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Abstract: The most common size measurements for agricultural produce, including fruits
and vegetables, are length and width. While the length of any agricultural produce can be
unique, the width varies continuously along its length. Single-width measurements alone
are insufficient to accurately characterize the varying width profile, resulting in an inaccu-
rate representation of the shape or mean dimension. Consequently, manual measurement
of multiple and mean dimensions is laborious or impractical, and no information in this
domain is available. Therefore, an efficient alternative computer vision measurement tool
was developed utilizing Image]. Twenty sample sets, comprising fruits and vegetables, each
representing different shapes, were selected and measured for length and multiple widths.
A statistically significant minimum number of multiple widths was determined for practical
measurements based on object shape. The “aspect ratio” (width/length) was identified to
serve as an effective indicator of the minimum multiple width measurements. In general,
50 multiple width measurements are recommended; however, even 15 measurements
would be satisfactory (1.0 = 0.6 deviation from 50 widths). The developed plugin was fast
(734 ms = 365 ms CPU time/image), accurate (>99.6 %), cost-effective, and incorporated
several user-friendly and helpful features. The study outcomes have practical applications
in characterization, quality control, grading and sorting, and pricing determination of
agricultural produce.

Keywords: Fruits and vegetables; Grading and sorting; Horticultural crops; Image], Image
processing, Physical properties, Quality control

1. Introduction

Length and width form the most common size measurements that characterize agri-
cultural and horticultural produce. Size significantly impacts the external appearance of
fruits and vegetables, as the price of produce generally correlates well with its size [1]. With
agricultural produce, such as fruits and vegetables, the object will have a unique length
but will have several varying widths along the length. A single width measurement will
not provide the best description of the object’s width profile. However, the most reported
dimensions are from a single measurement per object.

For example, using the computer vision image analysis “pixel-march” method [2]
measured the orthogonal length and width of agricultural produce. Therefore, multiple
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widths will only describe the shape of the object better, and a correct representation, or at
least a mean width derived from the multiple widths, would provide a better description.

While dealing with axisymmetrical objects, which have rotational symmetry about
their length, the width measurement will also depict the thickness (orthogonal to the width
and length). Such measurements will provide the best description of the product shape
based on simple orthogonal dimensions. Most agricultural produce and products belong
to axisymmetrical (convex) shapes, while non-axisymmetrical (concave or curved) shapes
occur in agricultural produce, but they are less prominent and are not considered in this
study.

In the grading and sorting of agricultural produce, the size constitutes one of the
primary criteria, while other factors such as shape, color, and surface defects are also
considered. Manual measurement, which is the known and common method, becomes
laborious, tiresome, subjective, and prone to inaccuracy and reproducibility issues.

Several machine-based grading or sorting systems have increasingly been adopted in
the industry to address these limitations. These systems utilize computer-based algorithms
to analyze digital images and interface with activating mechanisms that perform the actual
separation or sorting process.

Computer/machine vision systems have been used increasingly in these industries
and food processing plants due to their ability to provide rapid, cost-effective, hygienic,
consistent, accurate, and objective assessment, online automatic process control, and real-
time quality evaluation [3,4]. In addition, computer vision image analysis applications
are well established and proven successful for classification, volume and mass estimation,
defect detection, size and shape features measurement, quality inspection, and grading of
grains, fruits, and vegetables in agricultural and food process engineering fields [5-9].

Reviews on computer vision or image processing are available applicable to qual-
ity evaluation, size and volume determination, shape analysis of fruits and vegetables,
agricultural products, and food products [1,4,10-13], and developments in these fields
[14], illustrate several applications to agricultural produce and products. A latest review
describes the basic method (capliper) to the modern method (machine vision and deep
learning) for size assessment of fruit on trees in the orchard directly [15]. In addition, some
novel applications of image processing include the determination of volume and surface
area of agricultural products [16,17], and major orthogonal dimensions measurements of
food grains [2]. Relationships between volume and mass of axi-symmetric fruits like apple,
sweet-lime, lemon, and orange were estimated using an imaging technique with five dif-
ferent views of a fruit and geometrical formulas [18]. Machine vision-based systems were
employed for in-line sorting, detection of contaminants or specific chemical compounds
on the product?s surface [19]. Object detection and depth maps with a stereo camera for
vegetable (cucumber, eggplant, tomato, and pepper) recognition and size estimation using
six keypoints [20].

Recently, fruits and vegetable disease recognition using convolutional neural networks
and YOLO deep learning modles [21], three-dimensional (3D) machine vision techniques
have been widely employed in agriculture and food systems, utilizing modern 3D vision
systems and advanced deep learning technologies [22,23], application of computer-vision-
based industrial algorithm for the detection of the dimensions and the spatial positioning
of fruit and vegetables on a conveyor belt for their movement to a packing machine with a
robotic arm [24], and several similar research outputs have been reported. In a modeling
study, models for the non-destructive in situ detection of individual fruit mass in diversely
shaped tomatoes from the greatest width and length [25].

Computer vision techniques and image analysis make it possible to obtain these
lengths and multiple widths automatically. Recognizing the significance of multiple widths
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in representing actual profiles and deriving the mean width, it is pertinent to assess the &
variation of width along the length and determine the number of multiple widths required =
to represent a statistically significant mean width. Despite these state-of-the-art systems &
making significant advancements, particularly in complex tasks such as identification, e
classification, object localization, handling occlusions, robotics, and overall shapes and di- &
mensions; no reports on these aspects of multiple dimensions measurement of agricultural
produce, mean width, and statistically significant least number of multiple measurements &
were found in the literature. Thus, making this research necessary, significant, and unique. s

Our goal is to create a method, measure the multiple widths of axisymmetrical objects &
such as agricultural produce, and find out statistically how few multiple widths are needed
to represent them accurately. Therefore, the objectives of this research are to (i) developa «
computer vision analysis tool utilizing the open-source ImageJ analysis platform (Image]
plugin) to process the digital images and validate the algorithm; (ii) apply it to measure
the length and orthogonal multiple widths of several axisymmetrical agricultural produce; o
(iii) determine their mean width and the least number of statistically significant multiple o
widths; and (iv) statistically evaluate the effect of number of multiple widths on the mean

width. 97
2. Materials and methods o8
2.1. Test material 99

The test material used in this study was agricultural produce (vegetables and fruits) 1o
obtained from the local grocery stores. Pasta fettuccine, carrots, celery, green beans, potato, 1
and sweet potato were obtained from Bismarck and Mandan, ND, USA, and the rest of 12
the fresh produce from Coimbatore, TN, India. Original images of these 20 selected test 103
materials used in the study, along with a sample multiple measurement width results, can 104
be found in the “Mendeley Data” repository (https://doi.org/10.17632 /jprxshtr4t.1) [26]. 10
A montage of these image samples is presented in Figure 1 for illustration. 106
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Figure 1. A montage of the 20 selected axisymmetrical agricultural produce and pasta fettucine used
in the study. The original images that were used in the measurements are available at Mendeley Data
(https:/ /doi.org/10.17632 /jprxshtr4t.1) along with selected results [26].

The selected agricultural produce samples were axisymmetrical, characterized by
uniform widths and thicknesses along their length. Axisymmetrical shapes produce near-
circular cross-sections perpendicular to the rotational length axis. In addition, axisymmetri-
cal objects mostly belong to convex shapes, where the centroid of the projected area lies
inside the object itself; as opposed to concave shapes (curved or bent) that represent only a
relatively small population among agricultural produce, where the centroid lies outside of
the object’s projected area and complicates the measurement.

2.2. Overall workflow of the research work

The workflow of the computer vision research on developing the user-coded Image]
plugin for multiple width measurement for agricultural produce is presented in the form
of a flowchart in Figure 2. Some of the processes depicted (Figure 2) should be understood
in conjunction with the Image] environment and were achieved through the Java source
code of the plugin, while others depict general setup, input, and output operations. Details
of component processes are discussed as required.

2.3. Image acquisition of agricultural produce samples

Domestic digital cameras (1: Canon PowerShot, SX100 IS, 8.0 megapixel, 10X optical
zoom, USA; and 2: Canon PowerShot, A3300 IS, 16.0 megapixel, 5X optical zoom, USA)
were utilized to capture the test material images. The image size directly influences
the measurement accuracy through the resolution of the images. A large image size
usually defines the object with an increased number of pixels, resulting in increased
resolution, thereby improving measurement accuracy. The resolution of the images is
typically expressed in dots per inch (DPI; Figure 2), and the DPI information will be
accessible from the image properties.
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Figure 2. Process flow diagram of multiple and mean dimensions of agricultural produce.

DPI of an image will vary depending on the focused distance (whether manual
or autofocus) or the distance between the object and the camera. When the camera is
positioned closer to the object, both the DPI and the accuracy of measurements increase.
However, this proximity also reduces the “field of view,” thereby limiting the number of
objects that can be captured within a single image. Conversely, maintaining a constant
distance between the object and the camera does not affect the DPI of the images.

Fixing the camera on a stand in such a way that it aligns perpendicular and focuses on
objects is a basic system suitable for laboratory and industrial settings. However, without
securing the camera, images for practical use can be obtained by incorporating a reference
object of known dimensions within the image frame. This reference object serves as a
legend or scale, based on which the dimensions of the objects in the image can be calibrated
and measured. There is no restriction in choosing the reference frame dimensions, but
it should be proportionately larger than the tested objects and exhibit contrasting colors
with the object, so that the profiles of the object are correctly captured. In this study,
a “Thermocol board” measuring 1.0m x 0.5m and a “letter paper (US)” with a drawn
rectangle of dimension 242 mm x 178 mm (Figure 3) were utilized as the reference frames.

Figure 3. Images captured using a digital camera with good contrast background and reference frame

(left: snap melon on thermocol board - 1.0m x 0.5 m; right: celery on letter paper (US) with a drawn
rectangle of 242 mm x 178 mm).

Images were captured in a manner that the reference frame occupies the major area of
the picture at the highest possible resolution. Objects were arranged so that they do not
touch one another (singulated arrangement), and the orientation of objects without protru-
sions (e.g., pedicles) does not matter. Special roller or chain conveyors presenting fruits
individually (singulated) for machine inspection or other operations are common in the
industry. However, produce with pedicles should be arranged so that all faces one direction
(Figure 1: Eggplant samples), as these components were ignored from measurements using
the “end caps” methodology coded in the plugin.
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Shadows of the objects should be avoided as they will be included in the projected 1=
object area during preprocessing if the object color matches the shadow color. Indirect or s
diffused lighting, as well as multiple lighting sources, can effectively eliminate shadows. s
Images captured using natural lighting in shaded areas or with multiple fluorescent lights 15
tend to yield good results. In the case of small objects, such as grains and other particulate 1z
materials, a document scanner proved to be an efficient imaging tool [2]. The scanner 15
provides the best lighting without shadows, along with very high resolutions (DPI > 1000). 150
Scanners can be readily utilized for small-sized produce (e.g., berries, grapes, nuts). 161

2.4. Computer vision image analysis framework used 162

The developed computer vision image analysis plugin utilizes the Java language and 1
Fiji (Ver. Image] 1.54p; http://fiji.sc/Fiji) package. Fiji is an image processing package 1
and is a distribution of Image], an open-source, free image analysis program [27,28]. Itis 1
quite popular among scientists working with biological imaging [29]. Fiji is a feature-rich 16
integrated development environment of Image] that offers various commands for plugin 1
development [30]. Researchers have developed custom-made Image] plugins to address 1
diverse computer vision applications. Some of the examples are food grains dimensions 1
[2]; morphological characterization of particles [31]; blood vessel diameter measurement 17
[32]; and several more. These plugins played a role in advancing scientific research in these i
areas. 12

2.5. Image preprocessing 173

In computer vision image analysis, the fundamental calculations are initially per- 1
formed on pixel units, and subsequently, these values are converted into practical physical s
units. The calibration process establishes a correlation between the pixel values and the 1
physical dimensions of the object. In most image processing algorithms (Figure 2), the 1
binary image gets handled easily and is used to derive various standard parameters from 17
the image processing programs. Therefore, color images were initially converted into s
binary images (black and white colors only) using the image processing system. The Im- 1z
ageJ]’s “8-bit” and “Threshold...” commands created the grayscale and binary images, 1
respectively. The information displayed in typewriter font (e.g, “8-bit”) refers to actual 1
Image] commands. 183

The DPI information (pixel values of a reference object) of the image can be extracted 1
by tracing the known reference rectangular frame or line using the “Rectangular” or s
“Straight” selection tool, respectively. From the ‘w’ (width) and ‘h’ (height) or the ‘I’ 1
(length) of the reference frame or line in pixels, the DPI of the image is calculated as follows: 1

DPI (pixelinch ™) = 1)

25.4 x Reference dimension (pixel)
Reference dimension (mm)

The measurement resolution (the smallest dimension that can be measured) can be  1ss
obtained from the DPI as follows: 189

(2)

254
Measurement resolution (mm pixelfl) = l > ]

DPI (pixel inchfl)

Once the image DPI is measured and recorded (Equation (1)), the image can be cropped, 10
if necessary, to only include the objects while eliminating the unnecessary background 1
details, since image cropping preserves the DPI. Fine particles, such as dust or other specks, 1
can be omitted from analysis by setting the “Analyze Particles ...” arearange from 1
the “Size (pixel~2)” to a minimum cutoff value. This minimum cutoff value depends 1
on the projected area of the object and the DPI of the image. For instance, the smallest 105
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object, namely the ivy gourd image (Figure 1) at 109 DPI had the object projected area
ranging from 10,635 to 31,740 pixel?; thus, a “Size (pixel~2)” input of “10000-Infinity”
will eliminate small and fine particles for the entire set of samples studied. However,
if the objective is to remove only the dust and small non-objects, a smaller range, such
as “1000-Infinity” (~1/10 of the minimum area), can also be employed to ensure the
inclusion of larger objects.

During actual measurement, filtering can be performed, or an image mask can be
obtained by eliminating the finer particles beforehand. It is essential to check the “Exclude
on edges” and “Include holes” options of “Analyze Particles ...” while making the
mask to ensure that the entire area of the object gets completely filled. Any partially
cropped object will be discarded.

2.6. Plugin development and description of methodology

A brief description of the developed multiple and mean width measurement plugin
(Figure 4) and its methodology is described hereunder. The plugin consisted of about 1250
lines of Java code (including comments) and employed several Java methods to execute
its functionalities. These methods include the following activities: (i) Initial setup that
derives the standard Image] output of particle analysis, (ii) determining the length and
width limits of objects, (iii) reading user inputs based on object properties, (iv) evaluating
multiple and mean widths, as well as lengths, and visualizing these measurements on a
binary image, (v) logging the individual multiple width measurements for each object,
(vi) summarizing the overall results for all objects, (vii) creating separate graphs of multiple
widths for each object based on user inputs and orientation, and (viii) exporting the output
as a consolidated CSV file for all measuring sessions.

2.6.1. Plugin’s user input front panel

The plugin’s user input front panel presents a suite of inputs to perform various
activities and achieve the desired results (Figure 4C). The input panel has several numeric
field text boxes and boolean-valued check boxes to facilitate input collection. Several of
these choices were coded as default, allowing the plugin to run without users’ intervention
if the defaults suit their requirement or for a trial run. In alternative cases, users can provide
their specific inputs and obtain the desired outputs.

The calibration (pixel to physical dimensional units conversion) process can be per-
formed either through the DPI value or the reference frame dimensions. As previously
described (Section 2.5), when the known DPI value of the image (Equation (1)) is combined
with a binary mask, the calibration can be performed directly (Figure 4C). Conversely, if
DPI is not known, the number of pixels that constitute the reference frame can be used
for calibration (Figure 4C). Both these methods result in the conversion of the pixel values
into physical dimensions (mm). If the image title contains DPI values, the plugin will
process the text, extract the DPI values, and populate them automatically. We followed this
approach to have the DPI value in the image titles to enable this automatic reading and
better documentation of images.
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———————— Multiple-Widths Output (Top to Bottom) =---=-=--=

Object  #Widths At_Length (pix) Width (pix) Width (mm)

1 1 77.76 231.948 54.050

1 2 98.52 257.126 59.918

1 3 119.28 274372 63.936

1 4 140.04 290.496 67.694

1 5 160.80 304.637 70.989

1 6 181.56 314.682 73.330

1 7 202.32 321.753 74.977

1 8 223.09 329.815 76.856

1 9 243.85 333.781 77.780

1 46 1012.02 263.205 61.334
1 47 1032.78 258.118 60.149
1 48 1053.54 251.048 58.501
1 49 1074.30 241.002 56.160
1 50 1095.07 225.869 52.634
—————————————— Dimensions in pixels!--------——————————

Object  #Widths Length Mean_Width  STD_Width

1 50 1295.94 303.25 32.70

—————————————————————— Dimensions in physical units (mMm)-====-=-————mmceeeee
Object  #Widths Length Min_Width ~ Max_Width Mean_Width STD_Width
1 50 301.99 52.63 79.92 70.67 7.62

Figure 4. Fiji environment and the developed plugin with its features. (A) Fiji Image] image
processing software panel - where several standard tools and status bar are shown; (B) Standard
“Analyze Particles” dialog box - which scans through various objects in the image and offers filtering
options, such as fine particle removal, mask creation, excluding objects on edges, include holes in
the object, and many more; (C) Developed plugin input panel - where calibration through DPI or
reference frame dimensions, end caps chopping percentage, number of multiple widths measurement,
and different output options can be input; (D) Measured multiple widths (50 numbers) from both
edges of sample orthogonal to length from bottom to top; (E) multiple widths measurement drawing
on a bottle gourd sample - where (1) centroid, (2) direction of length, (3) top cap chopped end, (4)
bottom cap chopped end, (5) segment of measurement where multiple widths are measured, and
(6) pedicle of the sample that was excluded using end cap values; (F) Standard Image] outputs of
the object; (G) Section of textual output of individual width and their location along length; and (H)
Consolidated numerical result of mean dimensions with standard deviation.
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It is common practice in the cultivation of vegetables and fruits to harvest some
produce with pedicles intact. These pedicles can interfere with the multiple width measure-
ment, since any measurement of width along the pedicles will not be representative of the
economically important portion of the produce. To tackle the presence of the pedicles, the
“end cap” chopping methodology was incorporated (Figure 4C). As the images were read
from “left to right” and “top to bottom,” the end cap values should be input accordingly.
Therefore, left- or top-oriented pedicles should result in higher top end chop percent values
compared to the bottom, and vice versa. As the end chop values are applied uniformly in a
session, it will be prudent to orient the sample with the pedicles pointing in a way so that a
single end cap value can be applied to all the objects in the image (Figure 1: eggplant shot
pink and eggplant long green). Future developments should aim to automatically identify
the pedicle and apply the end cap values correctly, regardless of their orientation.

One of the other analysis inputs (Figure 4C) is the desired number of multiple width
measurements. A suggestion, based on 80 % of the smallest length of the object, was also
indicated, and any value equal to or less than this limit can be used. In this research, it is
intended to find the optimum number of width measurements beyond which no statistical
difference will be observed. Also, a default value of 50 was provided for the user. The
final input box gives another chance of filtering out the small particles based on the area,
expressed in the number of square pixels. A default value of 10 was set and can be modified
by the user.

The output-related selections can be exercised through the checkboxes: (i) multiple-
width drawing output on a binary image of the object to visualize the measured locations
of the widths (Figure 4E); (ii) multiple-width results in the form of a “Log” window for
immediate consumption (Figure 4G); (iii) multiple-width visualization as a graphical plot
for each object in the image (Figure 4D); and (iv) multiple-width graphical plot orientation
(the swapping of x and y axes to visualize the plotted width as desired by the user (Fig-
ure 4E). As a background task, all the consolidated results of all measurement sessions will
be appended to a CSV file for recording and documentation.

2.6.2. Methodology of multiple widths and length measurement

Utilizing Fiji as the plugin environment (Figure 4A), the “pixel-march,” as reported
elsewhere [2], seeks black pixels while marching along the white pixels, following the
specified straight line paths, to evaluate both length and widths. For this purpose, it is
essential that the interior of the object be continuous and filled with white pixels, which
is ensured by the “Include holes” (Figure 4B). Convex-shaped objects ensure that the
centroid (Figure 4E: 1), which serves as the starting point of the pixel-march, remains within
the object’s outline, allowing the process of length and width measurements to proceed
uninterrupted. If the centroid falls outside, determined based on the background color,
only that object is excluded from the measurements. With the desired number of multiple
widths, the “step-length” of segments for multiple width measurement was determined.

Based on the end caps chopping values, the segment length was calculated from the
object length less the end caps length (Figure 4C). Different or similar end cap values can be
used depending on the type of agricultural produce (e.g., with or without pedicle). Starting
from the centroid, the widths were determined by finding the boundary pixels orthogonal
to the length on both sides and using the distance formula. The widths were determined
starting from the centroid and moving away towards both ends based on step-length
(Figure 4E) for correct evaluation, but re-allotted from bottom/left to the top/right for
plotting the widths (Figure 4D). The mean and standard deviation (STD) of multiple width
measurements were calculated for each object. The length of the object was obtained along
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the major axis and through the centroid (Figure 4E). Textual results were produced for 2
reading (Figure 4F) and for further statistical analysis in the form of a spreadsheet. 285

2.7. Statistical analysis of multiple widths 286

It is of practical interest to investigate the effect of the number of widths to be con- 2z
sidered and their statistical significance, and the mean separation analysis results that 2
provide such insights. Several multiple widths ranging from 1 to 200 were considered, with 2
measurements chosen closely towards the smaller numbers. The effect of the number of 200
multiple widths on the measured mean width and its statistical significance was evaluated 201
using the mean separation method (pairwise differences among means). A SAS (Ver. 9.3, 2
2009, SAS Institute, Cary, North Carolina, USA) macro %mmaov that used PROC MIXED 2
[33] performed the mean separation analysis. This macro converts the means pairwise 20
differences to letter groups, where means that share a common letter are not statistically 205
different at a specified « level. The macro was run with mean width as the dependent vari- 20
able; produce name, and number of multiple widths measured as classification and fixed 2o
variables; logarithmic data transformation a common technique to reduce skewness in the 2
data and make it more normally distributed, meeting the normal distribution assumption 20
used in the analysis); grouping by produce name; # = 0.05; and adjustment by Tukey. 300

3. Results and discussion 0

For the agricultural produce images captured in this study from the digital camera, e
the DPI values were within the range of 109 and 246, resulting in a measurement accu- so
racy or resolution (Equation (2)) of 0.103 to 0.233 mm pixel_l. Increased DPI values are 0
feasible with high-resolution cameras. A DPI of 600 (0.042 mm pixel ') or more is quite s
common with digital scanners. Therefore, based on the necessary measurement accuracy, 3o
the appropriate image resolution (DPI) should be selected. 307

3.1. Features of developed plugin 308

Several features are built into the developed plugin and are briefly described below.  s0
The plugin accommodates two calibration methods, namely, DPI and reference dimensions w0
input (Figure 4C). However, in a fixed setting with a stationary camera where the distance s
between the objects and the camera remains constant, the calibration values can be directly s
coded into the plugin, eliminating the calibration routine. The plugin extracts the object s
name and DPI value from the file name of the image using Java string processing commands s
if the information is included in the specified pattern. This extracted DPI value gets filled s
in the “Use DPI” input box of the plugin input panel for ready execution (Figure 4C), and s
the object name is used for results output. a7

The plugin (Figure 4) is capable of analyzing images containing objects in any orienta- s
tion. Consequently, the multiple widths measured were made to orient orthogonal to the s
major axis of any inclination. In addition, the top and bottom end caps chopping values can 50
be input individually to preferentially address the presence of pedicles and exclude themin sz
multiple width measurements (Figure 4E). The plugin identifies concave objects (centroid s
falling outside of the profile) and outputs a message with the identification label number to sz
facilitate their elimination through further preprocessing and rerun. For example, the 5th s
object from the left on the color image of green beans (Figure 1: Green bean) has a highly s
curved shape, indicating it is a concave object, and it is removed from the binary image for s
measurement purposes [26]. 527

The plugin generates various textual, data, and graphical forms of outputs (Figure 4). s
Usually, the results are displayed in the “Log” window, showing the overall results (Fig- sz
ure 4FH), and individual multiple-width results (Figure 4G) can also be produced. The 1.0
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000

plugin also directs consolidated results and continuously archives them to an external
spreadsheet through a CSV file format. Graphical outputs include visualizations of mea-
sured widths as plots (Figure 4C,D) as well as drawings of widths and length directly on a
binary image (Figure 4C,E).

The developed measurement methodology is cost-effective as it requires only an
inexpensive domestic digital camera and the necessary plugin created using an open-
source and free Fiji ImageJ software. Thus, the investment for the system rests on the digital
camera (e.g., 48-megapixel < $150), and the supplementary lighting supplies. However,
a practical unit that incorporates this algorithm and associated hardware for grading or
sorting may require additional costs for scaled-up operations.

3.2. Plugin validation

The validation of the plugin can be performed by analyzing an image (without a
reference frame) that contains objects of known dimensions. An image depicting directly
drawn rectangles and precision-cut paper strips of known dimensions (Figure 5), was
analyzed using the plugin, and the results are tabulated (Table 1). The objective is to test the
plugin’s performance by conducting multiple measurements with simple reference objects.
It is also possible to use several standard precision objects for the plugin performance test
as alternatives.

Mask_Validation_Strips_256DPI.gif (50%)

| 2460x1432 pixels; 8-bit; 3.4MB

Figure 5. Multiple width measurements validation using drawn rectangular blocks (1-4) and cut
paper strips (5-10) of known dimensions (DPI = 256; 20 measurements; 10 % end caps; labels indicate
the object numbers).
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Table 1. Validation results using drawn rectangular blocks, cut paper strips, and whole letter paper
(US) of known dimensions (number of width measurements = 20).

Object DPI Actual (mm) Plugin measured (mm) Accuracy (%)*
length width length width length width
min max mean STD

1* 256 500 50 500.00 50.010 50.010 50.01 0.00 100.00 99.98
2F 256 500 100 500.00  100.005  100.005 100 0.00 100.00 100.00
3* 256 400 150 400.00  150.003  150.003 150 0.00 100.00 100.00
4* 256 400 200 400.00  200.003  200.003 200 0.00 100.00 100.00
5t 256 100 20 102.50 19.74 20.04 19.85 0.09 97.50 99.25
6" 256 100 10 104.25 10.12 10.42 10.33 0.10 95.75 96.70
7t 256 100 5 102.36 4.96 5.46 5.21 0.11 97.64 95.80
gt 256 100 20 103.23 20.00 20.57 20.33 0.17 96.77 98.35
ot 256 100 10 102.79 10.31 10.59 10.43 0.10 97.21 95.70
10t 256 100 5 102.03 4.98 5.38 5.20 0.10 97.97 96.00
11% 165 279.4 108.9 278.66 107.61 109.46 108.50 0.56 99.74 99.63
12% 165 279.4 107.4 278.94 106.53 107.76 107.18 0.41 99.84 99.80
138 165 279.4 2159 278.84 214.17 216.33 215.19 0.67 99.80 99.67
141 265 279.4 2159 279.78 215.56 216.14 215.74 0.16 99.86 99.93

Width columns min, max, and STD represent minimum, maximum, and standard deviation, respectively. * Blocks
drawn using Fiji tools to exact pixel dimensions shown as actual length and widths (Figure 5); measurement
resolution = 0.099 mm pixel . ¥ Thin paper strips cut manually after drawing them (Figure 5); measurement
resolution = 0.099 mm pixel 1. ¥ Two wider strips made by cutting a letter paper (US; 215.9 mm x 279.4 mm)
along the length (figure not shown); measurement resolution = 0.154 mm pixelfl. § Whole letter paper (US) is also
included in the image of two wider strips (figure not shown); measurement resolution = 0.154 mm pixel ~'. T Whole
letter paper (US) only with slightly increased DPI (figure not shown); measurement resolution = 0.096 mm pixel .
# Accuracy (%) = [(Plugin measured - Actual)/Actual] x 100.

Results indicate that the plugin correctly measured drawn blocks on the image with
perfect edges (Table 1), and the length and multiple widths have great measurement
accuracy (99.98 %-100 %). This demonstrates the capability of the plugin to make exact
measurements when images with clean outlines are used. However, the cut paper strips’
length and multiple widths accuracy ranged from 95.70 % to 99.25 %.

The results demonstrate that the plugin accurately measures drawn blocks on images
with precise edges, as evidenced by the high measurement accuracy (99.98 %-100 %) for
length and multiple widths. This capability is particularly evident when using images with
clean outlines. However, the accuracy of measuring the length and multiple widths of cut
paper strips varied, ranging from 95.70 % to 99.25 %. These results are comparable to the
absolute deviations (1.44 %-2.15 %) of computer vision analysis using a document scanner
(300 DPI) observed with digital caliper dimensions of standard printed circuit board nylon
spacers [2].

In the present study, the accuracy reduces as the strips become thinner (5 mm), as the
number of pixels describing such widths diminishes, and individual pixels have a greater
influence on the measurements. With a DPI of 256, each pixel represents 0.0992 ~ 0.1 mm.
This means exclusion/inclusion of a single pixel on a 5 mm reference width results in a
£2 % loss of accuracy. However, on a 20 mm reference, this is linearly reduced to a 0.5 %
accuracy loss, and further diminishes with increased dimensions.

As most of the practical samples are wider than thin 5mm, a second experiment
included a few wider samples made from letter paper (US; 215.9 mm x 279.4 mm) in vali-
dation (Table 1) at two resolutions. These wider strips even at 0.154 mm pixelf1 (165 DPI)
produced accuracies > 99.63 %. With the increased resolution of 0.096 mm pixel ' (265
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DPI), the measurement accuracies further improved to > 99.86 %. In addition, a whole
letter paper (US), involving no manual cutting, identified as objects numbered 13 and 14
(Table 1) was validated at 165 and 265 DPI, and this showed a slight increase in accuracy
with an increase in DPI. Thus, increasing DPI becomes a simple way of improving the
measurement accuracy. Overall, the measurement accuracy of the plugin varied from 96 %
to 100 %, and it improved with the resolution of the input image.

3.3. Multiple width results of agricultural produce

An example of multiple and mean dimension measurements, with papaya (Figure 11)
as an illustration from the agricultural produce studied (Figure 1), is presented in Figure 6.
The original color image (Figure 6A) was duplicated to make a binary mask, in preprocess-
ing stages, on which the length and multiple widths are measured and drawn (Figure 6B).
The plugin was run with the loaded binary of the papaya and default values (DPI from
image = 109, both end chop % = 10.0, and number of multiple widths = 50) of the plugin
(Figure 4C) with some user inputs (uncheck rotating the profile). The length and multiple
widths of each sample of the papaya image were plotted and labeled (Figure 6B).

The samples were identified from top to bottom and left to right (3rd papaya identified
as 1st). The angle of inclination of the length direction (along the axis of the papaya) also
represents the orientation of the object. The multiple widths were measured and drawn
perpendicular to the length axis (Figure 6B). Measured multiple widths can be visualized
through unrotated profile plots (width on x-axis and multiple width numbers on y-axis;
Figure 6C). The unrotated multiple width plot also aids in visualizing the profile of the
object as measured from bottom to top. The plugin also calculates the minimum, maximum,
mean, and STD values of the multiple widths of all the objects in the sample image (Table 2).

Dimension measurement results for pasta fettuccine and 19 agricultural produce
(Figure 1) are presented in Table 2. Length is a unique measurement for each sample,
while 50 multiple width measurements were conducted for each sample used in the results
illustration. Consequently, within each sample group, there will be distinct minimum and
maximum lengths, whereas each sample will have a minimum and maximum width (based
on 50 width measurements). The standard deviations are applicable only to the mean
length and all three width values (Table 2).

The details presented in the supplementary material data [26] of the selected produce
(Figure 1) show the cropped color image, the measured and labeled binary image, and a
multiple-width plot of a selected sample that was identified from the plot title (e.g., n =
5). The plugin identifies objects by finding their topmost pixel while scanning from left to
right, starting from top to bottom. For example, in the “Bitter gourds” (Figure 1b) sample
set (Data [26], page 2), the natural first left sample is actually identified “9” as its top tip
is lower than the other eight samples. This naturally left the first sample of the image
selected for multiple-width plot visualization, and this number can also be identified from
the title of a block of the plot “(n = 9).” These plots are for a single sample in the image,
and similar plots for the rest of the samples were produced (plots not shown). The multiple
width plot is a collection of caliper widths (Figure 4E-5) from bottom/left to top/right.
This multiple widths plot clearly shows the width profile of the test samples, and a single
value cannot able to specify this existing variation. The plugin accurately captures multiple
width profiles and enables us to visualize the width variations (Data [26]).

The multiple-width profiles closely resemble the tested sample’s natural profile (Data
[26]). For instance, pasta fettuccine (Figure 1a), a manufactured food product with uniform
dimensions, exhibits a linear profile with minimal variation (mean around 4.7 mm). Bitter
gourds (Figure 1b), on the other hand, demonstrate the zigzag profile characteristic of
the sample’s rough surface. Carrots (Figure 1d) and celery (Figure 1e) exhibit a linear
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Figure 6. Illustration of multiple width measurements using papaya sample image. (A) Original color

image of the sample; (B) Binary mask of the original image used as plugin input where length and

multiple widths were drawn, and (C) Multiple width plot for visualization of the measured widths

and their profile.
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but inclined profile following their triangular or truncated pyramid shape. Green beans
(Figure 1i) display a wavy pattern that accommodates the presence of seeds within the
pod. Eggplants long green (Figure 1g), exhibit a typical inclined and curvilinear variation
for a hook-shaped sample. Pineapples (Figure 1m) produce a linear profile with minimal
variation as the fruit is cylindrical and rectangular in profile. The remaining produce
exhibits a smooth dome-shaped profile, reflecting the spherical or prolate spheroid shape of
the samples. Furthermore, any dent or deformation in the profile of the samples (e.g., potato
[Figure 1n], snap melons [Figure 1p], sweet potato [Figure 1q]) was also captured. These
findings clearly demonstrate the necessity of multiple width measurements to accurately
measure the varying dimensions and visualize the actual profile or shape of the agricultural
produce.

The aspect ratio shape factor (W /L) aids in identifying the sample’s elongation (smaller
value) or roundness (higher values close to 1.0) (Table 2; Data [26]). Elongated samples,
such as pasta fettuccine, green beans, carrots, and celery hearts, exhibited aspect ratios
of 0.06, 008, 0.11, and 0.12, respectively. Conversely, round samples, including mangos,
watermelons lightgreen, watermelons darkgreen, and snap melons, had the larger values
of 0.88, 0.73, 0.70, and 0.62, respectively. It is important to note that these aspect ratio values
are derived from the multiple width measurements and cannot be precisely obtained from
simple single measurements.
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Table 2. Results obtained from the plugin showing the measured dimensions of the agricultural produce (number of width measurements = 50).
N  Image_File* Scientific name #Objects Plugin measured sample dimensions w/L*
Samples lengths (L, mm) Samples widths (W, mm)
Minimum Maximum Mean Minimum Maximum Mean
+ STD £+ STD + STD £+ STD
1 PastaFettuccine_252DPI — 48 69.95 99.04 85.10 £ 6.26 4.45 £ 0.03 4.98 £+ 0.08 471 £0.05 0.06
2 BitterGourds_109DPI Momordica charatia 10 159.64 290.62  237.24 +41.97 45.49 £ 3.87 58.06 £ 7.55 50.42 £5.58  0.22
3 BottleGourds_109DPI Lagenaria siceraria 8 265.48 449.76  349.17 + 61.44 60.41+120 7832+1211 6747 £5.07  0.20
4  Carrots_169DPI Daucus carota 9 179.76 210.27  196.98 £+ 8.55 18.99 £+ 3.51 28.80 +7.17 2256 £592 011
5  CeleryHearts_236DPI Apium graveolens var. Dulce 5 206.97 263.76  247.11 +21.09 26.27 £1.49 4121 £4.73 30.80 £2.89 0.12
6  Cucumbers_109DPI Cucumis sativus 8 130.43 209.34 172.43 +23.09 40.05 £ 3.06 48.27 £ 4.99 43.79 £4.07 0.28
7 EggplantLongGreen_109DPI Solanum melongena 11 96.94 198.4 151.30 £ 27.90 25.60 £+ 2.65 35.26 &+ 6.77 30.12 & 4.54 0.20
8  EggplantShortPink_109DPI Solanum melongena 27 62.89 96.07 75.25 +£9.33 30.86 £ 2.75 45.42 £ 9.66 37.72+429 055
9  GreenBeans_244DPI Phaseolus vulgaris 7 79.36 123.09 104.79 + 14.38 7.65 £ 0.15 10.33 £ 0.77 879+034  0.08
10 IvyGourds_109DPI Coccinea indica 29 39.89 74.6 60.79 £7.90 16.21 +2.08 25.15 £ 3.36 21.66 £2.72  0.39
11 Mangos_109DPI Mangifera indica 7 114.7 13257  121.79 £5.73  86.52+£11.10 101.15+14.03 9479+ 1235 0.88
12 Papayas_109DPI Carica papaya 5 213.69 23891  22830+9.74 9835+1270 106.75+1727 103.21+15.01  0.50
13 Pineapple_109DPI Ananas cosmosus 6 234.67 27697 260.26 £15.83  100.16 +4.24 12159 £6.66 11354+ 5.05 045
14  Potato_193DPI Solanum tuberosum 3t 177.38 177.51  177.42 £ 0.06 64.80 + 6.65 64.90 + 6.92 64.86 £6.74 040
15 SnakeGourdsShort_109DPI Trichosanthes cucumerina 10 169.71 27148 202.59 +31.52 50.14 £1.67 6514 £12.28 5718 £794 0.31
16 SnapMelon_109DPI Cucumis melo var. Momordica 5 166.64 2002 17782 +1195  90.09 +£10.83 103.92 1647 98.87+13.02 0.62
17 SweetPotato_246DPI Ipomoea batatas 3t 175.32 175.63  175.53 £ 0.15 60.19 £5.73 60.34 + 6.09 60.28 £5.86  0.36
18  Turnips_109DPI Brassica rapa var. Rapa 14 95.5 150.35 117.67 £ 15.07 4837 £698  99.14 £1340 6826+ 1028  0.66
19  WaterMelonDarkGreen_109DPI  Citrulus lanatus 5 201.52 2321 21487 +11.63 122.87 +14.23 143.46 £18.50 13443 +16.07 0.70
20 WaterMelonLightGreen_109DPI  Citrulus lanatus 4 271.97 297.61 28493 +9.12 17194+ 18.65 196.43 £24.00 187.28+21.71  0.73

N - Number sequence. STD - Standard deviation obtained from the different objects of the sample from the same image representing a produce. * Image file name depicting the common
name and the dots per inch (DPI) information of the captured image. fW/L, width/ length ratio (dimensionless), aka aspect ratio, width and length are the mean of single orthogonal
measurements at the centroid of each sample.  The three objects included are actually derived from the single original image by flipping it vertically and horizontally and combining
them digitally.



Version June 16, 2025 submitted to AgriEngineering 17 of 22

3.4. Effect of number of width measurements and significance

The presence of multiple mean groups with samples (identified by uppercase letters;
Table 3), except for pasta and celery, reinforces the necessity of multiple width measure-
ments statistically (« = 0.05). The aspect ratio effectively served as an indicator of shape
(Table 2) to determine the number of significant groups of multiple widths (Table 3). A
smaller value of W/L indicates an elongated object (e.g., pasta fettuccine, carrot, celery
[Figure 1a,d e, respectively]; W/L < 0.12), while an increased value suggests a more spher-
ical object (e.g., mangoes, turnips, watermelons [Figure 1k,1,s and t, respectively]; W/L >
0.66). Overall, for 0.06 < W/L < 0.12, the number of distinct mean groups was <2, while
for increased W/L > 0.2 the number of distinct mean groups was > 5 for most produce.
Therefore, based on the W/ L, the number of multiple widths will be statistically different
from the single width, and this difference diminishes with a reduction in W/L and vice
versa.

The minimum number of statistically significant multiple widths and the next below
significant width tabulated (Table 3) as “#SigWidths” in the form: a <> b, which illustrates
the importance of multiple width measurements for sample shapes that deviate from linear
profiles. For example, bitter gourds (Figure 1b) have 5 letter groups (A to E), but multiple
widths of 10 through 200 are not significantly different. The first three widths (1 through 5)
are all significantly different; widths from 7 through 25 are not significantly different, but
widths 7 and 50 are significantly different. Working from the top after multiple widths 50,
increasing the number of multiple widths beyond this limit does not produce a significant
difference in mean widths; however, below this limit, 7 is the largest significantly different
number (2 < b =50 < 7 in Table 3). Depending on the shape (W /L) wide variation on
multiple widths (excluding potato (Figure 1n) and sweet potato (Figure 1q), which are
single object sources) on the a (1 to 150) and b (1 to 20) values was observed.
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Table 3. Results obtained from the plugin showing the plugin measured dimensions of the agricultural
produce (values presented are in mm, letters represent mean separation groups, and multiple-width
measurements = 50).

#Widths' Pasta fettuccine Bitter gourd Bottle gourd Carrot Celery Cucumber Eggplant
long green
1 4.713+0.00 A 53.0+0.05A 69.3+0.10C 22.14+0.02B 30.0+0.03A 47.8+0.02B 30.04+0.04B
3 4.705+0.00A 45.74+0.04B 624+0.10A 22.1+0.02B 30.8+0.03A 38.94+0.02D 28.5+0.03A
5 4.709 £0.00 A 479+ 0.05E 64.44+0.10 AB 2224+0.02AB 30.6+:0.03A 41.44+0.02E 29.3+0.04 AB
7 4.706 =0.00 A 48.6 +0.05 DE 65.2+0.10 AB 22.34+0.02AB 30.5+0.03A 422+0.02C 29.54+0.04B
10 4.711£0.00A 49.4+0.05CDE 65.7+0.10 ABC 22.7+£0.02A 30.6 +£0.03A 424+0.02C 29.2+0.04 AB
15 4.708+0.00 A 49.7+0.06CD 65.9+0.10 ABC 22.44+0.02AB 30.4+0.03A 432+0.02A 29.84+0.04B
20 4.710£0.00 A 50.1£0.05CD 66.8+0.10BC 22.6 £0.02A 30.4+0.03A 43.3+0.02A 29.6 £0.04B
25 4711£0.00 A 50.1+0.05CD 66.2+£0.10BC 22.4+0.02AB 30.4+0.03A 43.5+0.02A 29.9+0.04B
50 4710 £0.00 A 504+0.05C 66.5+0.10BC 22.54+0.02AB 30.4+0.03A 43.7+0.02A 29.94+0.04B
75 4.709 £0.00 A 504+0.05C 66.4+0.10BC 224+0.02AB 30.4+0.03A 43.8+0.02A 30.04+0.04B
100 4.709+0.00 A 50.4+0.05C 66.5+0.10BC 22.54+0.02AB 30.4+0.03A 43.8+0.02A 29.940.04B
150 4.709 +0.00 A 50.4+0.05C 66.5+0.10BC 22.5+0.02AB 30.4+0.03A 43.8+0.02A 29.9+0.04B
200 4.709 +0.00 A 50.4+0.05C 66.5+0.10BC 22.4+0.02AB 30.3+£0.03A 43.9+0.02A 30.0£0.04B
#SigWidths 11 507 203 103 11 1510 73
#Widths' Eggplant Green bean Ivy gourd Mango Papaya Pineapple Potato
short pink
1 412+0.02F 8.8+ 0.01B 23.84+0.01C 107.6 £0.01G 1149 £0.03G 118.0£0.03D 70.3+0.01]
3 33.5+£0.01G 85+0.01A 1824+ 0.01F 81.7+0.02F 87.3+0.02F 107.7+£0.03E 56.440.011
5 35.6+0.01D 8.6 £0.01 AB 20.04+0.01D 88.4+0.02D 95.5+0.02E 110.3+£0.03F 60.7+0.01G
7 36.3+0.01C 8.7+ 0.01 AB 20.6+0.01B 90.7£0.02C 98.4+0.03D 111.7 £0.03CF 6234+ 0.01H
10 36.5+0.01C 8.7+0.01 AB 20.74+0.01B 91.5+0.02C 99.240.03D 111.94+0.03 BC 62.9+0.01F
15 37.1+0.01A 8.7+ 0.01 AB 21.24+0.01E 93.3+0.02E 101.6 £0.03C 112.8 £0.03 ABC 64.0+£0.01E
20 372+ 0.01 AE 8.7+ 0.01AB 21.3+0.01E 93.7+0.02E 102.0 £+ 0.03 BC 112.7 £0.03 ABC 64.24+0.01D
25 37.44+0.01AB 8.7+ 0.01B 21.44+0.01 AE 94.14+0.02AE 102.5 £ 0.03 ABC 113.0£0.03 ABC 64.5+0.01C
50 37.5+0.01 AB 8.7+ 0.01B 21.5+0.01A 94.7 £0.02 AB 103.1+0.03 AB 113.3£0.03 AB 64.9+0.01A
75 37.6+0.01 BE 8.8+0.01B 21.6+0.01A 94.9+£0.02AB 103.4+0.03A 113.4+0.03 AB 65.0+0.01AB
100 37.6+0.01 BE 8.8+0.01B 21.6+0.01A 95.0+0.02AB 103.4+0.03A 113.4+0.03 AB 65.0+0.01AB
150 37.6+0.01B 8.8+0.01B 21.6+0.01 A 95.1+0.02B 103.5+0.03A 113.4+£0.03A 65.1+£0.01B
200 37.6+0.01B 8.8+0.01B 21.6+0.01 A 95.1+0.02B 103.6 £0.03 A 113.5+0.03A 65.1+0.01B
#SigWidths 75<15 2543 5020 50 <20 7520 150 < 10 150 < 50
#Widths' Snake gourd Snap melon Sweet potato Turnip Watermelon Watermelon
dark green light green
1 62.7 £0.06D 109.8+0.06 F 632+0.01A 76.6 £0.05F 150.1+0.03A 208.5+£0.04F
3 47.74+0.05C 83.9+£0.05E 52.7+0.01H 57.3+0.05E 114.4+£0.03G 160.6 +0.03C
5 52.6+0.05A 91.8+0.06 D 56.8+0.01G 62.54+0.05C 124.7 £0.03F 1744 £0.03A
7 54.24+0.05 AB 94.3+0.06 CD 58.1+0.01F 64.24+0.05BC 128.3+0.03E 179.24+0.03G
10 54.7 £0.05BE 95.9 +0.06 BC 584 +0.01E 64.94+0.05BD 129.3+0.03E 180.6 +0.03G
15 56.1+0.05 EF 97.2+£0.06 AB 59.6+0.01D 66.1+£0.05 AB 1322+£0.03D 1844+ 0.04E
20 56.2+0.05 EF 98.0 £0.06 AB 59.7+0.01D 66.3+0.056 AD 132.7+0.03CD 185.1 £ 0.04 DE
25 56.6 4= 0.05 EF 98.140.06 AB 60.0+0.01C 67.71+0.04 A 133.4 +0.03 BCD 185.9 +0.04 BDE
50 57.0+0.05F 98.8 £0.06 A 60.3+0.01B 67.1+0.05A 134.2£0.03BC 187.0 £0.04 BD
75 57.1+0.05F 98.9+0.06 A 60.44+0.01B 67.24+0.05A 134.5+0.03B 187.44+0.04 BD
100 57.1+£0.05F 99.1£0.06 A 60.4+0.01B 67.31+0.05A 134.7 £0.03B 187.6+£0.04B
150 572+ 0.05F 99.2+0.06 A 60.5+0.01B 67.4+0.05A 134.8+0.03B 187.8 £0.04B
200 57.24+0.05F 99.24+0.06 A 60.5+0.01B 67.4+0.05A 1349 +£0.03B 187.9+0.04B
#SigWidths 50+ 10 5010 50«25 2510 7520 100 < 20

* Number of multiple width measurements considered. Values shown are estimated mean + standard error
estimate in mm; uppercase letter grouping having a common letter(s) indicates that the means are not significantly
different (« = 0.05). ¥ Maximum number of significant multiple widths shown in the form: a < b; where, a
represents the minimum number of multiple width measurements above which means are not significantly
different (« = 0.05); and b is the next below significantly different multiple widths of b.
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Based on the results, although there are variations, it can generally be considered s
after 50 multiple widths (a) onwards that no clear significant differences were observed e
among measurements (Table 3). A closer examination of the results reveals (based on W/L 4
ratios and combined mean groups) that approximately 15 multiple width measurements, 4
on average, may be required for W/L > 0.2. This can be as low as 5 multiple widths for e
W/L < 0.2. As previously observed, with a straight or inclined profile along the length, a 4o
single width measurement across the centroid was sufficient to represent the mean width.
However, at least two measurements are necessary to define the profile. ar2

3.5. Deviation with single dimensions a3

With 50 multiple widths as a reference, the deviations of 1-, 5-, and 15-widths for mean 4
width determination are evaluated and plotted in Figure 7. As anticipated, the deviations 4z
decreased from 1-width to 5-widths and drastically for 15-widths with respect to 50-widths. 4
On average, these deviations were 7.2 &= 4.7 %, 4.7 £ 2.6 %, and 1.0 £ 0.6 %. It can also be 47
seen with elongated samples (low W /L ratios), such as pasta fettuccine, carrot, celery, egg-
plants long green, and green beans, exhibited deviations <2 %. Therefore, based on these
results, the general recommendation is to use 50-widths for optimal profile representation sz
and to obtain the mean width. Alternatively, about 15-widths can be used for a satisfactory s
representation and the mean width estimation with a deviation of approximately 1% from s
a 50-width reference. However, for a new untested produce or product, preliminary mea- s
surements will reveal the optimum number of multiple widths (a) to be considered for the e
most effective representation. 485

B 1-width ©5-widths ®15-widths

Deviation from 50 multiple-widths measured (%)
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Food product or agricultural produce

Figure 7. Deviation of selected single and multiple widths from 50 multiple width measurements.

3.6. Computational speed 486

For an Apple laptop (MacBook Pro, Mac OS X, Intel Core 2 Duo, processor speed s
of 2.8 GHz, and RAM of 8 GB), the CPU time taken to analyze all 1-200 multiple-width s
measurement runs (Table 3) and for all 3-48 objects in the image (Table 2) was on average s
734 + 365 ms for single run. This translates to an analysis speed of 15 = 10 objects s~ 1. This 4o
computational speed is quite efficient and fast. Analysis speed can be further enhanced by s
optimizing the computer configuration or using the latest computers with better resources. 4
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3.7. Limitations and recommendations for future work

Some of the limitations of the developed plugin include (1) Agricultural produce with
pedicles laid out in random orientation will not be measured correctly with fixed top and
bottom end cap values. (2) Touching and overlapping objects will interfere with the mea-
surements. (3) Shadows, although discernible in color, will get included in the grayscale
image and become a part of the object. Given the advancement in computer vision and
algorithm development, almost all the limitations can be addressed with elaborate coding
and further research. Advanced programming algorithms can be developed to identify
features (pedicle vs economic component of the produce), and segmentation techniques for
resolving touching objects could address the abovementioned limitations. Furthermore,
aspects like better automatic physical layout of objects in singulated arrangement (special-
ized spreaders and conveyors), and as simple as employing better lighting conditions that
avoid shadows, could enhance the performance.

Based on the experience gained, future research may explore the development of
advanced algorithms specifically designed to address the identified limitations. Subsequent
iterations of the software should seamlessly integrate the diverse preprocessing stages into
the workflow of the plugin, thereby enabling the software to directly utilize the color image
as its primary input. Curvilinear-shaped objects can be effectively managed by the method
of “skeletonize” and “curve straightening” operations, enabling the measurement of the
correct length and multiple widths. For example, an advanced active contour algorithm [9]
could be employed as a solution. Segmenting the objects that are touching each other can
be solved by Image]’s “Watershed” standard command or other sophisticated techniques,
such as Fourier analysis and ellipse fitting [34,35] are other possible solution methodologies.
Developing the hardware system based on the plugin algorithm to efficiently grade and
sort produce based on multiple widths or mean widths requires the integration of necessary
hardware components, which are readily available in industrial systems.

4. Conclusions

A computer vision Image] plugin developed successfully for the measurement of
length and multiple widths of agricultural produce achieved an accuracy of over 99.6 %
and demonstrated significant variation in the widths along the length. The statistically
significant number of minimum multiple widths to be considered for accurate measurement
and representation varies widely, ranging from 1 to 150. On average, employing 50 multiple
widths provides a more comprehensive representation of the width profile. However, a
reduced number of 15 multiple widths can also yield satisfactory mean width predictions,
with a deviation of approximately 1 % from the 50 multiple width measurements.

Single or a few multiple widths are sufficient for objects with straight profiles (e.g.,
carrot, celery, pasta fettuccine); but a greater number of multiple widths (15 to 150) are
required for spherical objects or those having curved profiles (e.g., mango, potato, water-
melon) to effectively represent their varying width profile and estimate the mean width.
The aspect ratio serves as an effective indicator for determining the optimal number of
significant minimum multiple widths. For objects of thick or wide shapes (W/L > 0.2),
over 15 multiple widths, and for slender objects (W/L < 0.2), 5 multiple widths or less
were found sufficient. The developed plugin exhibits fast image analysis capabilities, taking
an average CPU time of 734 £ 365 ms per image or 15 & 19 objects per second. Based on the
findings of this research, the identified future research directions include addressing chal-
lenges associated with pedicle orientation, object contact, and shadow formation through
advanced programming or alternative techniques.
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