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Abstract

In this paper, we introduce the concept of the generalized right weighted core inverse within the
framework of a Banach *-algebra. We provide a characterization of this novel generalized inverse
based on a unique type of decomposition that involves right weighted core-inverses and quasinilpotent
elements. The relationships between the right weighted core inverse and the right g-Drazin inverse of
an element in a Banach *-algebra are explored. We also establish representations for the generalized
right weighted core inverse. As an application, we demonstrate new characteristics of the pseudo right
e-core inverse and @-core-EP inverse in Minkowski spaces.
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1. Introduction

An involution of a Banach algebra A is an anti-automorphism whose square is the identity map 1.
A Banach algebra A with involution * is called a Banach *-algebra. Let A be a Banach *-algebra with
an identity. An element a € A has core inverse if there exists some x € A such that

ax? = x, (ax)* = ax, xa® = a.
If such x exists, it is unique, and denote it by a®. An element a € A has core-EP inverse (i.e., pseudo
core inverse) if there exist x € A and k € N such that

ax? = x, (ax)* = ax, xa"1 = a*.
If such x exists, it is unique, and denote it by a®. Core and core-EP inverses are extensively studied by
many authors from different views, e.g., [1,6,8,10,11,16-19,24,28,29,31].
Wang et al. generalized the core inverse to the right core inverse (see [27]). An element a € A has
right core inverse if there exist x € A such that

ax* = x, (ax)* = ax,axa = a.
If such x exists, it is unique, and denote it by 4;°. In [3], the authors introduced and studied generalized
right core inverse. An element a € A has generalized right core decomposition there exist unique a
x € A such that
1
ax* = x, (ax)* = ax, lim ||a" — axa"||" = 0.
n—oo

The preceding x is called generalized right core inverse of a2 and we denote it by a;>. We refer the
reader more properties of right core and generalized right core inverses in [3,7,27].
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Mosi¢ et al. introduced and studied weighted core inverse (see [21]). Leta € Aand e € Ais an
invertible Hermitian element (i.e., e is invertible and e* = ¢). An element a € A has e-core inverse if
there exist x € A and k € N such that

ax® = x, (eax)* = eax, xa* = a.
If such x exists, it is unique, and denote it by a®®. As a natural generalization of weighted core and
core-EP inverses, the authors introduced and studied generalized weighted core inverse in a Banach
*-algebra. An element a € A has generalized e-core decomposition if there exists x € A such that

x = ax?, (eax)* = eax, lim ||a" — xa”+1||% =0.
n—oo
The preceding x is called generalized e-core inverse of a and we denote it by a%®. We refer the reader
for weighted core and generalized weight core inverses in [2,9,13,14,20,32].
Recently, Ke et al. generalized the e-core inverse to the right e-core inverse (see [12]). An element
a € A has right e-core inverse if there exist x € A such that

ax? = x, (eax)* = eax,axa = a.
If such x exists, it is unique, and denote it by a;'®. Let A7® denote the set of all right e-core invertible
elements in A. Here we list some characterizations of right e-core inverse.

Theorem 1.1 (see [12]). Let A be a Banach *-algebra, and let a € A. Then the following are equivalent:

1) aec AY®.

(2)  There exists x € A such that axa = a, ax?

= x = xax, (eax)* = eax.

(3)  There exists an idempotent p € A such that (ep)* = ep,pa =0,a+p € A
4 ac A§1'3) and a A = a® A.

(5) Aa = A(a*)"ea for somen > 2.

The motivation of this paper is to introduce and study a new kind of generalized inverse as a
natural generalization of generalized inverses mentioned above. In Section 2, we introduce generalized
right weighted core inverse in terms of a new kind of decomposition by using right weighted core-
inverses and quasinilpotents. Many new properties of the right weighted (pesudo) core inverse and
generalized weighted core inverse are thereby obtained.

Definition 1.2. An element a € A has generalized right e-core decomposition if there exist x,y € A such that
a=x+yxey=yx=0,xc A%®, yc AT

Let
gril _ ' =
A {xe A | nh_r)rolo||x ||I"=0}.

Evidently, x € A7 if and only if 1 + Ax € A is invertible for any A € C. We prove that a € A has
generalized right e-core decomposition if and only if there exists unique x € A such that
x = ax?, (eax)* = eax, lim ||a" — axa”||% =0.
n—00
The polar-like properties of generalized right weighted core inverses are established.
In Section 3, we establish characterizations between generalized right weighted core inverse and

right g-Drazin inverse for an element in a Banach *-algebra by using involved images. We prove that
a € A7® if and only if a has right g-Drazin inverse x which has right e-core inverse.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In Section 4, we shift our focus to the study of representations for the generalized right weighted
core inverse. We explore the generalized right weighted core inverse through an examination of
diverse matrix conditions.

An element a in A has pseudo right e-core inverse if there exists x € A such that x = ax?, (eax)* =
eax,a" = axa". Such x is unique, if exists, and denote it by a;'®. Finally, in Section 5, the pseudo right
e-core inverse is characterized by certain new ways. As an application, g-core-EP inverse in Minkowski
spaces are studied.

Throughout the paper, all Banach *-algebras are complex with an identity. We use A, 1, A®, Ay®, A7®
and A7® to denote the sets of all right invertible, generalized right core invertible, right e-core invertible,
right e-core-EP invertible and generalized right e-core invertible elements in A, respectively. If 2 and x

satisfy the equations @ = axa and (ax)* = eax, then x is called (1,3, e)-inverse of a and is denoted by ugl’S).

We use A§1’3) to stand for the set of all (1, 3, e)-invertible elements in A.

2. Generalized Right e-Core Decomposition

The aim of this section is to introduce the notion of the generalized weighted core inverse in a
Banach *-algebra. We begin with

Theorem 2.1. Let a € A. Then the following are equivalent:

(1) a € Ahas generalized right e-core decomposition.
(2) There exists x € A such that

x = ax?, (eax)* = eax, lim ||a" — axa”||% =0.
n—oo

Proof. (1) = (2) By hypothesis, there exist z, y € A such that
a=z+yzey=yz=0z¢€ A%,y c AT

Set x = z%®. One easily checks that

B = (2 +y)® =z 4 (0 = 22,
ax> = (z+y)(z0®)? =z(z°9)? = 20® =y,
ZE’®y = Xy = xzxy = xe_l(ezx)y = xe_l(ezx)*y

xe lx*(z"ey) = 0.
Now by applying z®y = 0 and Theorem 1.1, we deduce that
axa = (ax)a = zz°®(z+y) = zz°®z = z.

Then
(eax)* = (ezz"®)* = ezz%® = eax,

a(l — xa) :a—axa:a—z:yeAq"il_
Since yz = 0, we see that
(a—axa)z=(z4+y—2z)z=yz=0.
Thus we have X 1
" —axa®|[} = [|(a - axa)a™ 1|}
= [[(a—axa)(z+y)" ||+
I(a — axa)y" 1|+

||a — axal[7[||y"~1|| 7] 0

IN
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Since y € A7, we deduce that

lim ||a" —axa”||% =0,
n—00

as required.
(2) = (1) By hypotheses, we have z € A such that

z = az?, (eaz)* = eaz, lim ||a" — aza"||% =0.
n—oo

For any n € N, we have

az = a(az?) = a’z® = a*(az?)z
a’z% = =a"z".
Hence
|laz — azaz|| = ||(a"z" — aza"z"||
= ||(a" — aza™)z"||.
Then
laz — azaz||» < ||(a" = aza")[|¥][2]].
We infer that
1
lim ||az — azaz||» =0,
n—,oo
hence, az = azaz.
Moreover, we check that
(a® —aza*)z = (a* — aza®)az?
(a® — aza*)a?z3
_ (112 _ azaZ)an72zn71
= (a" —aza")z" L
Therefore
1 1 1
|[(a® — aza®)z||7 < ||a" — aza"|7|||2" ||
Since

lim |[a" — aza"||% =0,
n—o0
we prove that

lim ||(a® — aza?)z||7 = 0.
n—,oo

This implies that (a> — aza®)z = 0. That is, a(a — za?)z = 0.
Set x = aza and y = a — aza. Then a = x +y. We claim that x has right e-core inverse. Evidently,
we verify that

zXz = zazdz = zazz,
xz? = azaz* = (azaz)z = az’ = z,
(exz)* = (eazaz)* = (eaz)* = eaz = e(aza)z = exz.

Therefore x € Ay® and z = x;®.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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We verify that
l(a—za)" 2|72 = ||(1 ~za)a(a — za*)" (a — za?)| |72
= ||(1—za)a(a—Zaz)”*l(ﬂ—Zaz)“H"%rz
= (|1 - za)a(a — za?)" 1?2
= [|(1 — za)aa — za?)a" |72
< IIL— zal 72|72 — aza" 272 " 2.
Accordingly,

lim ||a"*2 — aza”+2H%+2 -0.
n—oo

This implies that a — za? € Al By using Cline’s formula (see [15, Theorem 2.1]), y = a —aza € Adnil,
Moreover, we see that

x*ey (aza)*e(1 —az)a = a*(az)*e*(1 —az)a
= a*(eaz)*(1 —az)a=0,
= a*(eaz)(1—az)a=0,
yx (a — aza)aza = a(a — za*)za = 0.

Then we have a generalized right e-core decomposition a = x + y, thus yielding the result. O

We denote x in Theorem 2.1 by a7®, and call it a generalized right e-core inverse of 4. As an
immediate consequence, we derive

Corollary 2.2. Let a € A. Then the following are equivalent:

(1) a € Ahas generalized right core decomposition.
(2) There exists x € A such that

x = ax?, (ax)* = ax, lim ||a" — axa”||% =0.
n—o00
Theorem 2.3. Let a = x + y be the generalized right e-core decomposition of a € A. Then ay® = x7®.

Proof. Leta = x + y be the generalized right e-core decomposition of a € A. Analogously to the proof
of Theorem 2.1, x;'® is the generalized right e-core inverse of a. This completes the proof. [

Corollary 2.4. Leta € A. Thena € A%® ifand only ifa € Ay® N A%

Proof. This is obvious by Theorem 2.3 and [4, Theorem 2.5] O

Let C"*" be the Banach algebra of all n x n complex matrices, with conjugate transpose as the
involution. For a complex A € C"*", it follows by Theorem 2.3 that the pseudo core inverse and
generalized right core inverse coincide with each other for a complex matrix, i.e., A® = AY®,

Next, we present a polar-like property for the generalized right e-core inverse in a Banach *-algebra
and establish its related characterizations.

Theorem 2.5. Let a € Aand n € N. Then the following are equivalent:

(1) ae AYC.
(2)  There exists an idempotent p € A such that

at+pe Ar_l, (ep)* =ep,ap € Al 1-pA=a(1-pA

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Proof. (1) = (2) Since a € A;®, by virtue of Theorem 2.1, there exist x,y € A such that
a=x+yxey=yx=0xc A®,yc AM
In view of Theorem 1.1, we have
Xo® = x(x9®)2 = x4@xx%®, (exx%®)* = exx%®, x = xx%®x.
Let p =1 — xxy®. Then p? = p, (ep)* = ep and px = 0. We directly check that
X+ 1= @[ 41— 120

xxy® 4+ x"(1— xx7®) + 1 — xxp®
1+ x"(1—xxy®) € AL

Letqg = [(xf®)" + 1 — xx¢®][1 + x™*(1 — xx7®)] 1. Then (x" + p)q = 1. We further verify that

n .o
1+ yq '21 xn—lyz—l
1=

1 ()" +y — yaaf @]+ 2 (1 — 20 ®)]

It
=
=
L

= 1+y[l+x"(1—xxy®)] i x”’iyi’l

n .y
1 +y y xnfzyzfl =1 _i_ynAfl‘
i=1
n y
By using Cline’s formula (see [15, Theorem 2.1]), 1 + g ¥ x" 'y € A~!. Accordingly, we derive that
i=1

pa = p(Hy) =py = (1—xxe )y y—e ! (exx;®)y
= y—e Hexxy®)y =y —e 1(ap®)*(x*ey) =y € AT,

pa(l—p) = yXX5@ =0,
n .o
@p o= (ky) =t LY 4y
i=
= ey
= [« +p][1+q2x" iyl e AL
Moreover, we see that 1 — p = xx7® = [(x +y)xx7®]x7® € a(1 — p).A. On the other hand, a(1 — p) =
(1—p)a(l—p)e (1—p)A. Then
(1-p)A=a(1-p)A.

(2) = (1) By hypothesis, there exists an idempotent p € A such that
a"+pe AL (ep)t =epap € A, (1—p)A=a(l-p)A.

Set x = (1 — p)aand y = pa. Then

ey [ (1 = p)*lepa = [a*(1 = p)*](ep)*a = a*[(1 = p)*p*le’a” =0,
yx pa(l—pla=0,
y = pac AT

Write (a" + p)q = 1 for some g € A. Then (1 —p)a"q = (1—p)(a"+p)g =1—p. Setz = a" .

Then (1 — p)az(1—p)a= (1—p)aand [(1 — p)az]* = (1—p)* =1—p = (1 — p)az. This implies that
(13)

(1—-plaec A .

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0569.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0569.v1

7 of 23

Since (1 —p)A = a(1 — p).A, we have pa(1 — p) = 0. Write 1 — p = a(1 — p)r for some r € A.
Then1—p = (1—p)a(l — p)r; hence,

1-p = (1-=p)a(l—p)r]=1-plal(1-p)]
= [(1—=p)al[(1—p)a(l—p)r]r
€ [(1-p)a]2A.

Then we have (1 — p)aA = [(1— p)a]®>A. According to Theorem 1.1, (1 — p)a € A7®. Thatis, x € Ay®.
Thereforea € Ay®. O

Corollary 2.6. Every power of a generalized right core invertible element in a Banach *-algebra is the sum of
two invertible and a right invertible elements.

Proof. Let a € Ay® and n € N. In view of Theorem 2.5, we can find p> = p € A such that

u:=a"+pe ALl Thena" = u — p. Obviously, we have —p = =2 — 1 and (#)2 = 1. Then

(5D =20-2p).

Accordingly, a" = u + 1}& — 1, asdesired. O

Corollary 2.7. Let a € Aand n € N. Then the following are equivalent:
1) aec AV,

(2 a"e Ay°.

In this case, 2%® = a"~1(a")7®.

Proof. (1) = (2) In light of Theorem 2.5, there exists an idempotent p € A such that
a"+pc AL (ep)t =epap € AT (1—p)A=a(l-p)A.

By virtue of Cline’s formula, pap € A7, Hence (pap)" € A7, Clearly, pa(1 — p) = 0, and so
pa = pap. This implies that pa" = (pap)" € A7 By using Cline’s formula again, a"p € AT,
Sincea"(1—p)=(1—p)a"(1-p)e(1—p)Aand1l—p ca(l—-p)A Ca"*(1—p)A, wededuce that
(1—p)A = a"(1— p).A. By using Theorem 1.1, a" € A7®.

(2) = (1) Let x = a"~1(a")7®. Then we directly verify that

ax = a(a" 1 (a")y®) =a"(a")y®,
ax? = [a”(a")ﬁ’@]a”_l(a")ﬁ’@ =x,
(eax)* = (a™(a™)y®)* =a"(a")y® = eax,

" —axa™|[% < (|1 =" (@")P®)a" |5,

For any m > nk, we see that
1 1
|l — axa™ || < ||(1—a"(a")y®)(a")¥||" = 0.

Since klim [|(1—a™(a")e®)(a™)k| |% = 0, we derive that
— 00

lim |[a™ — axamH% =0.
m—0o0

Therefore a®® = a"~1(a")y®. O

We are now ready to prove:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Theorem 2.8. Let a € A. Then the following are equivalent:

(1) aec AY®.
(2) There exists b € A such that

bab = b, (eab)* = eab,aba A = a’baA,a — a’b € Al
Proof. (1) = (2) By hypothesis, there exist x,y € A such that
a=x+yxey=yx=0,xec A®,y e AT

It is easy to verify that

x?@

xp®xxy®y
[x7®]eexxy®]y
(Ko (exa)y
= [x®e 1 (x7®)* (x*ey)
= 0.

y

Setb = x¢®. Thenab = (x +y)xy® = xxv® + yx(x7'®)? = xxy®. Hence, (eab)* = (exxy®)* =
exxy® = eab. We easily verify that

ab> = (ab)b = (xxy®)xy® = xy® =,
b(1—ab) = x/®[1—xx?]=0,
a—a’b = a(l—ab)=a(l—xx®).
Thus b = bab, and so ab? = bab.
Moreover, we see that
aba = (xx7®)(x+y)
= xxv®x =x;
a’ba = a(aba) = (x +y)x = x°.

Since x € A®, it follows by Theorem 1.1 that xA = x?A. Thus, aba.A = a?baA. Since (1 — xx®)a =
(1—xx®)(x +y) =y € A by using Cline’s formula, a — a?b = a(1 — xx®) € A,
(2) = (1) By hypothesis, there exists b € A such that

bab = b, (eab)* = eab,aba A = a*baA,a — a’b € Al
Let x = aba and y = a — aba. Then
a = x+y,

x*ey (aba)*e*(a — aba) = a*(eab)*(1 — ab)a = a*eab(1 — ab)a = 0,
yx = (a—aba)aba = (1—ab)a*ba = (1 —ab)abar = 0forar € A.

Since a — a?b € A7, By using Cline’s formula, we have y = (1 — ab)a € A%, Clearly, we have xb =
(aba)b = a(bab) = ab, and so xbx = ab(aba) = a(bab)a = aba = x and (exb)* = (eab)* = eab = exb.
This implies that x € A£1’3). We easily verify that

aba = ababa € aba*ba A = (aba)> A.
Hence, xA = x2A. In view of Theorem 1.1, x € A%®. Thereforea € A%®. O

Corollary 2.9. Let a € A. Then the following are equivalent:

(1) ac AY®.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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(2) There exists b € A such that
bab = b = ab?, (eab)* = eab,aba A = a*baA,a — a®b € AT,
Proof. (1) = (2) Construct x,y and 4, b as in the proof of Theorem 2.8, we have
bab = b, (eab)* = eab,aba A = a’baA,a — a®b € Al
Moreover, we verify that

ab = (x+y)xr® = xx7® +yx(xy®)? = xx7®,
ab> = (ab)b = (xx7®)xy® = x7® = b,

as desired.
(2) = (1) This is obvious by Theorem Theorem 2.8. [

3. Characterizations by Using Right g-Drazin Inverse

Leta € A. Set
{a?} = {x € A|ax® = x,a — xa® € AT},

We now derive the following.
Theorem 3.1. Let a € A. Then the following are equivalent:

(1) aec AY®.
@ {a}NA® #£0.

In this case, a7'® = z2z¢® for z € {ad} N AZ®.
Proof. (1) = (2) In view of Theorem 2.1, there exist x,y € A such that
a=x+yxey=yx=0,xec A®,yec AT

Let z = x;"®. Then
Claim 1. z € {a%}. We directly verify that

B2 = () = (xR0 = x,
az?> =[x ®lay® = x(xy®)? = 1y =z,
aza = xxy®(x+y) =xx7Px+ (x7®)*(x*y)
= xxp®x+e l(exxy®)*y
= xxy®x+e 1 (xy®)* (xfey) = x,
a—aza = a—x=yec Ami

By using Cline’s formula, we have a — za?> € A7, Therefore z € {a%}.
Claim 2. z € Ay®. We verify that

e = WOLA®] = b,
z[x?z]? = [xx7®)(x%z) = x%z,
(ez(x?2))" = (exx¥®)* = exxy® = ez(x%z),
z(x?2)z = [xxy®)ar® = x7® =z

Accordingly, z € Ay® and z¢'® = x2z. Therefore {ad} N AY® # @.
(2) = (1) Letz € {a%} N AY®. Then

az? = z,a — za®* € AT,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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T
( 1’ ) 1’ ( Z)ZT, [ 7, ] 1, 4

hence, we see that

le(zzy®a)x]* = [ezzy®]* = ezzy® = e(zz7®a)x,
22v®ax? = [zz20®][2220®] = 2220® = x,
(zz7®a)x(zzy®a) = (227®)(zz7®a) = zz;®a.

Then zzy®a € AY® and [zzy®a)y® = 2220®.

Write a = a7 + ap, where a1 = zzy®a and a, = a — zz;®a. It is easy to verify that

apa; = [a—zzy®a|zzy®a

azzy®a — zz®azz0®a
azzy®a — zz® (az?) (z7®)%a
e,®
¢

azzy®a — 2z®z(zy®)%a
(022)(29° Va — 2(2°Yea

= 0/
ajay = a*(zz;®)*[a — zz7®a
= a*(zz/®)[a — zz7®a]

a*zzy®[|1 — zzy®]a = 0.
Moreover, we check that

-zl = [1- 22— [1 - 22z
= [1—2zz7®)(a— za?).

Obviously,
1z = azzo®z = az*(29®)?z = z(24®)%z = 2@z
It is easy to verify that
(a—za®)[1—2zz¢®) = a—za®>— (1—za)(az)zy®

= a—za*>— (1—za)(zy®z)zy®
= a—za®>— (1—za)zy®
= a—za®>— (1—za)z%(zy®)3
oz [ 2(a2) ()
= a—za®— [z2¢® - 22(z0®)3]

a—za* € AT
By using Cline’s formula again,
a = [1—225®)a = [1 — 225®)(a — za®) € AT
Therefore a = a; + a; is the generalized right core decomposition of a. Therefore
07 = (a)® = 22,
as asserted. [
Corollary 3.2. Let a € A. Then the following are equivalent:

1) ae A%,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0569.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0569.v1

11 0f23

(2) ae Alanda? € AP,

In this case, a%©® = (ﬂd)z(ﬂd)e’@

Proof. This is obvious by Theorem 3.1 and Corollary 2.4. [

Lemma 3.3. Letz € {al}. Then

1
i n__ ny* n =
lim [[(a" — aza™)"[[" = 0.

Proof. Let x = a — aza. Then x € A7 For any A € C, wehave 1 — Axe AL andsol — Ax* € A~ L
This implies that x* € A7, We easily check that

[(a" —aza")* |5 = [|(a")*(1 = az)*|| = [|(a”)*[(1 — az)"]"||
= |I[(a —aza)" ||| = [[(x")"]].

Since x* € A, we have

1
i n__ ny* n =
lim [[(a" — aza™)"[[" = 0.

O
Lemma 3.4. Leta € AY®. Then

. el
Jlim [[((aw)" — away©w(aw)")*[[" = 0.

Proof. Construct x,y,z as in the proof of Theorem 2.1. Then

. n__ n+lyx( L 1 |5 —
lim || (2" = xa" 1) 7 = lim ()" || = 0.

Similarly to Corollary 2.2, we check that
(@ — ax"a")*||n < (1 [[a*]|||x*|)]](a" — xa™+1)*| 7.
Therefore

. 1
lim [[(a" — a" (a7®)"a")"[[7 = 0.

In view of Corollary 2.4, we have
Jim,||(a" — aai®a") ||+ =0,
as asserted. [J
We are ready to prove:
Theorem 3.5. Leta € A. Then a € AY® if and only if there exist x € Aand z € {a} such that
xax = x = ax?,xA = zA, Ax = A(az)*e.
In this case, a%® = x.

Proof. = Choose x = ay'®. In view of Theorem 1.1, x = xax = ax?. By using Theorem 3.1, we can
find z € {a?} N AY® such that
x = 2°29®,

Then we have
az? = z,a — za® € A

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Obviously, z = zzy®z = (222y®)zy®z = xz7®z. Accordingly, we have x A = z.A.

2

Since ax* = x, we have ax = a"x", and then

x = xax = xe (eax)* = xe !(ea" x”)* = xe 1 (x™")*(a")%e
xe 1 (x™)*(a" — aza™)*e + xe 1 (x")* (a")*(az)*e
xe L (x")* (a" — aza")*e + xe~ 1 (a"x")* (az)*e
xe 1 (x™)*(a" — aza")*e + xe 1 (ax)*(az)*e.

Hence,
[x — xe~M(ax)*(az) el [F = ||xe™ ()" (a" — aza”)e]|}

[xe (x| ]| (a™ — aza™)*|| ¥ |[e]| .

IA

In view of Lemma 3.4,

1
lim [[(a" = aza")"[[F =0,

we derive that
: 1 * * % -0
nh_r}r;ng xe " (ax)*(az)¥ell 0;

hence, x = xe~!(ax)*(az)*e. Then Ax C A(az)*e
Since az? = z, we have a"z" = az, and then we derive that

||(az)*e — (az)*eax||r = [|(z")*(ea")* — (2 >*<eafa">*||%
= |I((z)")* (" — axa")"e||x
|

1 1 1
1) (" — axa™)*|[ = |le][.

N

IN
N

In light of Lemma 3.4, we see that

1
tim [|(a" — axa")*|[} = 0.
Then

nlgr01°||(az) e— (az)* eax||n =0,

and so (az)*e = (az)*eax. Hence A(az)*e C Ax. Therefore Ax = A(az)*e, as required.
<= By hypothesis, there exists x € A such that there exist x € A and z € {a?} such that

xax = x = ax®, xA =zA, Ax = A(az)*e.

We claim that av® = x.
Claim 1.
1
lim ||a" —axa™||n = 0.
n—oo

Write z = xy for some y € A. For any n € N, we have

a" = (a" —aza") + aza",
axa® = ax(a" — aza") + axaza”
ax(a" —aza") + a(xax)ya"
ax(a" — aza") + (axy)
( )

ax(a™ —aza™) + aza”

Hence,
a" —axa® = (1 —ax)(a" — aza"),

and so
1 1 1
||a" — axa™||" < [|1 —ax||"||a" — aza" |7,
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we have

lim ||a" — axa”||% =0.
n—o0

Claim 2. (eax)* = eax.

Since Ax = A(az)*e, we have x* A = eaz. A. Write eaz = x*y for some y € A. Since xax = x, we
have x*a*x* = x*, and then (ax)*x* = x*. This implies that (ax)*eaz = (ax)*(x*y) = [(ax)*x*]y =
x*y = eaz. Since xA = zA, we can find s € A such that x = zs. Then (ax)*e(ax) = (ax)*ea(zs) =
[(ax)*eaz]s = (eaz)s = eax. Hence (eax)* = [(ax)*e(ax)]* = (ax)*e(ax) = eax.

Therefore a’® = x, as asserted. [

Corollary 3.6. Let a € A. Then a has pseudo right e-core inverse if and only if

1) aec A9
(2) ahas right Drazin inverse.
&

Proof. = By virtue of Theorem 2.1, a has generalized right e-core inverse. Therefore a has right
Drazin inverse by Theorem 3.5.
= Since a has generalized right e-core inverse, by Theorem 3.5, there exists x € Aand z € Ao®
such that
xax = x = ax?, xA = zA, Ax = A(az)*e.

Since a has right Drazin inverse, we have a/ = aP. Let n = ind(a). Then a" = a"*1a%, a0 = a%a and

a? = a(a?)?. Hence, a? = a"[(a?)"*1] and a" = a%a"*!. Then a" A = a® A. On the other hand, we have
(@) = [ (@), @) = @) (o)

Therefore A(a%)*e = Aa"e, and so Ax = A(a")*e. This implies that a has pseudo right e-core inverse,
as asserted. [

4. Representations of Generalized Right e-Core Inverse

b d

Using a similar approach, we now extend the result in Proposition 4.4 of [7] to the right e-core inverse.

Let T = < ac ) € A>*2 Let e € A be an Hermitan invertible element and E = diag(e, e).

Lemmad.l. Lets =d—ba~lc € A%®,p=1—ssy®andt =sy® +1—sy®s. Ifv=a+c(1—ts)ba~! €
AL, then TMy(A) = T>My(A).

Proof. Obviously, we have

1 0 a 0 1 alc
T = PAQ,P = A— _ _
Q (ba—11>’ (0 s>’Q (0 1 )
(1,3)

Since s € Ay®, it follows by Theorem 1.1 that s € A£1'3). Hence we verify that A"’ =
y y E

a1 0 (1,3)
13 |- SetU = AQP+ I, — AA."". Then

0 s,
U a+cba=! c
B sba~1 s+1-— ssgm) '

One easily checks that

(s+1-— ss£1’3))(s£1’3) +1- ssgl’?’)) = 1+s(1— ss£1’3))

[1—s(1—ssM¥y-1
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Then U is right inverse and

U-! = v, —ov; Lt
"\ —tsbaloy !t 4 tsbalo et )

Thus, UM (A) = My(A). Ass € Aisregular,sois T € Mp(.A). In view of [7, Lemma 3.3], TM(A) =
T?M,(A), as required. [

Lemma4.2. Lets =d—ba~lc € Ay®,p=1—ssy®,t = sy® +1—s7®sand e(ba™') = (ba~1)e. If
u=1+ (ba VY phate A o=a+c(l—ts)ba ' € AL, then T € My(A)E®. In this case,

TE,@ — ﬁ IY ,

where
B vr_lu_l + oy letssy®bau"t,
v = o tu" (ba‘ )*p vy tetssy®[1 — ba~lu=t(ba=1)*p),
5 = (1—ts)balo; lut +[(1 —ts)ba oy te — 1]tssy®ba—lu~t,
€ (1-— t‘s)ba‘1 r_l “Yba V) p — [(1 — ts)ba o, T — 1]tssy®
[1—ba~tu="(ba™")*p].
Proof. Set
- ( au~! au(ba 1) p —alesy® )
o\ =sy®ba Tt 9P —balu N (ba ) p) )’

where & = [1 +a~lcsy®bla~!
Then we verify that
anu1 — es¥®pa1y~1

= (1+csy®baVu! —csy®bau!
= u_l,

a[au_l(ba‘l)*p—a csy®] +esy®[1 — ba tu=(ba=1)*p]
(1+csy®ba=Nu=1(ba 1) p — csy® + csy®[1 — ba~tu=1 (ba=1)*p]
(1+csy®ba=Yu=1(ba=1)*p — csy®ba=tu=1(ba=1)*p

= u'(ba”l)*p,

bau=t —ds®ha 1yl =

[baa — dsy®bla—lu=1
[b(1+alesy®b) — dsy®bla~!
[

b—(d—ba"'c)sy®bla—tu™1
~1,-1

= pba
and
blau='(ba=')*p —a~ csr ®) 4+ dsy®[1 —ba~lu _1(ba_1)*p]
ba= (1 + csy®ba=Yu=t(ba=1)*p — ba~lesy® + dsy® — dsy®ba u" (ba=1)*p
Lu=Y(ba=1)*p — [d — ba'c]sy®ba u=t (ba= 1) p + [d — ba~Lc]sy®
ba~! ’1(ba’ ) p— ssf’®ba’1u’1(ba’l)*p + ss7®
ssy® + pba~lu=1(ba=1)*p.

Then we verify that

a c au~t aul(ba 1) p —a lesy®
TS = e -1, -1 e,® -1,,—-1 -1
b d —sy®ba tut PPl —batuTt (ba 1) p]
u

- (ba~1)*p
ba Hu1 ss& +pba HuL(ba*p |
p e TP P
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We observe that

uw'e = [1+ (ba=1)*p*(ba=')]e
= e+ (ba V)*pre(bal) = e+ (ba=1)*(ep)*(ba~t)
o) = e tl(ba’l)*ep(ba’l) =e+e(ba V) p(bal) =eu,

[eu—l (ba‘l)*p]* _ p*(ba—l)(u—l)*e — p*(ba‘l)(eu_l)*
p*(ba—Veu ! = p*e(ba~)u~!
= (ep)*(ba~YHu=! =ep(ba=1)u~!

and
[ep(bu’l) Y(ba~t)* p)*
[(ba=)u (ba= 1) p* (ep)* = [(ba™ )u~" (ba~")*p]*ep
= fe(ba"u=t(ba=")*pl*p = [(ba") (e ") (ba~ ") p]*p
= [p (bﬂ‘l)( N (ba=")*]p = [p*(ba )eu 1) (ba" ") |p
= [pe(ba” ) D (ba=)*]p = [(ep)*(ba~Hu=")(ba™")*]p
epep(ba=")u~" (ba~")*p,
and then

le(ssy, + p(ba~ Du *1(bu*1)*p)]* e(ss, + p(ba~ Du *1(ba*1)*p).
Thus (ETS)* = ETS. Moreover, we see that

uta+u"Y(ba 1) pb a,
uletutbaYHpd = ¢
p(ba~Yuta+ [ssP + p(ba V)u=t(ba 1)*plb = b,
p(baHu=te+ [ss + p(ba= ) u=t(ba=1)*pld d

Hence, we have
TST — u! u=l(ba=1)*p a c
B plba=Hu=t ssP + p(ba=t)u=t(ba 1)*p b d
= T.

(13) _
Hence Ty ™" = S.
Inview of Lemma 4.1, TMy(A) = T2M,(A). According to Theorem 1.1, T € M;(A)E®. Moreover,

we have
T = U AQTEY) = (PU)(AQTE™)
. ’1 —vr’lct
N (1- ts)ba v, 1 t— (1 —ts)balo, et
Ll_l u—l (ba‘l)*p
—ssy®batu™t ssy®[1 —balu(ba=1)*p]

_ (B
5 € )’
where B, 7,0 and € as mentioned before. O

We are ready to prove:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0569.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025

16 of 23

Theorem 4.3. Let s = d —ba'c € AY®,p = 1 —ssy®,t = sy® +1—57%s, and let u = 1+
(ba=Y)*pba—! € Ao = a+c(1—ts)ba™' € A L Ife(ba!) = (ba~')e and psb = (epb)*s = 0,
then T € My(A)E®. In this case,

TE,@ — AB r)/ ,

vr_lu_l + oy letssy®balu"t,

- (ba‘ )*p v, Letssy®[1 — ba=tu=1(ba=1)*p],
( ts)ba o, ' uT 4+ [(1 —ts)ba—to; te — 1tssy®ba—1u~t,
(1 t‘s)ba‘1 r_l “Lba 1) p — [(1 — ts)ba to, Te — 1)tssy®
[ ba a1 (ba1)p).

Proof. By virtue of Theorem 2.1, we have

where

o= ™
I

d—ba~lc=x+y,x e A%y e AMl x*ey = yx = 0.

Evidently,

— 58P 1 — o _ gsO®
x =55/%s,y =5 —s5/%s.

a c 00
M=A+BA= B = )
’ (bd—y) <0y>

Step 1. A has right E-core inverse and B is quasinilpotent.
Clearly, (d —y) —balc=[d—ba~lc]—y=(x+y) —y=x € AV®.

Then

It is easy to verify that
p = 1—ssy®=1—(x+y)x7® =1—xx7®,
t = 14879 —579% =1+4+x7% —x7®(x+y)
= 1+x7® —x7®x + x7®xxy®y
= 1+x7% —xy@x + [x7®e 1 (exxy®)y
= 1+x0% — xy®x + [x7®@e 1 (exxy®)*y
1+ x7® — x7®x.
By hypothesis, we have
u = 1+ (ba V)y*pba~t e A7,
v = a+c(l—tx)ba e AL

By hypothesis, we have e(ba~1) = (ba~1)e. In light of Lemma 4.2, A € My(A)E®. Moreover, we have

Y
AE@:(? e)'

oy ' ut + oy tetssy ®baul,

v lu _1(ba‘1) p vy Letssy®[1 — ba=tu=1(ba=1)*p],

(1 —ts)ba v, lu 1 + [(1—ts)ba=to; 1c 1]ifss,®bu’1 -1,
(1 —ts)balo, lu=t(ba 1) p — [(1 — ts)ba~to; 1c — 1]tssy®
1-— ba’lu’l(ba’l)*p].

where

oo R ™
Il

Step 2. M has generalized right e-core inverse.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202507.0569.v1


https://doi.org/10.20944/preprints202507.0569.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0569.v1

17 of 23

Obviously, d — y = x + ba~'c. Then we check that

a* b* 0 0
A*EB =
St ) a)
_ 0 b*ey _0
0 (d—y)ey
00 a c
BA =
0y ( b d—y
(o0 o0 o
yb y(d—y) '
We verify that
b*ey = b*e[s —ssy®s]
= b*[e(1—ssy®)]s = b*[e(1 —ss7®)]*s
= (epb)*s =0,
(d—y)ey = (x+balc)ey=x*ey+ (a~lc)*(b*ey) =0;
yb = [s—ss7®Ps]b=psb=0,

y(d—y) = ylx+balc)=(yb)alc=0.

According to Theorem 2.1, M has generalized right E-core inverse. In this case,

MEe@ = pE@ — (? i >,

€

where B, v, and € as mentioned before. O

d

E,
a c @_ a b —a1ed®
0d ) N 0 as® ’

Proof. Since (1 — dy®d)dd;® = 0, we easily obtain the result by Theorem 4.3. [

Corollary 4.4. Leta € A~',d € Ay®. Then ( g ¢ ) € My (A)E®. In this case,

We are now ready to prove:
Theorem 4.5. Let a,x € A. Then the following are equivalent:

1 a¥® =x.
(2) a € A% and there exists an idempotent p € A such that (ep)* = ep and

() (39);
3 M) ,
where a1 € (pAp); 1, x1 = (a1);},a1x0 = azx; = a3xp = 0 and (1 — p)a™ € £({a?}) for any

m € N.
(3) a € A7 and there exists an idempotent g € A such that (eq)* = eq and

a1 a 0 O
as ay X1 X2
q q
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where ay € (1 —9)A(1 —q)); 1, %2 = (ag); !, a0%1 = apxy = agx; = 0and ga™ € (({a?}) for any
m & N.

Proof. (1) = (2) Let p = aay®. Then (1 — p)ay® = 0. Write

c(n )=y,
a a
3 4 q q
0 0 00/’
S q q q

we deduce that a; € (pAp); ', x1 = (a1);, a1x2 = azx; = azxp = 0.

2=g23=... =g"z" forany n € N.

Since

Letz € {af} and m € N. For any n > m, we have z = az
Hence,

1 1

|1 =p)a™z||» = [|(1—ax)a"z"""||x

||a" — axa”||x||z|[" %

A

Since lim ||a" — axa"| |% = 0, we derive that
n—oo
1
i —_ m n =)
Jim [[(1 = p)a™z|[r =0;

hence, (1 — p)a™z = 0, as required.
(2) = (1) By hypothesis, there exists an idempotent p € A such that (ep)* = ep and

a a X X
a:<1 2>/x:<01 02>,
az a4
p p

where a; € (pAp); 1, x1 = (a1); 1, a1%0 = azx; = azxp = 0 and (1 — p)a™ € £({a?}) for any m € N.
Then we check that
o = <a1x1 0) ~p,
0 O
P

(eax)* = (ep)* =ep = eax,

2 _ e — [ P*1 PX2 _
axs = (ax)x-px-( 0 0 )p X.

Letz € £({a?}) and m € N. Then az? = z,a — za* € A7 and (1 — p)a™z = 0. Hence, (1 — p)z =
(1 — p)az? = [(1 — p)az]z = 0. One easily checks that

1 1
11 =p)a"{[x =I(1 —f)(ﬂ—zaz)"lln
11— pll#]|(a —za?)"|| 5.

||a"—axa"||%

IN

Asa — za? € Al we see that
1
lim ||(a —za®)"||" =0,

n—oo
and then
. 1
lim ||a" —axa™||n = 0.
n—oo
Therefore a¥® = x, as desired.

(1) & (3) This is proved as as the preceding discussion for g = 1 —aa;®. O

Corollary 4.6. Let a,x € A. Then the following are equivalent:
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1) a® =x.
(2) a € A”and there exists a projection p € A such that

a:<Z1 Zz>1x2<9;1 9;2)/

3 4 ) ,
where a; € (pAp)~1,x1 = a;!,a1x = azxya3x; = 0 and (1 — p)a? = 0.

(3) a € A” and there exists a projection g € A such that

a, a 0 O
az a4 X1 X2
q q

where ay € ((1—9)A(1—q))"Y x =a, ', apx; = axx; = agx; = 0 and ga? = 0.

Proof. This is obvious by choosing e = 1 in Theorem 4.5. [

5. Pseudo Right e-Core Inverse
Recall that a € A has pseudo right e-core inverse provided that there exists x € A such that

x = ax?, (eax)* = eax,a" = axa".

We denote x by a;'®. The aim of this section is to investigate pseudo right e-core inverse in a Banach
*-algebra. Leta € A. Set
{aP} = {x € A|ax?® = x,a" = axa"}.

We now derive the following.
Lemma 5.1. Let a € A. Then the following are equivalent:

(1) aec AY®.
(2 a" € Ay® for somen € N.

(3) ac AP anda" € A£1'3) for some n € N.
(4) ac APNAYe.

Proof. These are proved as in [27, Theorem 4.8 and Theorem 4.9]. O
Theorem 5.2. Let a € A. Then the following are equivalent:

(1) aec A®.
(2) There exist x,y € A such that

a=x+yxey=yx=0,x € A%®, y e A"

(3) There exists an idempotent p € A such that

a"+pc AL (ep) =epap € A, (1—p)A=a(l-p)A

@ {aPINA® £ 0.

In this case, a7'® = z2zy® for z € {aP} N AV®.

Proof. This is obvious by Theorem 2.1, Theorem 2.5, Theorem 3.1 and Lemma 5.1. O
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Corollary 5.3. Let a,b € A/®. Ifab = ba = a*eb =0, then a + b € A}®. In this case,
(a+ D) = a2® 4 120,
Proof. In view of Theorem 5.2, we have decompositions:

a=x+yx'ey=yx=0x¢c A®yc A",
b=s+tset=ts=0,s c A%®, t e A"l

Explicitly, we have x = aa“®aa and s = bb*®b. Thena + b = (x +s) + (y + t). We directly check that

s = (rbe)(® 40 (xts),
xXy® 4 sv® = (x+s8)(xr® +5®)2,
(42 182) = (rbs)(x® +50°),

Then x +s € A7® and (x +5)7® = x7® + s7®. Since yt = (a — aa®®a) (b — bb*®b) = 0, it follows by
2?2 thaty +t € A"
Obviously, we check that

(x+s)*e(y+t) = x*ey+ x'et+s*ey+ set = x*et + s*ey
= (a%®a)*(a*eb)(1 —b“®b) + (b“®b)*(b*ea)(1 — a®®a)
= 0,
(y+t)(x+s) = yx+ys+tx+its=ys+tx
(a — aa®®a)bb*®b + (b — bb*®b)aa*®a = 0.
By using Theorem 2.1,
(a+b)® = (x+5)®
= x® 454®

a%® 4 oo,

as asserted. [
Theorem 5.4. Let a € A. Then the following are equivalent:

1) aec AY°.
(2) There exists b € A such that

bab = b, (eab)* = eab,aba A = a’ba A, a — aba € A",

(3) There exists b € A such that
bab = b, (eab)* = eab,aba A = a’baA,a" = aba"

for somen € N.

Proof. This is proved by Theorem 2.8 and Lemma 5.1. O
Corollary 5.5. Let a € A. Then the following are equivalent:

(1) ae A°.
(2) There exists b € A such that

bab = b, (ab)* = ab,aba A = a®baA,a — aba € Amil,
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(3) There exists b € A such that
bab = b, (ab)* = eab,aba A = a*baA,a" = aba"

for some n € N.
Proof. This is obvious by choosing e = 1 in Theorem 5.4. [

Let A € C"" and G be the Minkowski matric matrix, thatis, G = diag(1, —I,,_1). The Minkowski
adjoint of the matrix A is defined as A~ = GA*G. The @-core-EP inverse of A is defined as the matrix
X € C™*" satisfying four conditions:

XAX = X, XA = AF (AX)~ = AX and R(X) C R(AF),
is called the @-core-EP inverse of A, and denoted by A® (see [26,30])
Theorem 5.6. Let A € C"*" and G be the Minkowski matric matrix. Then
A® = AG® = ACO,

Proof. Since G = diag(1,—1, 1), we check that G* = G and G? = I,. Thus, G is an Hermitian
invertible matrix. It is easy to verify that

(GAX;* ::(AX)*G* = (AX)*G = G"1AX = GAX.
Therefore AS® = A®, as asserted. [
The @-core inverse of A is defined as the matrix X € C"*" satisfying four conditions:
XAX = X,XA? = A, (AX)~ = AX and R(X) C R(A),
is called the @-core inverse of A, and denoted by A®.
Corollary 5.7. Let A € C"*". Then
A=X+Y,X"EY = YX = 0, X has a-core inverse, Y is nilpotent.
In this case, A® = X®.
Proof. We obtain the result by Theorem 5.2 and Theorem 5.6. [

Remark 5.8. Generalized left e-core inverse can be defined dually. We can establish the corresponding results
for generalized left e-core inverse in a similar way.
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