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Abstract: This study presents the solution of the second type of a two-dimensional nonlinear
integral equation in Banach space. Also, the existence and uniqueness of this equation’s solution are
discussed. We utilize a numerical approach involving hybrid and block-pulse functions to obtain the
approximate solution of a two-dimensional nonlinear integral equation. Nonlinear integral equation
in two dimensions is reduced numerically to a system of nonlinear algebraic equations that can be
solved using numerical methods. This study focuses on showing the convergence analysis for the
numerical approach and obtaining an error estimate. Some numerical examples have been provided
to demonstrate the approach’s viability and efficacy.
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1. Introduction

Integral equations are used in many disciplines of applied mathematics to explore and solve
problems. See [1,5,6,10,24,26,27] for more information on the topics of two-dimensional nonlinear
integral equations, which have long been of growing interest in many fields, including medicine,
biology, physics, geography, and fuzzy control. According to the references [2,3,7,9-12], many
problems in engineering, applied mathematics, and mathematical physics can be reduced into
two-dimensional nonlinear integral equations. The analytical solutions to these equations are typically
difficult. Therefore, it is necessary to find approximations. For example, Bernstein polynomials hybrid
with functions of block-pulse form [4,22] and Legendre hybrid with functions of block-pulse form
[13,21] have both recently been examined as computational approaches for solving two-dimensional
nonlinear integral equations. Electrical engineering was originally introduced to block-pulse functions
by Harmuth, after which additional academics discussed the topic [8].

Recently, hybrid functions have been considered for solving numerous mathematical models,
including [20,23,25]. Combining Legendre polynomials and block-pulse functions yields one of these
functions. Using block-pulse functions and Legendre polynomials, [18] described a method for
solving mixed-type Hammerstein integral equations, whereas [17] proposed a method for solving
optimal control of Volterra integral systems. These hybrid functions have also been applied to
solving nonlinear Fredholm-Hammerstein systems. [14,30] obtained a numerical solution of partial
differential equations with nonlocal integral conditions; [19] solved Fredholm integral equation of
the first kind; [28] discovered the optimal solution of linear time-delay systems; [29] discovered the
numerical solutions of stochastic Volterra-Fredholm integral equations; and [13] includes the necessary
definitions as well as some properties of Legendre polynomials and hybrid block-pulse functions.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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In this study, the second type of two-dimensional nonlinear integral is considered. Under
special conditions, the Banach fixed point theorem is used to discuss and prove the existence of a
unique solution to two-dimensional nonlinear integral equations. We discuss the properties of hybrid
functions, which combine block-pulse functions and Legendre polynomials. These integral equations
are solved based on some useful properties of hybrid functions. This technique’s major characteristic
is its ability to transform an integral problem into a set of algebraic equations; as a result, the solution
processes are correspondingly either reduced or simplified.

The article’s structure is as follows: : In section 2, the existence and unique solution of Eq. (1) are
discussed. Section 3 describes a method for estimating a two-dimensional nonlinear integral equation’s
solution. The convergence analysis of the provided method is derived in section 4, Numerical results
are shown in section 5, and conclusion and Remarks are presented in the last section 6.

This study aims to present a numerical approach for solving the following two-dimensional
nonlinear integral equation approximatively:

1 r1
1¢(x,y) = f(x,y) +)\1/0 /0 D(x, 7y, 0)u(t,v,9(t,v))dodt o
1
—I—Az/ox /01 G(x,T;y,v)v(t,v,¢(t,v))dodT,

where A,,r = 1,2 are constant scalers having several physical meanings, the function ¢(x,y) is
unknown in the Banach space L,[0, 1] x L0, 1]. The kernels ®(x, 7;y,v), G(x, T; ¥, v) are continuous in
the same space and the known function f(x, y) is continuous in the space L,[0,1] x L;[0,1]. In addition
the constant -y defines the kind of two- dimensional nonlinear integral equations.

2. Existence of a unique solution for the integral equation

The existence of a unique solution of problem (1) will be discussed and proved in this section
using the Banach fixed point theorem. For this, we write Eq. (1) in the form of an integral operator:

Vy(x,y) = %f (v y) +Vi(x,y);, v #0, )

where

1 1
Viy(x,y) = %/ / O(x, Ty, 0)u(t,0,9(t,0))dodt
0o Jo
N 3)
—l——z/ / G(x, 7;y,v)v(t,v,9(T,v))dvdT.
v Jo Jo
Also, we assume the following conditions:

(i) The kernels @(x,7;y,v) and G(x,7T;y,v) satisfy the conditions: | ®(x,T;y,0)| <
A1, |G(x,T;y,v))|| < Az, where A and Aj; are two constants, assume A = max{Aj, Ay }.
1

) 11F( ) = [ i 1£(x,) Pdxdy]* = D, Disa constant:
(iii) The function p(x,y, P(x,y)) satisfies the following conditions:

1 r1 %
e el = | [ [ e o) Pasdy]” < oGl (@)
ey, 1.2, 9)) = (o () | < Mol (v,9) = () (b)
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(iv) The function v(x,y, ¢(x,y)) is bounded and satisfy:

1

eyl = [ [ [ i penPaa] <Mip@al, @
0815 9) V(0 2 | < Nalln () — 9ol ®)

Theorem 1. Assume that the conditions (i) — iv) are satisfied. Eq. (1) has an unique solution {(x,y) in the
space, L]0, 1] x Ly[0, 1]. If the condition

A
A “ [M+ N] <1, (A =max{A1, A2}, M = max{My, Mp}, N = max{Ny, N, }) 4)
is true.

The following two lemmas are necessary for the theorem'’s proof:

Lemma 1. Under the conditions (i), (ii), (iii — a), and (iv — a), the operator Vip(x,y) defined by Eq. (2)
maps the space Ly[0, 1] x Ly[0, 1] into itself.

Proof. In light of formulas (2) and (3), we obtain

IV (x,y)ll < Iy |||f(x Y+ ICP x, Ty, 0)|p(t, 0, 9(t,0))dodT

)\2 x rl
+ | = ’/0 /0 |G(x, T;y,0)|v(T, v, ¢(T,v))dodT|| .

Using conditions (i) and (ii), we get

/ lu(t,v,9(t,v))dodt

D
1% — 4+ A
Pyl < o+ ]

A2

+A V(T, v, P(7,v))dodT|| .

Given conditions (iii — a) and (iv — a), the above inequality takes on the following form:

1
dUdT

— D A
Vgp(x,y)ll < T +AM||1/J(x,y)|| .

‘/ / dodt

where Jnax |x| =1, so that last inequality becomes
<x<

[Pyl < 2+ A2 M+ Nlp(x )]l

i
o

since
: ’

- D
Vy(x,y)ll < o +rllypey)ll;  n=A ’7 [M+N] <1 (5)

According to this inequality, the operator V maps the ball B, C L,[0,1] x L;[0, 1] into itself, where

D
@ =)
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since, ¥ > 0, D > 0, therefore we have 7 < 1. Furthermore, lower bounds for the operators V and A%
are involved in the inequality (5).

Lemma 2. If the conditions (i), (iii — b), and (iv — b) are verified, then the operator Vi(x,y) defined by Eq.
(2) is continuous in the space L[0,1] x L0, 1].

Proof. For the continuity, Given two functions ¥1 (x,y) and ¥ (x, y) in the space L,[0,1] x L,[0,1]
and satisfy Eq. (2), then

Vir(x,y) = Vipa(x,y) / / (x, T;y,0) [u(t,v,91(7,0)) — p(t,0,¢2(7,v))]dodt
+ 7/0 /0 G(x, Ty, 0)[v(t,v,91(T,0)) —v(T, 0, ¢a2(T,0))]dodT,

applying the properties of the norm, we obtain

I791(5,) = Vial] < | 2 / B3, 9,0 11(7, 0,41 (%,0)) = (T, 0, 92(7, 0) | dod

+|22
v

In view of the conditions (i), (iii-b), and (iv-b), the above inequality becomes

A |G(x,T;y,v)||v(T,v,1p1(r,v))—v(r,v,lpz(r,v)ﬂdvdr .

1791 () - V¢z<xy>||<Aj ][M+N]||¢1<xy> w@)l,

since
V1 (x,y) = Vi (x, )| < nllpa (2, y) — g2 (x, )]

This inequality shows that, V is a continuous operator in L;[0,1] x L,[0, 1]. Moreover V is a contraction
operator under the condition < 1.

The previous two Lemmas 1 and 2 show that the operator V defined by (2) is a contraction
operator in the space L[0,1] x L,[0, 1]. Hence, from Banach fixed point theorem, V has a unique fixed
point which is of course, the unique solution of Eq. (1).

3. Method of solution for the main problem

This section applies the collocation method, two-dimensional hybrid functions, and the
Gauss quadrature formula to transform the integral equation (1) into nonlinear systems of equations.
The following results are obtained by expanding the function ¥(x,y) in Eq. (1) in relation to
two-dimensional hybrid functions:

X ]/) = Z Z Z Z le”lmznzhmlmmznz (x,y), (6)
my1=1n1=0my=1n=0
where the finite series in equation (6) can be written as
S K=1 S K-1
1PS,K(XI y) = Z Z Z Z lenlmznzhm1"1m2nz(x }/)- )
m1:

: 1712 0

where ¢y nymony, m1,my = 1,2,...,S, ny,np = 1,2,...,K—1, and §5,K are the unknown hybrid
coefficients to be determined.
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Substituting Eq. (7) into Eq. (1) yields

1 r1
TWsk(xy) = Flxy) + M | / (x, 73, 0) (T, 0, s (7, v)dode
®)
—|—)\2/ / (x, Ty, 0)v(T,v,¥s k(T,v))dvdT,

Now, we discretize Eq. (8) at the set of collocation nodes (x, y,) for m,n =1,2,...,SK, as follows:

1,1
s, y) = Fmyn) + 41 [ [ @, Ty, 0)p(r, 0, s (1, 0))dvde

X;m rl
+ /\2/ / G(Xm, T; Yn, 0)V(T, 0, Ps x (T, 0))dvdT,
o Jo

1 2m—1)m -
Xm = E <COS (251<> +1)/ m_llzl"'ISKl

1 2n—-1)m _
yl’l — E <COS (251() +1>/ n_llzl"'ISKl

The integral operators in Eq. (9) are approximated using the Gauss-Legendre quadrature formula. For
this, we use the following transformations to convert the integrals over [0, 1] into the integral over
[—1, 1], respectively

)
where

and

¢=21—1;, T€]0,1],
0=2v—-10v€l01]

The integral over [0, x,,,| must also be changed into the integral over [—1, 1], having the following form

§:—T—1 T € [0, x].
Xm

Then Eq. (9) is converted to

'Y‘PSK(xmr]/n :f(xmr]/n)
F [ @ 3@+ Vi 2 0+ DG E+ 1), (04 1) 95k 6+ 1),

Azxm// (X, 22 5 (E+1); yn,1(9+1))

><( - (C+1), (Q+1) lPSK( S (E+1), (Q+1)))ded§-

(e+1)))dedd

N =

The above equation can be expressed as follows using Gauss-Legendre quadrature:
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VY5, (Xm, Yn) = f(Xm,Yn)
)Ll by 0
4 Zzwwl xmfi@l"'l) ]/n,*(Q]—l—l))
] li=
1 1 1
U5+ 1), g+ D pox(3 (@ +1), 5oy +1)) "
/\2xm a, b Xim = 1
lew]wz xrru?(gi"'l);ynfi(@j"'l))
j=1i

X (G 1), (g + 1), s @+ 1), 5 (g + 1)),
m:1,2,...,SK,n:1,2,...,SK,

and w;, w; and @; are the corresponding weights.
This technique can be used to transform the two-dimensional nonlinear integral problem (1) into
a solvable nonlinear system of algebraic equations.

4. Convergence analysis

The aim of this section is to describe the uniform convergence of the hybrid functions
expansion and to determine the maximum absolute truncation error of the function ¥ based on hybrid
functions.

Theorem 2. If¥ € C*(0,1], then the function ¥ (x,y) converges uniformly to the infinite sum of the hybrid
functions of ¥ (x,y) described by (6)

Proof. The hybrid coefficients are defined as

Jo Jy ¥(x,y) mlnlmznz(x y)dxdy
fO fO minimyny x y)dXdy

fmz ) fml L ¥(x,y)Ly, (2Sx — 2my + 1)Ly, (2Sy — 2my + 1)dxdy

lei’l]mzi’lz -

fml y L2 (2Sx —2my 41 dxfm2 y Lz, (2Sy —2my +1)dy

Now, suppose that 2m1 — 1 = #i; and 25x — rii; = S, therefore

7 i+ S
Jur (S5 (58, 9) Ly (3)dS) Ly (25 — 25 + 1)dy
Cmynymon, = > iy

S L2,()dS [,5 12, (2Sy — 2my +1)dy
S

7 1+S
Cem et (S5 ¥ (5>, 9) Ly (3)dS) Ly (28y — 2my +1)dly

fmz y L2, (25y — 2my +1)dy
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Using the technique of integration by parts with regard to S'and (2n + 1)L, (J) = L'
we obtain

(3) =L, (3),

1
L (A YOI, ) (L 41(3) = Ly 1(9))dS) Ly (25y — 23 + 1)y
Crmynymony, = — > mz .

L2, (2Sy —2my 4 1)dy

n12 1
BE
Once again, an integration by parts of above relation, results that

Cmynymyny =

2 1 148 =l (8) Ly (8)— L —2(S)
o ( LY s ]d°> Ly, (2y — 2mz +1)dy

2 fmz y L2 (28y —2my +1)dy

Now, we have

ﬂ
. vt (11 B (B2, y)Ray (3)dS ) Ly (2Sy — 2m; +1)dy
S

Cm1n1m2n2 = _ ,
2(2n1 +3)(2ny — 1) fmz y L2, (2Sy — 2my +1)dy

where
Ny () = (211 — 1)Ly 42(S) — (41 +2) Ly () + (211 + 3) Ly, —2(S).

Similarly, changing the variable for y as 2m, — 1 = ni; where 25y — ni; = p and integrating by parts
with respect to g, we get

1
Crmmmaty = g o+ 3)(2ny — 1) (212 + 3) (212 — 1)

m + & iy +
//18@28%2 125 ’ 2 Q)an(o) ,(p)dSdp,

where
Ny, (9) = (212 — 1)Ly, 12(9) — (412 +2) L,y (9) + (212 4 3) Ly, —2(p).

¥ (xy)

“oxoy? , it follows that

Using the chain derivatives and o = max, )c[o,1] ‘

o 1
< Ry (3)] N0, () [dSdlp,
Crmmats = 645%(2my +3)(2ny — 1) (2n + 3) (21, — 1) / Lo ()} 0

g
= (3)] IR0y ()| dSd .
= 64m2m3(2ny +3)(2n; — 1)(2n +3)(2ny — 1) / / m ()[R, (0)ld S

(11)

However
1 2 1
(@19 ) = ([ 1m = 1)L 12(9) = (1 4 2)1, (3) + @ + )2 )
1
<2 /_1 (21 — 1)2L2 () + (4n1 +2)2L3 (I) + (21 +3)2L2 _,()[dS,

Using the Legendre polynomials’ orthogonality property, we determine that

2
(/_11 |Nn1(%)|d%> < M(Lj;’)z, (12)

21’11
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thus
1 2v/6(2
/ R, (3)]dS < M (13)
1 V2n1 =3
and VE
1 24/6(2ny +3)
N dp < ————2—2. 14
By substituting (13) and (14) into (11), we obtain
c < 240
TR = e am2mZ (20 — 1)(2ny — 1)y/(2n1 — 3)/ (212 - 3) 5

30
"~ 8m2m3(2ny —3)2(2ny —3)7

Therefore, the series )3 1 Y75° — Y, —1 Yo —o is absolutely convergent. Also,

[} [} [eS) [}
|‘Y(x/ ]/)| = Z Z 2 Z lenlmznzhm1n1m2n2<xr ]/)
m1=1n1=0my=1n=0
=) [} [} =)
< 2 2 2 2 |Cm1"1m2"2|
m1=1n1=0my=1n=0

< o0
and the series (6) converges to the function ¥ (x, y) uniformly.

Theorem 3. The maximum absolute truncation error of the series solution (6) to two- dimensional nonlinear

integral equation (1) is estimated to be,

1
e[ & 1 Q& © 1 & 1 :
||'Y(x/y TS K(x ]/)l 85 < ZSJr 7411 ; n 3)4 2 4 2 (an 3)4) .

17 9)7 my=5+1 M3 =k
Proof.

¥ (x,y) —¥sx(xy)l
1
K-1 2

1 ,1 S K-1 S 2
/O/O ‘Y(xry)_ 2 Z Z Zcmlmmz"zhml”lmz"z(xry) dxd]/ ’

m1=1n1=0my=1n,=0
1

s( i i i Z Chvy iy gty / / Wy (%, y)dxdy>

my=S+1n1=Kmy=5+1n,=K

Using the hybrid functions” orthogonality property and taking relation (15) into consideration, we are

able to

”‘P(x/y) ‘PSK XY ” < ( Z Z Z Z le"lmzﬂz 52(2,11 ~|—11)(2112~|—1)>

=S+1n1=Kmy=S+1n,=K

IA
ZIg
N
ngk:
\H
agk
~
=
| —_
W
—
Y gk
3 \H
N W=
agk
~
5
| —
(O8]
=
N———
N
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5. Application and numerical results

In order to show the accuracy and efficiency of the proposed method, some numerical
examples are given in this section. We introduce the following notation to study the absolute values of
this method’s errors:

Rsx = [¥(x,y) —¥sx(x,y)l,

where ¥(x,y) and ¥k (x,y) are the exact solution and the approximate solution of the integral
equations, respectively.

Example 5.1. Consider the following two- dimensional nonlinear integral equation:

169 (x,y) = f(x,y) +/ / XT 4+ yo)Pp (7,0 dvdT—l—/ / 7% + yo)y?(t,0)dodr, (16)
where
~7 28 22
flx,y) = 5~ % + 16(x2 + yz) - %(3@4 + 72y5x + 45y2x2 + 80y3x3 +30x* + 72yx5).

The exact solution is ¥(x,y) = x> + y?. Using the proposed numerical technique, where S = 2 and
K =2,4,6,8in the interval [0,1).

In Table 1, we presented the absolute error |¥(x,y) — ¥s x(x, )|, using the introduced numerical
method with S = 2 and K = 2,4, 6,8 in the interval [0, 1). Table 2, shows the maximum absolute errors
of the given method.

Table 1. Absolute error of solution of Eq. (16) by using present method with S =2 and K = 2,4,6,8.

(xj,ti) S=2,K=2 S=2,K=4 S=2,K=6 S=2,K=8

(0,00  5.62845x1077 3.25447x10710 2.36512x10713  1.32654x10716
(0.1,0.1) 2.51405x10~7  2.36524x1078  1.36524x10710 6.32514x10"13
(0.2,02) 5.62103x107° 2.36985x10~7  5.36214x107°  8.22551x 10712
(0.3,03) 2.02154x10~% 3.58412x107°  8.32541x10°8  6.32165x10"10
(0.4,0.4) 458721x10™*  3.65413x10~*  2.21345x1077  1.32114x10~°
(050.5) 7.36212x10~% 2.23651x10~%  3.65221x10~7  2.36985x10~8
(0.6,0.6) 1.36521x1073  1.65214x10~*  7.32651x1077  2.92541x10~8
(0.7,0.7) 526512x1073  1.36524x1073  6.32541x107°  6.32548x10~8
(0.8,0.8) 5.62514x1072  4.36210x1073  8.36251x107°  7.32614x10~8
(0.9,09) 5.65214x1072  6.25489x1073  5.32658x107°  1.36524x107°

Table 2. The maximum error Ry.x(x,y) for different values of K = 2,4,6,8 and S = 2 for Eq (16).

§=2,K=2

§=2,K=4

§=2,K=6

§=2,K=38

Rmax

6.2103x 1072

6.53210x1073

5.32658 107>

1.36524x 100

Moreover, in Figures 1-4, we showed a comparison between the exact solution and the
approximate solution using the presented numerical technique with different values of K = 2,4, 6,8
with S = 2 in the interval [0, 1).
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Figure 1. Exact and approximate solution of Eq. (16) with S = 2 and K = 2.

Figure 2. Exact and approximate solution of Eq. (16) with S =2 and K = 4.

[k

Figure 3. Exact and approximate solution of Eq. (16) with S =2 and K = 6.
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Figure 4. Exact and approximate solution of Eq. (16) with S =2 and K = 8.

Example 5.2. Consider the nonlinear integral equation:

11 0f 14

P(x,y) = f(x,y) + 3/1 /1(xr2 + vcosy) (T, v)dvdT + 3/x /1(x2T +yo)y(t,v)dvdr,  (17)
’ ’ 0 Jo ’ o Jo ’ ’

where

1 1
flx,y) = - <27+ 16cos1 —16cos2 — 18 cos3 + 7 cos 4 — 12t2x(2 + cos 1) sin(z)4

1
~125in1 —365in2 + 6sin3+ 6sin4) + xsiny + -/’ (~3x+ x(2 4+ 3x) cos x — 2sinx).

The exact solution is ¢(x,y) = xsiny. Using the presented numerical technique with S = 2 and
K =3,5,7,9 in the interval [0, 1).

In Table 3, we showed the absolute error [¥(x,y) — ¥ x(x, y)|, using the introduced numerical
method with S = 2 and K = 3,5,7,9 in the interval [0, 1). Table 4, the maximum absolute errors of the
given method are obtained.

Table 3. Absolute error of solution of Eq. (17) by using present method with S =2 and K = 3,5,7,9.

(xi/ tl)

5§=2,K=3

5=2,K=5

$§=2,K=7

§=2,K=9

0,0)
(0.1,0.1)
(0.2,0.2)
(0.3,0.3)
(0.4,0.4)
(0.5,0.5)
(0.6,0.6)
(0.7,0.7)
(0.8,0.8)
(0.9,0.9)

3.20514x107°
3.25481x 1074
3.32541x1073
4.32641x1073
5.36854x 1073
6.93154x1073
1.32511x 1072
4.32658 x 1072
5.32666x 1072
6.32541x1072

5.32641x107°
9.32541x10~>
3.21554x 104
5.32654x10%
6.36524x 104
7.1.365%x10~4
3.21547x1073
4.36561x1073
5.76524x 1073
7.96525x1073

6.32141x10~°
5.32187x10~7
2.36414x10~°
5.32684x10~°
8.32546x107°
6.32541x107°
9.99215x107>
1.32154x104
2.34541x 104
3.25456x10~*

2.36541x10~11
3.65874x10~8
7.36584x 1078
3.36241x10~7
6.32584x 107
8.65241x10~7
4.32516x107°
8.69854x10~°
4.36215x107°
1.05214x 104

Furthermore, in Figures 5-8, we presented a comparison between the exact solution and the
approximate solution using the introduced numerical method with different values of K = 3,5,7,9
with § = 2 in the interval [0, 1).
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0a

Figure 5. Exact and approximate solution of Eq. (17) with S = 2 and K = 3.

Figure 6. Exact and approximate solution of Eq. (17) with S = 2 and K = 5.

08

Figure 7. Exact and approximate solution of Eq. (17) with S =2and K =7.
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Figure 8. Exact and approximate solution of Eq. (17) with S =2 and K = 9.

Table 4. The maximum error Ry;qx (%, y) for different values of K = 3,5,7,9 and S = 2 for Eq (17).

§=2,K=3 §=2,K=5 S§=2K=7 S§=2K=9
Rypax  6.32541x1072  7.96525x1073 3.25456x10~% 1.05214x10~4

6. Conclusions and Remarks
The following can be deduced from the above analysis and discussion:

1. Under some conditions, the equation (1) has a unique solution ¥(x, y) in the space L;[0,1] x
L»[0,1].

2. After applying the proposed method, a two-dimensional integral equation of the second kind, in

time and position, tends to result in an algebraic system of equations.

A nonlinear system of algebraic equations has a solution.

Maximum error obtained by proposed method is decreasing when number of (K) is increasing.

5. Illustrative examples are provided to evaluate and validate the effectiveness and dependability
of the proposed method.

W
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