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Abstract: Wind energy in Brazil has been steadily growing, influenced significantly by climate change.
To enhance wind energy generation, it is essential to incorporate external climatic variables into wind
speed modeling to reduce uncertainties. Periodic Autoregressive Models with Exogenous Variables
(PARX), which include the exogenous variable ENSO, are effective for this purpose. This study
modeled wind speed series in Rio Grande do Norte, Paraiba, Pernambuco, Alagoas, Sergipe, Rio
Grande do Sul, and Santa Catarina, considering the spatial correlation between these states through
PARX-Cov modeling. Additionally, the correlation with ENSO indicators was used for out-of-sample
prediction of climatic variables, aiding in wind speed scenario simulation. The proposed PARX and
PARX-Cov models outperformed the current model used in the Brazilian electric sector for simulating
future wind speed series. Specifically, the PARX-Cov model with the Cumulative ONI index is most
suitable for Pernambuco, Rio Grande do Sul, and Santa Catarina, while the PARX-Cov with the SOI
index is more appropriate for Rio Grande do Norte. For Alagoas and Sergipe, the PARX with the
Cumulative ONI index is the best fit, and the PARX with the Cumulative Nifio 4 index is most suitable
for Paraiba.

Keywords: Wind Speed; PARX; Covariance; ENSO

1. Introduction

Electricity generation in Brazil is predominantly renewable, with more than 80% of the total gener-
ation capacity coming from renewable sources, primarily hydroelectric power, which constitutes over
65% of the country’s energy matrix [1]. However, during droughts, which can severely impact water
reservoirs, thermal power plants are needed to compensate for the shortfall, operating continuously
at maximum capacity [2]. To sustainably address this challenge, it is crucial to diversify into other
renewable sources, such as wind energy, which can complement hydroelectric power [3,4].

Accurate modeling and forecasting of wind speed are crucial for effectively planning, operating,
and monitoring electrical systems, especially in a complex grid like Brazil’s. Pinson (2013) highlights
the importance of addressing the stochastic nature of renewable energy generation to enhance the
robustness and reliability of energy systems. Effective stochastic modeling is vital for informed
decision-making in both public and private sectors [6].

Currently, the Brazilian electricity sector employs a Periodic Autoregressive (PAR) model [7] to
generate synthetic wind speed series correlated with hydroelectric reservoir inflows, based on the
work of Maceira et al. (2022). While this model provides a foundation, it primarily considers wind
speed in isolation and assumes that wind series are stationary, linear, and follow a Normal distribution
[8]. Furthermore, it does not incorporate exogenous variables that could influence wind regimes and
energy production.

To improve the accuracy of wind energy forecasts, it is essential to integrate current climate
variables, as wind energy generation is significantly affected by climate conditions, which can impact
the availability and production of wind resources in Brazil [9]. Incorporating climate variables
into wind speed modeling can reduce forecasting uncertainties [10,11]. While common climate
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variables include pressure, temperature, and precipitation, the El Nifio-Southern Oscillation (ENSO)
phenomenon also shows a strong relationship with wind speed [12,13]. Notably, ENSO’s influence
on wind speed has been documented in Brazil and globally [14-16], supporting its use in forecasting
models.

Moreover, Magaira et al. (2018) have systematically reviewed various forecasting techniques,
identifying regression models, neural networks, AutoRegressive Integrated Moving Average with
Exogenous Variables (ARIMAX), support vector machines (SVM), and structural models as commonly
used in studies incorporating exogenous variables. A more recent study by Pessanha et al. (2024)
explored dynamic models combined with Bayesian approaches for generating wind speed time series,
further advancing the field of wind speed forecasting.

This study introduces an advanced forecasting approach by extending the existing Periodic
Autoregressive (PAR) model to incorporate Periodic Autoregressive models with Exogenous Variables
(PARX) [19,20]. This innovative framework builds upon previous successful applications, such as
Macaira works on streamflow forecasting that uses a PAR that considers exogenous variables [21,22]
and ARX models used on the wind and electricity [23,24]. By integrating climate variables like ENSO
into the PARX framework, the proposed approach aims to enhance the modeling and forecasting
capabilities for wind speed significantly, offering substantial improvements over current methods used
in the Brazilian energy sector.

Furthermore, to enhance the understanding of wind speed patterns, variability, and trends,
this study considers the spatial covariance between wind speeds across different states in Brazil.
Previous research, such as that by Duran et al. (2007), demonstrated that aggregating forecasts from
multiple wind farms can improve prediction accuracy. Additionally, Iung et al. (2023) conducted a
comprehensive literature review highlighting various methods to quantify temporal dependence in
renewable energy modeling, underscoring the importance of advanced forecasting techniques.

The primary objective of this research is to develop a methodology for forecasting wind speed,
aiming to improve the accuracy of wind speed predictions and, consequently, wind power. Specifically,
the study seeks to achieve the following secondary objectives: (i) integrate an exogenous variable into
the PAR model by employing the Periodic Autoregressive model with Exogenous Variables (PARX);
(ii) consider the covariance between wind regimes across states in each Brazilian region to enhance
modeling precision; (iii) account for the correlation between ENSO phenomenon indicators to facilitate
out-of-sample forecasting of climatic variables, and (iv) utilize these forecasts to simulate wind speed
scenarios.

The work is organized into five sections. Following this introduction, Section 2 will detail the
applied methodology. Section 3 will present a descriptive analysis of wind and climatic variables.
Section 4 will discuss the results and their implications, and Section 5 will provide conclusions and
discuss the research findings.

2. Methodology

To summarize, the steps to achieve the objectives of this research can be observed through the
methodological framework shown in Figure 1.
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Figure 1. Methodological Framework.

2.1. Pre-Processing
2.1.1. Datasets

For the analyses conducted in this study, five states from the Northeast region were selected: Rio
Grande do Norte (RN), Paraiba (PB), Pernambuco (PE), Alagoas (AL), and Sergipe (SE), along with
two states from the South region: Rio Grande do Sul (RS) and Santa Catarina (SC). These states feature
coastal areas with high wind power generation in Brazil, as highlighted in Figure 2 in green for the
Northeastern states and yellow for the Southern states, along with the wind potential for Brazil based
on the Global Wind Atlas [26], the redder it is, the greater the wind potential..

(a) (b)

Figure 2. Selected states and wind potential. (a) Northeast green and South yellow. (b) Wind Potential [26].

The MERRA-2 dataset is one of the most widely used reanalysis datasets in the literature for
obtaining wind speed time series [27-29]. In this context, the data used in this study were sourced from
MERRA-2. Specifically, the data for the regions under study were collected using an automated script
connected to the Renewables.ninja website [30], covering the period from January 1980 to December
2023 [31,32].

Renewables.ninja provides hourly data, and the script transforms this data into monthly aggre-
gates. The coordinates for data collection were selected based on the Global Wind Atlas [26] once
more (Figure 2). In each state, three points at an altitude of 100 meters above the surface were selected,
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which exhibited the highest wind speeds possible inside the state, not being far from each other (<
100 km) to ensure that the wind regimes were similar. Subsequently, the average of the time series of
these three coordinates was calculated and used to represent the historical series of each state. It is
worth noting that the choice of multiple points, rather than a single one, aimed to avoid data bias and
provide better representativeness by covering a larger area.

Data on ENSO anomalies, where El Nifio refers to the warming of Pacific Ocean waters and
La Nifia to cooling, were divided into two groups: historical and forecasted. Historical data were
directly obtained from the Climate Prediction Center (CPC) of the National Oceanic and Atmospheric
Administration (NOAA) [33,34], covering the period from 1931 to March 2024, with the initial date
varying between ENSO indices. From this dataset, new variables were created: the first variable
identifies ENSO periods classified as El Nifio, La Nifia, or Neutral; the others represent cumulative
indices over time. This dataset is relevant for investigating trends in cumulative indices, which can
indicate variations in sea pressure and temperature.

Forecast data were obtained from the International Research Institute (IRI), affiliated with NOAA
[35]. The IRI provides several models with a forecast horizon of up to 9 months for the ONI index.
Two forecast periods were collected: the first from April 2023 to December 2023, aimed at improving
fitting and prediction compared to using observed values alone; and the second from April 2024 to
December 2024 for forecasting future out-of-sample scenarios [35].

2.1.2. Extrapolation of Climate Variables

Official forecasts of ENSO phase probabilities by the CPC are based on a consensus among
their meteorologists and the IRI. It is grounded in observational and predictive information from the
beginning and previous months, meaning it incorporates analysis of various model outputs and human
judgment. Models applied by the IRI generate forecasts of ENSO anomalies and are divided into two
groups: dynamic and statistical, in addition to their ensemble mean. The NOAA CPC consolidated
model averages certain models [35].

In Figure 3, it can be seen that the forecasts suggest a transition from EI Nifio to La Nifia in 2024,
highlighted by the Phase Probabilities. The Anomalies also reflect a sharp decline in the ONI index
anomalies.

Model Predictions of ENSO from Mar 2024

Official NOAA CPC ENSO Probabilities (issued Mar. 2024)
based on -0.5°/40.5°C thresholds in ERSSTvS Nifio-3.4 index
100
BN La Nina
: Neutral
BN ElNino

Nino 3.4 SST Anomaly (°C)

Percent Chance (%)

My A JAs ASO  SON  OND
Season

(a) (b)
Figure 3. Forecasts of Phase Probabilities and Anomalies of ENSO - 2024 [35]. (a) Phase Probabilities (b) Anomalies.

The average of anomalies from all ONI index models is also provided and will be used in this
work. To obtain the forecast of anomalies for other indices, which are not provided by the IRI, a linear
regression will be applied [36,37].

2.2. Modeling
2.2.1. Periodic Autoregressive Model (PAR)

According to Hipel & McLeod (1994), the PAR model is an approach used for modeling seasonal
time series. When fitting a PAR model to a seasonal series, an individual Autoregressive (AR) model is
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applied to each recurring period of the seasonality. For example, in a monthly seasonal series, the PAR
model is configured so that each month has its own AR model, allowing for more precise capture of
specific variations within each period over time. PAR is also denoted as PAR(p), where p represents
the order of the model.

Following the notation commonly used when referring to the PAR model, let Z be a series with S
periods and N number of years, then Z = [Z(Ll), Z(12)r 1 2(L,S)r 7 Z(N,S)} . The PAR model of series
Z in period m is mathematically described by Equation 1.

z — U Pm z —i) — HWm—i
(W) _§ (W> + i, M

Om i— Om—i

(m)
1
sive coefficient of period m, p;, is the order of the autoregressive operator of period m, and a; 5, is the

where p,y, is the mean of period m, 0, is the standard deviation of period m, ¢, is the i-th autoregres-
series of independent noises with mean 0 and standard deviation o7,. In the specific case of January
(m = 1), the model will be applied to December of the previous year, i.e., to the period (t —1,m — 1),
where it is assumed that December is represented by m = 0 = 12.

To select the autoregressive order for each month, the Bayesian Information Criterion (BIC) will
be used, as it is effective for simpler models and selection within a group. The order with the lowest
BIC will be chosen for each period in the wind speed series of the PAR model [39-41].

BIC = In(n)k —2In(L). )

After determining the model order, it is necessary to estimate the parameters (pl(m). Let B =
(m) (m)

(@1 /-, @p, ) be the vector of autoregressive parameters for period m. An asymptotically efficient
estimator, B,,, can be obtained by solving Equations 3 using Ordinary Least Squares (OLS) [42].

Pm .
P =¥ My =1, p 3)
i=1

2.2.2. Periodic Autoregressive Model with Exogenous Variables (PARX)

The Periodic Autoregressive model with Exogenous Variables (PARX) is an extension of the PAR
model. In addition to the seasonal autoregressive structure, it incorporates an additional explanatory
variable denoted by X. This auxiliary variable, X, allows the model to consider and capture the effects
and influences of this variable on the seasonal time series, providing a more comprehensive analysis
and potentially improving forecasting capabilities by accounting for external factors that impact the
seasonality of the series [19,20].

Let Z be the previously defined periodic series and X be the exogenous variable in the modeling
of Z, with the same number of observations (N x S) and periodicity (S) as Z. According to Ursu &
Pereau (2017) and Silveira et al. (2017), the PARX for the dependent variable Z and the exogenous
variable X can be mathematically expressed as follows:

(x)
_ Pm N . Um X(tm—i) — i
(ZU'")V’"> — Y pm (w) Lyl | Hommh i) @)
j=0

o )& T j e}

where p, is the mean of the dependent variable Z for the period m, 0y, is the standard deviation of
(m)
i

variable Z for period m, py, is the order of the autoregressive operator of the dependent variable Z for

period m. ‘ug,’f ) is the mean of the independent variable X for period m, (T,(nx) is the standard deviation

the dependent variable Z for the period m, ¢,"’ is the i-th autoregressive coefficient of the dependent

of X for period m, G}m) is the j-th autoregressive coefficient of the exogenous variable X for period m,
vy, is the order of the autoregressive operator of the exogenous variable X for the period m, and a;
is the series of independent noises with mean 0 and standard deviation o7,,. In the particular case of
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January (m = 1), a similar approach to the PAR model is applied. The model utilizes December of the
previous year, referring to the instant (t — 1, m — 1), where it is considered that the period of December
is represented by m = 0 = 12.

To determine the autoregressive orders of the dependent variable and the exogenous variable
for each period (py, vi), the BIC criterion will be employed again. In the context of the PARX model,
for each period, the obtained BIC will be associated with the set (p;;, v;). In other words, the set of
parameters that results in the lowest BIC value will be selected as the most suitable for the model
[39,40].

The parameter estimation for the model, similar to the PAR model, is performed via OLS [19]. Let

()

z - X(tm—j) " HmZj . .
Yosim = (W) and Xysm = <W>,wheren =0,...,N—landm=1,...,s, with size
m—j

Ns. Let wy, = [Yon, Yints, - ..,Y(N_l)s+m] and ay = [am, Am+s, - - -,
A(N-1)s +m) be vectors of dimension (N x 1), with T being the transpose operator, and W, = [Y;, Xys/]
the matrix with dimension N X (py, + 1+ v,,), where Y;, and X,;, are described by

Ym—l Ym—Z e Ym—pm Xm Xm—l fee Xm—vm
Ys+m—1 Y5+m—2 LR} Ys+m—pm Xs+m X5+m—1 LR Xs+m—vm
Y = . . . . i X = . . ) . . ®)
Y(N—l)s+m—1 Y(N—l)s+m—2 s Y(N—l)s+m—pm X(N—])s+m X(N—l)s+ln—1 s X(N—])s+mfvm
Let
T
— m m
Bm = (‘P( )60 )> (6)

be the parametric vector, where

o) — ( §m),..-,¢§!lf))T;9(’”) — (Ggm),...,Qz(;'nl))T. )

Given that Equation 4 is a linear model, it can be written in the form of a regression model:

wm:Wmﬁm+am,m:1,...,s. (8)

The covariance matrix of the random vector a,;, is 0’,%11 N, where Iy is the identity matrix of size N.
The ordinary least squares estimator of 8, is obtained by minimizing Equation 9.

s N-1 s Pm (m) Um (m) 2
S(B) = Z arTnam = Z Z Yus+m — Z ?; Yaustm—i — 29]' an+m7j . )
m=1 n=0 m=1 i=1 i=1

Finally, applying the difference operator to Equation 9 yields the least squares estimators f3,, =
T
(4,("1),9("1)) -

. -1
Bu = { WiV} Wi (10)

2.2.3. Covariance (PAR-Cov & PARX-Cov)

Given the modeling of the PAR and PARX models above, the correlation will act on their residuals.
The concept of covariance will be introduced among the states in each Brazilian region, aiming to en-
hance modeling accuracy and simulation. This methodology will assess the relationship between wind
speeds at different points within a given space, specifically in the Brazilian states under study. More-
over, considering covariance aims to improve the understanding of wind speed data by identifying
patterns, variability, and trends [43,44].

This methodology can be approached through the following steps:

1. Calculation of the Covariance Matrix X


https://doi.org/10.20944/preprints202501.2335.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2025 d0i:10.20944/preprints202501.2335.v1

7 of 20

2. Spectral Decomposition
3.  Multivariate Normal Distribution

Thus, two new models are developed: the PAR-Cov model and the PARX-Cov model.

2.3. Post-Processing
2.3.1. Performance Metrics

This study employs three widely used performance evaluation metrics to assess the accuracy of
wind models in Brazil [45,46] and in the world [41,47]: Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), both measures of error, and the Coefficient of Determination (R?), a measure of
model fitting, given by

Zthl(]/t —ft)2 11
iy —9)? )

where y; represents the observed wind speed at time ¢, f; is the wind speed predicted by the model at

1 & 1L
RMSE = | = Y (yi — fi) 5 MAE = — Y|y — fii R”2 =1~
Tt:l Tt:l

the same time, i denotes the observed mean, and T is the forecast horizon length.

2.3.2. Stochastic Simulation of Wind Speed Scenarios

After selecting the most appropriate models, synthetic scenarios for wind speed will be created
through stochastic simulation. The goal is to reproduce stochastic behavior and generate new time
series synthetically from one of the adjusted models: PAR, PAR-Cov, PARX, or PARX-Cov, based on
the original series. These series will be distinct from the original historical data but equally plausible
from a statistical perspective.

The established strategy for generating synthetic series involves fitting a three-parame-
ter Lognormal distribution to the monthly residuals (a;,,) of the PAR model, for two main reasons
[7]. The first reason is to ensure that values are always positive, given the nature of wind data. The
second reason stems from the strong asymmetry present in the data (and residuals), making the use of
a Normal distribution impractical.

Firstly, Equation 1 of the PAR model is manipulated to isolate Z;:

Pm z N — s
%m=ﬂwwmﬁdm(“m”,w”)+%%m (12)

i=1 Tim—i

Thus, to ensure that negative values of z; ,,) are not generated:

Pm z o »
MmN () ((Em—i) T Pmei
atm > T 1221 P; ( T ), (13)

Therefore, the variable A is a function of only the moments (mean and variance) of the period m
and the autoregressive coefficients, and is given by

Pm N — ,
A= _Hm 2 qol(m) <Z(t,m—z) ‘Vm—z>‘ (15)

Om i=1 Om—i

Defining yuj, and oy, as the mean and standard deviation, respectively, of the residual series of
period m (at,,), we have that:

&tm ~ N(ug, %), (16)

g = €eSm 4 A, 17)
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m ~ LNormal(pg, (Tcz,A). (18)

Since these are random noises:
A = eVoEtH L A (19)

’

The parameters iz and o7 are estimated in order to preserve the moments of the residuals, as per
Charbeneau [48] and reproduced by Pereira et al. [49].

Mz = log<9@ ) ) ; (20)

oz = 4/log(). (21)

By manipulating the PARX model equations in the same way, it is possible to determine its own
isolated Z; and A, as shown in the Equations ahead.

Zltm—i) — _i Om x JMm—j — Kl
Z?AR)X = HUm+Om Z (Pl ((t,g)‘umz> + Om Z Q;m) w + Omat,m. (22)

APARX _ _ Pm _ pin:(l,(m) <M> 29 M . (23)
—1

Om i3 ! Om

Furthermore, the A equations for the PAR-Cov and PARX-Cov models are similar to their respec-
tive models but with the incorporation of covariance.

The Lognormal simulation method has residual nonlinearity limitations, as noted by Oliveira et al.
[7], who suggest using Bootstrap to address this. This study focuses on proposing superior modeling
methods, keeping the current scenario generation technique to ensure improvements come from the
proposed models.

2.3.3. Forecast of Wind Speed

Finally, it is possible to make a forecast from the created scenarios & steps ahead. Next, the process
is presented for the PAR methodology. First, K scenarios are generated / steps ahead, which was
already presented in the previous subsection: (2.3.2):

Z g — s
(t+hm—i) ~ Fm l) + Ot hm- (24)
Om—i

Pm
Z(t+hmk) = Pm + Om Z (Pl(m) (
i=1
fork=1,.., K.

Then the average of these scenarios is calculated to arrive at the forecast §:

K
Yk=1 Z(t+hm k)

Gitrnm) = -k (25)
For the PARX methodology, the forecast process is also show based the on the previous subsection
(2.3.2):
PARX il m) [ Z(t+hm—i) — Hm—i & (m) [ X(t+hm—j) ﬂﬁ,ﬁj
Z(t+hmk) = Hm + Om Zl ?; ( s ) + o 2)9]- e + Ol -
1= - =i Wl*]‘

(26)
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fork=1,...,K.

K
PARX Z:k:1 Z(t++h,m,k)PARX
y(H—h,m) - K

(27)

Moreover, the PAR-Cov and PARX-Cov forecasting methods resemble their respective models,
with the addition of covariance integration.

3. Descriptive Analysis of the Data

This section conducts a descriptive analysis of wind speed data and ENSO, as well as the relation-
ship between them. All the analyses were performed here, and the results were obtained using the R
software version of December 2022 [50].

3.1. Wind Speed

Initially, after wind speed data is collected from the MERRA-2 database, as mentioned in section
2.1.1, Figure 4 shows the monthly time series for the states of Rio Grande do Norte (RN), Paraiba (PB),
Pernambuco (PE), Alagoas (AL), Sergipe (SE), Rio Grande do Sul (RS), and Santa Catarina (SC) from
January 1980 to December 2023. Observing the graphs, it is noticeable that overall, the states exhibit a
well-defined seasonal behavior, with a particular emphasis on RN, PB, PE, AL, and SE located in the
Northeast. It's important to emphasize that it was not necessary to perform any kind of data cleaning.

Alagoas Rio Grande do Sul
9
2 z°
£ £
3° g8
& 2
n7 a7
B B
B 6
6
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020
Paraiba Santa Catarina
10 65
@ ©6.0
g’ £
b 555
i°
w7 #50
2 245
56 R
5 4.0
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020
Pernambuco Sergipe
g° g
£ £8
-8 =
g 2
& 2
a7 a7
B B
36 B
6
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020

Rio Grande do Norte

[
© o

o

Wind Speed (m/s)

1980 1990 2000 2010 2020
Figure 4. Wind Speed Time Series by State.

It is also important to analyze the descriptive statistics of the time series, shown in Table 1.
Regarding measures of central tendency, there is close proximity between the mean and median values
for the states. In this regard, the highest means are observed, as expected, in Rio Grande do Norte (8.15
m/s) and Paraiba (7.97 m/s) in the Northeast, while the lowest mean is observed in Santa Catarina
(5.08 m/s). Similarly, concerning standard deviation and coefficient of variation, Rio Grande do Norte
and Paraiba also exhibit the highest measures. As for skewness, all values fall within the interval
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[—1, +1], typical of distributions with slight skewness. Regarding kurtosis, it is noted that the states
exhibit kurtosis around three, indicating that these distributions have a frequency curve close to the
normal distribution.

Table 1. Descriptive Statistics of Wind Speed Time Series by State.
Standard  Coefficient

State Mean Median . L. . L. Skewness Kurtosis
Deviation of Variation
Alagoas 7,30 7,36 0,53 0,07 -0,40 2,87
Paraiba 7,97 8,12 0,93 0,12 -0,53 2,94
Pernambuco 7,31 7,43 0,69 0,09 -0,45 2,90
Rio Grande do Norte 8,15 8,34 1,13 0,14 -0,55 2,87
Rio Grande do Sul 7,23 7,21 0,64 0,09 0,24 3,36
Santa Catarina 5,08 5,06 0,44 0,09 0,13 2,71
Sergipe 7,05 7,12 0,48 0,07 -0,21 2,94

To verify the stationarity of the series, the Augmented Dickey-Fuller (ADF) [51] and Phillips-
Perron tests [52] were applied. Since all p-values are below a significance level of 5%, there is sufficient
statistical evidence to reject the null hypothesis of non-stationarity for all states.

3.2. ENSO

ENSO indicators are located in various regions, each with specific significance [53]. The Southern
Oscillation Index (SOI) is one of the oldest, based on the sea level atmospheric pressure difference
between Tahiti and Darwin. However, SOI is sensitive to short-term fluctuations and is limited by its
location south of the Equator, while ENSO centers closer to the Equator. The Equatorial SOI addresses
this by measuring pressure differences directly along the Equator between Indonesia and the Eastern
Pacific.

In 1969, Bjerknes identified Sea Surface Temperature (SST) in the equatorial Pacific as a primary
ENSO indicator [54]. Initially, regions like Nifio 1+2, Nifio 3, and Nifio 4 were used for measurements.
Later, Nifio 3.4 was deemed the most representative [55], and its temperature anomaly is measured by
the Oceanic Nifio Index (ONI), which removes regional warming trends. ENSO events are identified
through anomaly time series of indices, with ONI employing a three-month moving average.

For SOI, La Nifia occurs with five consecutive months of positive indices above 0.5°C, while El
Nifio corresponds to five consecutive months of negative indices below -0.5°C. For SST, the reverse
applies: El Nifo corresponds to positive anomalies, and La Nifia to negative ones [33].

3.2.1. Historical

Graphs for all ENSO indices are shown in Figure 5, presenting monthly historical data from 1931
to March 2024, with the start date varying according to each ENSO index. Regarding the SOI indices,
sequences above the blue line indicate La Nifia events, and sequences below the red line indicate El
Nifio events. For SST and ONI indices, sequences of points above the red line indicate El Nifio events,
while sequences below the blue line indicate La Nifia events.
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Figure 5. Time Series of Historical ENSO Index Anomalies from 1931 to March 2024. For SOI indices, sequences
above the blue line indicate La Nifia events, and sequences below the red line indicate El Nifio events. For SST
and ONI indices is the opposite.

Cumulative series can be observed in Figure 6, showing that according to the SOI and Equatorial
SOl indices, there is a trend of increasing sea level atmospheric pressure both between the regions of
Taiti and Darwin, as well as between Indonesia and the Eastern Pacific in recent years. Also, in Figure
6, cumulative indices for SST and ONI are presented. Note that after 1980, all these indices except ONI
show a downward trend.


https://doi.org/10.20944/preprints202501.2335.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2025 d0i:10.20944/preprints202501.2335.v1

12 of 20
Cumulative SOI Cumulative Nifio 4
§200 § 0
150
2100 2
5 50 g%
S S
E E -75
o 0 o
-100
1960 1980 2000 2020 1940 1960 1980 2000 2020
Cumulative Equatorial SOI Cumulative Nifio 3.4
2 o 2 0
< <
§-30 S
< <-25
£-60
K K
S =
E-90 ES0
o o
1960 1980 2000 2020 1940 1960 1980 2000 2020
Cumulative Nifio 1+2 Cumulative ONI
20
£ g 40
g o s
< < 20
220 g
K} kel
S ER
-20
1940 1960 1980 2000 2020 1960 1980 2000 2020

Cumulative Nifio 3

Cumulative Anomalie
|
N
a

1940 1960 1980 2000 2020

Figure 6. Time Series of Historical ENSO Index Cumulative Anomalies.

3.2.2. Forecast

The forecast of the ONI index from April 2024 to December 2024 will be used to assist in predicting
future wind speed scenarios, as mentioned in section 2.1.1. This forecast will be analyzed below
obtaining the forecast of anomalies for other the indices of ONI, which are not provided by the IRI. For
this purpose, the linear regression will be applied [36,37]..

Firstly, an fit was made between the observed data for each index and the ONI. The regression
results can be seen in Table 2. The results show that the indices that obtained the best adjustments
were Nifio 3.4 and Nifio 3 with R? values of 0.882 and 0.831, respectively. Furthermore, the sign of the
coefficients reflects the relationship of each index with ONI, with the SOI and Equatorial SOI having a
negative correlation, while the SST indices have a positive correlation.

Table 2. Fit of ENSO Indices to ONI - 2024.

Index Coefficients Estimated Value Standard Deviation P-value R?
om0
Equatorial SOI grll\’ﬁrcept) _%%%19 88;3 02%8 0.701
N (o omke 0O
om0 o
I
o o

From this, it is possible to construct the forecast of indices based on ONI. In Figure 7, these
forecasts are shown in red, alongside their histories since 2010, shown in blue.
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Figure 7. Forecast of ENSO Indices - 2024.

3.3. Relationship Between Wind Speed and ENSO

One of the hypotheses of this study is that the ENSO may impact wind speeds. To assess
differences in wind speed distributions based on ENSO phases (El Nifio, La Nifia, or neutral periods),
a Kruskal-Wallis test was performed. This test compares multiple independent groups using a
quantitative response variable and can handle groups of different sizes. Importantly, it does not
assume normality or equal variances. The tested hypotheses are:

Hy: The k samples come from the same population.

Hj: At least one of the samples comes from a population different from the others.

When evaluating the test in Table 3, a significance level of 10% was chosen. If the wind speed
in the phases has the same distribution, the answer is “Yes”, meaning that the null hypothesis is not
rejected. If the phases do not have the same distribution, the answer is “No”, indicating that the null
hypothesis is rejected.
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Table 3. P-Value and Results of the Kruskal-Wallis Test.
State SOI Equatorial SOI Nifio 1+2 Nifio3 Nifio4 Nifio3.4 ONI
Al 0.426 0.93 0.123 0.801 0.662 0.801 0.645
agoas Yes Yes Yes Yes Yes Yes Yes
Parafba 0.262 0.918 0.013 0.312 0.097 0.197 0.788
Yes Yes No Yes No Yes Yes
Pernambuco 0.587 0.73 0.02 0.168 0.117 0.204 0.682
Yes Yes No Yes Yes Yes Yes
. 0.065 0.852 0.023 0.787 0.193 0.26 0.609
Rio Grande do Norte No Yes No Yes Yes Yes Yes
. 0.492 0.102 0.308 0.075 0.749 0.335 0.093
Rio Grande do Sul Yes Yes Yes No Yes Yes No
Santa Catarina 0.167 0.174 0.001 0.545 0.395 0.378 0.259
Yes Yes No Yes Yes Yes Yes
Sergine 0.466 0.89 0.099 0.494 0.354 0.925 0.755
&P Yes Yes No Yes Yes Yes Yes

It is evident that all states, with the exception of Alagoas, exhibit at least one index that confirms
distinct distributions between the ENSO phases. Therefore, it is statistically proven that the ENSO
climatic phenomenon can influence wind speed patterns in the areas under study:.

4. Results

Initially, the proposed models will be evaluated based on their forecasting accuracy, generating
wind speed scenarios using the selected model. To assess the performance of each model, the dataset
was divided into seven fitting and forecasting windows, as detailed in Table 4.

Table 4. Fitting and Forecasting Windows

d0i:10.20944/preprints202501.2335.v1

Windows In-sample Out-of-sample
1 Jan/1980-Dec/2013 Jan/2014-Dec/2018
2 Jan/1980-Dec/2014 Jan/2015-Dec/2019
3 Jan/1980-Dec/2015 Jan/2016-Dec/2020
4 Jan/1980-Dec/2016 Jan/2017-Dec/2021
5 Jan/1980-Dec/2017 Jan/2018-Dec/2022
6 Jan/1980-Dec /2022 Jan/2023-Dec /2023
7 Jan/1980-Dec /2023 Jan/2024-Dec/2024

In window 1, the selection of parameters p(v) and m(v) will be determined for the PARX and
PARX-Cov models. For each state and each parameter combination, the following steps will be
executed, considering exclusively the first window:

i) Fit the wind speed series for the in-sample period;

if) Simulate scenarios of the out-of-sample period (using the observed values of climatic variables
from the in-sample period);

iii) Compare the forecasted values, calculated as the average of the scenarios, with the observed
value;

iv) Record the errors obtained.

The parameters selected for each state and model will result in the smallest error. These param-
eters will be applied to windows 2 to 5 to calculate performance metrics, following the procedures
from window 1 but focusing exclusively on the best combination identified initially. The error and
adjustment values presented in this section are averaged across the four windows (2 to 5) to more
robustly evaluate the predictive capability of the models using the RMSE, MAE, and R? metrics. Based
on these results, the best models for each state will be selected.
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Once the best models have been identified, they will be applied to window 6, using the ENSO
forecast for 2023, obtained similarly to the process used for the 2024 period. Finally, in window 7,
forecasts for future scenarios in 2024 will be made, also utilizing out-of-sample ENSO data based on the
previously identified best models.

It is important to note that models with accumulated indices will be referred to as ‘CUM’ along
with the name of the corresponding index to be abbreviated.

Table 5 highlights the models with the best performance according to the RMSE, MAE, and R?
metrics, including improvements over the PAR model. It is important to note regarding the RMSE
metric that the states with the largest improvements were Rio Grande do Sul (2.87%) and Santa
Catarina (2.65%), using PARX-Cov models. On the other hand, the state of Pernambuco recorded the
smallest improvement (0.87%), although it still showed an advantage over the PAR model. For the
MAE metric, the largest improvement came once again from the South Region, with a 4.47% increase
for Santa Catarina using a PARX-Cov model. Notably, Paraiba also showed a 2.19% improvement with
a PARX model. Finally, the R? metric reveals a small gain for the state of Rio Grande do Norte (0.71%),
while Rio Grande do Sul demonstrated a significant gain of 19.29% using a PARX-Cov model.

Table 5. Best models in windows 2 to 5 for the metrics RMSE, MAE, and R2.

State Metric PAR Best Model Improvement (%)
RMSE  0,4057 PARX + CUM ONI 0,401 1,15
Alagoas MAE 0,312 PARX + CUM ONI 0,3077 1,36
R? 0,476 PARX + CUM ONI 0,4878 2,48
RMSE 0,5013 PARX + CUM NINO4 0,4908 2,09
Paraiba MAE  0,3867 PARX + CUM ONI 0,3782 2,19
R? 0,7418 PARX + CUM NINO4 0,7522 1,4
RMSE 04714 PARX + CUM ONI 0,4673 0,87
Pernambuco MAE  0,3688 PARX-Cov + CUM ONI 0,3632 1,49
R? 0,6 PARX-Cov + CUM NINO3.4 00,6068 1,12
RMSE 0,52 PARX-Cov + SOI 0,5102 1,88
Rio Grande do Norte MAE  0,4064 PARX + CUM ONI 0,3996 1,69
R? 0,8045 PARX-Cov + SOI 0,8102 0,71
RMSE 0,4888 PARX-Cov + CUM ONI 0,4748 2,87
Rio Grande do Sul MAE 0,3867 PARX + CUM ONI 0,3798 1,8
R? 0,2263 PARX-Cov + CUM ONI 0,27 19,29
RMSE  0,3055 PARX-Cov + CUM ONI 0,2974 2,65
Santa Catarina MAE 0,2479 PARX-Cov + CUM ONI 0,2368 447
R? 0,429 PARX-Cov + CUM ONI 0,459 6,99
RMSE 0,3829 PARX + CUM ONI 0,3795 0,89
Sergipe MAE  0,2931 PARX + CUM ONI 0,2887 1,53
R? 0,422 PARX + CUM ONI 04321 24

Table 6 summarizes the models highlighted as the best, considering the three performance metrics
for each of the seven states, resulting in 21 possible cases. It is observed that all the selected models
incorporate the exogenous variable ENSO in the modeling, indicating its significant contribution, with
the ONI index being the most prevalent, with 16 occurrences. Additionally, it is noted that 9 of the
models are PARX-Cov, highlighting the importance of including covariance.

Table 6. Summary of the most selected best models.

Model Frequency (out of 21)
PARX + CUM ONI 10
PARX-Cov + CUM ONI 6
PARX + CUM NINO4 2
PARX-Cov + SOI 2
PARX-Cov + CUM NINO3.4 1
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Considering the three performance metrics evaluated in Table 5, the best model for each state
was selected based on most metrics indicating that model as the best. The exception was the state
of Pernambuco, where each metric pointed to a different model as the best; in this case, the metric
indicating the greatest improvement was chosen. The selected best models are presented in Table 7.

Table 7. Best model with an ENSO index selected for each State

State Best model

Alagoas PARX + CUM ONI
Paraiba PARX + CUM NINO4
Pernambuco PARX-Cov + CUM ONI
Rio Grande do Norte PARX-Cov + SOI

Rio Grande do Sul PARX-Cov + CUM ONI
Santa Catarina PARX-Cov + CUM ONI
Sergipe PARX + CUM ONI

Finally, in Figure 8, the observed wind speeds during the validation period of window 6 (Jan/2023-
Dec/2023) are depicted in black. Forecasts obtained using the PAR model are shown in red, while
forecasts from the best PARX or PARX-Cov models for each state are highlighted in dark blue.

Alagoas — PARX + CUM ONI Rio Grande do Sul — PARX-Cov + CUM ONI
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Figure 8. Observed wind speed (black), and forecasts obtained via the PAR model (red) and the best PARX or
PARX-Cov model (dark blue) over window 6.

As seen in Figure 3, it is expected that 2024 will see a transition from El Nifio to La Nifia, with
a sharp decline in ONI index anomalies. Therefore, in Figure 9, scenarios (grey) with percentile 5%
and 95% (dashed dark blue), and forecasts for window 7 (Jan/2024-Dec/2024) are presented for each
state. These forecasts were obtained using the best PARX or PARX-Cov model (dark blue), which
incorporates the out-of-sample ENSO climatic variable, and the PAR model (benchmark), in red.
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Figure 9. Scenarios (grey) with percentile 5% and 95% (dashed dark blue), and forecasts obtained by the best
PARX or PARX-Cov model (dark blue) and the PAR model (red) over window 7.

5. Conclusion

Given the substantial expansion of wind energy in Brazil as a response to current climate change
(IRENA), this study presents a methodological approach aimed at integrating climatic variables to
enhance the modeling and forecasting of wind speed, thereby contributing to reducing uncertainties
in the electricity sector. The proposed method involves incorporating an explanatory variable into the
Periodic Autoregressive (PAR) model for wind speed series, which is currently utilized in the Brazilian
electricity sector (Maceira, 2022). This incorporation is achieved through the application of the Periodic
Autoregressive model with Exogenous Variables (PARX), including the exogenous variable ENSO.
The model saw application to wind speed reanalysis data from coastal regions noted for high wind
generation, encompassing five states in the Northeast (Rio Grande do Norte, Paraiba, Pernambuco,
Alagoas, and Sergipe) and two states in the South (Rio Grande do Sul and Santa Catarina).

To enhance the accuracy of modeling and forecasting efforts, the paper introduces the concept of
incorporating covariance between these states in each Brazilian region. Spatial correlation analysis
emerges as crucial in understanding the interconnections, thereby adding an additional dimension to
the methodological approach and resulting in the creation of the PAR-Cov and PARX-Cov models.
Additionally, nine-month forecasts of the ENSO phenomenon (ONI) were collected, alongside an
approach developed to enable out-of-sample forecasting of other climatic variables. This was aimed
at achieving better adjustment and prediction than would be possible using observed values alone.
Finally, out-of-sample forecasts of climatic variables were employed to forecast wind speed scenarios,
importantly ensuring the absence of negative values.

Compared to the existing PAR model, the proposed models show superior performance in
modeling wind speed series. This indicates that the inclusion of covariance and climatic variables
significantly impacts wind speed across the analyzed Brazilian states, thereby directly affecting
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the country’s energy generation capacity. Analysis of the models concludes that PARX-Cov with
Cumulative ONI is most suitable for three states: Pernambuco, Rio Grande do Sul, and Santa Catarina.
In contrast, PARX-Cov with the SOI index is more fitting for Rio Grande do Norte. Further, PARX
with Cumulative ONI is advised for Alagoas and Sergipe, while PARX with Cumulative Nifio 4 is
recommended for Paraiba.

As a continuation, the application of advanced statistical models is proposed to tackle the nonlin-
ear aspects of wind speed time series and to model the non-Gaussianity of the data, often demonstrated
by extreme events. It is also important to expand the study to encompass other states in the Northeast,
noted for being major energy producers, along with offshores places. Analysis could be conducted
for the Northeast subsystem or by distinguishing between interior and coastal regions. Lastly, it
is suggested to convert wind speed into energy generation estimates and integrate this proposed
modeling into an optimization program for energy operation, such as PDDE or NEWAVE.
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