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Abstract: The most common size measurements for agricultural produce, including fruits 1

and vegetables, are length and width. While the length of any agricultural produce can be 2

unique, the width varies continuously along its length. Single-width measurements alone 3

are insufficient to accurately characterize the varying width profile, resulting in an inaccu- 4

rate representation of the shape or mean dimension. Consequently, manual measurement 5

of multiple and mean dimensions is laborious or impractical, and no information in this 6

domain is available. Therefore, an efficient alternative computer vision measurement tool 7

was developed utilizing ImageJ. Twenty sample sets, comprising fruits and vegetables, each 8

representing different shapes, were selected and measured for length and multiple widths. 9

A statistically significant minimum number of multiple widths was determined for practical 10

measurements based on object shape. The “aspect ratio” (width/length) was identified to 11

serve as an effective indicator of the minimum multiple width measurements. In general, 12

50 multiple width measurements are recommended; however, even 15 measurements 13

would be satisfactory (1.0 ± 0.6 deviation from 50 widths). The developed plugin was fast 14

(734 ms ± 365 ms CPU time/image), accurate (>99.6 %), cost-effective, and incorporated 15

several user-friendly and helpful features. The study outcomes have practical applications 16

in characterization, quality control, grading and sorting, and pricing determination of 17

agricultural produce. 18

Keywords: Fruits and vegetables; Grading and sorting; Horticultural crops; ImageJ, Image 19

processing, Physical properties, Quality control 20

1. Introduction 21

Length and width form the most common size measurements that characterize agri- 22

cultural and horticultural produce. Size significantly impacts the external appearance of 23

fruits and vegetables, as the price of produce generally correlates well with its size [1]. With 24

agricultural produce, such as fruits and vegetables, the object will have a unique length 25

but will have several varying widths along the length. A single width measurement will 26

not provide the best description of the object’s width profile. However, the most reported 27

dimensions are from a single measurement per object. 28

For example, using the computer vision image analysis “pixel-march” method [2] 29

measured the orthogonal length and width of agricultural produce. Therefore, multiple 30
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widths will only describe the shape of the object better, and a correct representation, or at 31

least a mean width derived from the multiple widths, would provide a better description. 32

While dealing with axisymmetrical objects, which have rotational symmetry about 33

their length, the width measurement will also depict the thickness (orthogonal to the width 34

and length). Such measurements will provide the best description of the product shape 35

based on simple orthogonal dimensions. Most agricultural produce and products belong 36

to axisymmetrical (convex) shapes, while non-axisymmetrical (concave or curved) shapes 37

occur in agricultural produce, but they are less prominent and are not considered in this 38

study. 39

In the grading and sorting of agricultural produce, the size constitutes one of the 40

primary criteria, while other factors such as shape, color, and surface defects are also 41

considered. Manual measurement, which is the known and common method, becomes 42

laborious, tiresome, subjective, and prone to inaccuracy and reproducibility issues. 43

Several machine-based grading or sorting systems have increasingly been adopted in 44

the industry to address these limitations. These systems utilize computer-based algorithms 45

to analyze digital images and interface with activating mechanisms that perform the actual 46

separation or sorting process. 47

Computer/machine vision systems have been used increasingly in these industries 48

and food processing plants due to their ability to provide rapid, cost-effective, hygienic, 49

consistent, accurate, and objective assessment, online automatic process control, and real- 50

time quality evaluation [3,4]. In addition, computer vision image analysis applications 51

are well established and proven successful for classification, volume and mass estimation, 52

defect detection, size and shape features measurement, quality inspection, and grading of 53

grains, fruits, and vegetables in agricultural and food process engineering fields [5–9]. 54

Reviews on computer vision or image processing are available applicable to qual- 55

ity evaluation, size and volume determination, shape analysis of fruits and vegetables, 56

agricultural products, and food products [1,4,10–13], and developments in these fields 57

[14], illustrate several applications to agricultural produce and products. A latest review 58

describes the basic method (capliper) to the modern method (machine vision and deep 59

learning) for size assessment of fruit on trees in the orchard directly [15]. In addition, some 60

novel applications of image processing include the determination of volume and surface 61

area of agricultural products [16,17], and major orthogonal dimensions measurements of 62

food grains [2]. Relationships between volume and mass of axi-symmetric fruits like apple, 63

sweet-lime, lemon, and orange were estimated using an imaging technique with five dif- 64

ferent views of a fruit and geometrical formulas [18]. Machine vision-based systems were 65

employed for in-line sorting, detection of contaminants or specific chemical compounds 66

on the product?s surface [19]. Object detection and depth maps with a stereo camera for 67

vegetable (cucumber, eggplant, tomato, and pepper) recognition and size estimation using 68

six keypoints [20]. 69

Recently, fruits and vegetable disease recognition using convolutional neural networks 70

and YOLO deep learning modles [21], three-dimensional (3D) machine vision techniques 71

have been widely employed in agriculture and food systems, utilizing modern 3D vision 72

systems and advanced deep learning technologies [22,23], application of computer-vision- 73

based industrial algorithm for the detection of the dimensions and the spatial positioning 74

of fruit and vegetables on a conveyor belt for their movement to a packing machine with a 75

robotic arm [24], and several similar research outputs have been reported. In a modeling 76

study, models for the non-destructive in situ detection of individual fruit mass in diversely 77

shaped tomatoes from the greatest width and length [25]. 78

Computer vision techniques and image analysis make it possible to obtain these 79

lengths and multiple widths automatically. Recognizing the significance of multiple widths 80
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in representing actual profiles and deriving the mean width, it is pertinent to assess the 81

variation of width along the length and determine the number of multiple widths required 82

to represent a statistically significant mean width. Despite these state-of-the-art systems 83

making significant advancements, particularly in complex tasks such as identification, 84

classification, object localization, handling occlusions, robotics, and overall shapes and di- 85

mensions; no reports on these aspects of multiple dimensions measurement of agricultural 86

produce, mean width, and statistically significant least number of multiple measurements 87

were found in the literature. Thus, making this research necessary, significant, and unique. 88

Our goal is to create a method, measure the multiple widths of axisymmetrical objects 89

such as agricultural produce, and find out statistically how few multiple widths are needed 90

to represent them accurately. Therefore, the objectives of this research are to (i) develop a 91

computer vision analysis tool utilizing the open-source ImageJ analysis platform (ImageJ 92

plugin) to process the digital images and validate the algorithm; (ii) apply it to measure 93

the length and orthogonal multiple widths of several axisymmetrical agricultural produce; 94

(iii) determine their mean width and the least number of statistically significant multiple 95

widths; and (iv) statistically evaluate the effect of number of multiple widths on the mean 96

width. 97

2. Materials and methods 98

2.1. Test material 99

The test material used in this study was agricultural produce (vegetables and fruits) 100

obtained from the local grocery stores. Pasta fettuccine, carrots, celery, green beans, potato, 101

and sweet potato were obtained from Bismarck and Mandan, ND, USA, and the rest of 102

the fresh produce from Coimbatore, TN, India. Original images of these 20 selected test 103

materials used in the study, along with a sample multiple measurement width results, can 104

be found in the “Mendeley Data” repository (https://doi.org/10.17632/jprxshtr4t.1) [26]. 105

A montage of these image samples is presented in Figure 1 for illustration. 106

https://doi.org/10.17632/jprxshtr4t.1
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(e) Celery

(i) Green bean

(l) Papaya

(t) Watermelon light green

(s) Watermelon dark green

(r) Turnip

(q) Sweet potato

(p) Snap melon

(o) Snake gourd

(m) Pineapple

(n) Potato

(k) Mango

(j) Ivy gourd

(h) Eggplant short pink

(g) Eggplant long green

(f) Cucumber

(d) Carrot

(c) Bottle gourd

(b) Bitter gourd

(a) Pasta fettuccine

Figure 1. A montage of the 20 selected axisymmetrical agricultural produce and pasta fettucine used
in the study. The original images that were used in the measurements are available at Mendeley Data
(https://doi.org/10.17632/jprxshtr4t.1) along with selected results [26].

The selected agricultural produce samples were axisymmetrical, characterized by 107

uniform widths and thicknesses along their length. Axisymmetrical shapes produce near- 108

circular cross-sections perpendicular to the rotational length axis. In addition, axisymmetri- 109

cal objects mostly belong to convex shapes, where the centroid of the projected area lies 110

inside the object itself; as opposed to concave shapes (curved or bent) that represent only a 111

relatively small population among agricultural produce, where the centroid lies outside of 112

the object’s projected area and complicates the measurement. 113

2.2. Overall workflow of the research work 114

The workflow of the computer vision research on developing the user-coded ImageJ 115

plugin for multiple width measurement for agricultural produce is presented in the form 116

of a flowchart in Figure 2. Some of the processes depicted (Figure 2) should be understood 117

in conjunction with the ImageJ environment and were achieved through the Java source 118

code of the plugin, while others depict general setup, input, and output operations. Details 119

of component processes are discussed as required. 120

2.3. Image acquisition of agricultural produce samples 121

Domestic digital cameras (1: Canon PowerShot, SX100 IS, 8.0 megapixel, 10X optical 122

zoom, USA; and 2: Canon PowerShot, A3300 IS, 16.0 megapixel, 5X optical zoom, USA) 123

were utilized to capture the test material images. The image size directly influences 124

the measurement accuracy through the resolution of the images. A large image size 125

usually defines the object with an increased number of pixels, resulting in increased 126

resolution, thereby improving measurement accuracy. The resolution of the images is 127

typically expressed in dots per inch (DPI; Figure 2), and the DPI information will be 128

accessible from the image properties. 129

https://doi.org/10.17632/jprxshtr4t.1
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Crop image
if required

Remove
fines and
make mask

Run plugin
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suitable
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Obtain
results

Draw and
visualize
results

End

Figure 2. Process flow diagram of multiple and mean dimensions of agricultural produce.

DPI of an image will vary depending on the focused distance (whether manual 130

or autofocus) or the distance between the object and the camera. When the camera is 131

positioned closer to the object, both the DPI and the accuracy of measurements increase. 132

However, this proximity also reduces the “field of view,” thereby limiting the number of 133

objects that can be captured within a single image. Conversely, maintaining a constant 134

distance between the object and the camera does not affect the DPI of the images. 135

Fixing the camera on a stand in such a way that it aligns perpendicular and focuses on 136

objects is a basic system suitable for laboratory and industrial settings. However, without 137

securing the camera, images for practical use can be obtained by incorporating a reference 138

object of known dimensions within the image frame. This reference object serves as a 139

legend or scale, based on which the dimensions of the objects in the image can be calibrated 140

and measured. There is no restriction in choosing the reference frame dimensions, but 141

it should be proportionately larger than the tested objects and exhibit contrasting colors 142

with the object, so that the profiles of the object are correctly captured. In this study, 143

a “Thermocol board” measuring 1.0 m × 0.5 m and a “letter paper (US)” with a drawn 144

rectangle of dimension 242 mm × 178 mm (Figure 3) were utilized as the reference frames. 145

Figure 3. Images captured using a digital camera with good contrast background and reference frame
(left: snap melon on thermocol board - 1.0 m × 0.5 m; right: celery on letter paper (US) with a drawn
rectangle of 242 mm × 178 mm).

Images were captured in a manner that the reference frame occupies the major area of 146

the picture at the highest possible resolution. Objects were arranged so that they do not 147

touch one another (singulated arrangement), and the orientation of objects without protru- 148

sions (e.g., pedicles) does not matter. Special roller or chain conveyors presenting fruits 149

individually (singulated) for machine inspection or other operations are common in the 150

industry. However, produce with pedicles should be arranged so that all faces one direction 151

(Figure 1: Eggplant samples), as these components were ignored from measurements using 152

the “end caps” methodology coded in the plugin. 153
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Shadows of the objects should be avoided as they will be included in the projected 154

object area during preprocessing if the object color matches the shadow color. Indirect or 155

diffused lighting, as well as multiple lighting sources, can effectively eliminate shadows. 156

Images captured using natural lighting in shaded areas or with multiple fluorescent lights 157

tend to yield good results. In the case of small objects, such as grains and other particulate 158

materials, a document scanner proved to be an efficient imaging tool [2]. The scanner 159

provides the best lighting without shadows, along with very high resolutions (DPI > 1000). 160

Scanners can be readily utilized for small-sized produce (e.g., berries, grapes, nuts). 161

2.4. Computer vision image analysis framework used 162

The developed computer vision image analysis plugin utilizes the Java language and 163

Fiji (Ver. ImageJ 1.54p; http://fiji.sc/Fiji) package. Fiji is an image processing package 164

and is a distribution of ImageJ, an open-source, free image analysis program [27,28]. It is 165

quite popular among scientists working with biological imaging [29]. Fiji is a feature-rich 166

integrated development environment of ImageJ that offers various commands for plugin 167

development [30]. Researchers have developed custom-made ImageJ plugins to address 168

diverse computer vision applications. Some of the examples are food grains dimensions 169

[2]; morphological characterization of particles [31]; blood vessel diameter measurement 170

[32]; and several more. These plugins played a role in advancing scientific research in these 171

areas. 172

2.5. Image preprocessing 173

In computer vision image analysis, the fundamental calculations are initially per- 174

formed on pixel units, and subsequently, these values are converted into practical physical 175

units. The calibration process establishes a correlation between the pixel values and the 176

physical dimensions of the object. In most image processing algorithms (Figure 2), the 177

binary image gets handled easily and is used to derive various standard parameters from 178

the image processing programs. Therefore, color images were initially converted into 179

binary images (black and white colors only) using the image processing system. The Im- 180

ageJ’s “8-bit” and “Threshold...” commands created the grayscale and binary images, 181

respectively. The information displayed in typewriter font (e.g, “8-bit”) refers to actual 182

ImageJ commands. 183

The DPI information (pixel values of a reference object) of the image can be extracted 184

by tracing the known reference rectangular frame or line using the “Rectangular” or 185

“Straight” selection tool, respectively. From the ‘w’ (width) and ‘h’ (height) or the ‘l’ 186

(length) of the reference frame or line in pixels, the DPI of the image is calculated as follows: 187

DPI (pixel inch−1) =
[

25.4 × Reference dimension (pixel)
Reference dimension (mm)

]
(1)

The measurement resolution (the smallest dimension that can be measured) can be 188

obtained from the DPI as follows: 189

Measurement resolution (mm pixel−1) =

[
25.4

DPI (pixel inch−1)

]
(2)

Once the image DPI is measured and recorded (Equation (1)), the image can be cropped, 190

if necessary, to only include the objects while eliminating the unnecessary background 191

details, since image cropping preserves the DPI. Fine particles, such as dust or other specks, 192

can be omitted from analysis by setting the “Analyze Particles ...” area range from 193

the “Size (pixel^2)” to a minimum cutoff value. This minimum cutoff value depends 194

on the projected area of the object and the DPI of the image. For instance, the smallest 195

http://fiji.sc/Fiji
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object, namely the ivy gourd image (Figure 1) at 109 DPI had the object projected area 196

ranging from 10,635 to 31,740 pixel2; thus, a “Size (pixel^2)” input of “10000-Infinity” 197

will eliminate small and fine particles for the entire set of samples studied. However, 198

if the objective is to remove only the dust and small non-objects, a smaller range, such 199

as “1000-Infinity” (≈1/10 of the minimum area), can also be employed to ensure the 200

inclusion of larger objects. 201

During actual measurement, filtering can be performed, or an image mask can be 202

obtained by eliminating the finer particles beforehand. It is essential to check the “Exclude 203

on edges” and “Include holes” options of “Analyze Particles ...” while making the 204

mask to ensure that the entire area of the object gets completely filled. Any partially 205

cropped object will be discarded. 206

2.6. Plugin development and description of methodology 207

A brief description of the developed multiple and mean width measurement plugin 208

(Figure 4) and its methodology is described hereunder. The plugin consisted of about 1250 209

lines of Java code (including comments) and employed several Java methods to execute 210

its functionalities. These methods include the following activities: (i) Initial setup that 211

derives the standard ImageJ output of particle analysis, (ii) determining the length and 212

width limits of objects, (iii) reading user inputs based on object properties, (iv) evaluating 213

multiple and mean widths, as well as lengths, and visualizing these measurements on a 214

binary image, (v) logging the individual multiple width measurements for each object, 215

(vi) summarizing the overall results for all objects, (vii) creating separate graphs of multiple 216

widths for each object based on user inputs and orientation, and (viii) exporting the output 217

as a consolidated CSV file for all measuring sessions. 218

2.6.1. Plugin’s user input front panel 219

The plugin’s user input front panel presents a suite of inputs to perform various 220

activities and achieve the desired results (Figure 4C). The input panel has several numeric 221

field text boxes and boolean-valued check boxes to facilitate input collection. Several of 222

these choices were coded as default, allowing the plugin to run without users’ intervention 223

if the defaults suit their requirement or for a trial run. In alternative cases, users can provide 224

their specific inputs and obtain the desired outputs. 225

The calibration (pixel to physical dimensional units conversion) process can be per- 226

formed either through the DPI value or the reference frame dimensions. As previously 227

described (Section 2.5), when the known DPI value of the image (Equation (1)) is combined 228

with a binary mask, the calibration can be performed directly (Figure 4C). Conversely, if 229

DPI is not known, the number of pixels that constitute the reference frame can be used 230

for calibration (Figure 4C). Both these methods result in the conversion of the pixel values 231

into physical dimensions (mm). If the image title contains DPI values, the plugin will 232

process the text, extract the DPI values, and populate them automatically. We followed this 233

approach to have the DPI value in the image titles to enable this automatic reading and 234

better documentation of images. 235
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3
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1

2

Figure 4. Fiji environment and the developed plugin with its features. (A) Fiji ImageJ image
processing software panel - where several standard tools and status bar are shown; (B) Standard
“Analyze Particles” dialog box - which scans through various objects in the image and offers filtering
options, such as fine particle removal, mask creation, excluding objects on edges, include holes in
the object, and many more; (C) Developed plugin input panel - where calibration through DPI or
reference frame dimensions, end caps chopping percentage, number of multiple widths measurement,
and different output options can be input; (D) Measured multiple widths (50 numbers) from both
edges of sample orthogonal to length from bottom to top; (E) multiple widths measurement drawing
on a bottle gourd sample - where (1) centroid, (2) direction of length, (3) top cap chopped end, (4)
bottom cap chopped end, (5) segment of measurement where multiple widths are measured, and
(6) pedicle of the sample that was excluded using end cap values; (F) Standard ImageJ outputs of
the object; (G) Section of textual output of individual width and their location along length; and (H)
Consolidated numerical result of mean dimensions with standard deviation.
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It is common practice in the cultivation of vegetables and fruits to harvest some 236

produce with pedicles intact. These pedicles can interfere with the multiple width measure- 237

ment, since any measurement of width along the pedicles will not be representative of the 238

economically important portion of the produce. To tackle the presence of the pedicles, the 239

“end cap” chopping methodology was incorporated (Figure 4C). As the images were read 240

from “left to right” and “top to bottom,” the end cap values should be input accordingly. 241

Therefore, left- or top-oriented pedicles should result in higher top end chop percent values 242

compared to the bottom, and vice versa. As the end chop values are applied uniformly in a 243

session, it will be prudent to orient the sample with the pedicles pointing in a way so that a 244

single end cap value can be applied to all the objects in the image (Figure 1: eggplant shot 245

pink and eggplant long green). Future developments should aim to automatically identify 246

the pedicle and apply the end cap values correctly, regardless of their orientation. 247

One of the other analysis inputs (Figure 4C) is the desired number of multiple width 248

measurements. A suggestion, based on 80 % of the smallest length of the object, was also 249

indicated, and any value equal to or less than this limit can be used. In this research, it is 250

intended to find the optimum number of width measurements beyond which no statistical 251

difference will be observed. Also, a default value of 50 was provided for the user. The 252

final input box gives another chance of filtering out the small particles based on the area, 253

expressed in the number of square pixels. A default value of 10 was set and can be modified 254

by the user. 255

The output-related selections can be exercised through the checkboxes: (i) multiple- 256

width drawing output on a binary image of the object to visualize the measured locations 257

of the widths (Figure 4E); (ii) multiple-width results in the form of a “Log” window for 258

immediate consumption (Figure 4G); (iii) multiple-width visualization as a graphical plot 259

for each object in the image (Figure 4D); and (iv) multiple-width graphical plot orientation 260

(the swapping of x and y axes to visualize the plotted width as desired by the user (Fig- 261

ure 4E). As a background task, all the consolidated results of all measurement sessions will 262

be appended to a CSV file for recording and documentation. 263

2.6.2. Methodology of multiple widths and length measurement 264

Utilizing Fiji as the plugin environment (Figure 4A), the “pixel-march,” as reported 265

elsewhere [2], seeks black pixels while marching along the white pixels, following the 266

specified straight line paths, to evaluate both length and widths. For this purpose, it is 267

essential that the interior of the object be continuous and filled with white pixels, which 268

is ensured by the “Include holes” (Figure 4B). Convex-shaped objects ensure that the 269

centroid (Figure 4E: 1), which serves as the starting point of the pixel-march, remains within 270

the object’s outline, allowing the process of length and width measurements to proceed 271

uninterrupted. If the centroid falls outside, determined based on the background color, 272

only that object is excluded from the measurements. With the desired number of multiple 273

widths, the “step-length” of segments for multiple width measurement was determined. 274

Based on the end caps chopping values, the segment length was calculated from the 275

object length less the end caps length (Figure 4C). Different or similar end cap values can be 276

used depending on the type of agricultural produce (e.g., with or without pedicle). Starting 277

from the centroid, the widths were determined by finding the boundary pixels orthogonal 278

to the length on both sides and using the distance formula. The widths were determined 279

starting from the centroid and moving away towards both ends based on step-length 280

(Figure 4E) for correct evaluation, but re-allotted from bottom/left to the top/right for 281

plotting the widths (Figure 4D). The mean and standard deviation (STD) of multiple width 282

measurements were calculated for each object. The length of the object was obtained along 283
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the major axis and through the centroid (Figure 4E). Textual results were produced for 284

reading (Figure 4F) and for further statistical analysis in the form of a spreadsheet. 285

2.7. Statistical analysis of multiple widths 286

It is of practical interest to investigate the effect of the number of widths to be con- 287

sidered and their statistical significance, and the mean separation analysis results that 288

provide such insights. Several multiple widths ranging from 1 to 200 were considered, with 289

measurements chosen closely towards the smaller numbers. The effect of the number of 290

multiple widths on the measured mean width and its statistical significance was evaluated 291

using the mean separation method (pairwise differences among means). A SAS (Ver. 9.3, 292

2009, SAS Institute, Cary, North Carolina, USA) macro %mmaov that used PROC MIXED 293

[33] performed the mean separation analysis. This macro converts the means pairwise 294

differences to letter groups, where means that share a common letter are not statistically 295

different at a specified α level. The macro was run with mean width as the dependent vari- 296

able; produce name, and number of multiple widths measured as classification and fixed 297

variables; logarithmic data transformation a common technique to reduce skewness in the 298

data and make it more normally distributed, meeting the normal distribution assumption 299

used in the analysis); grouping by produce name; α = 0.05; and adjustment by Tukey. 300

3. Results and discussion 301

For the agricultural produce images captured in this study from the digital camera, 302

the DPI values were within the range of 109 and 246, resulting in a measurement accu- 303

racy or resolution (Equation (2)) of 0.103 to 0.233 mm pixel−1. Increased DPI values are 304

feasible with high-resolution cameras. A DPI of 600 (0.042 mm pixel−1) or more is quite 305

common with digital scanners. Therefore, based on the necessary measurement accuracy, 306

the appropriate image resolution (DPI) should be selected. 307

3.1. Features of developed plugin 308

Several features are built into the developed plugin and are briefly described below. 309

The plugin accommodates two calibration methods, namely, DPI and reference dimensions 310

input (Figure 4C). However, in a fixed setting with a stationary camera where the distance 311

between the objects and the camera remains constant, the calibration values can be directly 312

coded into the plugin, eliminating the calibration routine. The plugin extracts the object 313

name and DPI value from the file name of the image using Java string processing commands 314

if the information is included in the specified pattern. This extracted DPI value gets filled 315

in the “Use DPI” input box of the plugin input panel for ready execution (Figure 4C), and 316

the object name is used for results output. 317

The plugin (Figure 4) is capable of analyzing images containing objects in any orienta- 318

tion. Consequently, the multiple widths measured were made to orient orthogonal to the 319

major axis of any inclination. In addition, the top and bottom end caps chopping values can 320

be input individually to preferentially address the presence of pedicles and exclude them in 321

multiple width measurements (Figure 4E). The plugin identifies concave objects (centroid 322

falling outside of the profile) and outputs a message with the identification label number to 323

facilitate their elimination through further preprocessing and rerun. For example, the 5th 324

object from the left on the color image of green beans (Figure 1: Green bean) has a highly 325

curved shape, indicating it is a concave object, and it is removed from the binary image for 326

measurement purposes [26]. 327

The plugin generates various textual, data, and graphical forms of outputs (Figure 4). 328

Usually, the results are displayed in the “Log” window, showing the overall results (Fig- 329

ure 4F,H), and individual multiple-width results (Figure 4G) can also be produced. The 330
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plugin also directs consolidated results and continuously archives them to an external 331

spreadsheet through a CSV file format. Graphical outputs include visualizations of mea- 332

sured widths as plots (Figure 4C,D) as well as drawings of widths and length directly on a 333

binary image (Figure 4C,E). 334

The developed measurement methodology is cost-effective as it requires only an 335

inexpensive domestic digital camera and the necessary plugin created using an open- 336

source and free Fiji ImageJ software. Thus, the investment for the system rests on the digital 337

camera (e.g., 48-megapixel ≤ $150), and the supplementary lighting supplies. However, 338

a practical unit that incorporates this algorithm and associated hardware for grading or 339

sorting may require additional costs for scaled-up operations. 340

3.2. Plugin validation 341

The validation of the plugin can be performed by analyzing an image (without a 342

reference frame) that contains objects of known dimensions. An image depicting directly 343

drawn rectangles and precision-cut paper strips of known dimensions (Figure 5), was 344

analyzed using the plugin, and the results are tabulated (Table 1). The objective is to test the 345

plugin’s performance by conducting multiple measurements with simple reference objects. 346

It is also possible to use several standard precision objects for the plugin performance test 347

as alternatives. 348

Figure 5. Multiple width measurements validation using drawn rectangular blocks (1–4) and cut
paper strips (5–10) of known dimensions (DPI = 256; 20 measurements; 10 % end caps; labels indicate
the object numbers).
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Table 1. Validation results using drawn rectangular blocks, cut paper strips, and whole letter paper
(US) of known dimensions (number of width measurements = 20).

Object DPI Actual (mm) Plugin measured (mm) Accuracy (%)#

length width length width length width

min max mean STD

1∗ 256 500 50 500.00 50.010 50.010 50.01 0.00 100.00 99.98
2∗ 256 500 100 500.00 100.005 100.005 100 0.00 100.00 100.00
3∗ 256 400 150 400.00 150.003 150.003 150 0.00 100.00 100.00
4∗ 256 400 200 400.00 200.003 200.003 200 0.00 100.00 100.00

5† 256 100 20 102.50 19.74 20.04 19.85 0.09 97.50 99.25
6† 256 100 10 104.25 10.12 10.42 10.33 0.10 95.75 96.70
7† 256 100 5 102.36 4.96 5.46 5.21 0.11 97.64 95.80
8† 256 100 20 103.23 20.00 20.57 20.33 0.17 96.77 98.35
9† 256 100 10 102.79 10.31 10.59 10.43 0.10 97.21 95.70
10† 256 100 5 102.03 4.98 5.38 5.20 0.10 97.97 96.00

11‡ 165 279.4 108.9 278.66 107.61 109.46 108.50 0.56 99.74 99.63
12‡ 165 279.4 107.4 278.94 106.53 107.76 107.18 0.41 99.84 99.80
13§ 165 279.4 215.9 278.84 214.17 216.33 215.19 0.67 99.80 99.67
14¶ 265 279.4 215.9 279.78 215.56 216.14 215.74 0.16 99.86 99.93

Width columns min, max, and STD represent minimum, maximum, and standard deviation, respectively. ∗ Blocks
drawn using Fiji tools to exact pixel dimensions shown as actual length and widths (Figure 5); measurement
resolution = 0.099 mm pixel−1. † Thin paper strips cut manually after drawing them (Figure 5); measurement
resolution = 0.099 mm pixel−1. ‡ Two wider strips made by cutting a letter paper (US; 215.9 mm × 279.4 mm)
along the length (figure not shown); measurement resolution = 0.154 mm pixel−1. § Whole letter paper (US) is also
included in the image of two wider strips (figure not shown); measurement resolution = 0.154 mm pixel−1. ¶ Whole
letter paper (US) only with slightly increased DPI (figure not shown); measurement resolution = 0.096 mm pixel−1.
# Accuracy (%) = [(Plugin measured - Actual)/Actual] × 100.

Results indicate that the plugin correctly measured drawn blocks on the image with 349

perfect edges (Table 1), and the length and multiple widths have great measurement 350

accuracy (99.98 %–100 %). This demonstrates the capability of the plugin to make exact 351

measurements when images with clean outlines are used. However, the cut paper strips’ 352

length and multiple widths accuracy ranged from 95.70 % to 99.25 %. 353

The results demonstrate that the plugin accurately measures drawn blocks on images 354

with precise edges, as evidenced by the high measurement accuracy (99.98 %–100 %) for 355

length and multiple widths. This capability is particularly evident when using images with 356

clean outlines. However, the accuracy of measuring the length and multiple widths of cut 357

paper strips varied, ranging from 95.70 % to 99.25 %. These results are comparable to the 358

absolute deviations (1.44 %–2.15 %) of computer vision analysis using a document scanner 359

(300 DPI) observed with digital caliper dimensions of standard printed circuit board nylon 360

spacers [2]. 361

In the present study, the accuracy reduces as the strips become thinner (5 mm), as the 362

number of pixels describing such widths diminishes, and individual pixels have a greater 363

influence on the measurements. With a DPI of 256, each pixel represents 0.0992 ≈ 0.1 mm. 364

This means exclusion/inclusion of a single pixel on a 5 mm reference width results in a 365

±2 % loss of accuracy. However, on a 20 mm reference, this is linearly reduced to a ±0.5 % 366

accuracy loss, and further diminishes with increased dimensions. 367

As most of the practical samples are wider than thin 5 mm, a second experiment 368

included a few wider samples made from letter paper (US; 215.9 mm × 279.4 mm) in vali- 369

dation (Table 1) at two resolutions. These wider strips even at 0.154 mm pixel−1 (165 DPI) 370

produced accuracies ≥ 99.63 %. With the increased resolution of 0.096 mm pixel−1 (265 371
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DPI), the measurement accuracies further improved to ≥ 99.86 %. In addition, a whole 372

letter paper (US), involving no manual cutting, identified as objects numbered 13 and 14 373

(Table 1) was validated at 165 and 265 DPI, and this showed a slight increase in accuracy 374

with an increase in DPI. Thus, increasing DPI becomes a simple way of improving the 375

measurement accuracy. Overall, the measurement accuracy of the plugin varied from 96 % 376

to 100 %, and it improved with the resolution of the input image. 377

3.3. Multiple width results of agricultural produce 378

An example of multiple and mean dimension measurements, with papaya (Figure 1l) 379

as an illustration from the agricultural produce studied (Figure 1), is presented in Figure 6. 380

The original color image (Figure 6A) was duplicated to make a binary mask, in preprocess- 381

ing stages, on which the length and multiple widths are measured and drawn (Figure 6B). 382

The plugin was run with the loaded binary of the papaya and default values (DPI from 383

image = 109, both end chop % = 10.0, and number of multiple widths = 50) of the plugin 384

(Figure 4C) with some user inputs (uncheck rotating the profile). The length and multiple 385

widths of each sample of the papaya image were plotted and labeled (Figure 6B). 386

The samples were identified from top to bottom and left to right (3rd papaya identified 387

as 1st). The angle of inclination of the length direction (along the axis of the papaya) also 388

represents the orientation of the object. The multiple widths were measured and drawn 389

perpendicular to the length axis (Figure 6B). Measured multiple widths can be visualized 390

through unrotated profile plots (width on x-axis and multiple width numbers on y-axis; 391

Figure 6C). The unrotated multiple width plot also aids in visualizing the profile of the 392

object as measured from bottom to top. The plugin also calculates the minimum, maximum, 393

mean, and STD values of the multiple widths of all the objects in the sample image (Table 2). 394

Dimension measurement results for pasta fettuccine and 19 agricultural produce 395

(Figure 1) are presented in Table 2. Length is a unique measurement for each sample, 396

while 50 multiple width measurements were conducted for each sample used in the results 397

illustration. Consequently, within each sample group, there will be distinct minimum and 398

maximum lengths, whereas each sample will have a minimum and maximum width (based 399

on 50 width measurements). The standard deviations are applicable only to the mean 400

length and all three width values (Table 2). 401

The details presented in the supplementary material data [26] of the selected produce 402

(Figure 1) show the cropped color image, the measured and labeled binary image, and a 403

multiple-width plot of a selected sample that was identified from the plot title (e.g., n = 404

5). The plugin identifies objects by finding their topmost pixel while scanning from left to 405

right, starting from top to bottom. For example, in the “Bitter gourds” (Figure 1b) sample 406

set (Data [26], page 2), the natural first left sample is actually identified “9” as its top tip 407

is lower than the other eight samples. This naturally left the first sample of the image 408

selected for multiple-width plot visualization, and this number can also be identified from 409

the title of a block of the plot “(n = 9).” These plots are for a single sample in the image, 410

and similar plots for the rest of the samples were produced (plots not shown). The multiple 411

width plot is a collection of caliper widths (Figure 4E-5) from bottom/left to top/right. 412

This multiple widths plot clearly shows the width profile of the test samples, and a single 413

value cannot able to specify this existing variation. The plugin accurately captures multiple 414

width profiles and enables us to visualize the width variations (Data [26]). 415

The multiple-width profiles closely resemble the tested sample’s natural profile (Data 416

[26]). For instance, pasta fettuccine (Figure 1a), a manufactured food product with uniform 417

dimensions, exhibits a linear profile with minimal variation (mean around 4.7 mm). Bitter 418

gourds (Figure 1b), on the other hand, demonstrate the zigzag profile characteristic of 419

the sample’s rough surface. Carrots (Figure 1d) and celery (Figure 1e) exhibit a linear 420
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Figure 6. Illustration of multiple width measurements using papaya sample image. (A) Original color
image of the sample; (B) Binary mask of the original image used as plugin input where length and
multiple widths were drawn, and (C) Multiple width plot for visualization of the measured widths
and their profile.
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but inclined profile following their triangular or truncated pyramid shape. Green beans 421

(Figure 1i) display a wavy pattern that accommodates the presence of seeds within the 422

pod. Eggplants long green (Figure 1g), exhibit a typical inclined and curvilinear variation 423

for a hook-shaped sample. Pineapples (Figure 1m) produce a linear profile with minimal 424

variation as the fruit is cylindrical and rectangular in profile. The remaining produce 425

exhibits a smooth dome-shaped profile, reflecting the spherical or prolate spheroid shape of 426

the samples. Furthermore, any dent or deformation in the profile of the samples (e.g., potato 427

[Figure 1n], snap melons [Figure 1p], sweet potato [Figure 1q]) was also captured. These 428

findings clearly demonstrate the necessity of multiple width measurements to accurately 429

measure the varying dimensions and visualize the actual profile or shape of the agricultural 430

produce. 431

The aspect ratio shape factor (W/L) aids in identifying the sample’s elongation (smaller 432

value) or roundness (higher values close to 1.0) (Table 2; Data [26]). Elongated samples, 433

such as pasta fettuccine, green beans, carrots, and celery hearts, exhibited aspect ratios 434

of 0.06, 008, 0.11, and 0.12, respectively. Conversely, round samples, including mangos, 435

watermelons lightgreen, watermelons darkgreen, and snap melons, had the larger values 436

of 0.88, 0.73, 0.70, and 0.62, respectively. It is important to note that these aspect ratio values 437

are derived from the multiple width measurements and cannot be precisely obtained from 438

simple single measurements. 439
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Table 2. Results obtained from the plugin showing the measured dimensions of the agricultural produce (number of width measurements = 50).

N Image_File∗ Scientific name #Objects Plugin measured sample dimensions W/L†

Samples lengths (L, mm) Samples widths (W, mm)

Minimum Maximum Mean Minimum Maximum Mean
± STD ± STD ± STD ± STD

1 PastaFettuccine_252DPI — 48 69.95 99.04 85.10 ± 6.26 4.45 ± 0.03 4.98 ± 0.08 4.71 ± 0.05 0.06
2 BitterGourds_109DPI Momordica charatia 10 159.64 290.62 237.24 ± 41.97 45.49 ± 3.87 58.06 ± 7.55 50.42 ± 5.58 0.22
3 BottleGourds_109DPI Lagenaria siceraria 8 265.48 449.76 349.17 ± 61.44 60.41 ± 1.20 78.32 ± 12.11 67.47 ± 5.07 0.20
4 Carrots_169DPI Daucus carota 9 179.76 210.27 196.98 ± 8.55 18.99 ± 3.51 28.80 ± 7.17 22.56 ± 5.92 0.11
5 CeleryHearts_236DPI Apium graveolens var. Dulce 5 206.97 263.76 247.11 ± 21.09 26.27 ± 1.49 41.21 ± 4.73 30.80 ± 2.89 0.12
6 Cucumbers_109DPI Cucumis sativus 8 130.43 209.34 172.43 ± 23.09 40.05 ± 3.06 48.27 ± 4.99 43.79 ± 4.07 0.28
7 EggplantLongGreen_109DPI Solanum melongena 11 96.94 198.4 151.30 ± 27.90 25.60 ± 2.65 35.26 ± 6.77 30.12 ± 4.54 0.20
8 EggplantShortPink_109DPI Solanum melongena 27 62.89 96.07 75.25 ± 9.33 30.86 ± 2.75 45.42 ± 9.66 37.72 ± 4.29 0.55
9 GreenBeans_244DPI Phaseolus vulgaris 7 79.36 123.09 104.79 ± 14.38 7.65 ± 0.15 10.33 ± 0.77 8.79 ± 0.34 0.08
10 IvyGourds_109DPI Coccinea indica 29 39.89 74.6 60.79 ± 7.90 16.21 ± 2.08 25.15 ± 3.36 21.66 ± 2.72 0.39

11 Mangos_109DPI Mangifera indica 7 114.7 132.57 121.79 ± 5.73 86.52 ± 11.10 101.15 ± 14.03 94.79 ± 12.35 0.88
12 Papayas_109DPI Carica papaya 5 213.69 238.91 228.30 ± 9.74 98.35 ± 12.70 106.75 ± 17.27 103.21 ± 15.01 0.50
13 Pineapple_109DPI Ananas cosmosus 6 234.67 276.97 260.26 ± 15.83 100.16 ± 4.24 121.59 ± 6.66 113.54 ± 5.05 0.45
14 Potato_193DPI Solanum tuberosum 3‡ 177.38 177.51 177.42 ± 0.06 64.80 ± 6.65 64.90 ± 6.92 64.86 ± 6.74 0.40
15 SnakeGourdsShort_109DPI Trichosanthes cucumerina 10 169.71 271.48 202.59 ± 31.52 50.14 ± 1.67 65.14 ± 12.28 57.18 ± 7.94 0.31
16 SnapMelon_109DPI Cucumis melo var. Momordica 5 166.64 200.2 177.82 ± 11.95 90.09 ± 10.83 103.92 ± 16.47 98.87 ± 13.02 0.62
17 SweetPotato_246DPI Ipomoea batatas 3‡ 175.32 175.63 175.53 ± 0.15 60.19 ± 5.73 60.34 ± 6.09 60.28 ± 5.86 0.36
18 Turnips_109DPI Brassica rapa var. Rapa 14 95.5 150.35 117.67 ± 15.07 48.37 ± 6.98 99.14 ± 13.40 68.26 ± 10.28 0.66
19 WaterMelonDarkGreen_109DPI Citrulus lanatus 5 201.52 232.1 214.87 ± 11.63 122.87 ± 14.23 143.46 ± 18.50 134.43 ± 16.07 0.70
20 WaterMelonLightGreen_109DPI Citrulus lanatus 4 271.97 297.61 284.93 ± 9.12 171.94 ± 18.65 196.43 ± 24.00 187.28 ± 21.71 0.73

N - Number sequence. STD - Standard deviation obtained from the different objects of the sample from the same image representing a produce. ∗ Image file name depicting the common
name and the dots per inch (DPI) information of the captured image. † W/L, width/length ratio (dimensionless), aka aspect ratio, width and length are the mean of single orthogonal
measurements at the centroid of each sample. ‡ The three objects included are actually derived from the single original image by flipping it vertically and horizontally and combining
them digitally.
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3.4. Effect of number of width measurements and significance 440

The presence of multiple mean groups with samples (identified by uppercase letters; 441

Table 3), except for pasta and celery, reinforces the necessity of multiple width measure- 442

ments statistically (α = 0.05). The aspect ratio effectively served as an indicator of shape 443

(Table 2) to determine the number of significant groups of multiple widths (Table 3). A 444

smaller value of W/L indicates an elongated object (e.g., pasta fettuccine, carrot, celery 445

[Figure 1a,d,e, respectively]; W/L ≤ 0.12), while an increased value suggests a more spher- 446

ical object (e.g., mangoes, turnips, watermelons [Figure 1k,r,s and t, respectively]; W/L ≥ 447

0.66). Overall, for 0.06 ≤ W/L ≤ 0.12, the number of distinct mean groups was ≤2, while 448

for increased W/L > 0.2 the number of distinct mean groups was ≥ 5 for most produce. 449

Therefore, based on the W/L, the number of multiple widths will be statistically different 450

from the single width, and this difference diminishes with a reduction in W/L and vice 451

versa. 452

The minimum number of statistically significant multiple widths and the next below 453

significant width tabulated (Table 3) as “#SigWidths” in the form: a ⇔ b, which illustrates 454

the importance of multiple width measurements for sample shapes that deviate from linear 455

profiles. For example, bitter gourds (Figure 1b) have 5 letter groups (A to E), but multiple 456

widths of 10 through 200 are not significantly different. The first three widths (1 through 5) 457

are all significantly different; widths from 7 through 25 are not significantly different, but 458

widths 7 and 50 are significantly different. Working from the top after multiple widths 50, 459

increasing the number of multiple widths beyond this limit does not produce a significant 460

difference in mean widths; however, below this limit, 7 is the largest significantly different 461

number (a ⇔ b = 50 ⇔ 7 in Table 3). Depending on the shape (W/L) wide variation on 462

multiple widths (excluding potato (Figure 1n) and sweet potato (Figure 1q), which are 463

single object sources) on the a (1 to 150) and b (1 to 20) values was observed. 464
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Table 3. Results obtained from the plugin showing the plugin measured dimensions of the agricultural
produce (values presented are in mm, letters represent mean separation groups, and multiple-width
measurements = 50).

#Widths† Pasta fettuccine Bitter gourd Bottle gourd Carrot Celery Cucumber Eggplant

long green

1 4.713± 0.00 A 53.0± 0.05 A 69.3± 0.10 C 22.1± 0.02 B 30.0± 0.03 A 47.8± 0.02 B 30.0± 0.04 B

3 4.705± 0.00 A 45.7± 0.04 B 62.4± 0.10 A 22.1± 0.02 B 30.8± 0.03 A 38.9± 0.02 D 28.5± 0.03 A

5 4.709± 0.00 A 47.9± 0.05 E 64.4± 0.10 AB 22.2± 0.02 AB 30.6± 0.03 A 41.4± 0.02 E 29.3± 0.04 AB

7 4.706± 0.00 A 48.6± 0.05 DE 65.2± 0.10 AB 22.3± 0.02 AB 30.5± 0.03 A 42.2± 0.02 C 29.5± 0.04 B

10 4.711± 0.00 A 49.4± 0.05 CDE 65.7± 0.10 ABC 22.7± 0.02 A 30.6± 0.03 A 42.4± 0.02 C 29.2± 0.04 AB

15 4.708± 0.00 A 49.7± 0.05 CD 65.9± 0.10 ABC 22.4± 0.02 AB 30.4± 0.03 A 43.2± 0.02 A 29.8± 0.04 B

20 4.710± 0.00 A 50.1± 0.05 CD 66.8± 0.10 BC 22.6± 0.02 A 30.4± 0.03 A 43.3± 0.02 A 29.6± 0.04 B

25 4.711± 0.00 A 50.1± 0.05 CD 66.2± 0.10 BC 22.4± 0.02 AB 30.4± 0.03 A 43.5± 0.02 A 29.9± 0.04 B

50 4.710± 0.00 A 50.4± 0.05 C 66.5± 0.10 BC 22.5± 0.02 AB 30.4± 0.03 A 43.7± 0.02 A 29.9± 0.04 B

75 4.709± 0.00 A 50.4± 0.05 C 66.4± 0.10 BC 22.4± 0.02 AB 30.4± 0.03 A 43.8± 0.02 A 30.0± 0.04 B

100 4.709± 0.00 A 50.4± 0.05 C 66.5± 0.10 BC 22.5± 0.02 AB 30.4± 0.03 A 43.8± 0.02 A 29.9± 0.04 B

150 4.709± 0.00 A 50.4± 0.05 C 66.5± 0.10 BC 22.5± 0.02 AB 30.4± 0.03 A 43.8± 0.02 A 29.9± 0.04 B

200 4.709± 0.00 A 50.4± 0.05 C 66.5± 0.10 BC 22.4± 0.02 AB 30.3± 0.03 A 43.9± 0.02 A 30.0± 0.04 B

#SigWidths ‡ 1⇔ 1 50⇔ 7 20⇔ 3 10⇔ 3 1⇔ 1 15⇔ 10 7⇔ 3

#Widths† Eggplant Green bean Ivy gourd Mango Papaya Pineapple Potato

short pink

1 41.2± 0.02 F 8.8± 0.01 B 23.8± 0.01 C 107.6± 0.01 G 114.9± 0.03 G 118.0± 0.03 D 70.3± 0.01 J

3 33.5± 0.01 G 8.5± 0.01 A 18.2± 0.01 F 81.7± 0.02 F 87.3± 0.02 F 107.7± 0.03 E 56.4± 0.01 I

5 35.6± 0.01 D 8.6± 0.01 AB 20.0± 0.01 D 88.4± 0.02 D 95.5± 0.02 E 110.3± 0.03 F 60.7± 0.01 G

7 36.3± 0.01 C 8.7± 0.01 AB 20.6± 0.01 B 90.7± 0.02 C 98.4± 0.03 D 111.7± 0.03 CF 62.3± 0.01 H

10 36.5± 0.01 C 8.7± 0.01 AB 20.7± 0.01 B 91.5± 0.02 C 99.2± 0.03 D 111.9± 0.03 BC 62.9± 0.01 F

15 37.1± 0.01 A 8.7± 0.01 AB 21.2± 0.01 E 93.3± 0.02 E 101.6± 0.03 C 112.8± 0.03 ABC 64.0± 0.01 E

20 37.2± 0.01 AE 8.7± 0.01 AB 21.3± 0.01 E 93.7± 0.02 E 102.0± 0.03 BC 112.7± 0.03 ABC 64.2± 0.01 D

25 37.4± 0.01 AB 8.7± 0.01 B 21.4± 0.01 AE 94.1± 0.02 AE 102.5± 0.03 ABC 113.0± 0.03 ABC 64.5± 0.01 C

50 37.5± 0.01 AB 8.7± 0.01 B 21.5± 0.01 A 94.7± 0.02 AB 103.1± 0.03 AB 113.3± 0.03 AB 64.9± 0.01 A

75 37.6± 0.01 BE 8.8± 0.01 B 21.6± 0.01 A 94.9± 0.02 AB 103.4± 0.03 A 113.4± 0.03 AB 65.0± 0.01 AB

100 37.6± 0.01 BE 8.8± 0.01 B 21.6± 0.01 A 95.0± 0.02 AB 103.4± 0.03 A 113.4± 0.03 AB 65.0± 0.01 AB

150 37.6± 0.01 B 8.8± 0.01 B 21.6± 0.01 A 95.1± 0.02 B 103.5± 0.03 A 113.4± 0.03 A 65.1± 0.01 B

200 37.6± 0.01 B 8.8± 0.01 B 21.6± 0.01 A 95.1± 0.02 B 103.6± 0.03 A 113.5± 0.03 A 65.1± 0.01 B

#SigWidths ‡ 75⇔ 15 25⇔ 3 50⇔ 20 50⇔ 20 75⇔ 20 150⇔ 10 150⇔ 50

#Widths† Snake gourd Snap melon Sweet potato Turnip Watermelon Watermelon

dark green light green

1 62.7± 0.06 D 109.8± 0.06 F 63.2± 0.01 A 76.6± 0.05 F 150.1± 0.03 A 208.5± 0.04 F

3 47.7± 0.05 C 83.9± 0.05 E 52.7± 0.01 H 57.3± 0.05 E 114.4± 0.03 G 160.6± 0.03 C

5 52.6± 0.05 A 91.8± 0.06 D 56.8± 0.01 G 62.5± 0.05 C 124.7± 0.03 F 174.4± 0.03 A

7 54.2± 0.05 AB 94.3± 0.06 CD 58.1± 0.01 F 64.2± 0.05 BC 128.3± 0.03 E 179.2± 0.03 G

10 54.7± 0.05 BE 95.9± 0.06 BC 58.4± 0.01 E 64.9± 0.05 BD 129.3± 0.03 E 180.6± 0.03 G

15 56.1± 0.05 EF 97.2± 0.06 AB 59.6± 0.01 D 66.1± 0.05 AB 132.2± 0.03 D 184.4± 0.04 E

20 56.2± 0.05 EF 98.0± 0.06 AB 59.7± 0.01 D 66.3± 0.05 AD 132.7± 0.03 CD 185.1± 0.04 DE

25 56.6± 0.05 EF 98.1± 0.06 AB 60.0± 0.01 C 67.7± 0.04 A 133.4± 0.03 BCD 185.9± 0.04 BDE

50 57.0± 0.05 F 98.8± 0.06 A 60.3± 0.01 B 67.1± 0.05 A 134.2± 0.03 BC 187.0± 0.04 BD

75 57.1± 0.05 F 98.9± 0.06 A 60.4± 0.01 B 67.2± 0.05 A 134.5± 0.03 B 187.4± 0.04 BD

100 57.1± 0.05 F 99.1± 0.06 A 60.4± 0.01 B 67.3± 0.05 A 134.7± 0.03 B 187.6± 0.04 B

150 57.2± 0.05 F 99.2± 0.06 A 60.5± 0.01 B 67.4± 0.05 A 134.8± 0.03 B 187.8± 0.04 B

200 57.2± 0.05 F 99.2± 0.06 A 60.5± 0.01 B 67.4± 0.05 A 134.9± 0.03 B 187.9± 0.04 B

#SigWidths ‡ 50⇔ 10 50⇔ 10 50⇔ 25 25⇔ 10 75⇔ 20 100⇔ 20

† Number of multiple width measurements considered. Values shown are estimated mean ± standard error
estimate in mm; uppercase letter grouping having a common letter(s) indicates that the means are not significantly
different (α = 0.05). ‡ Maximum number of significant multiple widths shown in the form: a ⇔ b; where, a
represents the minimum number of multiple width measurements above which means are not significantly
different (α = 0.05); and b is the next below significantly different multiple widths of b.
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Based on the results, although there are variations, it can generally be considered 465

after 50 multiple widths (a) onwards that no clear significant differences were observed 466

among measurements (Table 3). A closer examination of the results reveals (based on W/L 467

ratios and combined mean groups) that approximately 15 multiple width measurements, 468

on average, may be required for W/L > 0.2. This can be as low as 5 multiple widths for 469

W/L < 0.2. As previously observed, with a straight or inclined profile along the length, a 470

single width measurement across the centroid was sufficient to represent the mean width. 471

However, at least two measurements are necessary to define the profile. 472

3.5. Deviation with single dimensions 473

With 50 multiple widths as a reference, the deviations of 1-, 5-, and 15-widths for mean 474

width determination are evaluated and plotted in Figure 7. As anticipated, the deviations 475

decreased from 1-width to 5-widths and drastically for 15-widths with respect to 50-widths. 476

On average, these deviations were 7.2 ± 4.7 %, 4.7 ± 2.6 %, and 1.0 ± 0.6 %. It can also be 477

seen with elongated samples (low W/L ratios), such as pasta fettuccine, carrot, celery, egg- 478

plants long green, and green beans, exhibited deviations <2 %. Therefore, based on these 479

results, the general recommendation is to use 50-widths for optimal profile representation 480

and to obtain the mean width. Alternatively, about 15-widths can be used for a satisfactory 481

representation and the mean width estimation with a deviation of approximately 1 % from 482

a 50-width reference. However, for a new untested produce or product, preliminary mea- 483

surements will reveal the optimum number of multiple widths (a) to be considered for the 484

most effective representation. 485
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Figure 7. Deviation of selected single and multiple widths from 50 multiple width measurements.

3.6. Computational speed 486

For an Apple laptop (MacBook Pro, Mac OS X, Intel Core 2 Duo, processor speed 487

of 2.8 GHz, and RAM of 8 GB), the CPU time taken to analyze all 1–200 multiple-width 488

measurement runs (Table 3) and for all 3–48 objects in the image (Table 2) was on average 489

734± 365 ms for single run. This translates to an analysis speed of 15± 10 objects s−1. This 490

computational speed is quite efficient and fast. Analysis speed can be further enhanced by 491

optimizing the computer configuration or using the latest computers with better resources. 492
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3.7. Limitations and recommendations for future work 493

Some of the limitations of the developed plugin include (1) Agricultural produce with 494

pedicles laid out in random orientation will not be measured correctly with fixed top and 495

bottom end cap values. (2) Touching and overlapping objects will interfere with the mea- 496

surements. (3) Shadows, although discernible in color, will get included in the grayscale 497

image and become a part of the object. Given the advancement in computer vision and 498

algorithm development, almost all the limitations can be addressed with elaborate coding 499

and further research. Advanced programming algorithms can be developed to identify 500

features (pedicle vs economic component of the produce), and segmentation techniques for 501

resolving touching objects could address the abovementioned limitations. Furthermore, 502

aspects like better automatic physical layout of objects in singulated arrangement (special- 503

ized spreaders and conveyors), and as simple as employing better lighting conditions that 504

avoid shadows, could enhance the performance. 505

Based on the experience gained, future research may explore the development of 506

advanced algorithms specifically designed to address the identified limitations. Subsequent 507

iterations of the software should seamlessly integrate the diverse preprocessing stages into 508

the workflow of the plugin, thereby enabling the software to directly utilize the color image 509

as its primary input. Curvilinear-shaped objects can be effectively managed by the method 510

of “skeletonize” and “curve straightening” operations, enabling the measurement of the 511

correct length and multiple widths. For example, an advanced active contour algorithm [9] 512

could be employed as a solution. Segmenting the objects that are touching each other can 513

be solved by ImageJ’s “Watershed” standard command or other sophisticated techniques, 514

such as Fourier analysis and ellipse fitting [34,35] are other possible solution methodologies. 515

Developing the hardware system based on the plugin algorithm to efficiently grade and 516

sort produce based on multiple widths or mean widths requires the integration of necessary 517

hardware components, which are readily available in industrial systems. 518

4. Conclusions 519

A computer vision ImageJ plugin developed successfully for the measurement of 520

length and multiple widths of agricultural produce achieved an accuracy of over 99.6 % 521

and demonstrated significant variation in the widths along the length. The statistically 522

significant number of minimum multiple widths to be considered for accurate measurement 523

and representation varies widely, ranging from 1 to 150. On average, employing 50 multiple 524

widths provides a more comprehensive representation of the width profile. However, a 525

reduced number of 15 multiple widths can also yield satisfactory mean width predictions, 526

with a deviation of approximately 1 % from the 50 multiple width measurements. 527

Single or a few multiple widths are sufficient for objects with straight profiles (e.g., 528

carrot, celery, pasta fettuccine); but a greater number of multiple widths (15 to 150) are 529

required for spherical objects or those having curved profiles (e.g., mango, potato, water- 530

melon) to effectively represent their varying width profile and estimate the mean width. 531

The aspect ratio serves as an effective indicator for determining the optimal number of 532

significant minimum multiple widths. For objects of thick or wide shapes (W/L ≥ 0.2), 533

over 15 multiple widths, and for slender objects (W/L < 0.2), 5 multiple widths or less 534

were found sufficient. The developed plugin exhibits fast image analysis capabilities, taking 535

an average CPU time of 734± 365 ms per image or 15 ± 19 objects per second. Based on the 536

findings of this research, the identified future research directions include addressing chal- 537

lenges associated with pedicle orientation, object contact, and shadow formation through 538

advanced programming or alternative techniques. 539
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