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Abstract: This study presents the solution of the second type of a two-dimensional nonlinear

integral equation in Banach space. Also, the existence and uniqueness of this equation’s solution are

discussed. We utilize a numerical approach involving hybrid and block-pulse functions to obtain the

approximate solution of a two-dimensional nonlinear integral equation. Nonlinear integral equation

in two dimensions is reduced numerically to a system of nonlinear algebraic equations that can be

solved using numerical methods. This study focuses on showing the convergence analysis for the

numerical approach and obtaining an error estimate. Some numerical examples have been provided

to demonstrate the approach’s viability and efficacy.

Keywords: two- dimensional nonlinear integral equation; Banach fixed point theorem; block-pulse

function; hybrid functions; legendre polynomial
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1. Introduction

Integral equations are used in many disciplines of applied mathematics to explore and solve

problems. See [1,5,6,10,24,26,27] for more information on the topics of two-dimensional nonlinear

integral equations, which have long been of growing interest in many fields, including medicine,

biology, physics, geography, and fuzzy control. According to the references [2,3,7,9–12], many

problems in engineering, applied mathematics, and mathematical physics can be reduced into

two-dimensional nonlinear integral equations. The analytical solutions to these equations are typically

difficult. Therefore, it is necessary to find approximations. For example, Bernstein polynomials hybrid

with functions of block-pulse form [4,22] and Legendre hybrid with functions of block-pulse form

[13,21] have both recently been examined as computational approaches for solving two-dimensional

nonlinear integral equations. Electrical engineering was originally introduced to block-pulse functions

by Harmuth, after which additional academics discussed the topic [8].

Recently, hybrid functions have been considered for solving numerous mathematical models,

including [20,23,25]. Combining Legendre polynomials and block-pulse functions yields one of these

functions. Using block-pulse functions and Legendre polynomials, [18] described a method for

solving mixed-type Hammerstein integral equations, whereas [17] proposed a method for solving

optimal control of Volterra integral systems. These hybrid functions have also been applied to

solving nonlinear Fredholm-Hammerstein systems. [14,30] obtained a numerical solution of partial

differential equations with nonlocal integral conditions; [19] solved Fredholm integral equation of

the first kind; [28] discovered the optimal solution of linear time-delay systems; [29] discovered the

numerical solutions of stochastic Volterra-Fredholm integral equations; and [13] includes the necessary

definitions as well as some properties of Legendre polynomials and hybrid block-pulse functions.
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In this study, the second type of two-dimensional nonlinear integral is considered. Under

special conditions, the Banach fixed point theorem is used to discuss and prove the existence of a

unique solution to two-dimensional nonlinear integral equations. We discuss the properties of hybrid

functions, which combine block-pulse functions and Legendre polynomials. These integral equations

are solved based on some useful properties of hybrid functions. This technique’s major characteristic

is its ability to transform an integral problem into a set of algebraic equations; as a result, the solution

processes are correspondingly either reduced or simplified.

The article’s structure is as follows: : In section 2, the existence and unique solution of Eq. (1) are

discussed. Section 3 describes a method for estimating a two-dimensional nonlinear integral equation’s

solution. The convergence analysis of the provided method is derived in section 4, Numerical results

are shown in section 5, and conclusion and Remarks are presented in the last section 6.

This study aims to present a numerical approach for solving the following two-dimensional

nonlinear integral equation approximatively:

γψ(x, y) = f (x, y) + λ1

∫ 1

0

∫ 1

0
Φ(x, τ; y, v)µ(τ, v, ψ(τ, v))dvdτ

+ λ2

∫ x

0

∫ 1

0
G(x, τ; y, v)ν(τ, v, ψ(τ, v))dvdτ,

(1)

where λr, r = 1, 2 are constant scalers having several physical meanings, the function ψ(x, y) is

unknown in the Banach space L2[0, 1]× L2[0, 1]. The kernels Φ(x, τ; y, v), G(x, τ; y, v) are continuous in

the same space and the known function f (x, y) is continuous in the space L2[0, 1]× L2[0, 1]. In addition

the constant γ defines the kind of two- dimensional nonlinear integral equations.

2. Existence of a unique solution for the integral equation

The existence of a unique solution of problem (1) will be discussed and proved in this section

using the Banach fixed point theorem. For this, we write Eq. (1) in the form of an integral operator:

Vψ(x, y) =
1

γ
f (x, y) + Vψ(x, y); γ 6= 0, (2)

where

Vψ(x, y) =
λ1

γ

∫ 1

0

∫ 1

0
Φ(x, τ; y, v)µ(τ, v, ψ(τ, v))dvdτ

+
λ2

γ

∫ x

0

∫ 1

0
G(x, τ; y, v)ν(τ, v, ψ(τ, v))dvdτ.

(3)

Also, we assume the following conditions:

(i) The kernels Φ(x, τ; y, v) and G(x, τ; y, v) satisfy the conditions: ‖Φ(x, τ; y, v)‖ ≤
A1, ‖G(x, τ; y, v))‖ ≤ A2, where A1 and A2 are two constants, assume A = max{A1, A2}.

(ii) ‖ f (x, y)‖ =
[

∫ 1
0

∫ 1
0 | f (x, y)|2dxdy

] 1
2
= D, D is a constant.

(iii) The function µ(x, y, ψ(x, y)) satisfies the following conditions:

‖µ(x, y, ψ(x, y))‖ =

[

∫ 1

0

∫ 1

0
|µ(x, y, ψ(x, y))|2dxdy

]
1
2

≤ M1‖ψ(x, y)‖, (a)

‖µ(x, y, ψ1(x, y))− µ(x, y, ψ2(x, y))‖ ≤ M2‖ψ1(x, y)− ψ2(x, y)‖. (b)
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(iv) The function ν(x, y, ψ(x, y)) is bounded and satisfy:

‖ν(x, y, ψ(x, y))‖ =

[

∫ 1

0

∫ 1

0
|ν(x, y, ψ(x, y))|2dxdy

]
1
2

≤ N1‖ψ(x, y)‖, (a)

‖ν(x, y, ψ1(x, y))− ν(x, y, ψ2(x, y))‖ ≤ N2‖ψ1(x, y)− ψ2(x, y)‖. (b)

Theorem 1. Assume that the conditions (i)− iv) are satisfied. Eq. (1) has an unique solution ψ(x, y) in the

space, L2[0, 1]× L2[0, 1]. If the condition

η = A

∣

∣

∣

∣

λ

γ

∣

∣

∣

∣

[M + N] < 1; (λ = max{λ1, λ2}, M = max{M1, M2}, N = max{N1, N2}) (4)

is true.

The following two lemmas are necessary for the theorem’s proof:

Lemma 1. Under the conditions (i), (ii), (iii − a), and (iv − a), the operator Vψ(x, y) defined by Eq. (2)

maps the space L2[0, 1]× L2[0, 1] into itself.

Proof. In light of formulas (2) and (3), we obtain

‖Vψ(x, y)‖ ≤ 1

|γ| ‖ f (x, y)‖+
∣

∣

∣

∣

λ1

γ

∣

∣

∣

∣

∥

∥

∥

∥

∫ 1

0

∫ 1

0
|Φ(x, τ; y, v)|µ(τ, v, ψ(τ, v))dvdτ

∥

∥

∥

∥

+

∣

∣

∣

∣

λ2

γ

∣

∣

∣

∣

∥

∥

∥

∥

∫ x

0

∫ 1

0
|G(x, τ; y, v)|ν(τ, v, ψ(τ, v))dvdτ

∥

∥

∥

∥

.

Using conditions (i) and (ii), we get

‖Vψ(x, y)‖ ≤ D

|γ| + A

∣

∣

∣

∣

λ1

γ

∣

∣

∣

∣

∥

∥

∥

∥

∫ 1

0

∫ 1

0
|µ(τ, v, ψ(τ, v))dvdτ

∥

∥

∥

∥

+ A

∣

∣

∣

∣

λ2

γ

∣

∣

∣

∣

∥

∥

∥

∥

∫ x

0

∫ 1

0
ν(τ, v, ψ(τ, v))dvdτ

∥

∥

∥

∥

.

Given conditions (iii − a) and (iv − a), the above inequality takes on the following form:

‖Vψ(x, y)‖ ≤ D

|γ| + AM‖ψ(x, y)‖
∣

∣

∣

∣

λ1

γ

∣

∣

∣

∣

∥

∥

∥

∥

∫ 1

0

∫ 1

0
dvdτ

∥

∥

∥

∥

+ AN‖ψ(x, y)‖
∣

∣

∣

∣

λ2

γ

∣

∣

∣

∣

∥

∥

∥

∥

∫ x

0

∫ 1

0
dvdτ

∥

∥

∥

∥

,

where max
0≤x≤1

|x| = 1, so that last inequality becomes

‖Vψ(x, y)‖ ≤ D

|γ| + A

∣

∣

∣

∣

λ

γ

∣

∣

∣

∣

[M + N]‖ψ(x, y)‖,

since

‖Vψ(x, y)‖ ≤ D

|γ| + η‖ψ(x, y)‖; η = A

∣

∣

∣

∣

λ

γ

∣

∣

∣

∣

[M + N] < 1. (5)

According to this inequality, the operator V maps the ball Br ⊂ L2[0, 1]× L2[0, 1] into itself, where

r =
D

|γ|(1 − η)
,
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since, r > 0, D > 0, therefore we have η < 1. Furthermore, lower bounds for the operators V and V

are involved in the inequality (5).

Lemma 2. If the conditions (i), (iii − b), and (iv − b) are verified, then the operator Vψ(x, y) defined by Eq.

(2) is continuous in the space L2[0, 1]× L2[0, 1].

Proof. For the continuity, Given two functions Ψ1(x, y) and Ψ2(x, y) in the space L2[0, 1]× L2[0, 1]

and satisfy Eq. (2), then

Vψ1(x, y)− Vψ2(x, y) =
λ1

γ

∫ 1

0

∫ 1

0
Φ(x, τ; y, v)[µ(τ, v, ψ1(τ, v))− µ(τ, v, ψ2(τ, v))]dvdτ

+
λ2

γ

∫ x

0

∫ 1

0
G(x, τ; y, v)[ν(τ, v, ψ1(τ, v))− ν(τ, v, ψ2(τ, v))]dvdτ,

applying the properties of the norm, we obtain

‖Vψ1(x, y)− Vψ2(x, y)‖ ≤
∣

∣

∣

∣

λ1

γ

∣

∣

∣

∣

∥

∥

∥

∥

∫ 1

0

∫ 1

0
|Φ(x, τ; y, v)||µ(τ, v, ψ1(τ, v))− µ(τ, v, ψ2(τ, v))|dvdτ

∥

∥

∥

∥

+

∣

∣

∣

∣

λ2

γ

∣

∣

∣

∣

∥

∥

∥

∥

∫ x

0

∫ 1

0
|G(x, τ; y, v)||ν(τ, v, ψ1(τ, v))− ν(τ, v, ψ2(τ, v))|dvdτ

∥

∥

∥

∥

.

In view of the conditions (i), (iii-b), and (iv-b), the above inequality becomes

‖Vψ1(x, y)− Vψ2(x, y)‖ ≤ A

∣

∣

∣

∣

λ

γ

∣

∣

∣

∣

[M + N]‖ψ1(x, y)− ψ2(x, y)‖,

since

‖Vψ1(x, y)− Vψ2(x, y)‖ ≤ η‖ψ1(x, y)− ψ2(x, y)‖.

This inequality shows that, V is a continuous operator in L2[0, 1]× L2[0, 1]. Moreover V is a contraction

operator under the condition η < 1.

The previous two Lemmas 1 and 2 show that the operator V defined by (2) is a contraction

operator in the space L2[0, 1]× L2[0, 1]. Hence, from Banach fixed point theorem, V has a unique fixed

point which is of course, the unique solution of Eq. (1).

3. Method of solution for the main problem

This section applies the collocation method, two-dimensional hybrid functions, and the

Gauss quadrature formula to transform the integral equation (1) into nonlinear systems of equations.

The following results are obtained by expanding the function Ψ(x, y) in Eq. (1) in relation to

two-dimensional hybrid functions:

Ψ(x, y) =
∞

∑
m1=1

∞

∑
n1=0

∞

∑
m2=1

∞

∑
n2=0

cm1n1m2n2 hm1n1m2n2(x, y), (6)

where the finite series in equation (6) can be written as

ΨS,K(x, y) =
S

∑
m1=1

K−1

∑
n1=0

S

∑
m2=1

K−1

∑
n2=0

cm1n1m2n2 hm1n1m2n2(x, y). (7)

where cm1n1m2n2 , m1, m2 = 1, 2, . . . , S, n1, n2 = 1, 2, . . . , K − 1, and S, K are the unknown hybrid

coefficients to be determined.
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Substituting Eq. (7) into Eq. (1) yields

γψS,K(x, y) = f (x, y) + λ1

∫ 1

0

∫ 1

0
Φ(x, τ; y, v)µ(τ, v, ψS,K(τ, v))dvdτ

+ λ2

∫ x

0

∫ 1

0
G(x, τ; y, v)ν(τ, v, ψS,K(τ, v))dvdτ,

(8)

Now, we discretize Eq. (8) at the set of collocation nodes (xm, yn) for m, n = 1, 2, . . . , SK, as follows:

γψS,K(xm, yn) = f (xm, yn) + λ1

∫ 1

0

∫ 1

0
Φ(xm, τ; yn, v)µ(τ, v, ψS,K(τ, v))dvdτ

+ λ2

∫ xm

0

∫ 1

0
G(xm, τ; yn, v)ν(τ, v, ψS,K(τ, v))dvdτ,

(9)

where

xm =
1

2

(

cos

(

(2m − 1)π

2SK

)

+ 1

)

, m = 1, 2, . . . , SK,

and

yn =
1

2

(

cos

(

(2n − 1)π

2SK

)

+ 1

)

, n = 1, 2, . . . , SK,

The integral operators in Eq. (9) are approximated using the Gauss-Legendre quadrature formula. For

this, we use the following transformations to convert the integrals over [0, 1] into the integral over

[−1, 1], respectively

ξ = 2τ − 1; τ ∈ [0, 1],

̺ = 2v − 1; v ∈ [0, 1].

The integral over [0, xm] must also be changed into the integral over [−1, 1], having the following form

ξ̄ =
2

xm
τ − 1; τ ∈ [0, xm].

Then Eq. (9) is converted to

γψS,K(xm, yn) = f (xm, yn)

+
λ1

4

∫ 1

−1

∫ 1

−1
Φ(xm,

1

2
(ξ + 1); yn,

1

2
(̺ + 1))µ(

1

2
(ξ + 1),

1

2
(̺ + 1), ψS,K(

1

2
(ξ + 1),

1

2
(̺ + 1)))d̺dξ

+
λ2xm

4

∫ 1

−1

∫ 1

−1
G(xm,

xm

2
(ξ̄ + 1); yn,

1

2
(̺ + 1))

× ν(
xm

2
(ξ̄ + 1),

1

2
(̺ + 1), ψS,K(

xm

2
(ξ̄ + 1),

1

2
(̺ + 1)))d̺dξ̄.

The above equation can be expressed as follows using Gauss-Legendre quadrature:
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γψS,K(xm, yn) = f (xm, yn)

+
λ1

4

ℓ1

∑
j=1

ℓ2

∑
i=1

wjwiΦ(xm,
1

2
(ξi + 1); yn,

1

2
(̺j + 1))

× µ(
1

2
(ξi + 1),

1

2
(̺j + 1), ψS,K(

1

2
(ξi + 1),

1

2
(̺j + 1)))

+
λ2xm

4

ℓ1

∑
j=1

ℓ̄2

∑
i=1

wjw̄iG(xm,
xm

2
(ξ̄i + 1); yn,

1

2
(̺j + 1))

× ν(
xm

2
(ξ̄i + 1),

1

2
(̺j + 1), ψS,K(

xm

2
(ξ̄i + 1),

1

2
(̺j + 1))),

m = 1, 2, . . . , SK, n = 1, 2, . . . , SK,

(10)

and wj, wi and w̄i are the corresponding weights.

This technique can be used to transform the two-dimensional nonlinear integral problem (1) into

a solvable nonlinear system of algebraic equations.

4. Convergence analysis

The aim of this section is to describe the uniform convergence of the hybrid functions

expansion and to determine the maximum absolute truncation error of the function Ψ based on hybrid

functions.

Theorem 2. If Ψ ∈ C4[0, 1], then the function Ψ(x, y) converges uniformly to the infinite sum of the hybrid

functions of Ψ(x, y) described by (6)

Proof. The hybrid coefficients are defined as

cm1n1m2n2 =

∫ 1
0

∫ 1
0 Ψ(x, y)hm1n1m2n2(x, y)dxdy
∫ 1

0

∫ 1
0 h2

m1n1m2n2
(x, y)dxdy

=

∫

m2
S

m2−1
S

∫

m1
S

m1−1
S

Ψ(x, y)Ln1
(2Sx − 2m1 + 1)Ln2(2Sy − 2m2 + 1)dxdy

∫

m1
S

m1−1
S

L2
n1
(2Sx − 2m1 + 1)dx

∫

m2
S

m2−1
S

L2
n2
(2Sy − 2m2 + 1)dy

.

Now, suppose that 2m1 − 1 = m̂1 and 2Sx − m̂1 = ℑ, therefore

cm1n1m2n2 =

∫

m2
S

m2−1
S

(

∫ 1
−1 Ψ( m̂1+ℑ

2S , y)Ln1
(ℑ)dℑ

)

Ln2(2Sy − 2m2 + 1)dy

∫ 1
−1 L2

n1
(ℑ)dℑ

∫

m2
S

m2−1
S

L2
n2
(2Sy − 2m2 + 1)dy

=
(2n1 + 1)

2

∫

m2
S

m2−1
S

(

∫ 1
−1 Ψ( m̂1+ℑ

2S , y)Ln1
(ℑ)dℑ

)

Ln2(2Sy − 2m2 + 1)dy

∫

m2
S

m2−1
S

L2
n2
(2Sy − 2m2 + 1)dy

.
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Using the technique of integration by parts with regard to ℑ and (2n+ 1)Ln(ℑ) = L′
n+1(ℑ)− L′

n−1(ℑ),
we obtain

cm1n1m2n2 = −1

2

∫

m2
S

m2−1
S

(

∫ 1
−1

∂
∂ℑΨ( m̂1+ℑ

2S , y)(Ln1+1(ℑ)− Ln1−1(ℑ))dℑ
)

Ln2(2Sy − 2m2 + 1)dy

∫

m2
S

m2−1
S

L2
n2
(2Sy − 2m2 + 1)dy

.

Once again, an integration by parts of above relation, results that

cm1n1m2n2 =

1

2

∫

m2
S

m2−1
S

(

∫ 1
−1

∂2

∂ℑ2 Ψ( m̂1+ℑ
2S , y)[

−Ln1
(ℑ)

2n1+3 − Ln1
(ℑ)−Ln1−2(ℑ)

2n1−1 ]dℑ
)

Ln2(2Sy − 2m2 + 1)dy

∫

m2
S

m2−1
S

L2
n2
(2Sy − 2m2 + 1)dy

.

Now, we have

cm1n1m2n2 =
1

2(2n1 + 3)(2n1 − 1)

∫

m2
S

m2−1
S

(

∫ 1
−1

∂2

∂ℑ2 Ψ( m̂1+ℑ
2S , y)ℵn1

(ℑ)dℑ
)

Ln2(2Sy − 2m2 + 1)dy

∫

m2
S

m2−1
S

L2
n2
(2Sy − 2m2 + 1)dy

,

where

ℵn1
(ℑ) = (2n1 − 1)Ln1+2(ℑ)− (4n1 + 2)Ln1

(ℑ) + (2n1 + 3)Ln1−2(ℑ).

Similarly, changing the variable for y as 2m2 − 1 = m̂2 where 2Sy − m̂2 = ℘ and integrating by parts

with respect to ℘, we get

cm1n1m2n2 =
1

4(2n1 + 3)(2n1 − 1)(2n2 + 3)(2n2 − 1)
∫ 1

−1

∫ 1

−1

∂4

∂℘2∂ℑ2
Ψ(

m̂1 +ℑ
2S

,
m̂2 + ℘

2S
)ℵn1

(ℑ)ℵn2(℘)dℑd℘,

where

ℵn2(℘) = (2n2 − 1)Ln2+2(℘)− (4n2 + 2)Ln2(℘) + (2n2 + 3)Ln2−2(℘).

Using the chain derivatives and σ = max(x,y)∈[0,1]

∣

∣

∣

∂4Ψ(x,y)
∂x2∂y2

∣

∣

∣, it follows that

cm1n1m2n2 ≤ σ

64S4(2n1 + 3)(2n1 − 1)(2n2 + 3)(2n2 − 1)

∫ 1

−1

∫ 1

−1
|ℵn1

(ℑ)||ℵn2(℘)|dℑd℘,

≤ σ

64m2
1m2

2(2n1 + 3)(2n1 − 1)(2n2 + 3)(2n2 − 1)

∫ 1

−1

∫ 1

−1
|ℵn1

(ℑ)||ℵn2(℘)|dℑd℘.

(11)

However

(

∫ 1

−1
|ℵn1

(ℑ)|dℑ
)2

=

(

∫ 1

−1
|(2n1 − 1)Ln1+2(ℑ)− (4n1 + 2)Ln1

(ℑ) + (2n1 + 3)Ln1−2(ℑ)|dℑ
)

,

≤2
∫ 1

−1
|(2n1 − 1)2L2

n1+2(ℑ) + (4n1 + 2)2L2
n1
(ℑ) + (2n1 + 3)2L2

n1−2(ℑ)|dℑ,

Using the Legendre polynomials’ orthogonality property, we determine that

(

∫ 1

−1
|ℵn1

(ℑ)|dℑ
)2

≤ 24(2n1 + 3)2

2n1 − 3
, (12)
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thus
∫ 1

−1
|ℵn1

(ℑ)|dℑ ≤ 2
√

6(2n1 + 3)√
2n1 − 3

, (13)

and
∫ 1

−1
|ℵn2(℘)|d℘ ≤ 2

√
6(2n2 + 3)√
2n2 − 3

. (14)

By substituting (13) and (14) into (11), we obtain

cm1n1m2n2 ≤ 24σ

64m2
1m2

2(2n1 − 1)(2n2 − 1)
√

(2n1 − 3)
√

(2n2 − 3)
,

≤ 3σ

8m2
1m2

2(2n1 − 3)
3
2 (2n2 − 3)

3
2

.
(15)

Therefore, the series ∑
∞
m1=1 ∑

∞
n1=0 ∑

∞
m2=1 ∑

∞
n2=0 is absolutely convergent. Also,

|Ψ(x, y)| =
∣

∣

∣

∣

∣

∞

∑
m1=1

∞

∑
n1=0

∞

∑
m2=1

∞

∑
n2=0

cm1n1m2n2 hm1n1m2n2(x, y)

∣

∣

∣

∣

∣

≤
∞

∑
m1=1

∞

∑
n1=0

∞

∑
m2=1

∞

∑
n2=0

|cm1n1m2n2 |

≤ ∞,

and the series (6) converges to the function Ψ(x, y) uniformly.

Theorem 3. The maximum absolute truncation error of the series solution (6) to two- dimensional nonlinear

integral equation (1) is estimated to be,

‖Ψ(x, y)− ΨS,K(x, y)‖ ≤ 3σ

8S

(

∞

∑
m1=S+1

1

m4
1

∞

∑
n1=K

1

(2n1 − 3)4

∞

∑
m2=S+1

1

m4
2

∞

∑
n2=K

1

(2n2 − 3)4

) 1
2

.

Proof.

‖Ψ(x, y)− ΨS,K(x, y)‖

=





∫ 1

0

∫ 1

0

(

Ψ(x, y)−
S

∑
m1=1

K−1

∑
n1=0

S

∑
m2=1

K−1

∑
n2=0

cm1n1m2n2 hm1n1m2n2(x, y)

)2

dxdy





1
2

,

≤
(

∞

∑
m1=S+1

∞

∑
n1=K

∞

∑
m2=S+1

∞

∑
n2=K

c2
m1n1m2n2

∫ 1

0

∫ 1

0
h2

m1n1m2n2
(x, y)dxdy

) 1
2

.

Using the hybrid functions’ orthogonality property and taking relation (15) into consideration, we are

able to

‖Ψ(x, y)− ΨS,K(x, y)‖ ≤
(

∞

∑
m1=S+1

∞

∑
n1=K

∞

∑
m2=S+1

∞

∑
n2=K

c2
m1n1m2n2

1

S2(2n1 + 1)(2n2 + 1)

) 1
2

≤3σ

8S

(

∞

∑
m1=S+1

1

m4
1

∞

∑
n1=K

1

(2n1 − 3)4

∞

∑
m2=S+1

1

m4
2

∞

∑
n2=K

1

(2n2 − 3)4

) 1
2

.
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5. Application and numerical results

In order to show the accuracy and efficiency of the proposed method, some numerical

examples are given in this section. We introduce the following notation to study the absolute values of

this method’s errors:

RS,K = |Ψ(x, y)− ΨS,K(x, y)|,

where Ψ(x, y) and ΨS,K(x, y) are the exact solution and the approximate solution of the integral

equations, respectively.

Example 5.1. Consider the following two- dimensional nonlinear integral equation:

16ψ(x, y) = f (x, y) +
∫ 1

0

∫ 1

0
(xτ + yv)ψ2(τ, v)dvdτ +

∫ x

0

∫ 1

0
(x2τ2 + yv)ψ2(τ, v)dvdτ, (16)

where

f (x, y) =
−7

24
− 28yx

45
+ 16(x2 + y2)− x2y2

360
(30y4 + 72y5x + 45y2x2 + 80y3x3 + 30x4 + 72yx5).

The exact solution is ψ(x, y) = x2 + y2. Using the proposed numerical technique, where S = 2 and

K = 2, 4, 6, 8 in the interval [0, 1).

In Table 1, we presented the absolute error |Ψ(x, y)− ΨS,K(x, y)|, using the introduced numerical

method with S = 2 and K = 2, 4, 6, 8 in the interval [0, 1). Table 2, shows the maximum absolute errors

of the given method.

Table 1. Absolute error of solution of Eq. (16) by using present method with S = 2 and K = 2, 4, 6, 8.

(xi, ti) S = 2, K = 2 S = 2, K = 4 S = 2, K = 6 S = 2, K = 8

(0,0) 5.62845×10−9 3.25447×10−10 2.36512×10−13 1.32654×10−16

(0.1,0.1) 2.51405×10−7 2.36524×10−8 1.36524×10−10 6.32514×10−13

(0.2,0.2) 5.62103×10−6 2.36985×10−7 5.36214×10−9 8.22551×10−12

(0.3,0.3) 2.02154×10−4 3.58412×10−5 8.32541×10−8 6.32165×10−10

(0.4,0.4) 4.58721×10−4 3.65413×10−4 2.21345×10−7 1.32114×10−9

(0.5,0.5) 7.36212×10−4 2.23651×10−4 3.65221×10−7 2.36985×10−8

(0.6,0.6) 1.36521×10−3 1.65214×10−4 7.32651×10−7 2.92541×10−8

(0.7,0.7) 5.26512×10−3 1.36524×10−3 6.32541×10−6 6.32548×10−8

(0.8,0.8) 5.62514×10−2 4.36210×10−3 8.36251×10−6 7.32614×10−8

(0.9,0.9) 5.65214×10−2 6.25489×10−3 5.32658×10−5 1.36524×10−6

Table 2. The maximum error Rmax(x, y) for different values of K = 2, 4, 6, 8 and S = 2 for Eq (16).

S = 2, K = 2 S = 2, K = 4 S = 2, K = 6 S = 2, K = 8

Rmax 6.2103×10−2 6.53210×10−3 5.32658×10−5 1.36524×10−6

Moreover, in Figures 1–4, we showed a comparison between the exact solution and the

approximate solution using the presented numerical technique with different values of K = 2, 4, 6, 8

with S = 2 in the interval [0, 1).
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Figure 1. Exact and approximate solution of Eq. (16) with S = 2 and K = 2.

Figure 2. Exact and approximate solution of Eq. (16) with S = 2 and K = 4.

Figure 3. Exact and approximate solution of Eq. (16) with S = 2 and K = 6.
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Figure 4. Exact and approximate solution of Eq. (16) with S = 2 and K = 8.

Example 5.2. Consider the nonlinear integral equation:

ψ(x, y) = f (x, y) + 3
∫ 1

0

∫ 1

0
(xτ2 + v cos y)ψ3(τ, v)dvdτ + 3

∫ x

0

∫ 1

0
(x2τ + yv)ψ(τ, v)dvdτ, (17)

where

f (x, y) =
1

12

(

27 + 16 cos 1 − 16 cos 2 − 18 cos 3 + 7 cos 4 − 12t2x(2 + cos 1) sin(
1

4
)4

−12 sin 1 − 36 sin 2 + 6 sin 3 + 6 sin 4) + x sin y +
1

2
y3
(

−3x2 + x(2 + 3x) cos x − 2 sin x
)

.

The exact solution is ψ(x, y) = x sin y. Using the presented numerical technique with S = 2 and

K = 3, 5, 7, 9 in the interval [0, 1).

In Table 3, we showed the absolute error |Ψ(x, y)− ΨS,K(x, y)|, using the introduced numerical

method with S = 2 and K = 3, 5, 7, 9 in the interval [0, 1). Table 4, the maximum absolute errors of the

given method are obtained.

Table 3. Absolute error of solution of Eq. (17) by using present method with S = 2 and K = 3, 5, 7, 9.

(xi, ti) S = 2, K = 3 S = 2, K = 5 S = 2, K = 7 S = 2, K = 9

(0,0) 3.20514×10−5 5.32641×10−6 6.32141×10−9 2.36541×10−11

(0.1,0.1) 3.25481×10−4 9.32541×10−5 5.32187×10−7 3.65874×10−8

(0.2,0.2) 3.32541×10−3 3.21554×10−4 2.36414×10−6 7.36584×10−8

(0.3,0.3) 4.32641×10−3 5.32654×10−4 5.32684×10−6 3.36241×10−7

(0.4,0.4) 5.36854×10−3 6.36524×10−4 8.32546×10−6 6.32584×10−7

(0.5,0.5) 6.93154×10−3 7.1.365×10−4 6.32541×10−5 8.65241×10−7

(0.6,0.6) 1.32511×10−2 3.21547×10−3 9.99215×10−5 4.32516×10−6

(0.7,0.7) 4.32658×10−2 4.36561×10−3 1.32154×10−4 8.69854×10−6

(0.8,0.8) 5.32666×10−2 5.76524×10−3 2.34541×10−4 4.36215×10−5

(0.9,0.9) 6.32541×10−2 7.96525×10−3 3.25456×10−4 1.05214×10−4

Furthermore, in Figures 5–8, we presented a comparison between the exact solution and the

approximate solution using the introduced numerical method with different values of K = 3, 5, 7, 9

with S = 2 in the interval [0, 1).
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Figure 5. Exact and approximate solution of Eq. (17) with S = 2 and K = 3.

Figure 6. Exact and approximate solution of Eq. (17) with S = 2 and K = 5.

Figure 7. Exact and approximate solution of Eq. (17) with S = 2 and K = 7.
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Figure 8. Exact and approximate solution of Eq. (17) with S = 2 and K = 9.

Table 4. The maximum error Rmax(x, y) for different values of K = 3, 5, 7, 9 and S = 2 for Eq (17).

S = 2, K = 3 S = 2, K = 5 S = 2, K = 7 S = 2, K = 9

Rmax 6.32541×10−2 7.96525×10−3 3.25456×10−4 1.05214×10−4

6. Conclusions and Remarks

The following can be deduced from the above analysis and discussion:

1. Under some conditions, the equation (1) has a unique solution Ψ(x, y) in the space L2[0, 1]×
L2[0, 1].

2. After applying the proposed method, a two-dimensional integral equation of the second kind, in

time and position, tends to result in an algebraic system of equations.
3. A nonlinear system of algebraic equations has a solution.
4. Maximum error obtained by proposed method is decreasing when number of (K) is increasing.
5. Illustrative examples are provided to evaluate and validate the effectiveness and dependability

of the proposed method.
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