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Abstract

In this paper, we introduce the concept of the generalized right weighted core inverse within the
framework of a Banach *-algebra. We provide a characterization of this novel generalized inverse
based on a unique type of decomposition that involves right weighted core-inverses and quasinilpotent
elements. The relationships between the right weighted core inverse and the right g-Drazin inverse of
an element in a Banach *-algebra are explored. We also establish representations for the generalized
right weighted core inverse. As an application, we demonstrate new characteristics of the pseudo right
e-core inverse and m⃝-core-EP inverse in Minkowski spaces.
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1. Introduction
An involution of a Banach algebra A is an anti-automorphism whose square is the identity map 1.

A Banach algebra A with involution ∗ is called a Banach *-algebra. Let A be a Banach *-algebra with
an identity. An element a ∈ A has core inverse if there exists some x ∈ A such that

ax2 = x, (ax)∗ = ax, xa2 = a.

If such x exists, it is unique, and denote it by a #⃝. An element a ∈ A has core-EP inverse (i.e., pseudo
core inverse) if there exist x ∈ A and k ∈ N such that

ax2 = x, (ax)∗ = ax, xak+1 = ak.

If such x exists, it is unique, and denote it by a D⃝. Core and core-EP inverses are extensively studied by
many authors from different views, e.g., [1,6,8,10,11,16–19,24,28,29,31].

Wang et al. generalized the core inverse to the right core inverse (see [27]). An element a ∈ A has
right core inverse if there exist x ∈ A such that

ax2 = x, (ax)∗ = ax, axa = a.

If such x exists, it is unique, and denote it by a #⃝
r . In [3], the authors introduced and studied generalized

right core inverse. An element a ∈ A has generalized right core decomposition there exist unique a
x ∈ A such that

ax2 = x, (ax)∗ = ax, lim
n→∞

||an − axan||
1
n = 0.

The preceding x is called generalized right core inverse of a and we denote it by a d⃝
r . We refer the

reader more properties of right core and generalized right core inverses in [3,7,27].
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Mosić et al. introduced and studied weighted core inverse (see [21]). Let a ∈ A and e ∈ A is an
invertible Hermitian element (i.e., e is invertible and e∗ = e). An element a ∈ A has e-core inverse if
there exist x ∈ A and k ∈ N such that

ax2 = x, (eax)∗ = eax, xa2 = a.

If such x exists, it is unique, and denote it by ae, #⃝. As a natural generalization of weighted core and
core-EP inverses, the authors introduced and studied generalized weighted core inverse in a Banach
*-algebra. An element a ∈ A has generalized e-core decomposition if there exists x ∈ A such that

x = ax2, (eax)∗ = eax, lim
n→∞

||an − xan+1||
1
n = 0.

The preceding x is called generalized e-core inverse of a and we denote it by ae, d⃝. We refer the reader
for weighted core and generalized weight core inverses in [2,9,13,14,20,32].

Recently, Ke et al. generalized the e-core inverse to the right e-core inverse (see [12]). An element
a ∈ A has right e-core inverse if there exist x ∈ A such that

ax2 = x, (eax)∗ = eax, axa = a.

If such x exists, it is unique, and denote it by ae, #⃝
r . Let Ae, #⃝

r denote the set of all right e-core invertible
elements in A. Here we list some characterizations of right e-core inverse.

Theorem 1.1 (see [12]). Let A be a Banach *-algebra, and let a ∈ A. Then the following are equivalent:

(1) a ∈ Ae, #⃝
r .

(2) There exists x ∈ A such that axa = a, ax2 = x = xax, (eax)∗ = eax.
(3) There exists an idempotent p ∈ A such that (ep)∗ = ep, pa = 0, a + p ∈ A−1

r .
(4) a ∈ A(1,3)

e and aA = a2A.
(5) Aa = A(a∗)nea for some n ≥ 2.

The motivation of this paper is to introduce and study a new kind of generalized inverse as a
natural generalization of generalized inverses mentioned above. In Section 2, we introduce generalized
right weighted core inverse in terms of a new kind of decomposition by using right weighted core-
inverses and quasinilpotents. Many new properties of the right weighted (pesudo) core inverse and
generalized weighted core inverse are thereby obtained.

Definition 1.2. An element a ∈ A has generalized right e-core decomposition if there exist x, y ∈ A such that

a = x + y, x∗ey = yx = 0, x ∈ Ae, #⃝
r , y ∈ Aqnil .

Let
Aqnil = {x ∈ A | lim

n→∞
∥ xn ∥

1
n = 0}.

Evidently, x ∈ Aqnil if and only if 1 + λx ∈ A is invertible for any λ ∈ C. We prove that a ∈ A has
generalized right e-core decomposition if and only if there exists unique x ∈ A such that

x = ax2, (eax)∗ = eax, lim
n→∞

||an − axan||
1
n = 0.

The polar-like properties of generalized right weighted core inverses are established.
In Section 3, we establish characterizations between generalized right weighted core inverse and

right g-Drazin inverse for an element in a Banach *-algebra by using involved images. We prove that
a ∈ Ae, d⃝

r if and only if a has right g-Drazin inverse x which has right e-core inverse.
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In Section 4, we shift our focus to the study of representations for the generalized right weighted
core inverse. We explore the generalized right weighted core inverse through an examination of
diverse matrix conditions.

An element a in A has pseudo right e-core inverse if there exists x ∈ A such that x = ax2, (eax)∗ =
eax, an = axan. Such x is unique, if exists, and denote it by ae, D⃝

r . Finally, in Section 5, the pseudo right
e-core inverse is characterized by certain new ways. As an application, m⃝-core-EP inverse in Minkowski
spaces are studied.

Throughout the paper, all Banach *-algebras are complex with an identity. We use A−1
r ,A d⃝

r ,Ae, #⃝
r ,Ae, D⃝

r

and Ae, d⃝
r to denote the sets of all right invertible, generalized right core invertible, right e-core invertible,

right e-core-EP invertible and generalized right e-core invertible elements in A, respectively. If a and x
satisfy the equations a = axa and (ax)∗ = eax, then x is called (1, 3, e)-inverse of a and is denoted by a(1,3)

e .
We use A(1,3)

e to stand for the set of all (1, 3, e)-invertible elements in A.

2. Generalized Right e-Core Decomposition
The aim of this section is to introduce the notion of the generalized weighted core inverse in a

Banach *-algebra. We begin with

Theorem 2.1. Let a ∈ A. Then the following are equivalent:

(1) a ∈ A has generalized right e-core decomposition.
(2) There exists x ∈ A such that

x = ax2, (eax)∗ = eax, lim
n→∞

||an − axan||
1
n = 0.

Proof. (1) ⇒ (2) By hypothesis, there exist z, y ∈ A such that

a = z + y, z∗ey = yz = 0, z ∈ Ae, #⃝, y ∈ Aqnil .

Set x = ze, #⃝. One easily checks that

ax = (z + y)ze, #⃝ = zze, #⃝ + yz(ze, #⃝)2 = zze, #⃝,
ax2 = (z + y)(ze, #⃝)2 = z(ze, #⃝)2 = ze, #⃝ = x,

ze, #⃝y = xy = xzxy = xe−1(ezx)y = xe−1(ezx)∗y
= xe−1x∗(z∗ey) = 0.

Now by applying ze, #⃝y = 0 and Theorem 1.1, we deduce that

axa = (ax)a = zze, #⃝(z + y) = zze, #⃝z = z.

Then
(eax)∗ = (ezze, #⃝)∗ = ezze, #⃝ = eax,

a(1 − xa) = a − axa = a − z = y ∈ Aqnil .

Since yz = 0, we see that
(a − axa)z = (z + y − z)z = yz = 0.

Thus we have
||an − axan|| 1

n = ||(a − axa)an−1|| 1
n

= ||(a − axa)(z + y)n−1|| 1
n

= ||(a − axa)yn−1|| 1
n

≤ ||a − axa|| 1
n [||yn−1||

1
n−1 ]1−

1
n .
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Since y ∈ Aqnil , we deduce that
lim

n→∞
||an − axan||

1
n = 0,

as required.
(2) ⇒ (1) By hypotheses, we have z ∈ A such that

z = az2, (eaz)∗ = eaz, lim
n→∞

||an − azan||
1
n = 0.

For any n ∈ N, we have
az = a(az2) = a2z2 = a2(az2)z

= a3z3 = · · · = anzn.

Hence
||az − azaz|| = ||(anzn − azanzn||

= ||(an − azan)zn||.

Then
||az − azaz|| 1

n ≤ ||(an − azan)|| 1
n ||z||.

We infer that
lim

n→∞
||az − azaz||

1
n = 0,

hence, az = azaz.
Moreover, we check that

(a2 − aza2)z = (a2 − aza2)az2

= (a2 − aza2)a2z3

...
= (a2 − aza2)an−2zn−1

= (an − azan)zn−1.

Therefore
||(a2 − aza2)z||

1
n ≤ ||an − azan|

1
n |||zn−1||

1
n .

Since
lim

n→∞
||an − azan||

1
n = 0,

we prove that
lim

n→∞
||(a2 − aza2)z||

1
n = 0.

This implies that (a2 − aza2)z = 0. That is, a(a − za2)z = 0.
Set x = aza and y = a − aza. Then a = x + y. We claim that x has right e-core inverse. Evidently,

we verify that
zxz = zazaz = zazz,
xz2 = azaz2 = (azaz)z = az2 = z,

(exz)∗ = (eazaz)∗ = (eaz)∗ = eaz = e(aza)z = exz.

Therefore x ∈ Ae, #⃝
r and z = xe, #⃝

r .
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We verify that

||(a − za2)n+2||
1

n+2 = ||(1 − za)a(a − za2)n(a − za2)||
1

n+2

= ||(1 − za)a(a − za2)n−1(a − za2)a||
1

n+2

= ||(1 − za)a(a − za2)n−1a2||
1

n+2

...

= ||(1 − za)a(a − za2)an||
1

n+2

≤ ||1 − za||
1

n+2 ||an+2 − azan+2||
1

n+2 ||an||
1

n+2 .

Accordingly,
lim

n→∞
||an+2 − azan+2||

1
n+2 = 0.

This implies that a − za2 ∈ Aqnil . By using Cline’s formula (see [15, Theorem 2.1]), y = a − aza ∈ Aqnil .
Moreover, we see that

x∗ey = (aza)∗e(1 − az)a = a∗(az)∗e∗(1 − az)a
= a∗(eaz)∗(1 − az)a = 0,
= a∗(eaz)(1 − az)a = 0,

yx = (a − aza)aza = a(a − za2)za = 0.

Then we have a generalized right e-core decomposition a = x + y, thus yielding the result.

We denote x in Theorem 2.1 by ae, d⃝
r , and call it a generalized right e-core inverse of a. As an

immediate consequence, we derive

Corollary 2.2. Let a ∈ A. Then the following are equivalent:

(1) a ∈ A has generalized right core decomposition.
(2) There exists x ∈ A such that

x = ax2, (ax)∗ = ax, lim
n→∞

||an − axan||
1
n = 0.

Theorem 2.3. Let a = x + y be the generalized right e-core decomposition of a ∈ A. Then ae, d⃝
r = xe, #⃝

r .

Proof. Let a = x + y be the generalized right e-core decomposition of a ∈ A. Analogously to the proof
of Theorem 2.1, xe, #⃝

r is the generalized right e-core inverse of a. This completes the proof.

Corollary 2.4. Let a ∈ A. Then a ∈ Ae, d⃝ if and only if a ∈ Ae, d⃝
r
⋂Ad.

Proof. This is obvious by Theorem 2.3 and [4, Theorem 2.5]

Let Cn×n be the Banach algebra of all n × n complex matrices, with conjugate transpose as the
involution. For a complex A ∈ Cn×n, it follows by Theorem 2.3 that the pseudo core inverse and
generalized right core inverse coincide with each other for a complex matrix, i.e., A D⃝ = A1, d⃝

r .
Next, we present a polar-like property for the generalized right e-core inverse in a Banach *-algebra

and establish its related characterizations.

Theorem 2.5. Let a ∈ A and n ∈ N. Then the following are equivalent:

(1) a ∈ Ae, d⃝
r .

(2) There exists an idempotent p ∈ A such that

an + p ∈ A−1
r , (ep)∗ = ep, ap ∈ Aqnil , (1 − p)A = a(1 − p)A.
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Proof. (1) ⇒ (2) Since a ∈ Ae, d⃝
r , by virtue of Theorem 2.1, there exist x, y ∈ A such that

a = x + y, x∗ey = yx = 0, x ∈ Ae, #⃝
r , y ∈ Aqnil .

In view of Theorem 1.1, we have

xe, #⃝
r = x(xe, #⃝

r )2 = xe, #⃝
r xxe, #⃝

r , (exxe, #⃝
r )∗ = exxe, #⃝

r , x = xxe, #⃝
r x.

Let p = 1 − xxe, #⃝
r . Then p2 = p, (ep)∗ = ep and px = 0. We directly check that

[xn + 1 − xxe, #⃝
r ][(xe, #⃝

r )n + 1 − xxe, #⃝
r ]

= xxe, #⃝
r + xn(1 − xxe, #⃝

r ) + 1 − xxe, #⃝
r

= 1 + xn(1 − xxe, #⃝
r ) ∈ A−1.

Let q = [(xe, #⃝
r )n + 1 − xxe, #⃝

r ][1 + xn(1 − xxe, #⃝
r )]−1. Then (xn + p)q = 1. We further verify that

1 + yq
n
∑

i=1
xn−iyi−1

= 1 + [y(xe, #⃝
r )n + y − yxxe, #⃝

r ][1 + xn(1 − xxe, #⃝
r )]−1

n
∑

i=1
xn−iyi−1

= 1 + y[1 + xn(1 − xxe, #⃝
r )]

n
∑

i=1
xn−iyi−1

= 1 + y
n
∑

i=1
xn−iyi−1 = 1 + ynA−1.

By using Cline’s formula (see [15, Theorem 2.1]), 1 + q
n
∑

i=1
xn−iyi ∈ A−1. Accordingly, we derive that

pa = p(x + y) = py = (1 − xxe, #⃝
r )y = y − e−1(exxe, #⃝

r )y
= y − e−1(exxe, #⃝

r )∗y = y − e−1(xe, #⃝
r )∗(x∗ey) = y ∈ Aqnil ,

pa(1 − p) = yxxe, #⃝
r = 0,

an + p = (x + y)n + p = xn +
n
∑

i=1
xn−iyi + p

= [xn + p] +
n
∑

i=1
xn−iyi

= [xn + p][1 + q
n
∑

i=1
xn−iyi] ∈ A−1

r .

Moreover, we see that 1 − p = xxe, #⃝
r = [(x + y)xxe, #⃝

r ]xe, #⃝
r ∈ a(1 − p)A. On the other hand, a(1 − p) =

(1 − p)a(1 − p) ∈ (1 − p)A. Then
(1 − p)A = a(1 − p)A.

(2) ⇒ (1) By hypothesis, there exists an idempotent p ∈ A such that

an + p ∈ A−1
r , (ep)∗ = ep, ap ∈ Aqnil , (1 − p)A = a(1 − p)A.

Set x = (1 − p)a and y = pa. Then

x∗ey = [a∗(1 − p)∗]epa = [a∗(1 − p)∗](ep)∗a = a∗[(1 − p)∗p∗]e∗a∗ = 0,
yx = pa(1 − p)a = 0,

y = pa ∈ Aqnil .

Write (an + p)q = 1 for some q ∈ A. Then (1 − p)anq = (1 − p)(an + p)q = 1 − p. Set z = an−1q.
Then (1 − p)az(1 − p)a = (1 − p)a and [(1 − p)az]∗ = (1 − p)∗ = 1 − p = (1 − p)az. This implies that
(1 − p)a ∈ A(1,3)

e .
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Since (1 − p)A = a(1 − p)A, we have pa(1 − p) = 0. Write 1 − p = a(1 − p)r for some r ∈ A.
Then 1 − p = (1 − p)a(1 − p)r; hence,

1 − p = (1 − p)[a(1 − p)r] = (1 − p)a[(1 − p)r]
= [(1 − p)a][(1 − p)a(1 − p)r]r
∈ [(1 − p)a]2A.

Then we have (1− p)aA = [(1− p)a]2A. According to Theorem 1.1, (1− p)a ∈ Ae, #⃝
r . That is, x ∈ Ae, #⃝

r .
Therefore a ∈ Ae, d⃝

r .

Corollary 2.6. Every power of a generalized right core invertible element in a Banach *-algebra is the sum of
two invertible and a right invertible elements.

Proof. Let a ∈ Ae, d⃝
r and n ∈ N. In view of Theorem 2.5, we can find p2 = p ∈ A such that

u := an + p ∈ A−1
r . Then an = u − p. Obviously, we have −p = 1−2p

2 − 1
2 and

( 1−2p
2
)2

= 1
4 . Then

(1 − 2p
2

)−1
= 2(1 − 2p).

Accordingly, an = u + 1−2p
2 − 1

2 , as desired.

Corollary 2.7. Let a ∈ A and n ∈ N. Then the following are equivalent:

(1) a ∈ Ae, d⃝
r .

(2) an ∈ Ae, d⃝
r .

In this case, ae, d⃝ = an−1(an)e, d⃝
r .

Proof. (1) ⇒ (2) In light of Theorem 2.5, there exists an idempotent p ∈ A such that

an + p ∈ A−1
r , (ep)∗ = ep, ap ∈ Aqnil , (1 − p)A = a(1 − p)A.

By virtue of Cline’s formula, pap ∈ Aqnil . Hence (pap)n ∈ Aqnil . Clearly, pa(1 − p) = 0, and so
pa = pap. This implies that pan = (pap)n ∈ Aqnil . By using Cline’s formula again, an p ∈ Aqnil .
Since an(1 − p) = (1 − p)an(1 − p) ∈ (1 − p)A and 1 − p ∈ a(1 − p)A ⊆ an(1 − p)A, we deduce that
(1 − p)A = an(1 − p)A. By using Theorem 1.1, an ∈ Ae, d⃝

r .
(2) ⇒ (1) Let x = an−1(an)e, d⃝

r . Then we directly verify that

ax = a(an−1(an)e, d⃝
r ) = an(an)e, d⃝

r ,
ax2 = [an(an)e, d⃝

r ]an−1(an)e, d⃝
r = x,

(eax)∗ = (an(an)e, d⃝
r )∗ = an(an)e, d⃝

r = eax,
||am − axam|| 1

m ≤ ||(1 − an(an)e, d⃝
r )am|| 1

m |.

For any m ≥ nk, we see that

||am − axam||
1
m ≤ ||(1 − an(an)e, d⃝

r )(an)k||
1
m = 0.

Since lim
k→∞

||(1 − an(an)e, d⃝
r )(an)k|| 1

k = 0, we derive that

lim
m→∞

||am − axam||
1
m = 0.

Therefore ae, d⃝ = an−1(an)e, d⃝
r .

We are now ready to prove:
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Theorem 2.8. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ae, d⃝
r .

(2) There exists b ∈ A such that

bab = b, (eab)∗ = eab, abaA = a2baA, a − a2b ∈ Aqnil .

Proof. (1) ⇒ (2) By hypothesis, there exist x, y ∈ A such that

a = x + y, x∗ey = yx = 0, x ∈ Ae, #⃝
r , y ∈ Aqnil .

It is easy to verify that
xe, #⃝

r y = xe, #⃝
r xxe, #⃝

r y
= [xe, #⃝

r ]e−1[exxe, #⃝
r ]y

= [xe, #⃝
r e−1](exxe, #⃝

r )∗y
= [xe, #⃝

r e−1](xe, #⃝
r )∗(x∗ey)

= 0.

Set b = xe, #⃝
r . Then ab = (x + y)xe, #⃝

r = xxe, #⃝
r + yx(xe, #⃝

r )2 = xxe, #⃝
r . Hence, (eab)∗ = (exxe, #⃝

r )∗ =

exxe, #⃝
r = eab. We easily verify that

ab2 = (ab)b = (xxe, #⃝
r )xe, #⃝

r = xe, #⃝
r = b,

b(1 − ab) = xe, #⃝
r [1 − xx #⃝

r ] = 0,
a − a2b = a(1 − ab) = a(1 − xx #⃝).

Thus b = bab, and so ab2 = bab.
Moreover, we see that

aba = (xxe, #⃝
r )(x + y)

= xxe, #⃝
r x = x;

a2ba = a(aba) = (x + y)x = x2.

Since x ∈ Ae, #⃝
r , it follows by Theorem 1.1 that xA = x2A. Thus, abaA = a2baA. Since (1 − xx #⃝)a =

(1 − xx #⃝)(x + y) = y ∈ Aqnil , by using Cline’s formula, a − a2b = a(1 − xx #⃝) ∈ Aqnil .
(2) ⇒ (1) By hypothesis, there exists b ∈ A such that

bab = b, (eab)∗ = eab, abaA = a2baA, a − a2b ∈ Aqnil .

Let x = aba and y = a − aba. Then

a = x + y,
x∗ey = (aba)∗e∗(a − aba) = a∗(eab)∗(1 − ab)a = a∗eab(1 − ab)a = 0,

yx = (a − aba)aba = (1 − ab)a2ba = (1 − ab)abar = 0 for a r ∈ A.

Since a − a2b ∈ Aqnil . By using Cline’s formula, we have y = (1 − ab)a ∈ Aqnil . Clearly, we have xb =

(aba)b = a(bab) = ab, and so xbx = ab(aba) = a(bab)a = aba = x and (exb)∗ = (eab)∗ = eab = exb.
This implies that x ∈ A(1,3)

e . We easily verify that

aba = ababa ∈ aba2baA = (aba)2A.

Hence, xA = x2A. In view of Theorem 1.1, x ∈ Ae, #⃝
r . Therefore a ∈ Ae, d⃝

r .

Corollary 2.9. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ae, d⃝
r .
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(2) There exists b ∈ A such that

bab = b = ab2, (eab)∗ = eab, abaA = a2baA, a − a2b ∈ Aqnil .

Proof. (1) ⇒ (2) Construct x, y and a, b as in the proof of Theorem 2.8, we have

bab = b, (eab)∗ = eab, abaA = a2baA, a − a2b ∈ Aqnil .

Moreover, we verify that

ab = (x + y)xe, #⃝
r = xxe, #⃝

r + yx(xe, #⃝
r )2 = xxe, #⃝

r ,
ab2 = (ab)b = (xxe, #⃝

r )xe, #⃝
r = xe, #⃝

r = b,

as desired.
(2) ⇒ (1) This is obvious by Theorem Theorem 2.8.

3. Characterizations by Using Right g-Drazin Inverse
Let a ∈ A. Set

{ad
r } = {x ∈ A | ax2 = x, a − xa2 ∈ Aqnil}.

We now derive the following.

Theorem 3.1. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ae, d⃝
r .

(2) {ad
r }
⋂Ae, #⃝

r ̸= ∅.

In this case, ae, d⃝
r = z2ze, #⃝

r for z ∈ {ad
r }
⋂Ae, #⃝

r .

Proof. (1) ⇒ (2) In view of Theorem 2.1, there exist x, y ∈ A such that

a = x + y, x∗ey = yx = 0, x ∈ Ae, #⃝
r , y ∈ Aqnil .

Let z = xe, #⃝
r . Then

Claim 1. z ∈ {ad
r }. We directly verify that

az = (x + y)xe, #⃝
r = (x + y)x(xe, #⃝

r )2 = xxe, #⃝
r ,

az2 = [xxe, #⃝
r ]xe, #⃝

r = x(xe, #⃝
r )2 = xe, #⃝

r = z,
aza = xxe, #⃝

r (x + y) = xxe, #⃝
r x + (xe, #⃝

r )∗(x∗y)
= xxe, #⃝

r x + e−1(exxe, #⃝
r )∗y

= xxe, #⃝
r x + e−1(xe, #⃝

r )∗(x∗ey) = x,
a − aza = a − x = y ∈ Aqnil .

By using Cline’s formula, we have a − za2 ∈ Aqnil . Therefore z ∈ {ad
r }.

Claim 2. z ∈ Ae, #⃝
r . We verify that

z[x2z] = xe, #⃝
r [x2xe, #⃝

r ] = xxe, #⃝
r ,

z[x2z]2 = [xxe, #⃝
r ](x2z) = x2z,(

ez(x2z)
)∗

= (exxe, #⃝
r )∗ = exxe, #⃝

r = ez(x2z),
z(x2z)z = [xxe, #⃝

r ]xe, #⃝
r = xe, #⃝

r = z.

Accordingly, z ∈ Ae, #⃝
r and ze, #⃝

r = x2z. Therefore {ad
r }
⋂Ae, #⃝

r ̸= ∅.
(2) ⇒ (1) Let z ∈ {ad

r }
⋂Ae, #⃝

r . Then

az2 = z, a − za2 ∈ Aqnil .
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Set x = z2ze, #⃝
r . Then we check that

(zze, #⃝
r a)x = zze, #⃝

r (az2)ze, #⃝
r = [zze, #⃝

r ]2 = zze, #⃝
r ,

hence, we see that

[e(zze, #⃝
r a)x]∗ = [ezze, #⃝

r ]∗ = ezze, #⃝
r = e(zze, #⃝

r a)x,
zze, #⃝

r ax2 = [zze, #⃝
r ][z2ze, #⃝

r ] = z2ze, #⃝
r = x,(

zze, #⃝
r a

)
x
(
zze, #⃝

r a
)

=
(
zze, #⃝

r
)(

zze, #⃝
r a

)
= zze, #⃝

r a.

Then zze, #⃝
r a ∈ Ae, #⃝

r and [zze, #⃝
r a]e, #⃝

r = z2ze, #⃝
r .

Write a = a1 + a2, where a1 = zze, #⃝
r a and a2 = a − zze, #⃝

r a. It is easy to verify that

a2a1 = [a − zze, #⃝
r a]zze, #⃝

r a
= azze, #⃝

r a − zz #⃝azze, #⃝
r a

= azze, #⃝
r a − zz #⃝(az2)(ze, #⃝

r )2a
= azze, #⃝

r a − zz #⃝z(ze, #⃝
r )2a

= (az2)(ze, #⃝
r )2a − z(z #⃝)2a

= 0,
a∗1 a2 = a∗(zze, #⃝

r )∗[a − zze, #⃝
r a]

= a∗(zze, #⃝
r )[a − zze, #⃝

r a]
= a∗zze, #⃝

r [1 − zze, #⃝
r ]a = 0.

Moreover, we check that

[1 − zze, #⃝
r ]a = [1 − zze, #⃝

r ]a − [1 − zze, #⃝
r ]za2

= [1 − zze, #⃝
r ](a − za2).

Obviously,
az = azze, #⃝

r z = az2(ze, #⃝
r )2z = z(ze, #⃝

r )2z = ze, #⃝
r z.

It is easy to verify that

(a − za2)[1 − zze, #⃝
r ] = a − za2 − (1 − za)(az)ze, #⃝

r

= a − za2 − (1 − za)(ze, #⃝
r z)ze, #⃝

r

= a − za2 − (1 − za)ze, #⃝
r

= a − za2 − (1 − za)z2(ze, #⃝
r )3

= a − za2 − [ze, #⃝
r − z(az2)(ze, #⃝

r )3]

= a − za2 − [ze, #⃝
r − z2(ze, #⃝

r )3]

= a − za2 ∈ Aqnil .

By using Cline’s formula again,

a2 = [1 − zze, #⃝
r ]a = [1 − zze, #⃝

r ](a − za2) ∈ Aqnil .

Therefore a = a1 + a2 is the generalized right core decomposition of a. Therefore

ae, d⃝
r = (a1)

e, #⃝
r = z2ze, #⃝

r ,

as asserted.

Corollary 3.2. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ae, d⃝.
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(2) a ∈ Ad and ad ∈ A #⃝
r .

In this case, ae, d⃝ = (ad)2(ad)e, #⃝.

Proof. This is obvious by Theorem 3.1 and Corollary 2.4.

Lemma 3.3. Let z ∈ {ad
r }. Then

lim
n→∞

||(an − azan)∗||
1
n = 0.

Proof. Let x = a − aza. Then x ∈ Aqnil . For any λ ∈ C, we have 1 − λx ∈ A−1, and so 1 − λx∗ ∈ A−1.
This implies that x∗ ∈ Aqnil . We easily check that

||(an − azan)∗|| 1
n = ||(an)∗(1 − az)∗|| = ||(an)∗[(1 − az)n]∗||

= ||[(a − aza)n]∗|| = ||(x∗)n||.

Since x∗ ∈ Aqnil , we have
lim

n→∞
||(an − azan)∗||

1
n = 0.

Lemma 3.4. Let a ∈ Ae, d⃝
r . Then

lim
n→∞

||((aw)n − awae, d⃝
r w(aw)n)∗||

1
n = 0.

Proof. Construct x, y, z as in the proof of Theorem 2.1. Then

lim
n→∞

||(an − xan+1)∗||
1
n = lim

n→∞
||(y∗)n||

1
n = 0.

Similarly to Corollary 2.2, we check that

||(an − anxnan)∗||
1
n ≤ (1 + ||a∗||||x∗||)||(an − xan+1)∗||

1
n .

Therefore
lim

n→∞
||(an − an(ae, d⃝

r )nan)∗||
1
n = 0.

In view of Corollary 2.4, we have

lim
n→∞

||(an − aae, d⃝
r an)∗||

1
n = 0,

as asserted.

We are ready to prove:

Theorem 3.5. Let a ∈ A. Then a ∈ Ae, d⃝
r if and only if there exist x ∈ A and z ∈ {ad

r } such that

xax = x = ax2, xA = zA,Ax = A(az)∗e.

In this case, ae, d⃝
r = x.

Proof. =⇒ Choose x = ae, d⃝
r . In view of Theorem 1.1, x = xax = ax2. By using Theorem 3.1, we can

find z ∈ {ad
r }
⋂Ae, #⃝

r such that
x = z2ze, #⃝

r .

Then we have
az2 = z, a − za2 ∈ Aqnil .
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Obviously, z = zze, #⃝
r z = (z2ze, #⃝

r )ze, #⃝
r z = xze, #⃝

r z. Accordingly, we have xA = zA.
Since ax2 = x, we have ax = anxn, and then

x = xax = xe−1(eax)∗ = xe−1(eanxn)∗ = xe−1(xn)∗(an)∗e
= xe−1(xn)∗(an − azan)∗e + xe−1(xn)∗(an)∗(az)∗e
= xe−1(xn)∗(an − azan)∗e + xe−1(anxn)∗(az)∗e
= xe−1(xn)∗(an − azan)∗e + xe−1(ax)∗(az)∗e.

Hence,
||x − xe−1(ax)∗(az)∗e|| 1

n = ||xe−1(xn)∗(an − azan)∗e|| 1
n

≤ ||xe−1(xn)∗|| 1
n ||(an − azan)∗|| 1

n ||e|| 1
n .

In view of Lemma 3.4,
lim

n→∞
||(an − azan)∗||

1
n = 0,

we derive that
lim

n→∞
||x − xe−1(ax)∗(az)∗e||

1
n = 0;

hence, x = xe−1(ax)∗(az)∗e. Then Ax ⊆ A(az)∗e.
Since az2 = z, we have anzn = az, and then we derive that

||(az)∗e − (az)∗eax|| 1
n = ||(zn)∗(ean)∗ − (zn)∗(eaxan)∗|| 1

n

= ||((z)n)∗(an − axan)∗e|| 1
n

≤ ||(zn)∗|| 1
n ||(an − axan)∗|| 1

n ||e|| 1
n .

In light of Lemma 3.4, we see that

lim
n→∞

||(an − axan)∗||
1
n = 0.

Then
lim

n→∞
||(az)∗e − (az)∗eax||

1
n = 0,

and so (az)∗e = (az)∗eax. Hence A(az)∗e ⊆ Ax. Therefore Ax = A(az)∗e, as required.
⇐= By hypothesis, there exists x ∈ A such that there exist x ∈ A and z ∈ {ad

r } such that

xax = x = ax2, xA = zA,Ax = A(az)∗e.

We claim that ae, d⃝
r = x.

Claim 1.
lim

n→∞
||an − axan||

1
n = 0.

Write z = xy for some y ∈ A. For any n ∈ N, we have

an = (an − azan) + azan,
axan = ax(an − azan) + axazan

= ax(an − azan) + a(xax)yan

= ax(an − azan) + (axy)an

= ax(an − azan) + azan.

Hence,
an − axan = (1 − ax)(an − azan),

and so
||an − axan||

1
n ≤ ||1 − ax||

1
n ||an − azan+1||

1
n ,
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we have
lim

n→∞
||an − axan||

1
n = 0.

Claim 2. (eax)∗ = eax.
Since Ax = A(az)∗e, we have x∗A = eazA. Write eaz = x∗y for some y ∈ A. Since xax = x, we

have x∗a∗x∗ = x∗, and then (ax)∗x∗ = x∗. This implies that (ax)∗eaz = (ax)∗(x∗y) = [(ax)∗x∗]y =

x∗y = eaz. Since xA = zA, we can find s ∈ A such that x = zs. Then (ax)∗e(ax) = (ax)∗ea(zs) =

[(ax)∗eaz]s = (eaz)s = eax. Hence (eax)∗ = [(ax)∗e(ax)]∗ = (ax)∗e(ax) = eax.
Therefore ae, d⃝

r = x, as asserted.

Corollary 3.6. Let a ∈ A. Then a has pseudo right e-core inverse if and only if

(1) a ∈ Ae, d⃝
r ;

(2) a has right Drazin inverse.

Proof. =⇒ By virtue of Theorem 2.1, a has generalized right e-core inverse. Therefore a has right
Drazin inverse by Theorem 3.5.

=⇒ Since a has generalized right e-core inverse, by Theorem 3.5, there exists x ∈ A and z ∈ Ae, #⃝
r

such that
xax = x = ax2, xA = zA,Ax = A(az)∗e.

Since a has right Drazin inverse, we have ad
r = aD

r . Let n = ind(a). Then an = an+1ad, aad = ada and
ad = a(ad)2. Hence, ad = an[(ad)n+1] and an = adan+1. Then anA = adA. On the other hand, we have

(ad)∗ = [(ad)n+1]∗(an)∗, (an)∗ = (an+1)∗(ad)∗.

Therefore A(ad)∗e = Aane, and so Ax = A(an)∗e. This implies that a has pseudo right e-core inverse,
as asserted.

4. Representations of Generalized Right e-Core Inverse

Let T =

(
a c
b d

)
∈ A2×2. Let e ∈ A be an Hermitan invertible element and E = diag(e, e).

Using a similar approach, we now extend the result in Proposition 4.4 of [7] to the right e-core inverse.

Lemma 4.1. Let s = d − ba−1c ∈ Ae, #⃝, p = 1− sse, #⃝
r and t = se, #⃝

r + 1− se, #⃝
r s. If v = a + c(1− ts)ba−1 ∈

A−1
r , then TM2(A) = T2M2(A).

Proof. Obviously, we have

T = PAQ, P =

(
1 0

ba−1 1

)
, A =

(
a 0
0 s

)
, Q =

(
1 a−1c
0 1

)
.

Since s ∈ Ae, #⃝
r , it follows by Theorem 1.1 that s ∈ A(1,3)

e . Hence we verify that A(1,3)
E =(

a−1 0

0 s(1,3)
e

)
. Set U = AQP + I2 − AA(1,3)

E . Then

U =

(
a + cba−1 c

sba−1 s + 1 − ss(1,3)
e

)
.

One easily checks that

(s + 1 − ss(1,3)
e )(s(1,3)

e + 1 − ss(1,3)
e ) = 1 + s(1 − ss(1,3)

e )

= [1 − s(1 − ss(1,3)
e )]−1.
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Then U is right inverse and

U−1
r =

(
v−1

r −v−1
r ct

−tsba−1v−1
r t + tsba−1v−1

r ct

)
.

Thus, UM2(A) = M2(A). As s ∈ A is regular, so is T ∈ M2(A). In view of [7, Lemma 3.3], TM2(A) =

T2M2(A), as required.

Lemma 4.2. Let s = d − ba−1c ∈ Ae, #⃝
r , p = 1 − sse, #⃝

r , t = se, #⃝
r + 1 − se, #⃝

r s and e(ba−1) = (ba−1)e. If
u = 1 + (ba−1)∗pba−1 ∈ A−1, v = a + c(1 − ts)ba−1 ∈ A−1

r , then T ∈ M2(A)E, #⃝
r . In this case,

TE, #⃝
r =

(
β γ

δ ϵ

)
,

where
β = v−1

r u−1 + v−1
r ctsse, #⃝

r ba−1u−1,
γ = v−1

r u−1(ba−1)∗p − v−1
r ctsse, #⃝

r [1 − ba−1u−1(ba−1)∗p],
δ = (1 − ts)ba−1v−1

r u−1 + [(1 − ts)ba−1v−1
r c − 1]tsse, #⃝

r ba−1u−1,
ϵ = (1 − ts)ba−1v−1

r u−1(ba−1)∗p − [(1 − ts)ba−1v−1
r c − 1]tsse, #⃝

r

[1 − ba−1u−1(ba−1)∗p].

Proof. Set

S =

(
αu−1 αu−1(ba−1)∗p − a−1cse, #⃝

r

−se, #⃝
r ba−1u−1 se, #⃝

r [1 − ba−1u−1(ba−1)∗p]

)
,

where α = [1 + a−1cse, #⃝
r b]a−1.

Then we verify that
aαu−1 − cse, #⃝

r ba−1u−1

= (1 + cse, #⃝
r ba−1)u−1 − cse, #⃝

r ba−1u−1

= u−1,

a[αu−1(ba−1)∗p − a−1cse, #⃝
r ] + cse, #⃝

r [1 − ba−1u−1(ba−1)∗p]
= (1 + cse, #⃝

r ba−1)u−1(ba−1)∗p − cse, #⃝
r + cse, #⃝

r [1 − ba−1u−1(ba−1)∗p]
= (1 + cse, #⃝

r ba−1)u−1(ba−1)∗p − cse, #⃝
r ba−1u−1(ba−1)∗p

= u−1(ba−1)∗p,

bαu−1 − dse, #⃝
r ba−1u−1 = [bαa − dse, #⃝

r b]a−1u−1

= [b(1 + a−1cse, #⃝
r b)− dse, #⃝

r b]a−1u−1

= [b − (d − ba−1c)se, #⃝
r b]a−1u−1

= pba−1u−1

and
b[αu−1(ba−1)∗p − a−1cse, #⃝

r ] + dse, #⃝
r [1 − ba−1u−1(ba−1)∗p]

= ba−1(1 + cse, #⃝
r ba−1)u−1(ba−1)∗p − ba−1cse, #⃝

r + dse, #⃝
r − dse, #⃝

r ba−1u−1(ba−1)∗p
= ba−1u−1(ba−1)∗p − [d − ba−1c]se, #⃝

r ba−1u−1(ba−1)∗p + [d − ba−1c]se, #⃝
r

= ba−1u−1(ba−1)∗p − sse, #⃝
r ba−1u−1(ba−1)∗p + sse, #⃝

r

= sse, #⃝
r + pba−1u−1(ba−1)∗p.

Then we verify that

TS =

(
a c
b d

)(
αu−1 αu−1(ba−1)∗p − a−1cse, #⃝

r

−se, #⃝
r ba−1u−1 se, #⃝

r [1 − ba−1u−1(ba−1)∗p]

)

=

(
u−1 u−1(ba−1)∗p

p(ba−1)u−1 ss #⃝
r,e + p(ba−1)u−1(ba−1)∗p

)
.
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We observe that

u∗e = [1 + (ba−1)∗p∗(ba−1)]e
= e + (ba−1)∗p∗e(ba−1) = e + (ba−1)∗(ep)∗(ba−1)

= e + (ba−1)∗ep(ba−1) = e + e(ba−1)∗p(ba−1) = eu,
(eu−1)∗ = eu−1,

[eu−1(ba−1)∗p]∗ = p∗(ba−1)(u−1)∗e = p∗(ba−1)(eu−1)∗

= p∗(ba−1)eu−1 = p∗e(ba−1)u−1

= (ep)∗(ba−1)u−1 = ep(ba−1)u−1

and
[ep(ba−1)u−1(ba−1)∗p]∗

= [(ba−1)u−1(ba−1)∗p]∗(ep)∗ = [(ba−1)u−1(ba−1)∗p]∗ep
= [e(ba−1)u−1(ba−1)∗p]∗p = [(ba−1)(eu−1)(ba−1)∗p]∗p
= [p∗(ba−1)(eu−1)∗(ba−1)∗]p = [p∗(ba−1)eu−1)(ba−1)∗]p
= [p∗e(ba−1)u−1)(ba−1)∗]p = [(ep)∗(ba−1)u−1)(ba−1)∗]p
= epep(ba−1)u−1(ba−1)∗p,

and then
[e
(
ss #⃝

r,e + p(ba−1)u−1(ba−1)∗p
)
]∗ = e

(
ss #⃝

r,e + p(ba−1)u−1(ba−1)∗p
)
.

Thus
(
ETS

)∗
= ETS. Moreover, we see that

u−1a + u−1(ba−1)∗pb = a,
u−1c + u−1(ba−1)∗pd = c,

p(ba−1)u−1a + [ss #⃝
r,e + p(ba−1)u−1(ba−1)∗p]b = b,

p(ba−1)u−1c + [ss #⃝
r,e + p(ba−1)u−1(ba−1)∗p]d = d.

Hence, we have

TST =

(
u−1 u−1(ba−1)∗p

p(ba−1)u−1 ss #⃝
r,e + p(ba−1)u−1(ba−1)∗p

)(
a c
b d

)
= T.

Hence T(1,3)
E = S.

In view of Lemma 4.1, TM2(A) = T2M2(A). According to Theorem 1.1, T ∈ M2(A)E, #⃝
r . Moreover,

we have
TE, #⃝

r = PU−1
r AQT(1,3)

E = (PU−1
r )(AQT(1,3)

E )

=

(
v−1

r −v−1
r ct

(1 − ts)ba−1v−1
r t − (1 − ts)ba−1v−1

r ct

)
(

u−1 u−1(ba−1)∗p
−sse, #⃝

r ba−1u−1 sse, #⃝
r [1 − ba−1u−1(ba−1)∗p]

)

=

(
β γ

δ ϵ

)
,

where β, γ, δ and ϵ as mentioned before.

We are ready to prove:

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2025 doi:10.20944/preprints202507.0569.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0569.v1
http://creativecommons.org/licenses/by/4.0/


16 of 23

Theorem 4.3. Let s = d − ba−1c ∈ Ae, d⃝
r , p = 1 − sse, d⃝

r , t = se, d⃝
r + 1 − se, d⃝

r s, and let u = 1 +

(ba−1)∗pba−1 ∈ A−1, v = a + c(1 − ts)ba−1 ∈ A−1
r . If e(ba−1) = (ba−1)e and psb = (epb)∗s = 0,

then T ∈ M2(A)E, d⃝
r . In this case,

TE, d⃝
r =

(
β γ

δ ϵ

)
,

where
β = v−1

r u−1 + v−1
r ctsse, #⃝

r ba−1u−1,
γ = v−1

r u−1(ba−1)∗p − v−1
r ctsse, #⃝

r [1 − ba−1u−1(ba−1)∗p],
δ = (1 − ts)ba−1v−1

r u−1 + [(1 − ts)ba−1v−1
r c − 1]tsse, #⃝

r ba−1u−1,
ϵ = (1 − ts)ba−1v−1

r u−1(ba−1)∗p − [(1 − ts)ba−1v−1
r c − 1]tsse, #⃝

r

[1 − ba−1u−1(ba−1)∗p].

Proof. By virtue of Theorem 2.1, we have

d − ba−1c = x + y, x ∈ Ae,#, y ∈ Aqnil , x∗ey = yx = 0.

Evidently,
x = sse, #⃝

r s, y = s − sse, #⃝
r s.

Then

M = A + B, A =

(
a c
b d − y

)
, B =

(
0 0
0 y

)
.

Step 1. A has right E-core inverse and B is quasinilpotent.
Clearly, (d − y)− ba−1c = [d − ba−1c]− y = (x + y)− y = x ∈ Ae, #⃝

r .
It is easy to verify that

p = 1 − sse, d⃝
r = 1 − (x + y)xe, #⃝

r = 1 − xxe, #⃝
r ,

t = 1 + se, d⃝
r − se, d⃝

r s = 1 + xe, #⃝
r − xe, #⃝

r (x + y)
= 1 + xe, #⃝

r − xe, #⃝
r x + xe, #⃝

r xxe, #⃝
r y

= 1 + xe, #⃝
r − xe, #⃝

r x + [xe, #⃝
r e−1](exxe, #⃝

r )y
= 1 + xe, #⃝

r − xe, #⃝
r x + [xe, #⃝

r e−1](exxe, #⃝
r )∗y

= 1 + xe, #⃝
r − xe, #⃝

r x.

By hypothesis, we have
u = 1 + (ba−1)∗pba−1 ∈ A−1,
v = a + c(1 − tx)ba−1 ∈ A−1

r .

By hypothesis, we have e(ba−1) = (ba−1)e. In light of Lemma 4.2, A ∈ M2(A)E, #⃝
r . Moreover, we have

AE, #⃝
r =

(
β γ

δ ϵ

)
,

where
β = v−1

r u−1 + v−1
r ctsse, #⃝

r ba−1u−1,
γ = v−1

r u−1(ba−1)∗p − v−1
r ctsse, #⃝

r [1 − ba−1u−1(ba−1)∗p],
δ = (1 − ts)ba−1v−1

r u−1 + [(1 − ts)ba−1v−1
r c − 1]tsse, #⃝

r ba−1u−1,
ϵ = (1 − ts)ba−1v−1

r u−1(ba−1)∗p − [(1 − ts)ba−1v−1
r c − 1]tsse, #⃝

r

[1 − ba−1u−1(ba−1)∗p].

Step 2. M has generalized right e-core inverse.
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Obviously, d − y = x + ba−1c. Then we check that

A∗EB =

(
a∗ b∗

c∗ (d − y)∗

)(
0 0
0 ey

)

=

(
0 b∗ey
0 (d − y)∗ey

)
= 0,

BA =

(
0 0
0 y

)(
a c
b d − y

)

=

(
0 0
yb y(d − y)

)
= 0.

We verify that

b∗ey = b∗e[s − sse, #⃝
r s]

= b∗[e(1 − sse, #⃝
r )]s = b∗[e(1 − sse, #⃝

r )]∗s
= (epb)∗s = 0,

(d − y)∗ey = (x + ba−1c)∗ey = x∗ey + (a−1c)∗(b∗ey) = 0;
yb = [s − sse, #⃝

r s]b = psb = 0,
y(d − y) = y(x + ba−1c) = (yb)a−1c = 0.

According to Theorem 2.1, M has generalized right E-core inverse. In this case,

ME, d⃝
r = AE, #⃝

r =

(
β γ

δ ϵ

)
,

where β, γ, δ and ϵ as mentioned before.

Corollary 4.4. Let a ∈ A−1, d ∈ Ae, d⃝
r . Then

(
a c
0 d

)
∈ M2(A)E, d⃝

r . In this case,

(
a c
0 d

)E, d⃝

r

=

(
a−1 −a−1cde, d⃝

r

0 de, d⃝
r

)
.

Proof. Since (1 − de, d⃝
r d)dde, d⃝

r = 0, we easily obtain the result by Theorem 4.3.

We are now ready to prove:

Theorem 4.5. Let a, x ∈ A. Then the following are equivalent:

(1) ae, d⃝
r = x.

(2) a ∈ Ad
r and there exists an idempotent p ∈ A such that (ep)∗ = ep and

a =

(
a1 a2

a3 a4

)
p

, x =

(
x1 x2

0 0

)
p

,

where a1 ∈ (pAp)−1
r , x1 = (a1)

−1
r , a1x2 = a3x1 = a3x2 = 0 and (1 − p)am ∈ ℓ({ad

r }) for any
m ∈ N.

(3) a ∈ Ad
r and there exists an idempotent q ∈ A such that (eq)∗ = eq and

a =

(
a1 a2

a3 a4

)
q

, x =

(
0 0
x1 x2

)
q

,
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where a4 ∈ ((1 − q)A(1 − q))−1
r , x2 = (a4)

−1
r , a2x1 = a2x2 = a4x1 = 0 and qam ∈ ℓ({ad

r }) for any
m ∈ N.

Proof. (1) ⇒ (2) Let p = aae, d⃝
r . Then (1 − p)ae, d⃝

r = 0. Write

a =

(
a1 a2

a3 a4

)
q

, x =

(
x1 x2

0 0

)
q

.

Since (
a1 a2

a3 a4

)
q

(
x1 x2

0 0

)
q

= ax = q =

(
q 0
0 0

)
q

,

we deduce that a1 ∈ (pAp)−1
r , x1 = (a1)

−1
r , a1x2 = a3x1 = a3x2 = 0.

Let z ∈ {ad
r } and m ∈ N. For any n ≥ m, we have z = az2 = a2z3 = · · · = anzn for any n ∈ N.

Hence,
||(1 − p)amz|| 1

n = ||(1 − ax)anzn−m|| 1
n

≤ ||an − axan|| 1
n ||z||1− m

n .

Since lim
n→∞

||an − axan|| 1
n = 0, we derive that

lim
n→∞

||(1 − p)amz||
1
n = 0;

hence, (1 − p)amz = 0, as required.
(2) ⇒ (1) By hypothesis, there exists an idempotent p ∈ A such that (ep)∗ = ep and

a =

(
a1 a2

a3 a4

)
p

, x =

(
x1 x2

0 0

)
p

,

where a1 ∈ (pAp)−1
r , x1 = (a1)

−1
r , a1x2 = a3x1 = a3x2 = 0 and (1 − p)am ∈ ℓ({ad

r }) for any m ∈ N.
Then we check that

ax =

(
a1x1 0

0 0

)
p

= p,

(eax)∗ = (ep)∗ = ep = eax,

ax2 = (ax)x = px =

(
px1 px2

0 0

)
p

= x.

Let z ∈ ℓ({ad
r }) and m ∈ N. Then az2 = z, a − za2 ∈ Aqnil and (1 − p)amz = 0. Hence, (1 − p)z =

(1 − p)az2 = [(1 − p)az]z = 0. One easily checks that

||an − axan|| 1
n = ||(1 − p)an|| 1

n = ||(1 − p)(a − za2)n|| 1
n

≤ ||1 − p|| 1
n ||(a − za2)n|| 1

n .

As a − za2 ∈ Aqnil , we see that
lim

n→∞
||(a − za2)n||

1
n = 0,

and then
lim

n→∞
||an − axan||

1
n = 0.

Therefore ae, d⃝
r = x, as desired.

(1) ⇔ (3) This is proved as as the preceding discussion for q = 1 − aae, d⃝
r .

Corollary 4.6. Let a, x ∈ A. Then the following are equivalent:
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(1) a d⃝ = x.
(2) a ∈ Ad and there exists a projection p ∈ A such that

a =

(
a1 a2

a3 a4

)
p

, x =

(
x1 x2

0 0

)
p

,

where a1 ∈ (pAp)−1, x1 = a−1
1 , a1x2 = a3x1a3x2 = 0 and (1 − p)ad = 0.

(3) a ∈ Ad and there exists a projection q ∈ A such that

a =

(
a1 a2

a3 a4

)
q

, x =

(
0 0
x1 x2

)
q

,

where a4 ∈ ((1 − q)A(1 − q))−1, x2 = a−1
4 , a2x1 = a2x2 = a4x1 = 0 and qad = 0.

Proof. This is obvious by choosing e = 1 in Theorem 4.5.

5. Pseudo Right e-Core Inverse
Recall that a ∈ A has pseudo right e-core inverse provided that there exists x ∈ A such that

x = ax2, (eax)∗ = eax, an = axan.

We denote x by ae, D⃝
r . The aim of this section is to investigate pseudo right e-core inverse in a Banach

*-algebra. Let a ∈ A. Set
{aD

r } = {x ∈ A | ax2 = x, an = axan}.

We now derive the following.

Lemma 5.1. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ae, D⃝
r .

(2) an ∈ Ae, #⃝
r for some n ∈ N.

(3) a ∈ AD
r and an ∈ A(1,3)

e for some n ∈ N.
(4) a ∈ AD

r
⋂Ae, d⃝

r .

Proof. These are proved as in [27, Theorem 4.8 and Theorem 4.9].

Theorem 5.2. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ae, D⃝
r .

(2) There exist x, y ∈ A such that

a = x + y, x∗ey = yx = 0, x ∈ Ae, #⃝
r , y ∈ Anil .

(3) There exists an idempotent p ∈ A such that

an + p ∈ A−1
r , (ep)∗ = ep, ap ∈ Anil , (1 − p)A = a(1 − p)A.

(4) {aD
r }
⋂Ae, #⃝

r ̸= ∅.

In this case, ae, D⃝
r = z2ze, #⃝

r for z ∈ {aD
r }
⋂Ae, #⃝

r .

Proof. This is obvious by Theorem 2.1, Theorem 2.5, Theorem 3.1 and Lemma 5.1.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2025 doi:10.20944/preprints202507.0569.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0569.v1
http://creativecommons.org/licenses/by/4.0/


20 of 23

Corollary 5.3. Let a, b ∈ Ae, D⃝
r . If ab = ba = a∗eb = 0, then a + b ∈ Ae, D⃝

r . In this case,

(a + b)e, D⃝
r = ae, D⃝

r + be, D⃝
r .

Proof. In view of Theorem 5.2, we have decompositions:

a = x + y, x∗ey = yx = 0, x ∈ Ae, #⃝
r , y ∈ Anil ;

b = s + t, s∗et = ts = 0, s ∈ Ae, #⃝
r , t ∈ Anil .

Explicitly, we have x = aae, D⃝aa and s = bbe, D⃝b. Then a + b = (x + s) + (y + t). We directly check that

x + s = (x + s)(xe, #⃝
r + se, #⃝

r )(x + s),
xe, #⃝

r + se, #⃝
r = (x + s)(xe, #⃝

r + se, #⃝
r )2,(

(x + s)(xe, #⃝
r + se, #⃝

r )
)∗

= (x + s)(xe, #⃝
r + se, #⃝

r ).

Then x + s ∈ Ae, #⃝
r and (x + s)e, #⃝

r = xe, #⃝
r + se, #⃝

r . Since yt = (a − aae, D⃝a)(b − bbe, D⃝b) = 0, it follows by
??? that y + t ∈ Anil .

Obviously, we check that

(x + s)∗e(y + t) = x∗ey + x∗et + s∗ey + s∗et = x∗et + s∗ey
= (ae, D⃝a)∗(a∗eb)(1 − be, D⃝b) + (be, D⃝b)∗(b∗ea)(1 − ae, D⃝a)
= 0,

(y + t)(x + s) = yx + ys + tx + ts = ys + tx
= (a − aae, D⃝a)bbe, D⃝b + (b − bbe, D⃝b)aae, D⃝a = 0.

By using Theorem 2.1,
(a + b)e, D⃝ = (x + s)e, #⃝

= xe, #⃝ + se, #⃝

= ae, D⃝ + be, D⃝,

as asserted.

Theorem 5.4. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ae, D⃝
r .

(2) There exists b ∈ A such that

bab = b, (eab)∗ = eab, abaA = a2baA, a − aba ∈ Anil .

(3) There exists b ∈ A such that

bab = b, (eab)∗ = eab, abaA = a2baA, an = aban

for some n ∈ N.

Proof. This is proved by Theorem 2.8 and Lemma 5.1.

Corollary 5.5. Let a ∈ A. Then the following are equivalent:

(1) a ∈ A D⃝.
(2) There exists b ∈ A such that

bab = b, (ab)∗ = ab, abaA = a2baA, a − aba ∈ Anil .
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(3) There exists b ∈ A such that

bab = b, (ab)∗ = eab, abaA = a2baA, an = aban

for some n ∈ N.

Proof. This is obvious by choosing e = 1 in Theorem 5.4.

Let A ∈ Cn×n and G be the Minkowski matric matrix, that is, G = diag(1,−In−1). The Minkowski
adjoint of the matrix A is defined as A∼ = GA∗G. The m⃝-core-EP inverse of A is defined as the matrix
X ∈ Cn×n satisfying four conditions:

XAX = X, XAk+1 = Ak, (AX)∼ = AX and R(X) ⊆ R(Ak),

is called the m⃝-core-EP inverse of A, and denoted by A E⃝ (see [26,30])

Theorem 5.6. Let A ∈ Cn×n and G be the Minkowski matric matrix. Then

A E⃝ = AG, D⃝
r = AG, D⃝.

Proof. Since G = diag(1,−In−1), we check that G∗ = G and G2 = In. Thus, G is an Hermitian
invertible matrix. It is easy to verify that

(AX)∼ = AX
⇔ G(AX)∗G = AX
⇔ (GAX)∗ = (AX)∗G∗ = (AX)∗G = G−1 AX = GAX.

Therefore AG, D⃝
r = A E⃝, as asserted.

The m⃝-core inverse of A is defined as the matrix X ∈ Cn×n satisfying four conditions:

XAX = X, XA2 = A, (AX)∼ = AX and R(X) ⊆ R(A),

is called the m⃝-core inverse of A, and denoted by A m⃝.

Corollary 5.7. Let A ∈ Cn×n. Then

A = X + Y, X∗EY = YX = 0, X has m⃝-core inverse, Y is nilpotent.

In this case, A E⃝ = X m⃝.

Proof. We obtain the result by Theorem 5.2 and Theorem 5.6.

Remark 5.8. Generalized left e-core inverse can be defined dually. We can establish the corresponding results
for generalized left e-core inverse in a similar way.
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20. D. Mosić, Weighted core-EP inverse and weighted core-EP pre-orders in a C∗-algebra, J. Aust. Math. Soc.,

111(2021), 76–110.
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