespread health problems, including outbreaks of waterborne
diseases such as cholera, typhoid, and dysentery [7,13]. Floodwaters can contaminate drinking water
supplies and overwhelm already fragile sanitation systems, creating a favorable environment for
disease transmission [51]. Moreover, stagnant water resulting from poor drainage systems can
become a breeding ground for mosquitoes, increasing the incidence of vector-borne diseases like
malaria [52]. Thus, in urban populations with less adaptive capacity, such as residents with limited
socio-economic means and limited access to healthcare access, these health issues can escalate
rapidly, with a lack of timely medical intervention exacerbating the situation [14,15]. To address these
issues, public health and urban planning policy can benefit from highlighting socio-economic
vulnerability to flood hazard. The solutions can be achieved by focusing on targeted interventions
that combine socio-economic upliftment with flood mitigation. Public health strategies should aim to
improve access to healthcare in vulnerable areas, particularly by equipping health facilities to
respond to flood-related health crises. Urban planning policy should ensure more equitable urban
development initiatives that integrate socio-economic and environmental data to reduce
vulnerability to flooding across the city. This includes ensuring that infrastructure investments are
distributed more evenly, focusing particularly on informal settlements and other highly vulnerable
areas. By addressing the root causes of socio-economic vulnerability to flooding, such as poverty and
lack of access to services, the city can mitigate the public health impacts of flood hazards like flooding,
which not only enhances the city's resilience to climate change but also contributes to long-term
improvements in public health outcomes.

4.3. Scalability and Transferability

First, the study applied models trained on Kigali data to make predictions in Kampala and Dar
es Salaam; the AUC and MAE obtained are presented in Table 4. In Kampala, the XGBoost model
achieved the highest AUC of 0.519 and a relatively low MAE of 0.484, whereas in Dar es Salaam, the
MLP model had the highest AUC at 0.402 and an MAE of 0.523. This indicates that the models trained
on the Kigali dataset struggled to generalize across different urban settings, highlighting the need for
continuous refinement of machine learning algorithms by incorporating local data and expert
knowledge into model training processes. As urban environments evolve and data becomes more
accessible, leveraging this information can lead to improved predictive Accuracy for flood events,
ultimately contributing to better urban planning and flood disaster management strategies.
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Table 4. AUC and MAE values for Kampala and Dar es Salam.

City Model AUC MAE
Kampala MLP 0.475 0.511
RF 0.473 0.530
SVM 0.455 0.547
XGBoost 0.519 0.484
Dar es Salaam MLP 0.402 0.523
RF 0.403 0.590
SVM 0.447 0.535
XGBoost 0.387 0.605

Then we fine-tuned network weights of MLP, which performed well on Kigali using small sub-
sets of data from target cities (using 10%, 20%, 30%, 40%, and 50% of all available data for each city),
performances reduced slightly to AUC of 0.491 and MAE of 0.520 for Kampala but improved slightly
to AUC of 0.590 and MAE of 0.491 for Dar es Salaam. This lower performance of the employed models
highlights potential limitations in their transferability, which can be due to the fact that cities are
different in morphology and do not exhibit similar geographic/topographic characteristics. However,
environmental conditions and urban dynamics differ significantly between cities [20,82]. For
instance, all the cities used in this study to test the proposed framework exhibit different
topographic/geographic patterns, socio-economic conditions, and climate. Thus, differences in the
spatial distribution of flood hazard, infrastructure, or population density could affect model
performance. Thus, the success of transferring models across cities may be constrained by variations
in data availability, quality, or granularity.

However, despite the difficulties of transferability of the machine learning model trained on
Kigali to Kampala and Dar es Salaam, the framework itself demonstrated scalability whereby when
we trained the machine learning models using data from each respective city, the results on the test
set revealed better performance of the models as shown in figure 10 (a and b). Additionally, the
framework is designed to incorporate various data sources and machine learning models, enabling
it to be applied in diverse urban environments. Its architecture allows for the integration of city-
specific data, which shows its adaptability to different urban contexts.
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Figure 10. The receiver operating characteristic curve (AUC) curves on the testing dataset for the models (a)

Kampala and (b) Dar es Salaam (Source: Data analysis).

4.4. Limitations of the Study

The study assessed and mapped social-economic vulnerability related to flood hazards using an
assessment framework that leverages machine learning and indicator-based approaches. The study
used different spatial data that depict different spatial aspects of flood susceptibility and urban socio-
economic features. The results provide more targeted and accurate reference information for flood
hazard adaptation and mitigation strategies. However, it should be noted that there are still
limitations to its application: some additional variables associated with socio-economic vulnerability,
such as education and income, were not included in this study since they were not available at a small
scale in the study area. Although the above limitation exists in the current work, the proposed
framework is designed to be flexible to allow application to areas with limited data. However, the
availability of more data would provide more valuable outputs for supporting decision-making for
planners and managers to positively deal with hazardous urban environments.

5. Conclusions

The effect of environmental hazards in urban areas has posed highly vulnerable situations for
urban dwellers, especially dwellers with deprived socio-economic conditions. The vulnerability is
highly accelerated by climate change, resulting in frequent extreme environmental hazards such as
flooding, urban heat stress, and pollution. In this study, we proposed a scalable and transferable
framework for mapping socio-economic vulnerability to urban environmental hazards in a data
scarce urban environment. The framework integrates demographic and socio-economic factors,
which are linked to remote sensing based urban environmental hazard factors using machine
learning and spatial analysis. The framework was tested to map socio-economic vulnerability to
flooding in the City of Kigali. Moreover, the scalability and transferability of the proposed framework
were tested in Kampala, Uganda, and Dar es Salaam, Tanzania.

The results of this study indicated that the central, south, and west parts of Kigali are highly
susceptible to flooding events. However, the central part is subject to the less socio-economic
vulnerability associated with flooding hazards based on their enhanced socio-economic conditions,
which enable dwellers of this area to adapt to the hazard event. However, areas with less socio-
economic conditions are highly affected by flooding hazards. The results also indicate that the
framework can be used to feature several hazards, allowing the assessment of socio-economic
vulnerability related to multi-hazards in urban areas. Though the model trained in Kigali did not
demonstrate efficient results when transferred to Kampala and Dar es Salaam, tuning the model with
data portions from these respective cities improved efficiency, demonstrating the possibility of fine-
tuning models toward transferability. The results of this study demonstrated the potential of
employing multi-sourced, freely accessible data for mapping socio-economic vulnerability to
environmental hazards in urban settings, which is essential to control vulnerable populations and
establish strategic planning toward having more livable cities. Moreover, strengthening the ability of
medical service supply and reducing inequality is also an effective vulnerability reduction strategy.
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Appendix A

® Flooded location
D City of Kigali

Figure A1. Spatial distribution of 456 flood events recorded between December 22, 2019, and December 25, 2019,
across the City of Kigali.

Appendix B

Figure B1 illustrates the correlation matrix among environmental factors. The strength and
direction of the correlations are represented by the color gradient, with red indicating strong positive
correlations, blue for strong negative correlations, and lighter shades for weaker correlations.
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Figure A2. Heatmap depicting the correlation matrix among environmental factors. (Note: Drainage d is
distance to drainage).
Appendix C

Figure C1 presents the validation of flood susceptibility map generated in this study against
historical flood data.
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Figure A3. Spatial distribution of flood events overlayed on flood susceptibility map.
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