Pre prints.org

Article Not peer-reviewed version

Requirements-Driven Automated
Software Testing: A Systematic Review

Fanyu Wang, Chetan Arora i , Chakkrit Tantithamthavorn , Kaicheng Huang , Aldeida Aleti
Posted Date: 10 February 2025
doi: 10.20944/preprints202502.0628.v1

Keywords: Software Engineering; Requirements Engineering; Software Testing; Automated Test Generation;
Systematic Literature Review

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4223280

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Requirements-Driven Automated Software Testing: A
Systematic Review

Fanyu Wang, Chetan Arora *, Chakkrit Tantithamthavorn, Kaicheng Huang and Aldeida Aleti

Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
* Correspondence: chetan.arora@monash.edu

Abstract: Automated software testing has the potential to enhance efficiency and reliability in soft-
ware development, yet its adoption remains hindered by challenges in aligning test generation with
software requirements. REquirements-Driven Automated Software Testing (REDAST) aims to bridge
this gap by leveraging requirements as the foundation for automated test artifact generation. This
systematic literature review (SLR) explores the landscape of REDAST by analyzing requirements
input, transformation techniques, test outcomes, evaluation methods, and existing limitations. We
conducted a comprehensive review of 156 papers selected from six major research databases. Our
findings reveal the predominant types, formats, and notations used for requirements in REDAST, the
automation techniques employed for generating test artifacts from requirements, and the abstraction
levels of resulting test cases. Furthermore, we evaluate the effectiveness of various testing frameworks
and identify key challenges such as scalability, automation gaps, and dependency on input quality.
This study synthesizes the current state of REDAST research, highlights trends, and proposes future
directions, serving as a reference for researchers and practitioners aiming to advance automated
software testing.

Keywords: software engineering; requirements engineering; software testing; automated test genera-
tion; systematic literature review

1. Introduction

Software testing plays a critical role in assuring the quality, reliability, and performance of soft-
ware systems [1,2]. At its core, software testing seeks to identify and address defects, ensure that
a system functions as intended, meets stakeholder requirements, and mitigate risks before deploy-
ment [3]. Central to achieving these objectives is the alignment of testing activities with the software’s
requirements, as requirements define the system’s intended behaviour and scope. Effective testing
demands comprehensive test artifacts that trace back to these requirements, including test cases, test
plans, and test scenarios. As software systems grow more complex, there is an increasing need for au-
tomated approaches to bridge the gap between requirements engineering (RE) and software testing [4].
This increasing complexity of software systems has amplified the importance of requirements-driven
testing—a paradigm that directly links testing activities to the software requirements.

In the requirements-driven automated software testing paradigm, the test generation process is
mainly motivated by requirements, where the requirements are further interpreted, transformed, and
implemented to test artifacts with the help of some additional supporting documents or tools [5,6].
Traditionally, this process has been predominantly manual, relying on human effort to interpret
requirements and design corresponding tests [7,8]. However, manual approaches are time-consuming,
prone to human error, and struggle to scale with the increasing size and complexity of modern software
systems. To address these limitations, several research papers have explored automated methods for
generating test artifacts directly from requirements. These methods leverage model representations,
natural language processing (NLP), and artificial intelligence (Al) to translate requirements into

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202502.0628.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

2 of 49

actionable testing artifacts. However, a systematic understanding of the approaches, their challenges,
and potential opportunities in the area of requirements-driven testing remains limited.

In this paper, we study the REquirements-Driven Automated Software Testing (REDAST) land-
scape. Figure 1 shows an overview of the REDAST process. The generation process consists of several
components, including requirements as the necessary input, additional documents as the potential
input, intermediate expressions as the potential step, transformation techniques as the main applied
methodologies, and generated test artifacts as the final outcome. We cover the REDAST research
landscape by (1) summarizing and reporting the statistics of valuable research works of automated soft-
ware test generation, (2) comparing the evaluation methods for the current studies, and (3) identifying
and analyzing current limitations and future opportunities of automated test generation technology
in the context of the current era. We not only focus on the previous research under the traditional
software engineering perspective but also introduce a new view from advance technologies to discuss
the prospects and possibilities for REDAST studies. We followed the empirical SLR guidelines of
Kitchenham et al. [9] in performing our systematic review to answer the following research questions
(RQs) on selected 156 papers P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17,
P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P31, P32, P33, P34, P35, P36, P37, P38,
P39, P40, P41, P42, P43, P44, P45, P46, P47, P48, P49, P50, P51, P52, P53, P54, P55, P56, P57, P58, P59,
P60, P61, P62, P63, P64, P65, P66, P67, P68, P69, P70, P71, P72, P73, P74, P75, P76, P77, P78, P79, P80,
P82, P83, P84, P86, P88, P89, P90, P91, P92, P93, P94, P95, P96, P98, P99, P100, P101, P102, P103, P104,
P105, P106, P107, P108, P109, P110, P111, P112, P113, P114, P115, P116, P117, P118, P119, P121, P122,
P123, P124, P125, P126, P127, P128, P129, P130, P131, P132, P133, P134, P135, P136, P137, P138, P139,
P140, P141, P142, P143, P144, P145, P146, P147, P148, P149, P150, P151, P152, P153, P154, P155, P156,
P157, P158, P159, P160, P161:

e RQ1. What are the input configurations, formats, and notations used in the requirements in
requirements-driven automated software testing?

* RQ2. What are the frameworks, tools, processing methods, and transformation techniques used
in requirements-driven automated software testing studies?

* RQ3. What are the test formats and coverage criteria used in the requirements-driven automated
software testing process?

* RQ4. How do existing studies evaluate the generated test artifacts in the requirements-driven
automated software testing process?

* RQS5. What are the limitations and challenges of existing requirements-driven automated software
testing methods in the current era?

Requirements Input Q Transformation Tech. _] Test Artifact Q Demonstration
o= - B -v —_—v
o— « Use Case > | + NLP-Pipeline —_— —v|* Test Case —Xx|| ¢+ Case Study
=) « UML ' -""i « Graph-based : =v| . Test Report —x|| - Dataset Eval.
|:__€§3 ‘—1 Additional Input : + _ Intermediate Repre.
= - Historical Docs.+ : g_‘ '_g . MetaModel o
I—» + System Docs. o~ 3 ~O . Vectors

Figure 1. The General Framework of REDAST Methodology (The dotted route is not technically necessary.)

Structure. Section 2 discusses the background concepts and related work for REDAST. Section 3
presents our methodology and process of conducting our systematic review. Section 4 describes the
taxonomy behind REDAST process. Section 5 discusses results from our five RQs. Section 6 examines
threats to validity of our study. Section 7 discusses the insights from our results and the REDAST
research roadmap. Section 8 concludes the paper.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

30f49

2. Background and Related Work

2.1. Requirements Engineering

Requirement engineering (RE) is the initial phase in software development, guiding all subsequent
stages [10,11]. The RE process requires gathering user needs and implementing the non-structured
requirements into modeling language or other formed statements [12,13]. It encompasses various
activities tailored to the specific demands of software systems, with requirements elicitation, analysis,
specification, and validation being the most necessary stages [14,15]. Requirements can be broadly
categorized into functional and non-functional requirements [16]. Requirements can be specified in
different formats, e.g., using natural language (NL), modeling languages, such as UML and SysML,
templates, such as use cases, or using formal notations. Thus, rather than using a single categorization
for requirements in REDAST, we adopted multiple-level analysis in RQ1.

2.2. Automated Software Testing and Requirements Engineering

Software testing aims to provide objective, independent information about the quality of software
and the risk of its failure to users or sponsors [17,18]. Automated software testing is using automation
techniques to use specialized tools and scripts to execute test cases on a software application without
manual intervention, which can improve time efficiency and human resource efficiency [19,20]. While
the satisfaction of stakeholders is one of the priorities in software testing, the relationship between
software requirements and testing becomes a critical focus in SDLC [21,22]. The alignment between
different stages of verification and validation, e.g., system analysis and system testing is key for
effective software quality assurance. Here, we primarily focus on the requirements specification and
testing, while testing verifies that the software meets its specified requirements. This relationship is
fundamental to ensuring the final product aligns with stakeholder expectations and functions correctly.

2.3. REDAST Secondary Studies

REDAST studies have been long investigated in past research. However, only limited studies
systematically discussed RE-driven automated software testing. Atoum et al. [23] conducted a system-
atic study that examines the requirements of quality assurance and validation, where they reported
a test-oriented approach. Unterkalmsteiner et al. [24] built a taxonomy for aligning requirements
engineering and software testing to enhance coordination between these activities. They pointed out
the importance of integrating requirements into the testing process, which contains some REDAST
studies. Mustafa et al. [5]’s literature review is the most related paper. They investigated 30 selected
papers by 2018 and limitedly analyzed the requirements-driven testing process from requirements
input, techniques, and output perspectives. Their review provides a basic view of these parts but
did not comprehensively discuss the details from various dimensions and levels due to the depth of
understanding.

3. Research Methodology

In this section, we discuss the process of conducting our systematic review, e.g., our search
strategy for data extraction of relevant studies, based on the guidelines of Kitchenham et al. [9] to
conduct SLRs and Petersen et al. [25] to conduct systematic mapping studies (SMSs) in Software
Engineering. In this systematic review, we divide our work into a four-stage procedure, including
planning, conducting, building a taxonomy, and reporting the review, illustrated in Figure 2. The
four stages are as follows: (1) the planning stage involved identifying research questions (RQs) and
specifying the detailed research plan for the study; (2) the conducting stage involved analyzing and
synthesizing the existing primary studies to answer the research questions; (3) the taxonomy stage was
introduced to optimize the data extraction results and consolidate a taxonomy schema for REDAST

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

4 of 49

methodology; (4) the reporting stage involved the reviewing, concluding and reporting the final result
of our study.

Planing Step Conducting Step Taxonomy Step Reporting Step

" - Discussion of
Identification 1-1» Selection of database J [Quahty Assessing } >[.] Identification of
of need C% .[l é & taxonomy defining @] s to RQs @

Identification of & - i l

research questions Keywords definition @ [Data extraction &J‘ L { Updating of taxonomy N &
: Paper writing
' A

and extraction

7 J :

Definition of é Search Im[?rove
SLR protocol i | database yeyword design - . :
| == =En

Analysing threats é
to validity

: A Snowballing &
Discussion of ' [D|scussmn of {(’(’&
SLR protocol

search results I I :
- ¢ Extraction T: y
R [Removing duplicates éHScreening studies &J Results |[--{ Schema [---

Figure 2. Systematic Literature Review Process

3.1. Research Questions

In this study, we developed five research questions (RQs) to identify the input and output, analyze
technologies, evaluate metrics, identify challenges, and identify potential opportunities.

RQ1. What are the input configurations, formats, and notations used in the requirements in
requirements-driven automated software testing? In requirements-driven testing, the input is some
form of requirements specification — which can vary significantly. RQ1 maps the input for REDAST
and reports on the comparison among different formats for requirements specification.

RQ2. What are the frameworks, tools, processing methods, and transformation techniques used
in requirements-driven automated software testing studies? RQ2 explores the technical solutions
from requirements to generated artifacts, e.g., rule-based transformation applying natural language
processing (NLP) pipelines and deep learning (DL) techniques, where we additionally discuss the
potential intermediate representation and additional input for the transformation process.

RQ3. What are the test formats and coverage criteria used in the requirements-driven automated
software testing process? RQ3 focuses on identifying the formulation of generated artifacts (i.e., the
final output). We map the adopted test formats and analyze their characteristics in the REDAST
process.

RQ4. How do existing studies evaluate the generated test artifacts in the requirements-driven
automated software testing process? RQ4 identifies the evaluation datasets, metrics, and case study
methodologies in the selected papers. This aims to understand how researchers assess the effectiveness,
accuracy, and practical applicability of the generated test artifacts.

RQ5. What are the limitations and challenges of existing requirements-driven automated
software testing methods in the current era? RQ5 addresses the limitations and challenges of existing
studies while exploring future directions in the current era of technology development.

3.2. Searching Strategy

The overview of the search process is exhibited in Fig. 3, which includes all the details of our
search steps.

Table 1. List of Search Terms

Terms Group Terms

Test Group test*

Requirement Group requirement* OR use case* OR user stor* OR specification*
Software Group software* OR system*

generat* OR deriv* OR map* OR creat* OR extract* OR design* OR priorit*

Method Group OR construct* OR transform*

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

50f 49

Table 2. Selection Criteria

Criterion ID Criterion Description

S01 Papers written in English.
S02-1 Papers in the subjects of "Computer Science" or "Software Engineering".
502-2 Papers published on software testing-related issues.
S03 Papers published from 1991 to the present.
S04 Papers with accessible full text.
Search String
v
Automated Search Duplicate Removal Selection Criteria Applied

WOos
6166

ACM

13 Snowballing
24 Papers

Scopus
6799

Wiley
148

Scopus
3885

a0
Ny

i Jal)
G e
A0

()
st ()

27,333 Papers 21,652 Papers 162 Papers | Quality 156 Papers

Assessment

i
i
i
il

Figure 3. Study Search Process

3.2.1. Search String Formulation

Our research questions (RQs) guided the identification of the main search terms. We designed our
search string with generic keywords to avoid missing out on any related papers, where four groups of
search terms are included, namely “test group”, “requirement group”, “software group”, and “method
group”. In order to capture all the expressions of the search terms, we use wildcards to match the
appendix of the word, e.g., “test*” can capture “testing”, “tests” and so on. The search terms are listed
in Table 1, decided after iterative discussion and refinement among all the authors. As a result, we
finally formed the search string as follows:

ON ABSTRACT ((“test*”) AND (“requirement*” OR “use case*” OR “user stor*” OR “specifica-
tions”) AND (“software*” OR “system*”) AND (“generat*” OR “deriv*” OR “map*” OR “creat*”
OR “extract*” OR “design*” OR “priorit*” OR “construct*” OR “transform*”))

The search process was conducted in September 2024, and therefore, the search results reflect
studies available up to that date. We conducted the search process on six online databases: IEEE Xplore,
ACM Digital Library, Wiley, Scopus, Web of Science, and Science Direct. However, some databases
were incompatible with our default search string in the following situations: (1) unsupported for
searching within abstract, such as Scopus, and (2) limited search terms, such as ScienceDirect. Here, for
(1) situation, we searched within the title, keyword, and abstract, and for (2) situation, we separately

executed the search and removed the duplicate papers in the merging process.

3.2.2. Automated Searching and Duplicate Removal

We used advanced search to execute our search string within our selected databases, following
our designed selection criteria in Table 2. The first search returned 27, 333 papers. Specifically for the
duplicate removal, we used a Python script to remove (1) overlapped search results among multiple
databases and (2) conference or workshop papers, also found with the same title and authors in the
other journals. After duplicate removal, we obtained 21, 652 papers for further filtering.

3.2.3. Filtering Process

In this step, we filtered a total of 21, 652 papers using the inclusion and exclusion criteria outlined
in Table 3. This process was primarily carried out by the first and second authors. Our criteria are

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

6 of 49

Table 3. Inclusion and Exclusion Criteria

ID Description

Inclusion Criteria

101 Papers about requirements-driven automated system testing or acceptance testing generation, or studies
that generate system-testing-related artifacts.

102 Peer-reviewed studies that have been used in academia with references from literature.

Exclusion Criteria

EO1 Studies that only support automated code generation, but not test-artifact generation.

E02 Studies that do not use requirements-related information as an input.

E03 Papers with fewer than 5 pages (1-4 pages).

E04 Non-primary studies (secondary or tertiary studies).

E05 Vision papers and grey literature (unpublished work), books (chapters), posters, discussions, opinions,
keynotes, magazine articles, experience, and comparison papers.

structured at different levels, facilitating a multi-step filtering process. This approach involves applying
various criteria in three distinct phases. We employed a cross-verification method involving (1) the
first and second authors and (2) the other authors. Initially, the filtering was conducted separately by
the first and second authors. After cross-verifying their results, the results were then reviewed and
discussed further by the other authors for final decision-making. We widely adopted this verification
strategy within the filtering stages. During the filtering process, we managed our paper list using a
BibTeX file and categorized the papers with color-coding through BibTeX management software!, i.e.,
“red” for irrelevant papers, “yellow” for potentially relevant papers, and “blue” for relevant papers.
This color-coding system facilitated the organization and review of papers according to their relevance.
The screening process is shown below,

e 1Ist-round Filtering was based on the title and abstract, using the criteria I01 and E01. At this
stage, the number of papers was reduced from 21, 652 to 9, 071.

* 2nd-round Filtering. We attempted to include requirements-related papers based on E02 on the
title and abstract level, which resulted from 9, 071 to 4, 071 papers. We excluded all the papers
that did not focus on requirements-related information as an input or only mentioned the term
“requirements” but did not refer to the requirements specification.

* 3rd-round Filtering. We selectively reviewed the content of papers identified as potentially
relevant to requirements-driven automated test generation. This process resulted in 162 papers
for further analysis.

Note that, especially for third-round filtering, we aimed to include as many relevant papers as possible,
even borderline cases, according to our criteria. The results were then discussed iteratively among all
the authors to reach a consensus.

3.2.4. Snowballing

Snowballing is necessary for identifying papers that may have been missed during the auto-
mated search. Following the guidelines by Wohlin [26], we conducted both forward and backward
snowballing. As a result, we identified 24 additional papers through this process.

3.2.5. Data Extraction

Based on the formulated research questions (RQs), we designed 38 data extraction questions” and
created a Google Form to collect the required information from the relevant papers. The questions
included 30 short-answer questions, six checkbox questions, and two selection questions. The data
extraction was organized into five sections: (1) basic information: fundamental details such as title,
author, venue, etc.; (2) open information: insights on motivation, limitations, challenges, etc.; (3)
requirements: requirements format, notation, and related aspects; (4) methodology: details, including

1 https:/ /bibdesk.sourceforge.io/

2 https:/ /drive.google.com/file/d/1yjy-59Juu9L.3WHaOPu-XQo-j-HHGTbx_/view?usp=sharing

https://bibdesk.sourceforge.io/
https://drive.google.com/file/d/1yjy-59Juu9L3WHaOPu-XQo-j-HHGTbx_/view?usp=sharing
https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

7 of 49

immediate representation and technique support; (5) test-related information: test format(s), coverage,
and related elements. Similar to the filtering process, the first and second authors conducted the data
extraction and then forwarded the results to the other authors to initiate the review meeting.

3.2.6. Quality Assessment

During the data extraction process, we encountered papers with insufficient information. To
address this, we conducted a quality assessment in parallel to ensure the relevance of the papers to
our objectives. This approach, also adopted in previous secondary studies [27,28], involved designing
a set of assessment questions based on guidelines by Kitchenham et al. [9]. The quality assessment
questions in our study are shown below:

* QAL Does this study clearly state how requirements drive automated test generation?

* QA2 Does this study clearly state the aim of REDAST?

* QA3. Does this study enable automation in test generation?

* QA4 Does this study demonstrate the usability of the method from the perspective of methodol-
ogy explanation, discussion, case examples, and experiments?

QA4 originates from an open perspective in the review process, where we focused on evaluation,
discussion, and explanation. Our review also examined the study’s overall structure, including the
methodology description, case studies, experiments, and analyses. The detailed results of the quality
assessment are provided in the Appendix. Following this assessment, the final data extraction was
based on 156 papers.

4. Taxonomy

In literature review studies, the taxonomy schema plays a crucial role in shaping the quality of
statistical analysis and addressing research questions. Aware that the complexity of the test generation
process will lead to confusion in our results, we define a four-stage schema for our REDAST process
based on our literature analysis and informed from Figure 4. In each of the schemas, recognizing that
the entire SE life cycle is a practical process, we incorporated multiple categorizations to enhance the
structure and clarity of the schemas.

1. Requirement Input 2. Technique Support 3. Test Artifacts 4. Results Evaluation 5. Future and Limitation

1a. Requirements Type 2a. Transformation Tech. 3a. Test Format 4a. Benchmark Type 5a. Limitation
1b. Requirements Format 2b. Intermediate Repre. 3b. Test Notation 4b. Usability 5b. Automation Level
1c. Requirements Notation 2c. Framework Structure 3c. Test Coverage 4c. Demonstration System 5c. Future Direction

Figure 4. Overview of Taxonomy Schema in REDAST Studies

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025

Requirements Types

Functional Requirements
Non-Functional Requirements
User Requirements

Constraint Requirements
Business Requirements
Implementation Requirements

Requirements Formats

» Textual Specification
* Model-Based Specification
+ Formal Specification

Requirements Notations

* NL Requiements
« UML (Unified Modeling Language)
¢ Custom Notations

o Customed CNL; Extended Activity

Diagram...

CNL (Controlled Natural Language)
Use Case Description Model
Requirements Priority
SCR (Software Cost Reduction)
DSL (Domain-Specific Language)
Formal Equation
Cause-Effect-Graph

doi:10.20944/preprints202502.0628.v1

8 of 49

OCL (Object Constraint Language)
RSL (Requirements Specification
Language)

e Other

+ Constraint-Based Specification
* Tabular (Matrix-Based) Specification
¢ Other

Figure 5. RQ1 Taxonomy - Requirements Input in REDAST Studies

4.1. Designing of Taxonomy Schema

Several studies have discussed the taxonomy categories in the RE and software testing domains
in previous surveys. However, these existing schemas do not provide a comprehensive view of the
REDAST process, especially for the detailed transforming process from requirements to test artifacts.
In order to address the gap, we propose a hierarchical structure that encompasses (1) requirements
input, (2) technical methodology, (3) test outcomes, and (4) results evaluation by referring to some
related studies [6,29]. The overview of the taxonomy schema in our literature review is illustrated in
Fig. 4, where we not only exhibit the taxonomy schema in this figure but also indicate the REDAST
procedure.

4.2. Requirements Input Category

Requirements are the necessary input of the REDAST process. The formulation of requirements
input will decisively affect the choices of the following steps, including processing technology, frame-
work designing, and so on. In the Requirements input section (taxonomy in Figure 5), we focus on
the formulation of requirements based on the schema outlined in [30,31], which corresponds to RQ1
about requirements. However, as we mentioned, there is no universal requirements categorization.
Thus, we adopted multiple categorizations in RQ1. The requirements type consists of (1) functional
requirements, (2) non-functional requirements, (3) business requirements, (4) user requirements, (5)
constraint requirements, and (6) implementation requirements, which describe the covering scale of re-
quirements [12,32]. Requirements format is the second categorization in requirements, which includes
constraint-based, executable, formal (mathematical), goal-oriented, model-based, scenario-based, tab-
ular (matrix-based), and textual specifications [33-37]. The format categorization of requirements
specifications represents how requirements can be structured, documented, and communicated based
on their intended purpose and context. The last categorization in RQ1 concerns the specific notation of
requirements specifications, such as use case, NL specification, and SysML, which aims to illustrate
the adoption trend in requirements notation. These schemas are expected to cover a broad range of re-
quirements and provide a comprehensive view of the requirements input. Note that our study focuses
specifically on requirements-related aspects, deliberately excluding papers focused on design-level in-
formation. For instance, Yang et al. [38] proposed an automated test scenario generation method using
SysML for modeling system behavior in the system design phase. Although SysML is a commonly
used specification format for requirements and system architecture, this paper was excluded from our
literature review due to its emphasis on system design rather than system requirements.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

9 of 49

4.3. Transformation Techniques Category

The transformation techniques support the generation process from requirements to test artifacts,
wherein we attempt to analyze the details of the methodologies employed. Figure 6 shows the
taxonomy schema of RQ2. We identified the following aspects,

e Transformation Techniques. From requirements to generated test artifacts, the transformation
techniques are expected to transfer requirements to readable, understandable, and generation-
friendly artifacts for test generation. However, varying from different usage scenarios, various
types of techniques are adopted in the transformation framework. Even though there are only
limited studies explicitly discussing the transformation techniques for REDAST, we referred to
the survey in related fields [39-42], such as automated software testing and software generation,
to finalize our schema for transformation techniques. The categorization for transformation
techniques can be formulated as five categories: (1) rule-based techniques rely on predefined
templates or rules to formulate requirements to test artefacts; (2) meta-model-based techniques
employ the meta-models to define the behavior, structure, relationships, or constraints to enable
enhanced expression ability; (3) graph-based techniques mainly use the graph as representation
(e.g., state-transition graphs, dependency graphs) with traversing or analyzing on paths, nodes,
or conditions; (4) natural language processing pipeline-based techniques focus on leveraging
open-source NLP tools for REDAST, like text segmentation and syntax analysis; (5) machine
learning-based techniques leverage ML (including deep learning) in the REDAST process, which
always involves the patterns or feature learning process using training data.

* Intermediate Representations are related to the optional steps in the generation framework. Some
papers employ a stepwise transformation approach instead of directly transforming requirements
into test artifacts. This approach generates intermediate artifacts that enhance the traceability
and explainability of the methodology. For example, the unstructured NL requirements could be
transformed into an intermediate more structured representation that facilitates the generation of
test artifacts. While intermediate representations are derived from requirements, we employed a
categorization method for representation types similar to that used in requirements schemas.

e Additional Inputs. In addition to simply using requirements as input, some frameworks accom-
modate additional input types, such as supporting documents, user preferences, and more. To
analyze these frameworks from the perspective of input composition, we introduce additional
inputs that categorize and examine the variety of inputs utilized.

e Framework Structure refers to the underlying architectural approach used to transform require-
ments into test artifacts. It determines how different stages of transformation interact. Within the
REDAST framework, transformation methodologies are categorized into four distinct structures
([43,44]): (1) Sequential — Follows a strict, ordered sequence of transformation steps, maintaining
logical continuity without deviations. Each step builds upon the previous one; (2) Conditional
— Introduces decision points that enable alternative transformation paths based on specific con-
ditions, increasing adaptability to varying requirements; (3) Parallel — Allows simultaneous
processing of different representations across multiple transformation units, significantly im-
proving efficiency; (4) Loop — Incorporates iterative cycles for continuous refinement, ensuring
enhanced quality through repeated validation and adjustment.

Thus, based on the above aspects, we plan to introduce two aspects in RQ2: transformation techniques
and framework design, where the input portion, framework structure, and intermediate represen-
tation are included in the framework design. In our review, we also explored the advantages and
disadvantages of various techniques, with a particular emphasis on recent advancements in LLMs.
This category is related to RQ2.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

10 of 49

Transformation Techniques Intermediate Representation

* Number of Representation
o Single; Multiple

+ Representation Types
o Graph; Model...

* Machine-Learning-Based
o BERT; NER; SyntaxNet...
* NLP-Pipeline-Based
o Tokenization; Parsing...
« Search/Graph-Based
o DFS; Petri Nets...
* Rule-Based
o Condition; Constraint; Template
¢ MetaModel-Based
o Diagram-based; Behavioral...

Framework Structure

« Additional Input

o Fully Input; Partly Input
¢ Structure

o Sequential; Conditional...

Figure 6. RQ2 Taxonomy - Transformation Techniques in REDAST Studies

4.4. Test Artifacts Category

In the Test Artifacts section, we aim to focus on the formulation of generated testing artifacts. The
illustration of RQ3 is shown in Figure 7. The branches within the test artifacts category, such as test
format, notation, and coverage, have been explored in previous surveys [45-47]. Additionally, we
introduce a new categorization based on the abstraction level of test artifacts, specifically designed
for the REDAST process. While the generated test artifacts are typically applied to system testing
and acceptance testing [48], they commonly include code, test descriptions, or test reports. The
abstraction level categorization includes three categories: abstract, concrete, and report, which refers
to the test artifacts in the system and acceptance testing. (1) Abstract test artifacts cannot be directly
executed but provide enhanced traceability and coverage for requirements. (2) Executable test artifacts
are executable, with multiple concrete artifacts often corresponding to a single requirement. (3)
Report-level artifacts represent the outcomes of executing the test artifacts. The results of the test
artifact-related categories are presented in response to RQ3.

Abstraction Level
¢ Executable Level
¢ Abstract Level
» Test Scenario ¢ Report Level
¢ Test Report

» Test Specification .
« Test Sequence * Requirements Coverage

!

« Test Graph « Behavior/Scenario Coverage
« Test Oracle * Path (_Joverage
« Test Suite . Funf:t_lonal Coverage
« Test Goal ¢ Decision/Branch Coverage
« Test Script » Use Case Coverage
« Traceability Matrix ¢ Model-based Coverage
o Other » Statement Coverage
¢ Rule-based Coverage
¢ Code Coverage
« Other/Not Specified

Figure 7. RQ3 Taxonomy - Test Artifacts in REDAST Studies

4.5. Results Demonstration Category

REDAST always introduces case demonstration or dataset evaluation to assess the quality of the
generated test artifacts. The taxonomy of RQ4 is exhibited in Figure 8 Here, we include evaluation as a
separate category in the taxonomy schema to obtain some results about the quality assessment criteria
of test artifacts. Specifically, we planned to (1) conclude the evaluation methods used in relevant
studies, (2) categorize the software platforms in the demonstration, and (2) report typical examples
and analyze their efficacy based on their usage scenarios, pros, and cons, where [49] was opted as the
guideline for designing the schema of this category. We introduce demonstration types and software
platforms to illustrate the details of the demonstration method. As for the software platform, this
categorization is introduced to identify the software platform adopted in the case demonstrations.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

11 of 49

Besides, we introduced a categorization for usability in evaluation, where we will manually evaluate
the selected studies and illustrate their results for different parts, including methodology explanation,

* Automotive System
Control System

discussion, case example, and experiment.

Benchmark Types

Order System
« Conceptual Case Demonstration Safety System
« Real Case Demonstration ATM System

Business System
Resource Management System
Workforce System
Healthcare System
AaroSpace System
Banking System
Authentication System
Library System

Mobile System
Banking System
Education System
Database System
Examination System
Other/NA

+ Dataset Evaluation
« NA

Usability

* Methodology Explanation
* Case Example
 Discussion

+ Experiment

Figure 8. RQ4 Taxonomy - Demonstration Methods in REDAST Studies

4.6. Future and Limitation Category

RQ5 primarily examines the limitations and future directions of REDAST studies, which are
illustrated in Figure 9. The categorizations for these aspects were determined post hoc, based on our
analysis of the results; therefore, detailed categorization methods will not be presented. Addition-
ally, considering the importance of automation in REDAST studies, we provide an analysis of the
automation levels observed in the selected studies. Four levels of automation are defined as follows:

* Fully Automated (End-to-End Automation): Studies in this category require no human intervention
or operation.

* Highly Automated (Automation-Dominant): These studies demonstrate a high degree of automation,
with human intervention incorporated into the methodology but not essential.

o Semi-Automated (Automation-Supported): This level involves significant manual operations at
specific stages of the process.

e Low Automated (Minimal Automation): Studies at this level exhibit only basic automation, relying
primarily on manual operations across all steps.

_m Automation Level

Lo . ¢ Fully Automated (End-to-End Automation)
« Limitation of framework design

Limitati P Juati d trati - Manual operation is not needed
imi a_|9n of evaluation or demonstration « Highly Automated(Automation-Dominant)
Scalability to larger systems or complex

. - Manual operation is not necessary
usage sce_narlos_) + Semi-Automated (Automation-Supported)
Over-relying o_n input quality - Manual operations are necessary
Over con_lplemty of the methodology ¢ Low Automated (Minimal Automation)
Automation - Manual operations primarily relied

o Methodology

o Test Implementation Fut Di ti
o Requirements Specification B RAEa

R_eq_ulrc_amentf amb|gmt|es_ « Extension to other coverage or
Limitation of implementation requirements

T|m(_-: c osting . ¢ Further Validation
Additional cost of requirements .
« Completeness Improving

specification .

!

Figure 9. RQ5 Taxonomy - Future and Limitations in REDAST Studies

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

12 of 49

5. Results

In this section, we present the results of the SLR on requirements-driven automated software
testing, where the results are structured based on our RQs.

5.1. Trend: General Results of the Publications

Before addressing the research questions, we present the publication trends of the 156 primary
studies on REDAST, including study distribution, venue names, and features of the selected studies.

The study distribution is analyzed in two parts: (a) study distribution by the publication year and
(b) study distribution by publication type, which are illustrated in Figures 10 and 11, respectively.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

13 of 49

¥ Journal] Conference [l WorkShop

25
20
15
10
5
., H
X IS 9 P PSS %3
G L g & & "'é
N AP UV N N I\' vV LYV L J
o oo"'e”‘e“e‘bs°'§"s°‘s°s""19'i"&°‘
5% @@@@&&&&&&@&&w
Fionire 10 Stiidv Dictrihiition hv Piithlication Year
[Journal] Conference [l Workshop
Workshop
17
Conference
51 Journal
88

Figure 11. Study Distribution by Publication Type
Figure 12. Study Distribution (Trend)

In analyzing the distribution of REDAST studies by year, we observed that the first study was
published in 1993, followed by a steady annual increase. A notable surge occurred around 2008,
prompting further investigation into the technical differences between studies conducted before and
after this period. Two key conclusions emerged: (1) An increased adoption of NLP-pipeline-based
methods from 2008 onward. Prior to 2008, only 20% of studies employed these methods, whereas
from 2008 to 2013, the proportion rose to 31.9%. (2) A decline in the use of graph-based methods after
2008. The prevalence of graph-based approaches decreased from 35% before 2008 to 19.14% in the
subsequent period from 2008 to 2013. By comparing with the landmark studies published between
2006 and 2008, including works by Hinton et al., [50] and Van der Maaten and Hinton[51], we believe

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

14 of 49

that deep learning technologies, including LLMs and Convolutional Neural Networks (CNNs), can
promote the adoption of NLP-pipeline-based methods in SE domain.

Table 4. Publication Venues with Two or More Studies in Selected Papers (Trend)

Venue Names Type Num.
IEEE International Requirements Engineering Conference (RE) Conference 6
IEEE International Conference on Software Quality, Reliability, and Security (QRS) Conference 6
IEEE International Conference on Software Testing, Verification, and Validation (ICST) Wi
Workshops orkshop g
P

IEEE Transactions on Software Engineering (TSE) Journal 4
Software Quality Journal (SQYJ) Journal 3
Science of Computer Programming Journal 3
IEEE International Conference on Software Testing, Verification and Validation (ICST) Conference 3
International Conference on Quality Software (QSIC) Conference 3
International Conference on Evaluation of Novel Approaches to Software Engineering C

onference 3
(ENASE)
Innovations in Systems and Software Engineering Journal 3
IEEE International Workshop on Requirements Engineering and Testing (RET) Workshop 3
ACM SIGSOFT Software Engineering Notes Journal 3
Journal of Systems and Software (JSS) Journal 2
IEEE International Symposium on Software Reliability Engineering (ISSRE) Conference 2
IEEE International Requirements Engineering Conference Workshops (REW) Workshop 2
International Journal of System Assurance Engineering and Management Journal 2
International Conference on Enterprise Information Systems (ICEIS) Conference 2
International Conference on Emerging Trends in Engineering and Technology (ICETET) = Conference 2
Electronic Notes in Theoretical Computer Science Journal 2
Australian Software Engineering Conference (ASWEC) Conference 2
International Journal of Advanced Computer Science and Applications Journal 2
Electronics Journal 2

Regarding the publication type distribution, most studies were published in conferences (56.41%)
and journals (32.69%). Our selected studies were published across 115 different venues. We present
the venues with two or more published studies in Table 4. The IEEE International Requirements
Engineering Conference, the IEEE International Conference on Software Quality, Reliability, and
Security, and the IEEE Transactions on Software Engineering have the highest percentages in their
respective categories, which is unsurprising given their top-level reputation in the software engineering
field.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025

doi:10.20944/preprints202502.0628.v1

15 of 49

Table 5. Overview of Target Software in Selected Papers (Trend)

Target Software Systems

Paper ID

Num.

P2, P3, P5, P6, P7, P8, P9, P10, P13, P14, P15, P16, P17, P18, P19,
P23, P24, P25, P30, P31, P34, P35, P36, P37, P39, P40, P41, P42,
P43, P46, P51, P52, P53, P54, P55, P57, P62, P63, P65, P68, P69,
P70, P71, P73, P74, P75, P76, P78, P79, P82, P83, P84, P86, P88,

General Software P89, P92, P93, P96, P99, P100, P103, P104, P105, P106, P109, P114, = 100

P116,P117, P118, P119, P121, P122, P124, P125, P126, P127, P128,

P129, P130, P132, P135, P136, P137, P138, P139, P141, P142, P143,

P144, P145, P146, P148, P150, P151, P152, P153, P157, P158, P159,

P160

P29, P33, P38, P60, P61, P94, P98, P111, P113, P140, P147, 149,
Embedded System P155, P161 14
Web Services System P1, P4, P11, P21, P56, P67, P112 7
Safety-Critical System P27, P50, P72, P101, P123, P131 6
Timed Data-flow Reactive System P80, P108, P133, P134 4
Reactive System P45, P107, P156 3
Real-time Embedded System P26, P64, P115 3
Product Line System P32, P48 2
Object-Oriented System P28, P66 2
Telecommunication Application P22, P95 2
Automotive System P59, P102 2
Space Application P44 1
SOA-based System P90 1
Labeled Transition System P49 1
Healthcare Application P110 1
Event-driven System P154 1
Cyber-Physical System P58 1
Core Business System P20 1
Concurrent System P12 1
Complex Dynamic System Pa1 1
Aspect-Oriented Software P47 1
Agricultural Software P77 1

Besides the trending information, we also investigated the target software in the selected studies.
The results of the target software are exhibited in Table 5. Most of the selected studies are designed for
general software (100/156), followed by embedded systems (14/156) web services systems (7/156),
safety-critical systems (6/156), and so on.

5.2. RQ1: Requirements Specification Formulation

Based on our taxonomy schema in Section 4, we explore the techniques for requirements type,
format, and notation in the selected studies. Moreover, by comparing the characteristics of the studies,
we analyze the features in different adoptions of specification techniques.

5.2.1. Requirements Types

In this section, we mainly discuss the results of the requirements type of the selected studies, where
the requirements could be classified into six categories, functional, non-functional, user, constraint,
business, and implementation requirements The total number of the adopted requirements type is not
exactly the same as the number of publications, where some studies cover multiple requirements types
as the input of the methodologies.

Based on the results in Table 6, almost all of the REDAST studies cover functional requirements
(152/156), followed by non-functional requirements (27/156), user requirements (10/156), constraint
requirements (7/156), business requirements (7/156), and implementation requirements (1/156). This
trend can be attributed to functional requirements being inherently testable, as they explicitly define
the system’s expected behavior. Unlike non-functional requirements, which often involve abstract
or qualitative criteria, functional requirements provide concrete, measurable specifications that align
well with the design of test artifacts. Additionally, we noticed that some domain-specific requirements

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

16 of 49

have been adopted in several studies, such as the security requirements in safety-critical systems (e.g.,
P118 P123), timing requirements in reactive systems (e.g., P45 P45), and so on (e.g., P45 P45, P28 P28,
P119 P124). These requirements could be considered in the other requirements categories.

Table 6. Requirements Types in Selected Studies (RQ1)

Requirements Types Paper IDs Num.
Almost all papers support functional requirements, except P18, P74, 152
P79, P155, P156.

P2, P33, P41, P48, P50, P51, P56, P57, P61, P68, P69, P71, P73, P76,
Non-functional Requirements P79, P83, P88, P90, P96, P116, P123, P124, P146, P155, P156, P157, | 27

Functional Requirements

P161
User Requirements P2, P43, P74, P84, P88, P92, P119, P121, P139, P142 10
Constraint Requirements P86, P91, P94, P100, P101, P114, P161 7
Business Requirements P18, P51, P74, P89, P94, P95, P137 7
Implementation Requirements P95 1

5.2.2. Requirements Specification Format

Requirements specification is categorized into seven different types: textual, model-based,
constraint-based, formal (mathematical), tabular (matrix-based), and other specifications. The speci-
fication formats adopted in the selected studies are presented in Table 7. Note that we found some
studies that use the transformation method further to convert raw requirement input into the other
requirement formats. Here, we only consider the first raw requirement input in this section. For
example, P76 P76 adopts model-based specification as the raw input for requirements. However, the
requirements are further converted to model-based requirements. To clarify our objective, we only
consider scenario-based requirements in RQ1. The intermediate representations are discussed in RQ2.

Table 7. Requirements Format in Selected Studies (RQ1)

Requirements Formats Paper IDs Num.
Textual P2,P5,P6,P7,P8,P9,P10,P11,P12,
P13,P14,P15,P16,P17,P18,P19,P22,P23,P24,
P25,P26,P28,P31,P32,P34,P36,P37,P38,P39,P41,P42,P43,P44,P45,P46,
P47,P48,P51,P52,P54,P55,P57,P58,P60,P61,P62,P63,164,P65,P67,P68,P70,
P71,P75,P76,P77,P80,P82,P83,P84,P86,P88,°92,P93,P96,P98,°99,P102,P103,
P106,P108,P109,P110,P112,P114,P116,P117,P119,P121,P122,P123,P125,P126,
P127,P128,P129,P130,P132,P133,P134,P135,P136,P137,P138,P139,P140,P145,
P147,P149,P151,P152,P153,P156,P157,P160 105

Model-Based P1,P4,P7,P8,P10,P11,P14,P15,
P16,P17,P20,P21,P25,P27,P28,P30,P33,P35,P46,P49,

P50,P53,P56,P57,P65,P66,P69,P73,P74,P75,P78,P86,

P89,P90,P95,P96,P99,P104,°109,P110,P115,P119,P123,

P131,P137,P143,P144,P145,P148,P150,P152,P153,P154,P161 54

Formal P3,P21,P45,P58,P59,P72,
P79,P105,P110,P111,P113,°124,P155 13

Constraint-Based P3,P27,P33,P59,P72,
P78,P91,P100,P101,P105,P154 11

Tabular (Matrix-Based) P29,P33,P78,P92,P107,P1 7

Other P40,P94,P118,P142,P141, 7 8

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

17 of 49

Table 8. Requirements Format Results of Selected Studies with Unique Formulations (RQ1)

Requirements Formats = Requirements Formulations Num.
Behavior Tree, Graph-based, Finite State Machine, Specification and De-
scription Language (SDL), Use Case Map, Activity Diagram, Communi-
cation Diagram, Misuse Case, Conditioned Requirements Specification,
Use Case, Scenario conceptual model, UML, Models, Sequence Diagram,
State Machine Diagram, Scenario, NL requirements, pseudo-natural lan-
guage, Behavior Model, Extended Use Case Pattern, Linear temporal logic,
Communication Event Diagram (CED), SysML, Formal Use Case, Textual
Normal Form, Object Diagram

Graph-based, Scenario specification, User Story, NL Requirements, Use
Case Map, Misuse Case, Use Case, Scenario Model, Textual, Scenario
conceptual model, DSL, Use Case/Scenario, NL requirements (Behav-
ior), Business Process Modeling Language, Signal Temporal Logic (STL),
Restricted Signals First-Order Logic (RFOL), Formal Requirements Specifi-
cation, Formal Use Case

Graph-based, OCL, DSL, Finite State Machine, Formal Requirements Spec-
ification, SysReq-CNL, Scenario, UML

Signal Temporal Logic (STL), Restricted Signals First-Order Logic (RFOL),
Formal Specification Formal Requirements Specification, Linear Temporal Logic, NL require- 7
ments, Use Case

Requirements Dependency, Requirements Priorities, Safety Requirements
Specification, Test requirements

Tabular Specification Scenario, Tabular Requirements Specification, Finite State Machine 3

Model Specification 30

Textual Specification 26

Constraint Specification

'S

Other Specification

e Textual Specification. 105 studies adopted textual specification methods. Our analysis shows that
textual specification is the most commonly used format in REDAST studies. Textual specification,
written in natural language (NL), is the predominant choice. Besides the textual specification,
NL is widely integrated into other specification formats, including formal (mathematical) and
tabular specifications. NL-based requirements are generally favored in RADAST studies due to
their accessibility and ease of understanding, which supports both requirements description and
parsing NL is commonly used in these studies due to its advanced explainability and flexibility.
We separately discuss this category by distinguishing textual specifications from others and
whether the requirements follow natural language logic [52,53]. Other formats especially involve
specific specification rules or templates compared to textual specifications.

® Model-based Specification. 54 studies specify requirements using model-based specifications. Model-
based approaches construct semi-formal or formal meta-models to represent and analyze require-
ments. Compared to textual specifications, meta-models have better abstraction capabilities for
illustrating the behaviors (e.g., P1 P1, P27 P27, P35 P35, etc.), activities (e.g., P25 P25, P139 P144,
P146 P151, etc.), etc., of a software system [54].

* Constraint-based Specification. We identified 11 studies in the selected papers that utilize constraint-
based requirements specification. Constraint-based specification is also a welcomed requirements
format, where Domain-Specific Language are adopted in the selected studies, e.g., P3 P3, P89 P92,
P96 P100, etc. Constraint-based specification involves defining system properties as limits,
conditions, or relationships that must hold within the system. Constraint-based specification can
provide a concise and precise description of system behavior, especially in the context of complex
software systems [55,56]. DSL is a typical constraint-based specification, e.g., P88 P91, P95 P99,
and P96 P100.

® Formal (Mathematical) Specification. In the selected studies, we identified 13 papers that used formal
(mathematical) specifications in requirements elicitation. The formal (mathematical) specification
can translate natural language requirements into a precise and unambiguous specification that can
be used to guide the development of software systems [57], where the typical formal requirements
specification are assertions (e.g., P109 P113), controlled language (e.g., P79 P79, P108 P112), and
so on. Unlike textual specification, the logical expression can describe software requirements
unambiguously [58].

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

18 of 49

e Tabular (Matrix-based) Specification. We identified 7 studies that adopted tabular specifications.
Tabular specification methods can formalize requirements in a structured and organized manner,
where each row represents a requirement, and each column represents a specific attribute or
aspect of the requirement [57]. Tabular specification can greatly improve traceability and make it
more friendly for verification and validation.

5.2.3. Requirements Specification Notation

The requirements notation is an extended detail of the requirements format. We identified over
60 requirement notations across the selected studies. Specifically, for some variations of standard
requirement notations, we categorized the similar notations into their original forms or grouped
uncommon notations under the “other” category. The summary of these notations is presented in
Table 9.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025

Table 9. Requirements Notation Results of Selected Studies (RQ1)

doi:10.20944/preprints202502.0628.v1

19 of 49

Requirements Notations

Paper IDs

Num.

NL requirements

UML

Other

Custom

CNL

Use Case Description Model

Requirements Priorities

SCR

DSL

Formal Equation
Cause-Effect-Graph
OCL

RSL

P23 (PURE dataset), P26,P34 (Textual User Story), P37 (Usage Sce-
nario), P38 (NL Requirements), P39 (Scenario Specification), P40
(Test requirements), P41 (Textual Use Case), P42,P44, P52 (Tex-
tual Use Case), P54,P55, P60 (Textual Use Case), P63,P67,P71
(Template-based), P77 (Scenario), P82,P84,P87, P88 (Textual Use
Case), P93,P98,P102,P104,P106,P113,P116,P117, P121 (Claret For-
mat), P122,P126,P127,P128,P129,P130,P135,P136,P138,P139,P140, P147
(Technical Requirements Specification), P149,P151, P157 (Positive and
negative pair), P160

P4,P7,P8,P10,P11,P15,P16,P17, P25 (Activity Diagram), P28 (Sequence
Diagram), P35,P46,P49,P53,P56, P57,P66,P73,P74,P75,P89,P90, P96
(UML MAP), P99, P109 (Sequence Diagram), P110,P115,P119,P123,
P145 (Activity Diagram), P152 (Activity Diagram), P153 (Sequence
Diagram), P161 (Modeling and Analysis of Real Time and Embedded
Systems)

P18 (Semi-Structured NL), P21 (OWL-S Model), P29 (State-Transition
Table), P58 (Formal NL Specification), P64 (Structured Requirements
Specification), P65 (Class Diagram, Restricted-form of NL), P68 (Semi-
Formal Requirements Description), P69 (Requirements Specification
Modeling Language), P94 (Safety Requirements Specification), P107
(Expressive Decision Table), P125 (Textual Use Case), P131 (Functional
Diagram), P137 (Requirement Description Modeling Language), P142
(Requirements Dependency Mapping), P143 (Specification and De-
scription Language), P144 (Behavior Tree), P148 (Domain-Specific
Modeling Language), P150 (Statechart Diagram), P158 (Risk Factor),
P159 (Requirement Traceability Matrix)

P1 (Custom Metamodel), P3 (Constraint-based Requirements Specifi-
cation), P9 (Custom CNL), P12 (Semi-Structured NL Extended Lexi-
con), P14 (Interaction Overview Diagram), P27 (SCADE Specification),
P30 (Extended SysML), P32 (RUCM with PL extension), P47 (Aspect-
Oriented PetriNet), P50 (Safety SysML State Machine), P59 (OCL-
Combined AD), P62 (State-based Use Case), P86 (Contract Language
for Functional PF Requirements (UML)), P92 (Textual Scenario based
on tabular expression), P103 (NL requirements (Language Extended
Lexicon)), P111 (Specification language for Embedded Network Sys-
tems), P114 (Requirements Specification Modeling Language)

P2, P5 (RUCM), P6 (Use Case Specification Language (USL)), P22
(RUCM), P24 (RUCM), P45, P61 (RUCM), P80, P83 (Restricted Misuse
Case Modeling), P108, P112,P132,P133,P134,P156

P13 (Use Case Description Model), P19 (Use Case Description Model),
P36 (Use Case Description Model), P43 (Use Case Description Model),
P48 (Use Case Description Model), P70 (Use Case Description Model),
P76 (Use Case Description Model)

P118 (Customer-assigned priorities, Developer-assigned priorities),
P141 (Customer Assigned Priority), P146 (Stakeholder Priority)
P33,P78,P154

P91,P100,P101

P79,P124,P155

P20,P95

P72,P105

P31,P51

47

33

20

17

15

NN WWW W

Based on the results, we identified that Natural language (NL) requirements specification is the
most frequently adopted notation in the selected studies (47 studies), followed by UML notation (33
studies), other (20 studies), and custom requirements (17 studies). Overall, this result aligns with
the trend observed in the requirements format results, where natural language is widely adopted in
REDAST methods.

® NL Requirements Specification. We found that 47 studies introduced natural language (NL) re-
quirements specifications in their methods. NL requirements specifications are used not only in

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

20 of 49

REDAST studies but also in requirements elicitation and specification domains. For example,
“shall” requirements (formally known as IEEE-830 style “shall” requirements [59]) are widely used
for requirements specification, enabling less ambiguity and more flexibility. NL requirements
specifications are applicable for various processing methods, such as condition detection (e.g.,
P23 P23) and semantic analysis (e.g., P63 P63).

e Unified Modeling Language Unified Modeling Language (UML) is a commonly used notation in
model-based specification. We identified 33 studies that utilized UML in the selected papers.
UML is versatile and can be combined with other notations to describe scenarios, behaviors, or
events, effectively capturing functional requirements [60]. For instance, in the selected studies,
P56 P56 introduced a tabular-based UML for requirements traceability, while P17 P17 employed
UML use case diagrams specifically to depict requirement scenarios.

* Controlled Natural Language. In the selected studies, 15 papers opted for controlled natural
language (CNL) as a requirement notation. CNL is partly based on natural language but is
structured using the Rimay pattern [61], deviating from conventional expression syntax.

e Use Case, User Story, and Their Variations. Use cases, user stories, and their variations are distinct
requirement notations in scenario-based specifications, sharing similar characteristics. These
notations generally consist of a cohesive set of possible dialogues that describe how an individual
actor interacts with a system or use textual descriptions to depict the operational processes of the
system. In this way, the system behavior is vividly explained.

® Other Specifications. Other specification notations are not frequently adopted methods, where
the “Other” category contains the notations that appear one time. Most of them are variations of

common notations.

5.2.4. Findings: Cross-Analysis of Requirements Input and Target Software

As the first step in the REDAST process, the selection of requirements formulations predominately
decides the usage scenario of the framework. More specifically, the end goal of the framework forces
the researchers to select appropriate requirements formats and notations to describe the different
system behaviors, events, or activities. Here, besides the results in requirements format, we cross-
discuss the requirements format and target software (in Section 5.1) to illustrate the requirements
preference in REDAST in the context of usage scenarios.

Textual requirements dominate across all categories, where general software (60%), Embedded Sys-
tems (50%), Real-Time Systems (67%), and other domains primarily select textual requirements as
default. This trend suggests that, due to the flexibility and simplicity of textual requirements, textual
requirements can handle most usage scenarios in REDAST.

Model-based requirements are preferred for structured systems. Detailly, the selection of model-based
requirements, Web Serviced (P1 P1, P4 P4, P11 P11, P21 P21, P56 P56), Safety-Critical Systems (P27 P27,
P50 P50), Object-Oriented Systems (P28 P28, P66 P66), Product Line Systems (P32 P32), and SOA-
based Systems (P87 P90), indicates the preference of model-based requirements for service-oriented
architectures, correctness and traceability assurance.

Formal and constraint-based requirements are crucial for high-reliability domains, wherein formal
requirements and constraint-based requirements can additionally satisfy the needs of strict verification
and validations, e.g., (1) for formal requirements, Safety-Critical Systems (P72 P72), Automotive
Systems (P59 P59), Cyber-Physical Systems (P58 P58), Embedded Systems (P107 P111, P109 P113), (2)
for constraint-based requirements, Safety-Critical Systems (P27 P27, P72 P72, P97 P101), Automotive
Systems (P59 P59), Event-driven Systems (P149 P154), and Complex Dynamic Systems (P88 P91).

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

21 of 49

Table 10. Cross Distribution of Requirements Format and Target Software

Target Soft- Model-based Textual Constraint-based Formal Other Tabular (Matrix-based)

ware
General Soft- 75 34 4 4 3 6
ware

Embedded 7 2 3 1 5 1
System

Web Services 3

Safety-

Critical 4 1 3 0 0
Timed Data- 4 0 0 0 0 0
flow

Reactive 2 0 1 0 1 0
Real-time Em-

bedded 2 1 0 0 0 0
Product Line 2 0 0 0 0 0
Object-

Oriented 1 2 0 0 0 0
Telecom 1 1 0 0 0 0
Automotive 1 0 1 1 0 0

5.2.5. Findings: Trend of Requirements Input Over the Years

With the advancement of requirements engineering research, an increasing number of require-
ments specification methods have emerged over the past decade [62,63]. In this section, we analyze
the trend of requirements format preferences over time, as illustrated in Figure 13. Specifically, before
2008, although textual requirements were already widely employed in the REDAST methodology, their
proportion did not significantly dominate among the six requirements formats. This observation aligns
with the study distribution discussed in Section 5.1. After 2008, textual requirements gradually became
the preferred choice for requirements specification. Furthermore, as indicated by the increasing trend
in the “other” requirements format, we observed a growing adoption of diverse requirements formats
in recent years. This trend suggests an increasing diversification in requirements selection over time.

B textual [l Model [l Formal Constraint Tabular Other
1992-1993 1 13

1998-1999 _ 115

2000-2001 [E] 2

20022005 N ST 5 5
2004-2005 [IEY
2006-2007 “10

2008-2009 [T W] 3 16

2010-2011 __- I kY

2016-2017 [] 1

2018-2019 | N T 1 23

20202021 [O 216

2022-2023 | N W14 19

2024-Now [NE] 3
0

5 10 15 20 25 30

Figure 13. Trend of Requirements Input by Years

[mybox, title=RQ1 Key Takeaways] ® Textual specifications are the most prevalent format for
REDAST studies and dominate the test artifact generation process in general-purpose software systems.
Structured NL (e.g., CNL, RUCM) are preferred over unstructured NL, as they offer a balance between
readability and automation in test artifact generation.

e Model-based, formal or constraint specifications are more structured and preferred in embedded,
safety-critical, and real-time domains.

e Most studies focus on functional requirements, with only a few addressing non-functional
requirements (e.g., performance, security, safety).

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

22 of 49

5.3. RQ2: Transformation Technology in REDAST

Transformation technology, as discussed in Section 4, is a key component of the REDAST process.
After reviewing the selected papers, we present the results of transformation technology in four
categories: technique type, framework structure, intermediate representation, and additional input.
Finally, to better explain our design of these categories, we provide several examples to interpret our
analysis process of RQ2.

5.3.1. Transformation Techniques

This section maps the selected studies into high-level categories based on their adopted transfor-
mation techniques. However, we found that the transformation techniques vary widely, and it is hard
to initialize one feasible category schema to cover all the selected studies due to the large number of
papers. Thus, we classified the 156 papers into five categories, including rule-based, meta-model based,
NLP pipeline based, graph/search-based, and ML-based techniques, as we explain later in this subsec-
tion. The results are illustrated in Table 11. We adopted high-level categories, however, several studies
still overlap in terms of their transformation techniques. For example, P1 P1, P3 P3, and P4 P4 both
cover the model-based and rule-based techniques. From the results, we found rule-based techniques
are the most commonly adopted in REDAST studies (122 studies), followed by metamodel-based
techniques (102 studies), NLP-pipeline-based techniques (51 studies), search/graph-based techniques
(38 studies), and ML-based techniques (11 studies). Below we explain these categories with examples.

Table 11. Transformation Techniques of Selected Studies (RQ2)

Techniques Paper IDs Num.

P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P16, P17, P18,

P19, P21, P22, P26, P28, P31, P32, P33, P34, P35, P36, P38, P40, P41, P42,

P43, P44, P45, P46, P47, P48, P49, P51, P52, P55, P56, P57, P59, P60, P61,

P64, P65, P66, P67, P68, P69, P70, P71, P72, P73, P74, P75, P76, P77, P78,
Rule-based P80, P83, P84, P86, P88, P90, P91, P92, P95, P96, P99, P100, P101, P102, | 122
P103, P104, P106, P107, P108, P109, P111, P112, P113, P114, P115, P116,
P117, P118, P119, P121, P123, P124, P125, P126, P127, P129, P131, P132,
P133, P134, P135, P136, P137, P138, P140, P141, P142, P143, P144, P145,
P147, P148, P149, P150, P151, P154, P156, P157, P158, P161
P1, P3, P4, P5, P6, P7, P8, P9, P11, P13, P14, P15, P16, P20, P21, P22, P24,
P25, P27, P28, P29, P30, P31, P32, P33, P35, P36, P37, P39, P43, P44, P45,
P46, P47, P48, P49, P50, P51, P53, P54, P56, P57, P58, P59, P60, P61, P62,
P64, P65, P66, P69, P70, P71, P72, P74, P75, P76, P77, P78, P79, P80, P88,
P90, P91, P92, P94, P95, P96, P99, P100, P101, P103, P104, P105, P108, P109,
P110, P114, P115, P116, P121, P123, P129, P131, P132, P133, P134, P135,
P136, P137, P140, P143, P144, P146, P147, P148, P149, P150, P152, P154,
P155, P161
P2, P9, P18, P19, P22, P23, P24, P28, P32, P36, P41, P42, P43, P44, P45,
P48, P52, P55, P57, P60, P62, P63, P65, P68, P70, P71, P76, P77, P8O, P82,
P83, P98, P106, P108, P115, P116, P117, P122, P126, P127, P130, P132, P133,
P134, P135, P137, P139, P156, P157, P159, P160
Pe6, P8, P12, P13, P17, P19, P25, P26, P28, P33, P42, P47, P50, P53, P57, P59,
Graph-based P61, P65, P66, P70, P71, P74, P77, P78, P86, P88, P89, P92, P98, P103, P116, 38

P121, P127, P136, P139, P145, P153, P161
Machine Learning-based = P18, P23, P52, P93, P98, P122, P126, P127, P128, P159, P160 11

MetaModel-based 102

NLP-Pipeline-based 51

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

23 of 49
Table 12. Rule-based Methods in Selected Studies (RQ2)

Rule Methods Paper IDs Num.

P1, P2, P3, P4, P9, P10, P12, P16, P17, P18, P21, P22, P26, P28, P31, P32, P33, P35, P36,
Constraint P38, P41, P42, P43, P44, P45, P46, P47, P48, P49, P51, P55, P60, P65, P66, P67, P69, 68

P71, P73, P75, P77, P83, P84, P92, P96, P99, P108, P109, P111, P112, P113, P115, P116,

P117, P123, P129, P135, P136, P137, P141, P142, P143, P150, P151, P154, P156, P158

P3, P4, P6, P7, P8, P11, P14, P16, P28, P32, P34, P40, P45, P47, P51, P52, P56, P57, P59,
Condition P61, P64, P68, P69, P70, P72, P73, P76, P78, P80, P86, P88, P90, P91, P95, P101, P102, 61

P104, P106, P107, P111, P114, P118, P119, P124, P125, P126, P127, P131, P132, P133,

P134, P137, P138, P140, P141, P142, P144, P145, P147, P148, P149, P156, P161

P5, P13, P19, P43, P48, P74, P99, P100, P103, P106, P108, P109, P112, P116, P119,
Template 19

P121, P123, P145, P157

Rule-based techniques can be broadly classified into three categories: condition, rule, and template,
based on our findings. Specifically,

o Template-based techniques formulate the generated artifacts into predefined templates for further
processing.

* Constraint-based techniques indicate the transforming process for new artifact generation, where
the rule here refers to the transformation rules.

e Condition-based techniques are defined for the static regulating within existing generated artifacts
based on predefined conditions or forms.

For example, P95 P99 is a template-based study that introduces a behavior test pattern (template)
from requirements transformation. Thus, we categorize this study into template-based techniques. In
another example in P114 P118, this study generally applies static assertion analysis on requirements
properties. We categorize this study as condition-based because it doesn’t involve a transformation
process. We present the results of the rule-based technique in Table 12.

Table 13. Model-based Methods in Selected Studies (RQ2)

MetaModel Methods Paper IDs Num.
P1, P3, P11, P15, P25, P28, P29, P32, P37, P39, P43, P46,
P48, P50, P54, P57, P58, P60, P61, P64, P70, P71, P74, P75,

Other P76, P77, P80, P90, P91, P92, P94, P95, P100, P101, P103, &
P104, P116, P137, P140, P146, P148, P155
P8, P13, P14, P16, P20, P22, P33, P47, P49, P53, P56, P65,
Diagram-based Models P66, P72, P99, P105, P108, P109, P110, P115, P121, P123, 25
P132, P135, P150, P152
Formal and Logic-based Models P45, P62, P69, P78, P79, P96, P129, P131, P133, P134, P147 11
Domain-Specific Modeling Languages P27, P30, P31, P51, P59, P114, P161 7
State-based and Transition Models P36, P44, P88, P143, P149, P154 6
Use Case Models P4, P5, P6, P7, P24 5
Behavioral Models P35, P136, P144 3
Ontology and Knowledge-based Models P9, P21 2
Graph and Flow-based Models P140 1

Meta-Model-based technologies describe system attributes, user behavior, or event situations
in RE. REDAST studies employ metamodels in the transformation process to describe the system
information inclusively, which provides a more comprehensive view of test generation. In the selected
studies, we introduce nine categories, and the “other” category classifies metamodel-based techniques.
Here, we illustrate the distribution of the metamodel-based technique in Table 13.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

24 of 49
Table 14. NLP-Pipeline-based Methods in Selected Studies (RQ2)
NLP-Pipeline Method Paper IDs Num.
Dependency Parsing P22, P23, P36, P41, P42, P43, P44, P55, P57, P70, P71, P77, P98, P106, | oy
P108, P116, P117, P127, P130, P135, P159
POS Tagging P22, P24, P32, P36, P41, P43, P48, P52, P60, P68, P70, P77, P106, P116, 2
P122, P133, P134, P135, P139, P157, P159
. P19, P44, P48, P55, P60, P70, P71, P76, P115, P126, P127, P130, P139,
NL Parsing P157 14
S P18, P23, P24, P36, P43, P48, P83, P98, P116, P122, P127, P135, P157,
Tokenization P160 14
CNL Parsing P2, P9, P28, P42, P45, P62, P65, P80, P132, P134, P137, P156 12
Semantic Analysing P24, P60, P63, P77, P82, P83, P108, P117, P126 9
Sentence Splitting P43, P71, P115, P126 4
Condition Detector P23 1
Lemmatization P135 1
Word Embedding P127 1
Word Frequency Analysing P52 1

NLP-Pipeline-based techniques generally employ open-source NLP toolkits, such as NLTK and
Stanford coreNLP toolkits, and so on. We observed that POS Tagging (e.g., P22 P22, P70 P70, P128 P133,
etc.), Dependency Parsing (e.g., P41 P41, P112 P116, P125 P130, etc.), and Tokenization (e.g., P18 P18,
P82 P83, P155 P160), etc.) are frequently adopted in REDAST studies. We illustrate the details of the
NLP-Pipeline-based techniques in Table 14.

Table 15. Graph-based Method Adoption in Selected Studies (RQ2)

Graph-based Methods Paper IDs Num.
Depth First Traversal (DFT) Pe6, P8, P12, P33, P50, P53, P59, P66, P78, P103, P121, P127, P136 13
Breadth-First Traversal (BFT) P13, P28, P74, P77, P78, P92, P103, P127, P145 9
Graph Traversal P19, P70, P86, P88, P116, P153, P161 7
Knowledge Graph (KG) P98, P127, P139 3
Petri Nets P47, P89, P65 3
Graph Splitting P71 1
Graph-Theoretical Clustering P71 1
Greedy Search Strategy P26 1
Meta-Heuristic Search Algorithm P61 1
Path Sensitization Algorithm P57 1
Round-Strip Strategy P25 1
Shortest Path Finding Strategy P42 1
Graph Simplifying P17 1

Graph-based techniques use graphs or diagrams, focused on describing the system behavior.
However, the transformation among the other specifications and diagrams is challenging. The existing
REDAST studies introduce the search within the graph-based technique to bridge the gap between
sequential description and the specification diagram by finding a route or path. For example, in
P50 P50, the depth-first traversal algorithm is employed to find the test path. Our findings show
that even some traditional graph traversal techniques are still effective in test generation, such as
Breadth-First Traversal (BFT), Depth-First Traversal (DFT), etc.

Table 16. Machine-Learning-based Methods in Selected Studies (RQ2)

Machine Learning Methods Paper IDs Num.
BERT & Classifier P23, P98, P128 (Seq2Seq) 3
SyntaxNet P93, P126 2
Pretrained NER Model P52, P127 2
MLP Classifier P18 1
k-Means Clustering P159 1
LLM & RAG P160 1

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

25 of 49

Machine Learning based techniques were not as prevalent as others in REDAST studies. 11
studies opted for ML techniques, including Pretained LMs (e.g., BERT in P23 P23, P94 P98, P123 P128),
traditional machine learning algorithms (e.g., P154 P159), SyntaxNet (e.g., P90 P93, P121 P126), and so
on, which didn’t reflect any trend in the technique adoption.

5.3.2. Framework Details

In this subsection, we cover the remaining parts of the transformation technology;, i.e., additional
output, intermediate representation and the framework structure.

Table 17. Additional Inputs of Selected Studies (RQ2)

Additional Input Types Paper IDs Num.
Source Code P82, P159 2
System Implementation P69, P112 2
System Implementation and Supporting Documents P113, P129 2
Historical Documents P32 1
Requirements Documents and Historical Documents P127 1
Requirements Documents and Scenario P96 1

Additional Input. While our SLR studies requirements-driven automated test generation, the
inputs are not constrained to the requirements specification only. We found that some studies introduce
additional docs as input to improve the functional coverage of their methodologies. This section
illustrates the details of additional input in REDAST studies, including:

® Historical Documents are always referenced in the generation process. For example, P2 P2 opted
for historical test logs as the additional input in the test generation step. The test logs can serve as
a reference for evaluating the generated test artifacts.

e System Implementation is the next stage after requirements engineering based on the SDLC, where
the requirements are believed to dominate the implementation process and vice versa significantly.
In P109 P113, the implementation documents are used in the analysis to provide evidence from
the actual scenario.

e Source Code can also be used as an additional input alongside requirements in the transformation
process. P154 P159 introduces code updating information in the test prioritization process, which
is used to find the error-prone modules.

* Additional Documents, such as ground knowledge documents, are used to support test generation
with a more substantial knowledge base. P122 P127 is a KnowledgeGraph-based method, where
the ground knowledge is largely integrated for constructing the knowledge graph.

Table 18. Framework Structure Results of Selected Studies (RQ2)

Structure Paper IDs Num.
P1, P2, P5, P6, P8, P11, P12, P13, P14, P16, P17, P20, P22, P24, P26, P27, P29, P30, P31,
P32, P33, P35, P36, P37, P40, P43, P44, P45, P46, P50, P53, P54, P55, P58, P59, P61, P62,
Sequential P64, P65, P70, P75, P76, P77, P78, P100, P101, P102, P107, P108, P109, P110, P111, P114, 80
P115, P116, P118, P121, P124, P125, P127, P128, P129, P132, P133, P134, P135, P136,
P137, P139, P142, P143, P145, P146, P147, P148, P149, P151, P154, P156, P159
P3, P7, P9, P10, P19, P21, P25, P34, P39, P51, P52, P57, P66, P68, P72, P74, P80, P104,

Parallel P140, P150, P152, P153 2
Conditional P15, P18, P28, P47, P49, P71, P73, P144, P155 9
Loop P4, P56, P113 3

Framework Structure. From requirements specification to the generation of test artifacts, various
designs can be applied to transformation methodologies. Within the selected REDAST framework, we
categorize these methodologies into four distinct structure types:

e Sequential Structure. The sequential framework conducts transformations in a strict, ordered
sequence without any bypasses or shortcuts. This approach enhances logical continuity and

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

26 of 49

maintains a clear connection between each step. P107 P111 is a typical sequential framework
where the formal specifications are step-by-step transformed into conjunctive normal form,
assignment, and test cases.

* Conditional Structure. This framework introduces conditional steps, allowing for alternative paths
at key stages. This flexibility improves adaptability and generalization, enabling the framework
to manage diverse scenarios effectively. P73 P73 is a good example in this category, where this
study constructs several conditions in transformation, e.g., “Need more details of requirements”,
“There are improvements of transformation”, etc.

* Parallel Structure. In a parallel framework, different representations can be processed simultane-
ously across multiple transformation processors. This structure significantly boosts time efficiency.
The typical parallel structure can be found in P10 P10. This study constructs a two-way structure
and converts requirements input to use case diagrams and executable contracts for generating
contractual use case scenarios.

* Loop structure. The loop structure incorporates assertion-controlled loops, enabling iterative
refinement of generated artifacts. Cycling through iterations ensures higher quality in the final
outputs. For example, P109 P113 introduces the loop structure by designing a validation and
tuning process to refine the guarded assertions in this method iteratively.

5.3.3. Intermediate Representation

The intermediate representation functions as a detailed explanation of requirements or system
structure, reflecting the framework structure’s complexity. Specifically, intermediate representation is
the step-generated artifacts during the transformation process. When reviewing the selected studies,
the intermediate representation necessarily exists in a complex REDAST framework to enable a
stepwise transformation. Thus, we illustrate the details of the adopted intermediate representations to
understand the framework’s composition better.

[Single Intermediate Representation . Multiple Intermediate Representations

Parallel

Condition

Sequential

0 20 40 60 80

Figure 14. Illustration of Joint Distribution of Intermediate Representation and Framework Structure (RQ2)

Number of Intermediate Representations. The number of intermediate representations is a basic
feature of REDAST’s framework. In order to improve its explainability, we jointly illustrate the
number of intermediate representations with framework structure in Figure 14. The results show
different trends in “single” and “multiple” categories, where (1) sequential structure (66 studies) is the
dominantly common framework in the "single" category, followed by conditional structure (8 studies),
parallel structure (4 studies), and loop structure (2 studies), (2) parallel structure is the most common
framework in "multiple" category (18 studies), where sequential is also popular (14 studies).

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

27 of 49

Table 19. Type of Intermediate Representation in Selected Studies (RQ2)

Repre. Types Paper IDs Num.
P2, P3, P7, P9, P10, P19, P22, P24, P26, P28, P34, P36, P39, P43, P49, P50, P51, P55, P55,
P57, P58, P64, P66, P68, P68, P71, P71, P76, P78, P80, P101, P102, P104, P107, P109,
P110, P111, P113, P113, P114, P118, P121, P125, P129, P133, P134, P136, P140, P142,
P143, P146, P156, P159

P1, P4, P7, P8, P11, P15, P18, P20, P21, P25, P25, P27, P30, P31, P32, P33, P40, P43,
P45, P47, P50, P51, P52, P58, P59, P61, P62, P65, P70, P72, P73, P74, P74, P75, P76, P80,
P100, P104, P114, P124, P132, P133, P137, P137, P145, P147, P148, P150, P152, P154,
P155

P3, P9, P10, P12, P13, P14, P16, P17, P19, P30, P33, P35, P37, P44, P46, P53, P54, P56,
Graph P57, P66, P77, P108, P109, P110, P115, P116, P127, P128, P135, P136, P139, P140, P143, 38

P144, P149, P150, P152, P153, P153
Test Case P5, P6, P21, P29, P151 5

Rule 51

Model 48

Type of Intermediate Representations. Considering the intermediate representation generally ex-
tended from requirements, we also introduce a similar category used in the requirements specifications,
which is illustrated in Table 19. The type category includes:

* Rule-based Representation (51 studies): The rule-based representation here refers to general con-
trolled NL, assertion, or equation, where these notations generally consist of descriptions with
predefined conditions or forms.

* MetaModel-based Representation (48 studies): MetaModel has widely opted for intermediate repre-
sentation, where model attributes offer additional explainability for test transformation.

e Graph-based Representation (38 studies): Graph is an advanced representation method that reflects
basic information and indicates the co-relations among different elements.

e Test-Specification-based (5 studies): Some studies introduce test-related intermediate representation
but cannot classify it into parts of the test outcome. Thus, the test-specification-based represen-
tation is especially considered a category. We didn’t identify too many test-specification-based
representations in selected studies.

5.3.4. Findings: Trend of Transformation Techniques Over the Years

The transformation techniques in REDAST have largely been influenced by advancements in
other fields, such as machine learning and deep learning. To illustrate the evolution of these techniques,
we integrate publication year data with RQ2 to analyze trends in REDAST studies in Figure 15. Our
findings indicate that rule-based, graph-based, and metamodel-based techniques initially dominated
transformation approaches. However, following the introduction of the NLP pipeline in 2004 and
machine learning techniques in 2012, graph-based approaches gradually declined in popularity.
Additionally, we observed an increasing diversity in transformation techniques over time, reflecting a
broader range of methodologies being adopted in REDAST.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

28 of 49
I Rule-Based [Jl] MetaModel [NLP-Pipeline Graph-Based Machine Learning

1992-1993 1N 2
1998-1999
2000-2001
2002-2003
2004-2005
2006-2007
2008-2009
2010-2011 17 7 4 43
2012-2013 4 128
2014-2015 16 4 4 44
2016-2017
2018-2019 13 9 6 3 49
2020-2021 4 2 32
2022-2023 3 31
2024-Now | L% 215

) 10 20 30 40 50

Figure 15. Trend of Transformation Techniques by Years

5.3.5. Findings: Cross-Analysis of Requirements Input and Transformation Techniques

During the transformation process, the requirements input is further processed to the intermediate
representations or end test artifacts. Thus, we cross-discuss the relations between requirements input
and transformation techniques, which are depicted in Figure 16. The results are not surprising
that (1) rule-based techniques are still commonly opted for parsing different requirements input,
36%, 39%, 40%, 39%, and 33%, respectively, in textual, model-based, formal, constraint-based, and
tabular categories, (2) metamodel-based transformation techniques are not only applicable for model-
based requirements but also for the other requirements expressions, 27%, 41%, 50%, 47%, and 33%,
respectively, in textual, model-based, formal, constraint-based, and tabular categories, which suggests
that meta-models are flexible and applicable to both textual and structured requirement representations.
As for NLP-pipeline-based approaches, they are almost exclusively applied to textual requirements.
Surprisingly, we found that, in the model-based categories, there are still five papers that introduce
NLP-Pipeline-based techniques in their methodologies. P28 P28 introduced a sequence-diagram-based
use case, which both enables the flexibility of textual requirements and the structural ability of model-
based requirements, where the NLP-pipeline is introduced to parse the CNL or structured expression.
Similarly, the NLP pipeline in P57 P57 parsing the dependency in the introduced UML-based use
case. Thus, the selection bias of NLP pipelines can be avoided by combining textual requirements
with the other requirements specifications, which can also additionally provide flexibility from textual
requirements for the method.

[Rule-based |l del-based [NLP-Pipeline-based Graph-based Machine Learning

Textual 29 10 235
Model-Based
Formal
Constraint-Based

Tabular

Other

o 50 100 150 200 250

Figure 16. Cross-Distribution of Requirements Input and Transformation Techniques

[mybox, title=RQ2 Key Takeaways] ® Rule-based and model-based approaches dominate REDAST
due to their structured, interpretable nature and low dependency on training data. While Al tech-
niques—particularly NLP—are increasingly incorporated for automation, they primarily support
rule-based and model-driven frameworks rather than serving as standalone transformation methods.

® Requirements are generally considered sufficient input for REDAST, as few studies integrate
additional data sources (e.g., system implementation, source code, or historical test logs). Instead,
intermediate representations serve as essential enablers for translating requirements into structured

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

29 of 49

test artifacts. A significant number of studies employ multi-step transformations, making intermediate
representations a key bridge between raw requirements and test automation artifacts.

5.4. RQ3: Generated Test Artifacts in REDAST

RQ3 aims to discuss the final outcomes of the REDAST process, where we studied the test
abstraction level, test type, test notation, and test coverage.

5.4.1. Test Abstraction Level

Varying on different usage scenarios, the test artifacts could be described at various levels. For
example, when we plan to verify user behaviors, the abstract test scenario is one of the best choices for
engineers to check the correctness of each step. Thus, we introduce three categories for test abstraction
level classification, including executable, abstract, and report. The idea of each category is described
as:

e Executable Level includes artifacts, such as code and scripts, that can be directly executed. Typically,
the test artifact in P94 P98 is on the executable level, where the test case consists of several sections,
including “Target Entities”, “Test Intent”, “Extracted Triplets”, “Context Sub-graph”, “Test Case”,
and so on.

® Abstract Level includes the artifacts that cannot be directly executed, e.g., textual scenarios, test
diagrams, etc. We identify P71 P71 as an example of this category. P71 generates test plans
consisting of activities and acceptance criteria, where the acceptance criteria in this study don’t
give specific operation or system behavior, e.g., “Is bill paid?”, “Is ID card valid?” or some similar
statements.

® Report Level mainly refers to the results after executing test artifacts. We separately present this
because some studies also provide the executing tool. In P29 P29, this study introduces an
automatic tester using generated test data. The final output is the corresponding test report from
the tester.

Table 20. Test Abstraction Level of REDAST Studies (RQ3)

Abstraction Levels Paper ID Num.
P1, P2, P3, P4, P5, P7, P8, P9, P11, P12, P13, P15, P16, P19, P21, P23, P24, P25,
P26, P27, P28, P29, P30, P31, P32, P33, P34, P35, P36, P37, P38, P39, P40, P43,
P44, P45, P48, P49, P50, P51, P52, P53, P54, P55, P56, P57, P58, P59, P60, P61,
P62, P63, P64, P65, P66, P67, P68, P70, P73, P76, P77, P78, P79, P80, P82, P83,
Executable P84, P86, P88, P90, P91, P92, P94, P95, P96, P98, P99, P100, P101, P103, P104, | 129
P105, P106, P107, P108, P109, P110, P111, P112, P113, P114, P116, P118, P119,
P121, P123, P124, P125, P127, P128, P129, P130, P131, P132, P133, P134, P135,
P136, P138, P140, P141, P142, P143, P144, P145, P146, P147, P148, P149, P151,
P152, P153, P155, P156, P157, P158, P159, P160, P161
P5, P6, P7, P10, P14, P17, P18, P20, P22, P26, P41, P42, P46, P47, P69, P71, P72,

Abstract P73, P74, P75, P80, P84, P89, P91, P93, P102, P115, P117, P122, P125, P126, P137, 37
P139, P140, P147, P150, P154
Report P15, P29, P57, P89, P149 5

5.4.2. Test Formats

In this section, we present detailed information about the generated test artifacts, adopting the
categories of test type and notation to describe them in detail. While the most commonly used test
types are test cases and scenarios, we also found some task-specific test artifacts. The results of the test
type are illustrated in Table 21.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

30 of 49

Table 21. Test Formats of REDAST Studies (RQ3)

Test Formats Paper IDs Num.
P1,P2,P3,P4,P5,P6,P7,P9,P11 , P13 (optimized),
P15,P16,P19,P21,P23,P24,P25,P26,P27,P28,P30 , P31 (acceptance),
P32,P35,P36,P37 , P38 (prioritized), P39 (prioritized), P43 , P44
(system and acceptance), P45P48,P49,P50,P51 , P52 (tabular),
P54,P55,P56,P57, P58 (failure-revealing), P59,P60, P61,P62,P68,
P70,P72,P74,P76,P77,P79,P80 , P82 (prioritized), P83 (security),

Test Case P84, P86,P88,P90,P91,P92,P94,P95,P96,P98,°99,P100,P101,P102,P103 116

, P104 (prioritized), P105,P106,P107,P108,P109,P110,P111,P112

P113 (passive), P114,P116 , P118 (prioritized), P119 , P121 , P122,

P123,P124,P125,P127,P128,P130,P131,P132,P133,P134,P135 , P136 (prioritized),

P138 (prioritized), P140 , P141 (prioritized), P142 (prioritized), P143 , P144

(prioritized), P145 , P146 (prioritized), P147,P148,P149,P151,P153,P156,P157 ,

P158 (prioritized), P159 (prioritized), P161

P8,P11,P12,P28,P29,P31,P32,P33,P51, P53 (prioritized), P56,P57,P62,P64,P65,

Test Scenario P66 (prioritized), P67 (prioritized), P73,P95,P96,P129,P145,P160,P161 24
P14 (Test-Path), P20 (Test Procedures), P21 (Test Mutant), P26 (Scenario Tree),
P34 (Test Verdict), P41 (Key Value Pairs), P47 (Test Requirements), P71 (Test
Other Plan, Acceptance Criteria), P75 (Test Description), P112 (Interface Prototype), 14
P115 (Test Bench), P122 (Test Suggestion), P140 (Function Chart), P154 (Safety
Properties)
Test Model P18, P22, P73, P80,P137, P150 6
Test Report P15, P29, P57, P89, P149 5
Test Suite P40, P79, P95, P152, P155 5
Test Oracle P7, P34, P63, P91 4
Test Sequence P7,P17, P69, P78 4
Test Guidance P93, P117, P126 3
Test Specification P5, P6, P20 3
Test Script P2, P51, P75 3
Test Graph P42, P125, P139 3
Test Goal P10, P46 2
Traceability Matrix =~ P84, P147 2

We first illustrate the categorization results of test formats. In this section, the test format generally
refers to the higher dimension of generated test artifacts. We will not use the exact notation in this part.
The detailed results are in Table 21, which based on the following classes:

o Test Case, Test Scenario, and their Variations are the most commonly derived test formats in REDAST
papers. Test scenarios enable a high-level description of the test objectives from a comprehensive
point of view. Test cases include more detailed, stepwise instructions or definitions by focusing
on a specific software part.

o Test Requirements, Guidance, Plan, Suggestion, and Acceptance Criteria. These test artifacts generally
offer high-level, abstracted, or constructive objectives and suggestions for software testing. Rather
than specifically match every step in software testing, they enable high-level instruction for test
structure.

o Test Suite, Script, and Oracle, compared with the other formats, are advanced in applicability and
usability. Generally, assertion, code, or any executable source are used in these formats, which are
designed for execution.

o Test Sequence, Model and Goal. These test formats are designed to meet the specific test objectives in
the structural testing process. The model or sequence in these formats enables better traceability
compared with the other formats.

In the results, we can find that the test case is the most adopted test format in the selected studies;
test scenarios and test reports are the second most studied categories, followed by “other” formats, test
reports, test models, and so on. However, we found that we identified some test artifacts that are hard
to automate, such as test oracles, test goals, and traceability matrix. As the typical test artifacts, test
oracle is well-known for its difficulty in determining the correctness based on the given input and the

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

31 0f 49

complexity of software systems [64—66], which is believed that the human invention is still needed [67].
In REDAST studies, the automation of the test oracle is realized with the help of precise requirements
specification, wherein the two papers under the test oracle category, (1) P7 P7 ensure the correctness
of the test oracle by preliminarily checking the correctness of requirements, then from the derived
test cases to formulate the test oracles, (2) P63 P63, by converting RUCM (Restricted Use Case Model)
to OCL expression, the given requirements can be details checked for the generation of test oracle.
This suggests that, by incorporating appropriate requirements specifications in the REDAST process,
correctness and completeness can be assured. Furthermore, the preliminary correctness checking can
reduce the effort to post-check the correctness of test artifacts.

5.4.3. Test Coverage Methods

Test coverage is defined as whether our test cases cover the testing objectives [68]. However, there
are various methods available for this purpose. We design our categorization method for the coverage
types in the selected studies and finalize our results in Table 22.

Table 22. Test Coverage of REDAST Studies (RQ3)

Test Coverages Paper IDs Num.
P2, P16, P22, P26, P33, P38, P39, P41, P42, P45, P49, P60, P63, P71,
P72, P74, P75, P82, P84, P91, P93, P95, P98, P102, P104, P105, P106,
Requirements Coverage P108, P109, P112, P113, P115, P117, P118, P121, P123, P124, P125, 52
P127, P133, P136, P138, P141, P145, P146, P153, P155, P156, P158,
P159, P161
P1, P4, P6, P7, P11, P24, P32, P37, P46, P51, P52, P53, P54, P56, P57,
Behavioral/Scenario Coverage P58, P62, P64, P66, P67, P68, P70, P73, P77, P78, P89, P92, P96, P111, 37
P114, P129, P130, P144, P148, P150, P151, P154, P157, P160
P5, P8, P12, P14, P17, P30, P35, P55, P59, P65, P88, P103, P110, P135,

Path Coverage P143, P152 16
Functional Coverage P13, P25, P27, P29, P61, P94, P107, P119, P122, P131, P134 11
Use Case Coverage P9, P10, P15, P19, P43, P47, P76, P83, P86 9
Not Specified P21, P34, P48, P80, P90, P126, P137, P139, P149 9
Decision/Branch Coverage P50, P100, P101, P132, P140, P147 6
Statement Coverage P23, P28, P36, P128, P142 5
o P116 (Boundary Coverage), P44 (Combinatorial Coverage), P18

ther 3

(Structural Coverage)

Model-Based Coverage P20, P69, P79 3
Rule-Based Coverage P3, P31 2
Code Coverage P40, P99 2

We found that requirements coverage is the most commonly used method in REDAST studies,
followed by Behavioral/Scenario Coverage, Path Coverage, Functional Coverage, and so on. From the
general point of view, code coverage is the most commonly adopted coverage method in automated test
generation. The code coverage can simply and effectively assess the quality of generated test artifacts
and measure which code are being covered in the generation [69,70]. However, the requirements
coverage is leading the trend of test coverage in REDAST, where, moreover, the behavioral /scenario,
use case, statement, and decision/branch coverage are also able to be classified into requirements
coverage. We believe that the requirements can serve a similar role to code. By referring to different
parts of requirements, such as behavior, path, or statement, the test artifacts are also able to be assessed
and measured on the requirement level.

5.4.4. Findings: Trend of Test Abstraction Level Over the Years

Test artifacts are the closest step in REDAST, where the generated test artifacts are the end
outcomes of the framework. Reviewing the results, we can notice that REDAST studies mainly
maintain their generated test artifacts on the executable level. To better see the trend, we present the
trend of abstraction level by year in Figure 17. Even if abstract and executable test artifacts are both
useful for software engineering, the results show that executable test artifacts are now becoming more

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

32 0f 49

and more popular after 2007, which means executable test artifacts are more applicable and capable
for recent tasks and usage scenarios.

[Abstract [l Executable [Report

1992-1993

1998-1999
2000-2001
2002-2003
2004-2005
2006-2007
2008-2009
2010-2011
2012-2013
2014-2015
2016-2017
2018-2019
2020-2021
2022-2023
2024-Now

19 Ly 23

0 5 10 15 20 25

Figure 17. Trend of Test Abstraction Level by Years

5.4.5. Findings: Cross-Analysis of Transformation Techniques and Test Artifacts

Since test artifacts are the direct outcomes of transformation techniques, we aim to explore the
connection between these artifacts and the transformation methods used to generate them. Figure 16
presents the cross-distribution of transformation techniques and test formats. Our findings indicate that
rule-based, metamodel-based, and NLP-pipeline-based methods are widely adopted across various
types of test artifacts. Specifically, (1) Rule-based and metamodel-based techniques are the most
versatile and commonly applied across different test outputs; (2) NLP-pipeline-based and graph-based
methods are used selectively, with NLP techniques being more influential in generating test cases and
test scenarios; (3) Machine learning-based methods are the least utilized, suggesting that machine
learning is still relatively underexplored in REDAST studies.

[Rule-based [J] MetaModel-based [l NLP-Pipeline-based [Graph-based [Machine Learning-based

Test Case

Test Scenario
Other

Test Model

Test Report

Test Suite

Test Oracle

Test Sequence
Test Guidance
Test Specification
Test Script

Test Graph

Test Goal
Traceability Matrix

240

0 50 100 150 200 250

Figure 18. Cross-Distribution of Transformation Techniques and Test Artifacts

5.4.6. Findings: Cross-Analysis of Requirements Input and Test Artifacts

Similarly, we illustrate the stack chart in Figure 19 of requirements input and test outcomes.
From the chart, we can find textual requirements are still leading the landscape in all formats for
test outcomes, which is also strong proof of the flexibility of textual requirements. The test oracle,
sequence, goal, and suite, which are widely believed to be advanced test strategies, we noticed that
formal, constraint-based, tabular, and model-based requirements could support the generation of these
specialized test artifacts.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

33 0f 49

[Textual [l Model [l Formal Constraint Tabular

Test Case

Test Scenario
Other

Test Model

Test Report

Test Suite

Test Oracle

Test Sequence
Test Guidance
Test Specification
Test Script

Test Graph

Test Goal
Traceability Matrix

8 3 136

0 20 40 60 80 100 120 140

Figure 19. Cross-Distribution of Requirements Input and Test Artifacts

[mybox, breakable, title=RQ3 Key Takeaways] Executable test artifacts (e.g., scripts, test suites,
assertions) are the dominant output in REDAST studies.

o A large majority of the studies focus on concrete test cases as the outcome, followed by test
scenarios. Harder-to-automate test artifacts (e.g., test oracles, traceability matrices) remain an open
challenge, requiring structured requirements modeling. Traceability from requirements to test cases is
considered challenging and a largely unresolved issue.

® Requirements coverage is the leading coverage criterion in REDAST, encompassing functional
and behavioral coverage, followed by path coverage.

5.5. RQ4: Evaluation Methods of REDAST Studies

REDAST studies aim to generate reliable and usable test artifacts, from requirements to test
artifacts. However, how to verify the efficacy of the generated test artifacts still remains in the mist. In
this section, we plan to illustrate the related results of the selected studies to systematically discuss the
evaluation methodologies for test artifacts. The results in this section consist of three parts: (1) types
of evaluation methods, (2) target software platforms in the case studies, and (3) the usability of the
studies.

5.5.1. Types of Evaluation Methods

In the selected studies, we identified two primary evaluation methods: (1) case studies and (2)
evaluations using given datasets. However, some studies rely on conceptually designed case studies
rather than industrial demonstrations based on real-world cases. To provide a clearer classification, we
restructured the categories for evaluation methods into three types: conceptual case study, industrial
case study, and evaluation using given datasets. The summarized results are presented in Table 23.

Table 23. Benchmark Type Results of Selected Studies (RQ4)

Benchmark Types Paper IDs Num.
P1, P2, P4, P6, P7, P8, P10, P11, P12, P13, P14, P16, P17, P21, P22,
P26, P27, P35, P43, P46, P48, P49, P51, P53, P62, P64, P66, P67, P68,
P69, P71, P74, P75, P77, P82, P84, P86, P89, P90, P92, P98, P99,
P100, P105, P106, P111, P112, P114, P115, P119, P123, P124, P128,
P132, P133, P134, P136, P141, P144, P145, P149, P150, P151, P152,
P153, P155, P156, P159, P161

P3, P5, P9, P12, P15, P18, P20, P23, P24, P25, P28, P29, P30, P32,
P33, P34, P36, P37, P38, P42, P44, P45, P49, P50, P54, P55, P58, P59,
P60, P61, P72, P78, P79, P80, P83, P88, P91, P94, P95, P101, P102,
P107, P108, P109, P110, P113, P117, P118, P121, P123, P125, P126,
P127, P129, P130, P131, P132, P134, P135, P137, P138, P140, P142,
P147, P154, P160

NA P19, P31, P39, P40, P47, P52, P57, P63, P65, P70, P73, P76, P93, P96, 23

P103, P104, P116, P122, P139, P143, P146, P148, P158
Dataset Evaluation P18, P41, P56, P157 4

Conceptual Case Demonstration 69

Real Case Demonstration 66

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

34 of 49

e Conceptual Case Demonstration. These studies typically begin by designing a conceptual case
and then applying REDAST methods to the designed case to demonstrate the test generation pro-
cess. Commonly used conceptual cases include online systems (e.g., P11 P11, P21 P21, P119 P124),
ATMs (e.g., P12 P12, P13 P13, P35 P35), and library systems (e.g., P6 P6), among others. While
these demonstrations effectively illustrate the methodology procedure, they often lack compulsion
and persuasiveness in demonstrating the efficacy of the results. However, the use of conceptual
cases, which are based on widely familiar scenarios, enhances understandability. This familiarity
benefits readers by making the methodologies easier to comprehend and follow.

¢ Industrial Case Demonstration. Studies in this category demonstrate their methods by incor-
porating industrial cases into their experiments. By re-organizing and utilizing data extracted
from industrial scenarios, REDAST methods are validated under real-world conditions, offering
stronger evidence and greater persuasiveness compared to conceptual case studies. Additionally,
we observed that some studies intersect across categories, combining (i) both conceptual and
industrial case studies, and (ii) industrial case studies with dataset evaluations (e.g., P28 P28 on
several industrial cases from public paper, P155 P160 on postal systems). These overlaps occur
because industrial cases not only serve as a basis for case studies but can also be used to formulate
evaluation datasets, further enhancing their utility in validating methodologies.

e Evaluation on Given Datasets. Evaluations conducted on public or industrial datasets provide
a compelling approach to demonstrating the efficacy and usability of a method. However,
transitioning from discrete cases to datasets requires significant additional effort, including data
cleaning, reorganization, and formulation. This challenge arises due to two primary factors: (1)
the high usability requirements of REDAST studies, which are often difficult to demonstrate
effectively using certain datasets, and (2) the absence of a standardized benchmark dataset
for evaluating test artifacts. As a result, most studies rely on case demonstrations rather than
systematic evaluations with well-formulated datasets. Only a small number of studies (e.g.,
P18 P18, P39 P39, P41 P41) employ dataset evaluations within the selected works.

The results indicate that conceptual case studies are the most commonly adopted method in the
selected studies, with 69 instances, followed by industrial case studies with 66 instances, and dataset
evaluations with 4 instances. Additionally, the “NA” category includes studies that do not provide
any solid demonstration methods.

5.5.2. Software Platforms in Case Demonstration

Recognizing that case studies are the primary method of demonstration in REDAST studies, we
further analyzed the details of these case studies by categorizing the software platforms used in their
demonstrations (Table 24). The adopted software platforms are grouped into 17 categories, including
shopping systems, resource management systems, financial systems, and more. These categories
encompass the most common usage scenarios and are intended to guide the design of case studies in
future research.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025

doi:10.20944/preprints202502.0628.v1

35 of 49
Table 24. Software Platforms in Case Study of Selected Studies (RQ4)
Software Platforms Paper IDs Num.
NA P19, P31, P39, P40, P47, P52, P57, P63, P65, P70, P73, P76, P93, P96, 23
P103, P104, P116, P122, P139, P143, P146, P148, P158
Automotive System P5, P23, P24, P32, P45, P58, P59, P61, P79, P80, P98, P102, P107, 20
P108, P115, P127, P128, P129, P154, P155
Control System P27, P29, P30, P42, P44, P60, P64, P78, P94, P111, P113, P121, P125, 18
P132, P140, P142, P144, P161
Safety System P49, P50, P54, P71, P72, P78, P88, P89, P102, P108, P117, P126, P131, 17
P132, P135, P147, P154
Order System P4, P10, P12, P16, P17, P48, P53, P55, P66, P67, P68, P114, P132, 16
P133, P134, P152
Business System P18, P20, P23, P36, P37, P68, P77, P90, P91, P92, P124, P160 12
Resource Management System P5, P25, P26, P33, P34, P68, P82, P118, P121, P126, P136, P157 12
Workforce System P8, P22, P23, P28, P41, P46, P74, P75, P86, P95, P99, P145 12
Healthcare System P15, P17, P34, P38, P41, P51, P58, P83, P110, P119, P159 11
ATM System P12, P13, P17, P22, P35, P105, P109, P151, P153, P155 10
Aerospace System P28, P35, P69, P80, 100, P101, P130, P149, P156 9
Banking System P5, P21, P43, P68, P121 5
Authentication System P1, P84, P106, P112 4
Mobile Application P2, P34, P62, P68 4
Library System P6, P7, P9 3
Booking System P55, P56, P150 3
Education System P11, P123, P159 3
Other P137, P138, P141 3
Database System P3, P117 2
Examination System P14 1

The results reveal that, alongside domain-specific systems such as control and automotive sys-
tems, order processing systems and ATMs are frequently selected to demonstrate test generation
methodologies. These systems are often chosen because they are widely recognized and understood in
the public domain, making them effective tools for illustrating methodologies in a comprehensible
manner.

5.5.3. Examples of Evaluation or Experiments

A critical aspect of any REDAST approach is the level of detail provided by the papers on the
methodology and the evaluation of the approach. In this subsection, we classified the selected papers
by separately analyzing the clarity and explanation provided in four key sections: (1) methodology
explanation, (2) case examples, (3) experiments, and (4) discussions. Table 25 shows an overview
of different evaluation and methodology sections covered in the selected studies. For example, the
second row (Case example) lists papers that cover the description of case examples in some level of
detail, which are also exemplified below for papers P159 and P24.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

36 of 49

Table 25. Usability Results of Selected Studies (RQ4)

Usability Paper IDs Num.
Almost all of the papers enable clear methodology explanation, 154
except P35, P36, P38, P138, P140, P156, P158

P1, P2, P3, P4, P5, P7, P8, P9, P11, P12, P13, P14, P15, P16, P17, P18,
P21, P22, P23, P24, P26, P27, P28, P29, P32, P33, P34, P35, P36, P37,
P38, P39, P40, P41, P42, P43, P44, P46, P48, P49, P50, P55, P58, P59,
P60, P61, P62, P64, P66, P67, P68, P69, P71, P78, P79, P83, P84, P86,
P88, P89, P90, P91, P92, P93, P94, P95, P96, P98, P99, P101, P102,
P107, P108, P109, P110, P111, P112, P113, P114, P115, P116, P117,
P118, P119, P121, P123, P124, P125, P126, P127, P129, P130, P131,
P132, P133, P134, P135, P136, P137, P138, P140, P141, P143, P144,
P145, P146, P147, P148, P149, P150, P151, P152, P154, P155, P156,
P158, P159, P160, P161

P1, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P15, P17, P18, P19,
P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P31, P32, P33, P35,
P36, P37, P38, P40, P41, P42, P43, P44, P45, P46, P47, P48, P49, P50,
P51, P52, P54, P55, P56, P58, P59, P60, P61, P62, P63, P64, P65, P66,
P67, P68, P69, P70, P71, P72, P73, P75, P76, P77, P78, P79, P80, P82,
P83, P84, P86, P88, P92, P94, P96, P99, P104, P113, P117, P121, P127,
P128, P129, P130, P131, P132, P134, P135, P137, P141, P144, P147,
P152, P154, P155, P156, P157, P158, P159, P160, P161

P2, P3, P5, P7, P9, P12, P13, P14, P15, P17, P18, P22, P23, P24, P26,
P27, P28, P30, P32, P34, P35, P37, P39, P40, P41, P42, P43, P44, P45,
P52, P53, P56, P58, P59, P61, P70, P71, P72, P76, P79, P80, P82, P83,
P86, P89, P91, P95, P99, P101, P102, P107, P108, P110, P113, P117,
P118, P121, P125, P127, P128, P129, P130, P131, P132, P133, P134,
P135, P137, P138, P140, P141, P142, P154, P157, P159, P160, P161

The methodology explanation

Case example 120

Discussion 105

Experiment 77

Case 1: P155 - Generating Test Scenarios from NL Requirements using Retrieval-Augmented LLMs:
An Industrial Study

P155 P160 introduces an LLM-driven test scenario generation method. While LLMs offer flexible
and powerful natural language generation capabilities, their limited controllability poses challenges
for broader applications in REDAST studies. To address this issue and validate the methodology’s reli-
ability, P155 incorporates a case study based on an industrial usage scenario. The experiment evaluates
performance using both quantitative metrics and qualitative human assessments. Quantitative metrics
include standard machine translation evaluation measures such as BLEU, ROUGE, and METEOR.
However, the core of the evaluation is a human interview with software engineers, offering deeper
insights into the practical utility of the methodology. While metrics provide a partial perspective from
an NLP standpoint, the human interviews emphasize the method’s effectiveness and applicability in
real-world scenarios.

Case 2: P24 - Automatic Generation of Acceptance Test Cases from Use Case Specifications: an
NLP-based Approach

P24 P24 proposes an NLP-based framework for generating executable test cases. The industrial
case-based experiments address three research questions, including evaluations of correctness and
manual comparisons. Notably, in the manual comparison, instead of conducting direct human
interviews for the generated test artifacts, the study employs a manual comparison with test cases
created by domain experts. The results of these comparisons provide a robust demonstration of the
generated test cases, as their alignment with established “golden truth” test cases serves as compelling
evidence of the methodology’s effectiveness.

5.5.4. Findings: Cross-Analysis of Demonstration Types and Target Software Systems

While researchers demonstrate the efficiency of their methods through evaluations or practical
demonstrations, the target software system ultimately reflects the primary objective of REDAST studies.
Our goal is to establish a connection between these demonstrations and the target software system

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

37 of 49

to provide deeper insights into the preference for demonstration methods across different usage
scenarios. From our findings in Figure 20, we observed that conceptual case studies remain the most
commonly adopted demonstration method. In contrast, real (industrial) case studies are generally
more challenging to conduct due to the difficulty of obtaining real-world data. However, in domains
such as web services, safety-critical systems, and objective-oriented systems, real case studies are
predominantly chosen. These critical systems often impose stricter pass-rate criteria for test outcomes,
necessitating more rigorous validation. We suggest that future researchers pay particular attention to
the demonstration aspect when dealing with such systems.

[Conceptual Case [l Real Case [l NA Dataset Evaluation

General Software
Embedded System 7 3
Web Services [i<] 5 K
Safety-Critical ' 3 9
Timed Data-flow N4
Reactive 3
Real-time Embedded 3
Product Line 2
Object-Oriented 3
Telecom 2
Automotive 3

0 20 40 60 80 100 120

Figure 20. Cross-Distribution of Demonstration Types and Target Software Systems

[mybox, breakable, title=RQ4 Key Takeaways] @ Conceptual case studies are the most common
evaluation method in REDAST studies. While these (example) case studies enhance understandability,
they often lack strong empirical validation compared to real-world industrial cases. Industry case
study evaluations are also prominent in ~40% studies, demonstrating the real-world applicability and
need for REDAST approaches.

o There are very few studies conducted on any public datasets. This showcases a gap in the stan-
dardized evaluation of REDAST approaches due to the lack of standard benchmarks for requirements-
driven test case generation.

5.6. RQb5: Limitation, Challenging and Future of REDAST Studies
5.6.1. Limitations in Selected Studies

In the selected papers, we observed that some studies explicitly discuss their limitations. This
section presents the identified limitations, categorized into 14 concise types, as summarized in Table
26. Notably, 28 studies do not explicitly mention any limitations in their content. Consequently, the
following discussion primarily focuses on the remaining papers that explicitly acknowledge their
limitations.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025

doi:10.20944/preprints202502.0628.v1

38 of 49
Table 26. Limitation Results of Selected Studies (RQ5)
Limitations Paper IDs Num.
P4, P8, P11, P12, P21, P22, P23, P28, P31, P32, P33,
P35, P41, P44, P45, P46, P60, P62, P64, P67, P68,
Limitations of Framework Design P86, P89, P91, P92, 102, P106, P109, ’110, P117, 41
P118, P121, P126, P131, 145, P146, P148, P150,
P151, P156, P160
P14, P15, P16, P18, P26, P29, P83, P90, P93, P95,
NA P98, P99, P101, P114, P119, P123, P124, P125, P133, 28
P134, P137, P138, P139, P140, P141, P142, P158,
P161
P7, P19, P39, P40, P48, P74, P75, P96, P100, P102,
Limitation of Evaluation or Demonstration P105, P108, P110, P122, P129, P132, P143, P146, 20
P153, P160
P10, P30, P32, P35, P38, P47, P50, P55, P56, P66,
Scalability to Large Systems P70, P75, P78, P80, P84, P107, P111, P126, P128, 20
P159
. . P2, P17, P34, P36, P37, P43, P44, P51, P53, P55,
Over Relying on Input Quality P65, P71, P107, P127, P144, P157 16
. P3, P54, P62, P69, P72, P73, P76, P77, P79, P82,
Complexity of Methodology P94 P116, P147, P149, P154 15
. P6, P8, P24, P27, P38, P57, P58, P59, P107, P112,
Automation (Methodology) P115, P116 12
. P13, P61, P88, P105, P108, P113, P131, P136, P155,
Incomplete Requirements Coverage P156 10
Automation (Test Implementation) P2, P5, P25, P73, P104, P122, P130, P135 8
Automation (Requirements Specification) P1, P9, P68, P103, P117, P151, P152 7
Requirements Ambiguities P42, P49, P52 3
Limitation of Implementation P20, P63 2
Time-Costing P20, P39 2
Additional Cost of Requirements Specification p7 1
Table 27. Automation Level of Selected Studies (RQ5)
Automation Levels Paper IDs Num.
P2, P3, P4, P5, P6, P7, P8, P9, P10, P12, P16, P17, P18, P20, P22, P23, P24, P28,
P29, P32, P41, P42, P43, P44, P47, P48, P49, P51, P53, P54, P56, P57, P59, P60,
Highly Automated P69, P70, P71, P74, P75, P77, P78, P82, P83, P89, P91, P92, P93, P98, P100, P101, 77
P102, 103, P105, P106, P107, P108, P109, P111, P112, P117, P124, P125, P126,
P127, 132, P133, P134, P136, P137, P140, P145, P146, P149, P151, P153, P154,
P160
P19, P26, P27, P38, P46, P58, P63, P64, P68, P84, P86, P90, P94, P95, P99, P104,
Semi-Automated P110, P113, P114, P115, P116, P118, P119, P121, P122, P129, P130, P131, P135, 39
P138, P139, P141, P142, P148, P150, P152, P155, P156, P161
P1, P11, P13, P14, P15, P21, P25, P30, P31, P33, P34, P35, P36, P37, 39, P40,
Fully Automated P45, P50, P52, P55, P61, P62, P65, P66, P67, P72, P73, P76, P79, P80, P128, P143, 35
P144, P147, P157
Low Automation P88, P96, P123, P158, P159 5

Automation is a frequently mentioned limitation in the selected studies. We identified that au-
tomation limitations vary across three key areas: requirements specification, methodology conduction,
and test implementation. To provide a more detailed analysis, we classified these limitations into three
categories: Automation (Requirements Specification), Automation (Methodology), and Automation
(Test Implementation). Given that the automation level is a critical aspect of REDAST, we present the
estimated automation levels for all the selected papers in Table 27, as four levels, Fully automated -
End-to-End Automation, highly automated - Automation-Dominant, semi-automated - Automation
Supported, and low automated - Minimal Automation. The detailed definitions of automation are
depicted in Section 4.6.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

39 of 49

Scalability, framework design, incomplete requirements coverage, and requirements ambigu-
ities are commonly identified limitations in the reviewed studies. Specifically, 41 studies reported
incompatibilities with handling certain scenarios, 20 studies highlighted challenges in scaling to
complex or larger systems, 10 studies acknowledged an inability to cover all requirements during
test generation, and 3 studies discussed potential ambiguities in requirements. These limitations
often stem from framework structure issues, where the methods fail to comprehensively account
for diverse usage scenarios, leading to problems with generalization and applicability. For example,
P38 P38 and P48 P48 discuss challenges with generalization due to difficulties in handling complex
systems, while P124 P129 highlights performance gaps when dealing with systems of varying sizes.
Framework design limitations also constrain methods in specific contexts, as evidenced by P146’s P151
discussion of incompatibilities with non-functional requirements and P141’s P146 primary focus on
extra-functional properties.

Additional limitations arise from the complexity of some framework components, including
over-reliance on input quality, methodological complexity, and time inefficiencies. Over-reliance
occurs when predefined rules or input formats disproportionately influence the performance of test
generation, making the process vulnerable to input quality issues. For instance, P44 P44 notes that
dependency relations can affect test generation accuracy, while P103 P107 highlights challenges arising
from the conjunctive statement format, which complicates stable test generation. Methodological
complexity and time-cost issues stem from the algorithms employed in these frameworks, which
significantly increase the difficulty and runtime of the processes. For example, P79 P79 mentions that
the complexity of the test generation and analysis processes impacts performance and scalability, and
P20 P20 critiques the Specmate technique for its excessive complexity, which undermines runtime
efficiency.

Furthermore, 20 studies identified limitations in evaluation or demonstration, emphasizing
that their experiments were insufficient to validate the efficacy of methodologies in other scenarios,
particularly from an industrial perspective (e.g., P7 P7, P19 P19, P74 P74).

5.6.2. Insight Future View from Selected Studies

This section aims to discuss the key challenges and directions for future research identified in
the selected studies. Notably, these studies share common themes regarding challenges and proposed
future work, including improving or extending existing methodologies, conducting further evaluations,
and addressing unresolved issues. To provide a structured analysis, the challenges and future work
are categorized into several different areas. We illustrate the results in Table 28.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025

Table 28. Future Direction Results of Selected Studies (RQ5)

doi:10.20944/preprints202502.0628.v1

40 of 49

Future Directions

Paper IDs

Num.

Extension to Other Coverage Criteria or Requirements

Further Validation

Completeness Improvement

Automation Improvement

Extension of Other Techniques

Extension to Other Domains or Systems

Extension to Other Phases or Test Patterns

Performance Improvement

Real Tool Development

Benchmark Construction
Traceability Improvement
Robustness Improvement

NA

P5, P11, P13, P14, P15, P16, P17, P18, P21,
P22, P23, P28, P30, P32, P34, P35, P36, P42,
P44, P45, P46, P47, P48, P49, P50, P51, P53,
P54, P55, P57, P58, P59, P60, P61, P62, P65,
P66, P67, P68, P73, P75, P78, P86, P92, P95,
P98, P100, P101, P102, P103, P104, P105,
P106, P107, P108, P110, P129, P130, P132,
P133, P134, P137, P145, P146, P147, P148,
P150, P151, P152, P158, P159, P160

P5, P6, P9, P14, P15, P19, P20, P21, P26, P38,
P48, P54, P59, P72, P74, P75, P86, P89, P93,
P96, P101, P108, P109, P110, P113, P115,
P118, P119, P121, P125, P126, P127, P138,
P140, P142, P143, P144, P145, P146, P156,
P159, P160

P24, P35, P36, P40, P45, P51, P52, P69, P71,
P79, P80, P89, P92, P93, P95, P96, P112,
P117, P119, P125, P126, P128, P129, P131,
P134, P138, P140, P142, P149, P154, P155,
P157

P4, P5, P6, P10, P11, P12, P46, P53, P56, P58,
P67, P72, P73, P76, P88, P95, P104, P106,
P115, P139, P144, P151, P152, P154

P9, P19, P20, P22, P27, P30, P31, P33, P34,
P37, P43, P44, P63, P70, P71, P76, P77, P88,
P94, P127, P128, P147, P153, P157

P8, P10, P24, P26, P28, P29, P33, P41, P42,
P47, P56, P61, P63, P64, P66, P69, P73, P77,
P79, P80, P100, P102, P107, P135

P1,P2, P7, P12, P16, P21, P25, P26, P37, P51,
P52, P57, P62, P65, P74, P98, P105, P106,
P111, P112, P114, P137, P153, P156

P4, P27, P42, P52, P94, P106, P107, P130,
P132, P133, P138, P143, P149, P155

P1, P7, P13, P54, P56, P64, P78, P110, P112,
P113, P114, P116, P117, P140

P3, P39, P116, P139

P31, P39, P121, P137

P18, P118, P141

P82, P83, P84, P90, P91, P99, P122, P123,

72

42

32

24

24

24

24

14

14

S i

11

P124, P136, P161

Extensions to other coverage criteria or requirements, test phases or patterns, and domains or sys-
tems are the three most commonly identified future directions and challenges in the reviewed studies.
These directions correspond to limitations in framework design, as most frameworks are unable to
address all usage scenarios, such as requirements coverage, test phases, or diverse software systems.
Consequently, many studies propose expanding their scope to cover additional scenarios. For instance,
P67 P67 plans to emphasize non-functional requirements in their test generation process, rather than
focusing solely on functional requirements. P65 P65, having designed a method for generating test
scenarios, intends to broaden their approach to encompass other phases of software development or
testing. Similarly, P25 P25, which focuses on acceptance test case generation for embedded systems,
plans to extend their application beyond embedded systems to enhance generalization.

Although limitations in automation were discussed in the previous section, several papers propose
future plans to reduce human intervention in the test generation process. We identified 24 papers
outlining plans to improve automation levels (e.g., P67 P67, P72 P72, among others).

Robustness, completeness, and traceability are widely regarded as critical factors in automated
software testing research. While it is challenging to qualitatively assess these factors for a REDAST

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

41 of 49

method, certain steps can be identified that may negatively impact framework robustness, complete-
ness, or traceability. In the selected papers, some studies explicitly discuss their future directions
for improving these aspects. For example, P114 P118 plans to enhance fault-handling diversity to
strengthen framework robustness. P93 P96 aims to add a user input monitoring function as part of
future work to improve completeness. Meanwhile, P116 P121 intends to further investigate the impact
of requirement changes within the REDAST process, enabling better traceability between requirements
and test artifacts.

Benchmark construction, real tool development, and further validation reflect researchers’ efforts
to broaden the impact of their studies. By enhancing the post-generation environment, the potential
capabilities of these studies can be more thoroughly explored. For instance, P3 P3 plans to build
benchmark test suites that are independent of specific model-based testing languages, which could
significantly advance future research in related fields. P56 P56 aims to investigate opportunities for
integrating their approach into larger industrial applications to enhance work efficiency. Additionally,
recognizing that their current case study is insufficient to fully demonstrate the methodology’s efficacy,
P84 P86 intends to conduct more comprehensive case studies to further evaluate the performance of
their method.

Some studies discuss the extension of existing techniques or performance improvements in
their work, often focusing on introducing new techniques or frameworks to enhance test generation
performance. For example, P19 P19 plans to expand NLP capabilities and explore more advanced
automation techniques as part of their future work. Similarly, P91 P94 intends to reduce the state space
of the studied model to improve the efficiency and effectiveness of their test case generation methods.

In the result, we identified that most of the studies pose an extension to other coverage criteria
or other requirements (72 papers), followed by further validation (42 papers), improvement of the
completeness in their future work (32 papers), and so on, which matches the results in the limitation
results.

5.6.3. Findings: Cross-Analysis of Demonstration Types and Validation Challenges

In analyzing the limitations and future directions of existing studies, we found that many studies
identify evaluation or demonstration constraints and emphasize the need for further validation. This
finding highlights the distribution of different demonstration types among studies that acknowledge
validation-related limitations and future research directions. From our results in Table 29, 15 out of
69 papers that adopted conceptual case studies reported validation-related issues in their limitations
or future directions, while 14 out of 69 identified similar concerns. Similarly, 22 out of 66 papers
that employed real case studies reported validation-related issues in their limitations, with 13 out
of 66 mentioning them in their future research directions. These findings suggest that validation
challenges persist regardless of the chosen demonstration method. Additionally, we observed that
papers employing real case studies more frequently reported validation-related issues. We hypothesize
that this may be because conceptual case studies, being designed specifically for demonstration
purposes, can more effectively represent the REDAST process in a controlled manner.

Table 29. Cross Distribution of Demonstration Types and Validation Related Future Direction or Limitation

Conceptual Case Study Real Case Study NA Dataset Evaluation
Further Validation 15 22 5 0
leltatl.on of Demonstration or 14 13 3 1
Evaluation

5.6.4. Findings: Trend of Automation Level Over the Years

As a practical and impact-driven research area, REDAST places significant emphasis on automa-
tion, particularly in the context of industrial applications. Given that technological advancements
contribute to automation in REDAST, we analyze the trend of automation levels over time, as illus-
trated in Figure 21. For clarity, we classify automation levels into two categories: fully and highly

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

42 of 49

automated systems, which represent a high level of automation, and semi- and low-automated systems,
which indicate a lower level of automation. Our findings reveal that while the proportion of low and
semi-automated approaches has gradually declined, fully and highly automated methods have become
increasingly dominant over the years. This trend suggests that technological advancements have
progressively improved the automation level in REDAST studies. However, despite this overall im-
provement, the proportion of fully automated systems has not increased significantly. We attribute this
to a key limiting factor: while technological advancements enhance automation capabilities, achieving
full automation still requires an appropriately designed framework. This aspect is largely independent
of technological progress and instead relies on methodological and architectural considerations in
REDAST research.

[Fully |l Highly [l Semi Low

1992-1993

1998-1999
2000-2001
2002-2003
2004-2005
2006-2007
2008-2009
2010-2011
2012-2013
2014-2015
2016-2017
2018-2019
2020-2021
2022-2023
2024-Now

17 2 122

0 5 10 15 20 25

Figure 21. Automation Level by Year

[mybox, breakable, title=RQ5 Key Takeaways]

o The framework design improvement and extension is the most common limitation and future
direction reported in REDAST studies. The selected papers frequently mention better coverage of the
usage scenario and model configurations.

o Most REDAST studies are not fully automated, with some human invention still necessary in
some key steps.

e Extension of evaluation and demonstration is always considered in the future directions.
REDAST studies are strongly related to real applications, and hence, the evaluation and demonstration
have a key future direction and need for evaluation in real practical settings.

6. Threats to Validity

6.1. Internal Validity

In this study, the first author designed the SLR protocol, which was reviewed and refined
collaboratively with the second, third, and fourth authors before formal implementation. The detailed
topics and search strings were iteratively adjusted and executed across multiple databases to optimize
the retrieval of relevant results. To accommodate the varying search policies of these databases, the
search strings were customized accordingly. The selection of studies followed a multi-stage filtering
process to minimize selection bias. The first round of filtering was based on titles and abstracts. The
second round involved brief reading and keyword matching, while the third round consisted of a
comprehensive reading of the papers. The final selection was validated by all authors to ensure
robustness. Following study selection, a data extraction process was designed using Google Forms.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

43 of 49

All authors participated in a pilot test to refine the data extraction procedure and ensure consistency in
capturing the necessary information.

6.2. Construct Validity

To mitigate threats to construct validity, we conducted the search process across six widely used
scientific databases, employing a combination of automated and manual search strategies. Extensive
discussions among all authors were held to refine the inclusion and exclusion criteria, ensuring they
effectively supported the selection of the most relevant studies for this SLR. Some of the selected
studies included vague descriptions of their methodologies, posing potential threats to the validity of
the study. These cases were carefully reviewed and deliberated upon by the first and second authors
to reach a consensus on their inclusion.

6.3. Conclusion Validity

The threat to conclusion validity was minimized through a carefully planned and validated search
and data extraction process. To ensure the extracted data aligned with our study requirements, we
designed the data extraction form based on the predefined research questions (RQs). The first author
initially extracted data from a subset of selected papers using this form, after which the extracted data
was reviewed and verified by the other authors. Once validated, the first author used the refined form
to extract data from the remaining studies. During data analysis and synthesis, multiple discussions
were conducted to determine the most effective categorization and representation of the data, ensuring
robust and meaningful conclusions.

6.4. External Validity

To address the threat to external validity, we employed a combination of automated and manual
search strategies, adhering to widely accepted guidelines [26,71]. Our methodology section provides a
detailed explanation of the inclusion and exclusion criteria. Specifically, we focused on peer-reviewed
academic studies published in English, excluding grey literature, book chapters, opinion pieces, vision
papers, and comparison studies. While these criteria may exclude some potentially relevant works, they
were implemented to minimize bias in the selection process. We adopted a broad inclusion approach,
considering studies regardless of their publication quality. Furthermore, our search encompassed
publications from 1992 to the present, ensuring comprehensive coverage of advancements in the field
of REDAST.

7. Discussion and Roadmap

Based on the results of our predefined RQs, we present several guidelines, insights, and
recommendations for future research in REDAST.

7.1. Data Preprocessing for REDAST

Data is the basis of the REDAST methodology. REDAST methodology is a data-oriented process,
while the acquired data primarily determine the framework design in specific usage scenarios. We
found that most of the selected papers specified their data usage strategy. We identified many papers
that adopted industrial data for their development and demonstration, e.g., P85 P88, P109 P113,
P155 P160, etc. These data, however, originated from raw industrial cases and require further pre-
processing for development. Thus, we recommend researchers customize the pre-processing to match
their framework design. Besides, we also identified that some studies require additional data for the
development, e.g., the training data for ML-based methods (P18 P18, P52 P52, P92 P95, etc). Our
other recommendation is to align data for development with the methodology framework and the
experimental demonstration, which maintains performance consistency throughout the process, from
design to development to evaluation and implementation.

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

44 of 49

7.2. Requirements Input for REDAST

The results of our research questions (RQs) highlight the diverse preferences for requirements
input. Findings in Section 5.2.4 suggest that the adoption of requirements specification is closely
related to the intended usage scenario. Therefore, rather than recommending a specific combination of
format and notation, we first suggest that researchers select requirements specifications based on their
actual application scenarios.

Under general end goals, textual requirements offer the greatest flexibility and broad applicability
across various target software systems, allowing for diverse notational choices to accommodate
different tasks. For specialized or critical systems, structured formats such as model-based and
tabular requirements are typically preferred, while formal and constraint-based requirements are more
commonly adopted in high-reliability domains. However, our findings indicate that the distinction
between different types of requirements input is not always significant, as textual requirements are
frequently used even in specialized systems.

Furthermore, the choice of requirements specification is not only influenced by the usage scenario
but also affects subsequent implementation and scalability. The results of RQ1 demonstrate that a
variety of requirement types and notations have been employed in previous REDAST studies. While
only a few studies have successfully managed multiple types of requirements input, it is unrealistic to
expect a single framework to accommodate all requirement formats. Thus, appropriately adapting the
requirement type within the REDAST methodology can significantly expand its application scope and
enhance its scalability.

7.3. Transformation Techniques for REDAST

The transformation techniques used in REDAST correspond to RQ2, where we categorize
them into machine learning (ML)-based, NLP-pipeline-based, rule-based, metamodel-based, and
search/graph-based approaches. Given that test artifacts are generally structured data, rule-based
and metamodel-based approaches—being the most commonly adopted techniques (appearing in 122
and 102 out of 156 papers, respectively)—facilitate structural transformations from requirements to
test outcomes. Findings from RQ2 and RQ3 indicate that recent studies increasingly adopt diverse
transformation techniques, regardless of the types of requirements inputs or test artifacts used. Based
on these observations, we recommend employing a combination of transformation techniques rather
than relying solely on conventional methods. While NLP-pipeline- and ML-based methods were previ-
ously considered “uncontrolled, ” the era of large language models (LLMs) has introduced advanced
flexibility and generalization capabilities, which have driven significant advancements in various
domains, including REDAST studies. By integrating these emerging techniques with traditional
rule-based approaches, the risks associated with uncontrolled behavior in cutting-edge methods can
be mitigated, ensuring a balanced and effective transformation process.

7.4. Test Artifacts Output for REDAST

We identified a lack of details for the specifications of test artifacts. Even though we categorized
the test outcomes in RQ3 based on their technologies, they are not formally reported in the papers. We
formulated the test outcomes on the abstraction level, format level, and notation level. Another factor
that should be considered for test artifacts is the executability. The need for executability varies with
respect to different testing stages.

In general, we recommend that, in future studies, (1) the implementation details, such as abstrac-
tion, format, notation, and so on, are encouraged to be specified in the technical descriptions; (2) the
executability should be seriously specified under the consideration of test stages or phases.

7.5. Evaluation Solutions for REDAST Studies

In RQ4, we identified evaluation and demonstration methods in the selected studies, categorizing
them into case studies and dataset evaluations. However, we found that dataset evaluation is rarely
adopted due to the limited availability of data resources for pairing requirements with test artifacts,

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

45 of 49

appearing in only 5 out of 156 papers. Regarding case studies, researchers typically choose between
real-world and conceptual cases. Our findings indicate that both conceptual and real case studies
can provide strong persuasive value. However, as highlighted in Section 5.5.4, real case studies are
generally preferred in certain specialized domains, such as web services, safety-critical systems, and
objective-oriented systems. Despite their advantages, both real and conceptual case studies frequently
report demonstration limitations.

To enhance the demonstration of methodological efficacy, we suggest that future studies incorpo-
rate both conceptual and real case studies within a single study. Conceptual case studies can serve
to illustrate the methodological framework, while real case studies can be introduced in the final
evaluation and demonstration phase to strengthen empirical validation especially.

Additionally, we observed that publicly available datasets for REDAST—and even in broader
requirements engineering (RE) and software testing domains—are extremely limited. We urge the
research community to focus on developing and maintaining public datasets for REDAST, as this
would significantly improve the research environment and facilitate further advancements in the field.

7.6. Other Suggestion for REDAST Studies

Besides the above suggestions from technical or demonstration perspectives, other points should
be taken into account.

Automation is a significant factor for REDAST studies. We identified that even though some
studies report “automation” in titles or methodologies, human operations are still necessary within the
generation process, or there is a lack of description of the implementation details of the automation.
We strongly suggest that future researchers keep the automation details transparent.

Reproducibility. While REDAST methods are designed for industrial applications, the imple-
mentation developers and end users expect the methods to be directly applied. The reproducibility of
the methodologies determines if the method can be successfully spread among industrial workflows.
Thus, we recommend that researchers provide sufficient implementation details for reproducing or
directly attaching code links to the paper.

8. Conclusion

Requirements Engineering-Driven Automated Software Testing (REDAST) presents a significant
yet challenging task in contemporary software engineering research. Automating the generation of
test artifacts from requirements has the potential to greatly enhance the efficiency and effectiveness of
the testing workflow. However, the absence of systematic guidelines and comprehensive literature
reviews on REDAST methodologies complicates research efforts and impedes progress in the field.
This article presents a systematic literature review (SLR) on the technical approaches and solutions
proposed for REDAST across various software systems.

Our review identified 156 relevant studies from an initial pool of 27, 333 papers through a rigorous
multi-stage filtering, selection, and processing methodology. These studies were analyzed from five
key perspectives: requirements input, transformation techniques, test outcomes, evaluation methods,
and limitations. Our results show that (1) Functional requirements, model-based specifications, and
natural language (NL) requirements are the most frequently used types, formats, and notations,
respectively; (2) Rule-based techniques dominate in REDAST studies, while machine learning (ML)-
based techniques are relatively underexplored; (3) Most frameworks are sequential, employing a
single intermediate representation; (4) Studies frequently focus on concrete test artifacts; (5) Test
cases, structured textual formats, and requirements coverage are the most commonly discussed
types, formats, and coverage approaches, respectively; (6) While most studies conduct conceptual
demonstrations, relatively few utilize dataset-based evaluations; (7) Although most studies provide
robust methodological explanations, only half report promising experimental outcomes; (8) Only 35
studies achieve full automation, with most requiring unnecessary manual intervention; (9) Framework
design remains the most frequently cited limitation, particularly the inability to handle complex

https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

46 of 49

configurations; (10) Many studies propose extending coverage criteria or addressing other requirement

types.

Building on these findings, we propose several recommendations to advance REDAST research.
The remarkable advancements in large language models (LLMs) highlight the potential of Al-based
techniques for transformation tasks. Emphasis should also be placed on enhancing automation and
reproducibility to realize the full efficiency gains promised by REDAST methodologies.

This study focuses exclusively on requirements-driven testing due to the vast volume of related
literature. However, other stages of verification and validation are equally critical for comprehensive
exploration. We aim to expand future research to cover broader alignments within the software
development lifecycle (SDLC), bridging gaps across the entire verification and validation spectrum.

References

1. Bertolino, A. Software Testing Research: Achievements, Challenges, Dreams. In Proceedings of the Future
of Software Engineering (FOSE ‘07), 2007, pp. 85-103. https://doi.org/10.1109 /FOSE.2007.25.

2. Baresi, L.; Pezzé, M. An Introduction to Software Testing. Electronic Notes in Theoretical Computer Science
2006, 148, 89-111. Proceedings of the School of SegraVis Research Training Network on Foundations of
Visual Modelling Techniques (FoVMT 2004), https:/ /doi.org/https:/ /doi.org/10.1016 /j.entcs.2005.12.014.

3. Barr, E.T; Harman, M.; McMinn, P.; Shahbaz, M.; Yoo, S. The Oracle Problem in Software Testing: A Survey.
IEEE Transactions on Software Engineering 2015, 41, 507-525. https://doi.org/10.1109/TSE.2014.2372785.

4. Unterkalmsteiner, M.; Feldt, R.; Gorschek, T. A taxonomy for requirements engineering and software test
alignment. ACM Trans. Softw. Eng. Methodol. 2014, 23. https://doi.org/10.1145/2523088.

5. Mustafa, A.; Wan-Kadir, W.M.; Ibrahim, N.; Shah, M.A.; Younas, M.; Khan, A.; Zareei, M.; Alanazi, F.
Automated test case generation from requirements: A systematic literature review. Computers, Materials and
Continua 2021, 67, 1819-1833.

6. Unterkalmsteiner, M.; Feldt, R.; Gorschek, T. A taxonomy for requirements engineering and software test
alignment. ACM Trans. Softw. Eng. Methodol. 2014, 23. https://doi.org/10.1145/2523088.

7. Garousi, V;; Joy, N.; Keles, A.B. Al-powered test automation tools: A systematic review and empirical
evaluation. ArXiv 2024, abs/2409.00411.

8. Berger, C.; Rumpe, B. Engineering Autonomous Driving Software. ArXiv 2014, abs/1409.6579.

9. Kitchenham, B.; Madeyski, L.; Budgen, D. SEGRESS: Software engineering guidelines for reporting secondary
studies. IEEE Transactions on Software Engineering 2022, 49, 1273-1298.

10. ur Rehman, T.; Khan, M.N.A_; Riaz, N. Analysis of requirement engineering processes, tools/techniques and
methodologies. International Journal of Information Technology and Computer Science (IJITCS) 2013, 5, 40.

11. Arora, C.; Grundy, J.; Abdelrazek, M., Advancing Requirements Engineering Through Generative Al:
Assessing the Role of LLMs. In Generative Al for Effective Software Development; Nguyen-Duc, A.;
Abrahamsson, P; Khomh, E, Eds.; Springer Nature Switzerland: Cham, 2024; pp. 129-148. https:
//doi.org/10.1007 /978-3-031-55642-5_6.

12. Glinz, M. A glossary of requirements engineering terminology. Standard Glossary of the Certified Professional
for Requirements Engineering (CPRE) Studies and Exam, Version 2011, 1, 56.

13. Pohl, K. Requirements engineering: fundamentals, principles, and techniques; Springer Publishing Company,
Incorporated, 2010.

14. Zowghi, D.; Coulin, C. Requirements elicitation: A survey of techniques, approaches, and tools. Engineering
and managing software requirements 2005, pp. 19-46.

15. Kotonya, G.; Sommerville, I. Requirements engineering: processes and techniques; Wiley Publishing, 1998.

16. Chung, L.; Nixon, B.A.; Yu, E.; Mylopoulos, J. Non-functional requirements in software engineering; Vol. 5,
Springer Science & Business Media, 2012.

17. Sneha, K.; Malle, G.M. Research on software testing techniques and software automation testing tools.
In Proceedings of the 2017 international conference on energy, communication, data analytics and soft
computing (ICECDS). IEEE, 2017, pp. 77-81.

18. Alagqail, H.; Ahmed, S. Overview of software testing standard ISO/IEC/IEEE 29119. International Journal of
Computer Science and Network Security (IJCSNS) 2018, 18, 112-116.

19. Rafi, D.M.; Moses, K.R.K.; Petersen, K.; Mantyld, M.V. Benefits and limitations of automated software testing:
Systematic literature review and practitioner survey. In Proceedings of the 2012 7th international workshop
on automation of software test (AST). IEEE, 2012, pp. 36-42.

https://doi.org/10.1109/FOSE.2007.25
https://doi.org/https://doi.org/10.1016/j.entcs.2005.12.014
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1145/2523088
https://doi.org/10.1145/2523088
https://doi.org/10.1007/978-3-031-55642-5_6
https://doi.org/10.1007/978-3-031-55642-5_6
https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

47 of 49

20. Deming, C.; Khair, M.A.; Mallipeddi, S.R.; Varghese, A. Software Testing in the Era of Al: Leveraging
Machine Learning and Automation for Efficient Quality Assurance. Asian Journal of Applied Science and
Engineering 2021, 10, 66-76.

21. Balaji, S.; Murugaiyan, M.S. Waterfall vs. V-Model vs. Agile: A comparative study on SDLC. International
Journal of Information Technology and Business Management 2012, 2, 26-30.

22. Mathur, S.; Malik, S. Advancements in the V-Model. International Journal of Computer Applications 2010, 1,
29-34.

23. Atoum, L.; Baklizi, M.K.; Alsmadi, I.; Otoom, A.A.; Alhersh, T.; Ababneh, J.; Almalki, J.; Alshahrani, S.M.
Challenges of software requirements quality assurance and validation: A systematic literature review. IEEE
Access 2021, 9, 137613-137634.

24. Unterkalmsteiner, M.; Gorschek, T.; Feldt, R.; Klotins, E. Assessing requirements engineering and software
test alignment—Five case studies. Journal of systems and software 2015, 109, 62-77.

25. DPetersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software
engineering: An update. Information and Software Technology 2015, 64, 1-18. https://doi.org/https:
//doi.org/10.1016/j.infsof.2015.03.007.

26. Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineer-
ing. In Proceedings of the Proceedings of the 18th international conference on evaluation and assessment in
software engineering, 2014, pp. 1-10.

27. Shamsujjoha, M.; Grundy, J.; Li, L.; Khalajzadeh, H.; Lu, Q. Developing mobile applications via model
driven development: A systematic literature review. Information and Software Technology 2021, 140, 106693.

28. Naveed, H.; Arora, C.; Khalajzadeh, H.; Grundy, J.; Haggag, O. Model driven engineering for machine
learning components: A systematic literature review. Information and Software Technology 2024, p. 107423.

29. Mustafa, A.; Wan-Kadir, W.M.; Ibrahim, N.; Shah, M.A.; Younas, M.; Khan, A.; Zareei, M.; Alanazi, F.
Automated test case generation from requirements: A systematic literature review. Computers, Materials and
Continua 2021, 67, 1819-1833.

30. Klaus, P; Chris, R. Requirements Engineering Fundamentals, 1st ed.; Rocky Nook, 2011.

31. Wagner, S.; Ferndndez, D.M.; Felderer, M.; Vetro, A.; Kalinowski, M.; Wieringa, R.; Pfahl, D.; Conte, T.;
Christiansson, M.T.; Greer, D.; et al. Status quo in requirements engineering: A theory and a global family of
surveys. ACM Transactions on Software Engineering and Methodology (TOSEM) 2019, 28, 1-48.

32. Kumar, L.; Baldwa, S.; Jambavalikar, S.M.; Murthy, L.B.; Krishna, A. Software functional and non-function
requirement classification using word-embedding. In Proceedings of the International Conference on
Advanced Information Networking and Applications. Springer, 2022, pp. 167-179.

33. Sutcliffe, A. Scenario-based requirements analysis. Requirements engineering 1998, 3, 48-65.

34. De Landtsheer, R.; Letier, E.; Van Lamsweerde, A. Deriving tabular event-based specifications from goal-
oriented requirements models. Requirements Engineering 2004, 9, 104-120.

35. Van Lamsweerde, A. Goal-oriented requirements engineering: A guided tour. In Proceedings of the
Proceedings fifth ieee international symposium on requirements engineering. IEEE, 2001, pp. 249-262.

36. Mordecai, Y.; Dori, D. Model-based requirements engineering: Architecting for system requirements with
stakeholders in mind. In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE).
IEEE, 2017, pp. 1-8.

37. Zhao, L.; Alhoshan, W,; Ferrari, A.; Letsholo, K.J.; Ajagbe, M.A.; Chioasca, E.V.; Batista-Navarro, R.T. Natural
language processing for requirements engineering: A systematic mapping study. ACM Computing Surveys
(CSUR) 2021, 54, 1-41.

38. Yang, X.; Zhang, J.; Zhou, S.; Wang, B.; Wang, R. Generating Test Scenarios using SysML Activity Diagram.
In Proceedings of the 2021 8th International Conference on Dependable Systems and Their Applications
(DSA), 2021, pp. 257-264. https://doi.org/10.1109/DSA52907.2021.00039.

39. Hooda, I; Chhillar, R. A review: study of test case generation techniques. International Journal of Computer
Applications 2014, 107, 33-37.

40. Wang, J.; Huang, Y.; Chen, C.; Liu, Z.; Wang, S.; Wang, Q. Software testing with large language models:
Survey, landscape, and vision. IEEE Transactions on Software Engineering 2024.

41. Clark, A.G.; Walkinshaw, N.; Hierons, RM. Test case generation for agent-based models: A systematic
literature review. Information and Software Technology 2021, 135, 106567.

42. Anand, S.; Burke, EK,; Chen, TY,; Clark, J.; Cohen, M.B.; Grieskamp, W.; Harman, M.; Harrold, M.].;
McMinn, P; Bertolino, A.; et al. An orchestrated survey of methodologies for automated software test case
generation. Journal of systems and software 2013, 86, 1978-2001.

https://doi.org/https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1109/DSA52907.2021.00039
https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

48 of 49

43. Jiang, J.; Wang, F; Shen, J.; Kim, S.; Kim, S. A Survey on Large Language Models for Code Generation. arXiv
preprint arXiv:2406.00515 2024.

44. Ahmed, A.; Azab, S.; Abdelhamid, Y. Source-Code Generation Using Deep Learning: A Survey. In
Proceedings of the EPIA Conference on Artificial Intelligence. Springer, 2023, pp. 467-482.

45. Gurcan, F; Dalveren, G.G.M.; Cagiltay, N.E.; Roman, D.; Soylu, A. Evolution of Software Testing Strategies
and Trends: Semantic Content Analysis of Software Research Corpus of the Last 40 Years. IEEE Access 2022,
10, 106093-106109. https://doi.org/10.1109/ACCESS.2022.3211949.

46. Umar, M.A. Comprehensive study of software testing: Categories, levels, techniques, and types. International
Journal of Advance Research, Ideas and Innovations in Technology 2019, 5, 32—40.

47. Atifi, M.; Mamouni, A.; Marzak, A. A comparative study of software testing techniques. In Proceedings of
the Networked Systems: 5th International Conference, NETYS 2017, Marrakech, Morocco, May 17-19, 2017,
Proceedings 5. Springer, 2017, pp. 373-390.

48. IEEE Standard for System, Software, and Hardware Verification and Validation - Redline. IEEE Std 1012-2016
(Revision of IEEE Std 1012-2012/ Incorporates IEEE Std 1012-2016/Cor1-2017) - Redline 2017, pp. 1-465.

49. Tran, HK.V,; Unterkalmsteiner, M.; Borstler, J.; bin Ali, N. Assessing test artifact quality—A tertiary study.
Information and Software Technology 2021, 139, 106620.

50. Hinton, G.E; Osindero, S.; Teh, YYW. A fast learning algorithm for deep belief nets. Neural computation 2006,
18, 1527-1554.

51. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. Journal of machine learning research 2008, 9.

52. Loucopoulos, P; Karakostas, V. System requirements engineering; McGraw-Hill, Inc., 1995.

53. Sommerville, I. Software engineering 9th 2011.

54. Loniewski, G,; Insfran, E.; Abrahdo, S. A systematic review of the use of requirements engineering techniques
in model-driven development. In Proceedings of the Model Driven Engineering Languages and Systems:
13th International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part II 13.
Springer, 2010, pp. 213-227.

55. Bruel, J.M.; Ebersold, S.; Galinier, F; Naumchev, A.; Mazzara, M.; Meyer, B. Formality in software require-
ments. CoRR 2019.

56. Nikitin, D. SPECIFICATION FORMALIZATION OF STATE CHARTS FOR COMPLEX SYSTEM MAN-
AGEMENT. Bulletin of National Technical University” KhPI”". Series: System Analysis, Control and Information
Technologies 2023, pp. 104-109.

57. Shafiq, S.; Minhas, N.M. Integrating Formal Methods in XP-A Conceptual Solution. Journal of Software
Engineering and Applications 2014, 7, 299-310.

58. Dulac, N.; Viguier, T.; Leveson, N.; Storey, M.A. On the use of visualization in formal requirements
specification. In Proceedings of the Proceedings IEEE Joint International Conference on Requirements
Engineering. IEEE, 2002, pp. 71-80.

59. Committee, .C.S.S.E.S.; Board, I.5.S. IEEE recommended practice for software requirements specifications; Vol. 830,
IEEE, 1998.

60. Henderson-Sellers, B. UML-the Good, the Bad or the Ugly? Perspectives from a panel of experts. Software &
Systems Modeling 2005, 4.

61. Veizaga, A.; Alferez, M.; Torre, D.; Sabetzadeh, M.; Briand, L. On systematically building a controlled natural
language for functional requirements. Empirical Software Engineering 2021, 26, 79.

62. Pa,N.C,; Zain, AM. A survey of communication content in software requirements elicitation involving
customer and developer 2011.

63. Barata, J.C.; Lisboa, D.; Bastos, L.C.; Neto, A.G.S.S. Agile requirements engineering practices: a survey in
Brazilian software development companies 2022.

64. Barr, E.-T.; Harman, M.; McMinn, P.; Shahbaz, M.; Yoo, S. The Oracle Problem in Software Testing: A Survey.
IEEE Transactions on Software Engineering 2015, 41, 507-525. https://doi.org/10.1109/TSE.2014.2372785.

65. Dugque-Torres, A.; Klammer, C.; Pfahl, D.; Fischer, S.; Ramler, R. Towards Automatic Generation of Amplified
Regression Test Oracles. 2023 49th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA) 2023, pp. 332-339.

66. Molina, F; Gorla, A. Test Oracle Automation in the era of LLMs. ArXiv 2024, abs/2405.12766.

67. Wang, Y.; Miantyld, M.; Liu, Z.; Markkula, J.; Raulamo-Jurvanen, P. Improving test automation maturity: A
multivocal literature review. Software Testing 2022, 32.

68. Zhu, H.; Hall, P.A.; May,].H. Software unit test coverage and adequacy. Acm computing surveys (csur) 1997,
29, 366-427.

https://doi.org/10.1109/ACCESS.2022.3211949
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.20944/preprints202502.0628.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 February 2025 d0i:10.20944/preprints202502.0628.v1

49 of 49

69. Sykora, K.; Ahmed, B.S.; Bures, M. Code Coverage Aware Test Generation Using Constraint Solver. ArXiv
2020, abs/2009.02915.

70. Tufano, M.; Chandel, S.; Agarwal, A.; Sundaresan, N.; Clement, C.B. Predicting Code Coverage without
Execution. ArXiv 2023, abs/2307.13383.

71. Kitchenham, B.; Brereton, O.P; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews
in software engineering—a systematic literature review. Information and software technology 2009, 51, 7-15.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202502.0628.v1

	Introduction
	Background and Related Work
	Requirements Engineering
	Automated Software Testing and Requirements Engineering
	REDAST Secondary Studies

	Research Methodology
	Research Questions
	Searching Strategy
	Search String Formulation
	Automated Searching and Duplicate Removal
	Filtering Process
	Snowballing
	Data Extraction
	Quality Assessment

	Taxonomy
	Designing of Taxonomy Schema
	Requirements Input Category
	Transformation Techniques Category
	Test Artifacts Category
	Results Demonstration Category
	Future and Limitation Category

	Results
	Trend: General Results of the Publications
	RQ1: Requirements Specification Formulation
	Requirements Types
	Requirements Specification Format
	Requirements Specification Notation
	Findings: Cross-Analysis of Requirements Input and Target Software
	Findings: Trend of Requirements Input Over the Years

	RQ2: Transformation Technology in REDAST
	Transformation Techniques
	Framework Details
	Intermediate Representation
	Findings: Trend of Transformation Techniques Over the Years
	Findings: Cross-Analysis of Requirements Input and Transformation Techniques

	RQ3: Generated Test Artifacts in REDAST
	Test Abstraction Level
	Test Formats
	Test Coverage Methods
	Findings: Trend of Test Abstraction Level Over the Years
	Findings: Cross-Analysis of Transformation Techniques and Test Artifacts
	Findings: Cross-Analysis of Requirements Input and Test Artifacts

	RQ4: Evaluation Methods of REDAST Studies
	Types of Evaluation Methods
	Software Platforms in Case Demonstration
	Examples of Evaluation or Experiments
	Findings: Cross-Analysis of Demonstration Types and Target Software Systems

	RQ5: Limitation, Challenging and Future of REDAST Studies
	Limitations in Selected Studies
	Insight Future View from Selected Studies
	Findings: Cross-Analysis of Demonstration Types and Validation Challenges
	Findings: Trend of Automation Level Over the Years

	Threats to Validity
	Internal Validity
	Construct Validity
	Conclusion Validity
	External Validity

	Discussion and Roadmap
	Data Preprocessing for REDAST
	Requirements Input for REDAST
	Transformation Techniques for REDAST
	Test Artifacts Output for REDAST
	Evaluation Solutions for REDAST Studies
	Other Suggestion for REDAST Studies

	Conclusion
	References

