

Article

Not peer-reviewed version

A Novel Types of Fuzzy Closed Sets, Separation Axioms, and Compactness via Double Fuzzy Topologies

[Fahad Alsharari](#) ^{*}, [Wafa Alqurashi](#) ^{*}, [Islam M. Taha](#) ^{*}

Posted Date: 13 May 2024

doi: 10.20944/preprints202405.0781.v1

Keywords: intuitionistic fuzzy set; double fuzzy topology; (r, s) – g f sc set; (r, s) – g \otimes f sc set; continuity; (r, s) -GF S-regular space; (r, s) -GF S-normal space; compactness

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

A Novel Types of Fuzzy Closed Sets, Separation Axioms, and Compactness via Double Fuzzy Topologies

Fahad Alsharari ^{1,*}, Wafa Alqurashi ^{2,*} and Islam M. Taha ^{3,*}

¹ Department of Mathematics, College of Science, Jouf University, Sakaka, Saudi Arabia

² Department of Mathematics, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia

³ Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt

* Correspondence: f.alsharari@ju.edu.sa (F.A.); wkqurashi@uqu.edu.sa (W.A.); itaha@ut.edu.sa (T.M.T.)

Abstract: In this article, we first defined a stronger form of (r, s) -generalized fuzzy semi-closed sets (briefly, (r, s) - $gfsc$ sets) called (r, s) - g^*fsc sets and investigated some of its features. Moreover, we showed that (r, s) - fsc set \Rightarrow (r, s) - g^*fsc set \Rightarrow (r, s) - $gfsc$ set, but the converse may not be true. In addition, we explored novel types of fuzzy generalized mappings between double fuzzy topological spaces (U, τ, τ^*) and (V, η, η^*) , and the relationships between these classes of mappings were examined with the help of some illustrative examples. Thereafter, we introduced novel types of higher separation axioms called (r, s) - \mathcal{GFS} -regular and (r, s) - \mathcal{GFS} -normal spaces with the help of (r, s) - $gfsc$ sets and discussed some topological properties of them. Finally, some novel types of compactness via (r, s) - $gfso$ sets were defined and the relationships between them were introduced.

Keywords: intuitionistic fuzzy set; double fuzzy topology; (r, s) - $gfsc$ set; (r, s) - g^*fsc set; continuity; (r, s) - \mathcal{GFS} -regular space; (r, s) - \mathcal{GFS} -normal space; compactness

MSC: 03E72; 54A05; 54A40; 54C08; 54D15

1. Introduction and Preliminaries

The theory of fuzzy set was first presented by Zadeh [1]. Since then it has been improved and applied in most all the branches of technology and science, where theory of sets and mathematical logic play an important role. Also, many applications of these theory contributed to solving several practical problems in mathematics, social science, engineering, economics, etc. In recent years, many authors have contributed to fuzzy sets theory in the different directions in mathematics such as geometry, topology, algebra, operation research, see [2,3]. The notion of fuzzy sets was used to introduce fuzzy topological spaces in [4]. The study in [4] was particularly important in the development of the field of fuzzy topology, see [5–10]. The authors of [11–18] studied topological structures inspired by the hybridizations of soft sets [19] with fuzzy sets [1] and rough sets [20].

The concept of an intuitionistic fuzzy set was initiated by Atanassov [21,22], which is a generalization of a fuzzy set. Coker [23,24] introduced the concept of an intuitionistic fuzzy topological space based on the sense of Chang [4]. Later, Samanta and Mondal [25,26] gave the definition of an intuitionistic fuzzy topological space based on the sense of Šostak [27]. The name (intuitionistic) was replaced with the name (double) by Garcia and Rodabaugh [28]. The concept of (r, s) - gfc sets was introduced and investigated by Abbas [29]. Thereafter, the concept of (r, s) - $sgfc$ sets was introduced by Zahran et al. [30] on double fuzzy topological space based on the sense of Šostak. Also, Taha [31] defined the concept of (r, s) - $gfsc$ sets and some characterizations were given. So far, lots of spectacular and creative studies about the theories of an intuitionistic fuzzy set have been considered by some scholars, see e. g. [32–36].

The organization of this article is as follows:

- Firstly, as a stronger form of (r, s) - $gfsc$ sets [31], the notion of (r, s) - g^*fsc sets is introduced and some properties are investigated. Moreover, we introduce new types of fuzzy mappings between double fuzzy topological spaces and relationships are obtained.

- Secondly, we define new types of fuzzy separation axioms with the help of (r, s) – *gfsc* sets and establish some of their properties.
- Finally, some new types of compactness in double fuzzy topological spaces are defined and the relationships between them are specified.
- In the end, we give some conclusions and make a plan for future works in Section 5.

Throughout this article, nonempty sets will be denoted by V, U , etc. The family of all fuzzy sets on U is denoted by I^U , and for $\mu \in I^U$, $\mu^c(u) = 1 - \mu(u)$, for all $u \in U$ (where $I = [0, 1]$, $I_1 = [0, 1]$, and $I_0 = (0, 1]$). Also, for $t \in I$, $\underline{t}(u) = t$, for all $u \in U$.

A fuzzy point u_t on U is a fuzzy set, defined as follows: $u_t(k) = t$ if $k = u$, and $u_t(k) = 0$ for all $k \in U - \{u\}$. u_t is said to belong to a fuzzy set μ , denoted by $u_t \in \mu$, if $t \leq \mu(u)$. The family of all fuzzy points on U is denoted by $P_t(U)$.

A fuzzy set μ is a quasi-coincident with λ , denoted by $\mu q \lambda$, if there is $u \in U$, such that $\mu(u) + \lambda(u) > 1$, if μ is not quasi-coincident with λ , we denote $\mu \bar{q} \lambda$.

The following results and notions will be used in the next sections:

Lemma 1.1 ([6]). *Let U be a nonempty set and $\nu, \mu \in I^U$. Then,*

- (i) $\nu q \mu$ iff there is $u_t \in \nu$ such that $u_t q \mu$,
- (ii) $\nu \wedge \mu \neq \underline{0}$ if $\nu q \mu$,
- (iii) $\nu \bar{q} \mu$ iff $\nu \leq \mu^c$,
- (iv) $\mu \leq \nu$ iff $u_t \in \mu$ implies $u_t \in \nu$ iff $u_t q \mu$ implies $u_t q \nu$ iff $u_t \bar{q} \nu$ implies $u_t \bar{q} \mu$,
- (v) $u_t \bar{q} \bigvee_{\delta \in \Delta} \nu_\delta$ iff there is $\delta_0 \in \Delta$ such that $u_t \bar{q} \nu_{\delta_0}$.

Definition 1.1 ([25,30]). *A double fuzzy topology on U is a pair (η, η^*) of the mappings $\eta, \eta^* : I^U \rightarrow I$, which satisfy the following conditions.*

- (i) $\eta(\nu) + \eta^*(\nu) \leq 1$, for each $\nu \in I^U$.
- (ii) $\eta(\nu_1 \wedge \nu_2) \geq \eta(\nu_1) \wedge \eta(\nu_2)$ and $\eta^*(\nu_1 \wedge \nu_2) \leq \eta^*(\nu_1) \vee \eta^*(\nu_2)$, for each $\nu_1, \nu_2 \in I^U$.
- (iii) $\eta(\bigvee_{\delta \in \Delta} \nu_\delta) \geq \bigwedge_{\delta \in \Delta} \eta(\nu_\delta)$ and $\eta^*(\bigvee_{\delta \in \Delta} \nu_\delta) \leq \bigvee_{\delta \in \Delta} \eta^*(\nu_\delta)$, for each $\{\nu_\delta\}_{\delta \in \Delta} \subset I^U$.

The triplet (U, η, η^*) is said to be a double fuzzy topological space (briefly, *dfts*) in the sense of Šostak. $\eta^*(\nu)$ and $\eta(\nu)$ may be interpreted as gradation of nonopenness and openness for $\nu \in I^U$, respectively.

In a *dfts* (U, η, η^*) , the interior of $\nu \in I^U$, the closure of $\nu \in I^U$, the semi-closure of $\nu \in I^U$ and the semi-interior of $\nu \in I^U$ will be denoted by $I_{\eta, \eta^*}(\nu, r, s)$, $C_{\eta, \eta^*}(\nu, r, s)$, $SC_{\eta, \eta^*}(\nu, r, s)$ and $SI_{\eta, \eta^*}(\nu, r, s)$, respectively [26,32,37].

Definition 1.2 ([37,38]). *Let (U, η, η^*) be a *dfts*, $\nu \in I^U$, $r \in I_0$, and $s \in I_1$, then we have*

- (i) ν is called an (r, s) -*fsc* (resp., (r, s) -*fpc* and (r, s) -*frc*) set if $\nu \geq I_{\eta, \eta^*}(C_{\eta, \eta^*}(\nu, r, s), r, s)$ (resp., $\nu \geq C_{\eta, \eta^*}(I_{\eta, \eta^*}(\nu, r, s), r, s)$ and $\nu = C_{\eta, \eta^*}(I_{\eta, \eta^*}(\nu, r, s), r, s)$).
- (ii) ν is called an (r, s) -*fso* (resp., (r, s) -*fpo* and (r, s) -*fro*) set if $\nu \leq C_{\eta, \eta^*}(I_{\eta, \eta^*}(\nu, r, s), r, s)$ (resp., $\nu \leq I_{\eta, \eta^*}(C_{\eta, \eta^*}(\nu, r, s), r, s)$ and $\nu = I_{\eta, \eta^*}(C_{\eta, \eta^*}(\nu, r, s), r, s)$).

Definition 1.3 ([29–31]). *Let (U, η, η^*) be a *dfts*, $\mu, \nu \in I^U$, $r \in I_0$, and $s \in I_1$, then we have*

- (i) μ is called an (r, s) -*generalized fuzzy closed* (briefly, (r, s) -*gfc*) set if $C_{\eta, \eta^*}(\mu, r, s) \leq \nu$ whenever $\mu \leq \nu$ and $\eta(\nu) \geq r$, $\eta^*(\nu) \leq s$.
- (ii) μ is called an (r, s) -*semi generalized fuzzy closed* (briefly, (r, s) -*sgfc*) set if $SC_{\eta, \eta^*}(\mu, r, s) \leq \nu$ whenever $\mu \leq \nu$ and ν is (r, s) -*fso* set.
- (iii) μ is called an (r, s) -*generalized fuzzy semi-closed* (briefly, (r, s) -*gfsc*) set if $SC_{\eta, \eta^*}(\mu, r, s) \leq \nu$ whenever $\mu \leq \nu$ and $\eta(\nu) \geq r$, $\eta^*(\nu) \leq s$.

Definition 1.4 ([26,30]). *Let $h : (U, \tau, \tau^*) \rightarrow (V, \eta, \eta^*)$ be a mapping, then h is said to be*

- (i) \mathcal{DF} -continuous if $\tau(h^{-1}(\lambda)) \geq \eta(\lambda)$ and $\tau^*(h^{-1}(\lambda)) \leq \eta^*(\lambda)$ for each $\lambda \in I^V$.
- (ii) \mathcal{DF} -open if $\eta(h(\nu)) \geq \tau(\nu)$ and $\eta^*(h(\nu)) \leq \tau^*(\nu)$ for each $\nu \in I^U$.

(iii) \mathcal{DF} -closed if $\eta(h^c(v)) \geq \tau(v^c)$ and $\eta^*(h^c(v)) \leq \tau^*(v^c)$ for each $v \in I^U$.

Definition 1.5 (29,31,37). Let $h : (U, \tau, \tau^*) \rightarrow (V, \eta, \eta^*)$ be a mapping, $r \in I_o$, and $s \in I_1$, then h is said to be

- (i) \mathcal{DFS} -continuous (resp., \mathcal{DFGS} -continuous and \mathcal{DFG} -continuous) if $h^{-1}(\mu)$ is (r, s) -fso (resp., (r, s) -gfs and (r, s) -gfo) set for each $\mu \in I^V$ with $\eta(\mu) \geq r, \eta^*(\mu) \leq s$.
- (ii) \mathcal{DFGS} -irresolute (resp., \mathcal{DF} -irresolute) if $h^{-1}(\mu)$ is (r, s) -gfs (resp., (r, s) -fso) set for each $\mu \in I^V$ is (r, s) -gfs (resp., (r, s) -fso) set.
- (iii) \mathcal{DFS} -open (resp., \mathcal{DFGS} -open and \mathcal{DFG} -open) if $h(v)$ is (r, s) -fso (resp., (r, s) -gfs and (r, s) -gfo) set for each $v \in I^U$ with $\tau(v) \geq r, \tau^*(v) \leq s$.
- (iv) \mathcal{DFS} -closed (resp., \mathcal{DFGS} -closed and \mathcal{DFG} -closed) if $h(v)$ is (r, s) -fsc (resp., (r, s) -gfsc and (r, s) -gfc) set for each $v \in I^U$ with $\tau(v^c) \geq r, \tau^*(v^c) \leq s$.

The basic results and notions that we need in the next sections are found in [29–31,39–41].

2. A Stronger Novel form of (r, s) – gfsc Sets

Here, we introduce and study a stronger form of (r, s) – gfsc sets called (r, s) – g^*fsc sets. Also, we show that (r, s) – fsc set [37] \Rightarrow (r, s) – g^*fsc set \Rightarrow (r, s) – gfsc set [31], but the converse may not be true. After that, we introduce new types of fuzzy mappings between double fuzzy topological spaces and relationships are obtained.

Definition 2.1. Let (V, η, η^*) be a dfts, $v, \rho \in I^V$, $r \in I_o$, and $s \in I_1$, then we have:

- (i) ρ is called an (r, s) -strongly generalized fuzzy semi-closed (briefly, (r, s) – g^*fsc) if $SC_{\eta, \eta^*}(\rho, r, s) \leq v$ whenever $\rho \leq v$ and v is (r, s) – gfo set,
- (ii) ρ is called an (r, s) -strongly* generalized fuzzy semi-closed (briefly, (r, s) – g^*fsc) if $SC_{\eta, \eta^*}(\rho, r, s) \leq v$ whenever $\rho \leq v$ and v is (r, s) – gfs set.

Remark 2.1. (i) A fuzzy set $\rho \in I^V$ is (r, s) – g^*fsc if ρ^c is (r, s) – g^*fsc set.

(ii) A fuzzy set $\rho \in I^V$ is (r, s) – g^*fsc if ρ^c is (r, s) – g^*fsc set.

Remark 2.2. From the previous definition, we can summarize the relationships among different types of fuzzy closed subsets as in the next diagram.

$$\begin{array}{ccc}
 (r, s) - fsc & \rightarrow & (r, s) - g^*fsc \\
 \downarrow & & \downarrow \\
 (r, s) - sgfc & & (r, s) - g^*fsc \\
 \downarrow & & \downarrow \\
 (r, s) - gfsc
 \end{array}$$

Remark 2.3. The converses of the above implications may not be true, as shown by Examples 2.1, 2.2, 2.3 and 2.4.

Example 2.1. Let $V = \{v_1, v_2, v_3, v_4\}$ and $\rho, v \in I^V$ defined as follows: $\rho = \{\frac{v_1}{1.0}, \frac{v_2}{1.0}, \frac{v_3}{1.0}, \frac{v_4}{0.0}\}$ and $v = \{\frac{v_1}{0.0}, \frac{v_2}{0.0}, \frac{v_3}{1.0}, \frac{v_4}{1.0}\}$. Also, (η, η^*) defined on V as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{0, 1\}, \\ \frac{1}{2}, & \text{if } \mu = v, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu = \nu, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, ρ is $(\frac{1}{2}, \frac{1}{2}) - g^*fsc$ set, but it is not $(\frac{1}{2}, \frac{1}{2}) - fsc$ set.

Example 2.2. Let $V = \{v_1, v_2, v_3, v_4\}$ and $\rho, \lambda_1, \lambda_2, \lambda_3 \in I^V$ defined as follows: $\rho = \{\frac{v_1}{1.0}, \frac{v_2}{0.0}, \frac{v_3}{1.0}, \frac{v_4}{0.0}\}$, $\lambda_1 = \{\frac{v_1}{0.0}, \frac{v_2}{1.0}, \frac{v_3}{1.0}, \frac{v_4}{1.0}\}$, $\lambda_2 = \{\frac{v_1}{0.0}, \frac{v_2}{1.0}, \frac{v_3}{1.0}, \frac{v_4}{0.0}\}$ and $\lambda_3 = \{\frac{v_1}{0.0}, \frac{v_2}{0.0}, \frac{v_3}{1.0}, \frac{v_4}{0.0}\}$. Also, (η, η^*) defined on V as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{4}, & \text{if } \mu \in \{\lambda_1, \lambda_2, \lambda_3\}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{4}, & \text{if } \mu \in \{\lambda_1, \lambda_2, \lambda_3\}, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, ρ is $(\frac{1}{4}, \frac{1}{4}) - g^\odot fsc$ set, but it is not $(\frac{1}{4}, \frac{1}{4}) - g^* fsc$ set.

Example 2.3. Let $V = \{v_1, v_2, v_3\}$ and $\nu, \mu_1, \mu_2 \in I^V$ defined as follows: $\nu = \{\frac{v_1}{1.0}, \frac{v_2}{0.0}, \frac{v_3}{0.0}\}$, $\mu_1 = \{\frac{v_1}{0.0}, \frac{v_2}{0.0}, \frac{v_3}{1.0}\}$ and $\mu_2 = \{\frac{v_1}{1.0}, \frac{v_2}{1.0}, \frac{v_3}{0.0}\}$. Also, (η, η^*) defined on V as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu \in \{\mu_1, \mu_2\}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu \in \{\mu_1, \mu_2\}, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, ν is $(\frac{1}{2}, \frac{1}{2}) - sgfc$ set, but it is not $(\frac{1}{2}, \frac{1}{2}) - g^* fsc$ set.

Example 2.4. Let $V = \{v_1, v_2, v_3\}$ and $\nu, \mu_1, \mu_2 \in I^V$ defined as follows: $\nu = \{\frac{v_1}{1.0}, \frac{v_2}{0.0}, \frac{v_3}{1.0}\}$, $\mu_1 = \{\frac{v_1}{1.0}, \frac{v_2}{0.0}, \frac{v_3}{0.0}\}$ and $\mu_2 = \{\frac{v_1}{0.0}, \frac{v_2}{1.0}, \frac{v_3}{0.0}\}$. Also, (η, η^*) defined on V as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{3}, & \text{if } \mu \in \{\mu_1, \mu_2\}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{3}, & \text{if } \mu \in \{\mu_1, \mu_2\}, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, ν is $(\frac{1}{3}, \frac{1}{3}) - gfsc$ set, but it is not $(\frac{1}{3}, \frac{1}{3}) - g^* fsc$ set.

Remark 2.4. In general, $(r, s) - gfc$ sets [29] and $(r, s) - g^* fsc$ sets are independent concepts, as shown by Example 2.5.

Example 2.5. Let $V = \{v_1, v_2, v_3, v_4\}$ and $\rho, \nu, \mu_1, \mu_2 \in I^V$ defined as follows: $\rho = \{\frac{v_1}{0.0}, \frac{v_2}{1.0}, \frac{v_3}{0.0}, \frac{v_4}{0.0}\}$, $\nu = \{\frac{v_1}{1.0}, \frac{v_2}{1.0}, \frac{v_3}{0.0}, \frac{v_4}{1.0}\}$, $\mu_1 = \{\frac{v_1}{1.0}, \frac{v_2}{0.0}, \frac{v_3}{0.0}, \frac{v_4}{0.0}\}$ and $\mu_2 = \{\frac{v_1}{1.0}, \frac{v_2}{1.0}, \frac{v_3}{0.0}, \frac{v_4}{0.0}\}$. Also, (η, η^*) defined on V as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu \in \{\mu_1, \mu_2\}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu \in \{\mu_1, \mu_2\}, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, ρ is $(\frac{1}{2}, \frac{1}{2}) - g^*fsc$ set, but it is not $(\frac{1}{2}, \frac{1}{2}) - gfc$ set. Also, ν is $(\frac{1}{2}, \frac{1}{2}) - gfc$ set, but it is not $(\frac{1}{2}, \frac{1}{2}) - g^*fsc$ set.

Remark 2.5. In general, any intersection of $(r, s) - g^*fso$ sets is not $(r, s) - g^*fso$, and any union of $(r, s) - g^*fsc$ sets is not $(r, s) - g^*fsc$, as shown by Example 2.6.

Example 2.6. Let $V = \{v_1, v_2, v_3, v_4\}$ and $\nu, \rho, \mu_1, \mu_2, \mu_3 \in I^V$ defined as follows: $\nu = \{\frac{v_1}{1.0}, \frac{v_2}{0.0}, \frac{v_3}{1.0}, \frac{v_4}{1.0}\}$, $\rho = \{\frac{v_1}{0.0}, \frac{v_2}{1.0}, \frac{v_3}{1.0}, \frac{v_4}{1.0}\}$, $\mu_1 = \{\frac{v_1}{1.0}, \frac{v_2}{0.0}, \frac{v_3}{0.0}, \frac{v_4}{0.0}\}$, $\mu_2 = \{\frac{v_1}{0.0}, \frac{v_2}{1.0}, \frac{v_3}{0.0}, \frac{v_4}{0.0}\}$ and $\mu_3 = \{\frac{v_1}{1.0}, \frac{v_2}{1.0}, \frac{v_3}{0.0}, \frac{v_4}{0.0}\}$. Also, (η, η^*) defined on V as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{3}, & \text{if } \mu \in \{\mu_1, \mu_2, \mu_3\}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{3}, & \text{if } \mu \in \{\mu_1, \mu_2, \mu_3\}, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, μ_1 and μ_2 are $(\frac{1}{3}, \frac{1}{3}) - g^*fsc$ sets, but $\mu_1 \vee \mu_2$ is not $(\frac{1}{3}, \frac{1}{3}) - g^*fsc$. Also, ρ and ν are $(\frac{1}{3}, \frac{1}{3}) - g^*fso$ sets, but $\rho \wedge \nu$ is not $(\frac{1}{3}, \frac{1}{3}) - g^*fso$.

Theorem 2.1. Let (V, η, η^*) be a dfts, $\mu, \lambda \in I^V$, $r \in I_o$, and $s \in I_1$, then λ is $(r, s) - g^*fsc$ set iff every μ is $(r, s) - g^*fso$ set and $\lambda \leq \mu$, there is ρ is $(r, s) - fsc$ set, such that $\lambda \leq \rho \leq \mu$.

Proof. (\Rightarrow) Let λ be an $(r, s) - g^*fsc$, $\lambda \leq \mu$ and μ be an $(r, s) - g^*fso$ set, then $SC_{\eta, \eta^*}(\lambda, r, s) \leq \mu$. Put $\rho = SC_{\eta, \eta^*}(\lambda, r, s)$, there is ρ is $(r, s) - fsc$ set such that $\lambda \leq \rho \leq \mu$.

(\Leftarrow) Assume that $\lambda \leq \mu$ and μ is $(r, s) - g^*fso$ set, then by hypothesis, there is ρ is $(r, s) - fsc$ set such that $\lambda \leq \rho \leq \mu$, therefore, $SC_{\eta, \eta^*}(\lambda, r, s) \leq \mu$. So, λ is $(r, s) - g^*fsc$ set. \square

Proposition 2.1. Let (V, η, η^*) be a dfts, $\mu, \lambda \in I^V$, $r \in I_o$, and $s \in I_1$, then the following properties hold.

(i) If λ is $(r, s) - g^*fsc$ and $\lambda \leq \mu \leq SC_{\eta, \eta^*}(\lambda, r, s)$, then μ is $(r, s) - g^*fsc$ set.

(ii) If λ is $(r, s) - g^*fso$ and $SI_{\eta, \eta^*}(\lambda, r, s) \leq \mu \leq \lambda$, then μ is $(r, s) - g^*fso$ set.

(iii) If one of the following two cases hold:

(a) λ is $(r, s) - g^*fsc$ and $(r, s) - g^*fso$.

(b) λ is $(r, s) - g^*fsc$ and $\eta(\lambda) \geq r, \eta^*(\lambda) \leq s$.

Then, λ is $(r, s) - fsc$ set.

Proof. (i) Let ν be an $(r, s) - g^*fso$ set and $\mu \leq \nu$, then $\lambda \leq \nu$. Since λ is $(r, s) - g^*fsc$ set, hence $SC_{\eta, \eta^*}(\lambda, r, s) \leq \nu$, but $\mu \leq SC_{\eta, \eta^*}(\lambda, r, s)$. Then, $SC_{\eta, \eta^*}(\mu, r, s) \leq \nu$. So, μ is $(r, s) - g^*fsc$ set.

(ii) and (iii) are easily proved by a similar way. \square

Theorem 2.2. Let (V, η, η^*) be a dfts, $v \in I^V$, $s \in I_1$, and $r \in I_\circ$, then the following statements are equivalent.

- (i) v is $(r, s) - fro$ set.
- (ii) v is $(r, s) - g^*fsc$ set and $\eta(v) \geq r$, $\eta^*(v) \leq s$.

Proof. (i) \Rightarrow (ii) Let $\mu \in I^V$ be an $(r, s) - gfs$ set and $v \leq \mu$. Since v is $(r, s) - fro$ set, then $v \vee I_{\eta, \eta^*}(C_{\eta, \eta^*}(v, r, s), r, s) = v \leq \mu$. So, $SC_{\eta, \eta^*}(v, r, s) \leq \mu$, and hence v is $(r, s) - g^*fsc$ set.

(ii) \Rightarrow (i) Since v is $(r, s) - g^*fsc$ set and $\eta(v) \geq r$, $\eta^*(v) \leq s$, then by Proposition 2.1(iii), v is $(r, s) - fsc$ set. But, v is $(r, s) - fpo$ set. Therefore, v is $(r, s) - fro$ set. \square

Theorem 2.3. Let (V, η, η^*) be a dfts, $\rho, \mu, v \in I^V$, $s \in I_1$, and $r \in I_\circ$, then the following statements are equivalent.

- (i) v is $(r, s) - g^*fso$ set.
- (ii) For any μ is $(r, s) - gfs$ set and $\mu \leq v$, then $\mu \leq SI_{\eta, \eta^*}(v, r, s)$.
- (iii) For any μ is $(r, s) - gfs$ set and $\mu \leq v$, there is ρ is $(r, s) - fso$ set such that $\mu \leq \rho \leq v$.

Proof. (i) \Rightarrow (ii) Let μ be an $(r, s) - gfs$ set and $\mu \leq v$. Then, $v^c \leq \mu^c$, which is $(r, s) - gfs$ set. Hence, $SC_{\eta, \eta^*}(v^c, r, s) \leq \mu^c$ implies $\mu \leq (SC_{\eta, \eta^*}(v^c, r, s))^c$. Then, $\mu \leq SI_{\eta, \eta^*}(v, r, s)$.

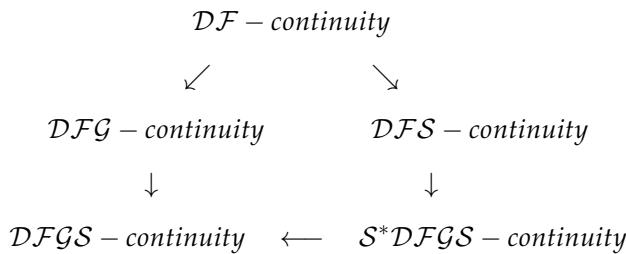
(ii) \Rightarrow (iii) Let μ be an $(r, s) - gfs$ set and $\mu \leq v$. Then, by hypothesis $\mu \leq SI_{\eta, \eta^*}(v, r, s)$. Put $SI_{\eta, \eta^*}(v, r, s) = \rho$. Hence, $\mu \leq \rho \leq v$.

(iii) \Rightarrow (i) Let μ be an $(r, s) - gfs$ set and $v^c \leq \mu$. Then, $\mu^c \leq v$ and by hypothesis, there is ρ is $(r, s) - fso$ set such that $\mu^c \leq \rho \leq v$, that is, $v^c \leq \rho^c \leq \mu$. Therefore, by Theorem 2.1, v^c is $(r, s) - g^*fso$ set. Hence, v is $(r, s) - g^*fso$ set. \square

Definition 2.2. Let $h : (U, \tau, \tau^*) \rightarrow (V, \eta, \eta^*)$ be a mapping, then h is said to be

- (i) Strongly* double fuzzy generalized semi-continuous (briefly, S^*DFGS -continuous) if $h^{-1}(v)$ is $(r, s) - g^*fso$ set for each $v \in I^V$ and $\eta(v) \geq r$, $\eta^*(v) \leq s$.
- (ii) S^*DFGS -irresolute if $h^{-1}(v)$ is $(r, s) - g^*fso$ set for each $v \in I^V$ is $(r, s) - g^*fso$ set.
- (iii) S^*DFGS -open if $h(\rho)$ is $(r, s) - g^*fso$ set for each $\rho \in I^U$ and $\tau(\rho) \geq r$, $\tau^*(\rho) \leq s$.
- (iv) S^*DFGS -closed if $h(\rho)$ is $(r, s) - g^*fsc$ set for $\rho \in I^U$ and $\tau(\rho^c) \geq r$, $\tau^*(\rho^c) \leq s$.

Remark 2.6. From the previous definitions, we can summarize the relationships among different types of DF -continuity as in the next diagram.



Remark 2.7. The converses of the above implications may not be true, as shown by Examples 2.7 and 2.8.

Example 2.7. Let $V = \{v_1, v_2, v_3, v_4\}$ and $\rho, v \in I^V$ defined as follows: $\rho = \{\frac{v_1}{0.0}, \frac{v_2}{0.0}, \frac{v_3}{1.0}, \frac{v_4}{1.0}\}$ and $v = \{\frac{v_1}{0.0}, \frac{v_2}{0.0}, \frac{v_3}{0.0}, \frac{v_4}{1.0}\}$. Define $\eta, \eta^*, \tau, \tau^* : I^V \rightarrow I$ as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{0, 1\}, \\ \frac{1}{2}, & \text{if } \mu = \rho, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu = \rho, \\ 1, & \text{otherwise,} \end{cases}$$

$$\tau(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu = \nu, \\ 0, & \text{otherwise,} \end{cases}$$

$$\tau^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu = \nu, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, the identity mapping $id_v : (V, \eta, \eta^*) \rightarrow (V, \tau, \tau^*)$ is S^*DFGS -continuous, but it is not DFS -continuous.

Example 2.8. Let $V = \{v_1, v_2, v_3\}$ and $\mu_1, \mu_2, \mu_3 \in I^V$ defined as follows: $\mu_1 = \{\frac{v_1}{0.0}, \frac{v_2}{0.0}, \frac{v_3}{1.0}\}$, $\mu_2 = \{\frac{v_1}{1.0}, \frac{v_2}{1.0}, \frac{v_3}{0.0}\}$ and $\mu_3 = \{\frac{v_1}{0.0}, \frac{v_2}{1.0}, \frac{v_3}{1.0}\}$. Define $\eta, \eta^*, \tau, \tau^* : I^V \rightarrow I$ as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu \in \{\mu_1, \mu_2\}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu \in \{\mu_1, \mu_2\}, \\ 1, & \text{otherwise,} \end{cases}$$

$$\tau(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu = \mu_3, \\ 0, & \text{otherwise,} \end{cases}$$

$$\tau^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu = \mu_3, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, the identity mapping $id_v : (V, \eta, \eta^*) \rightarrow (V, \tau, \tau^*)$ is $DFGS$ -continuous, but it is not S^*DFGS -continuous.

Lemma 2.1. Every S^*DFGS -irresolute mapping is S^*DFGS -continuous.

Remark 2.8. The converse of Lemma 2.1 may not be true, as shown by Example 2.9.

Example 2.9. Let $V = \{v_1, v_2\}$. Define $\eta, \eta^*, \tau, \tau^* : I^V \rightarrow I$ as follows:

$$\eta(\rho) = \begin{cases} 1, & \text{if } \rho \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \rho \in \{\underline{0.1}, \underline{0.3}\}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\rho) = \begin{cases} 0, & \text{if } \rho \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \rho \in \{\underline{0.1}, \underline{0.3}\}, \\ 1, & \text{otherwise,} \end{cases}$$

$$\tau(\rho) = \begin{cases} 1, & \text{if } \rho \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \rho = \underline{0.1}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\tau^*(\rho) = \begin{cases} 0, & \text{if } \rho \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \rho = \underline{0.1}, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, the identity mapping $id_v : (V, \eta, \eta^*) \rightarrow (V, \tau, \tau^*)$ is $\mathcal{S}^*\mathcal{DFGS}$ -continuous, but it is not $\mathcal{S}^*\mathcal{DFGS}$ -irresolute.

3. Some Novel Higher Separation Axioms

Here, we are going to give the definitions of two types of higher fuzzy separation axioms with the help of $(r, s) - gfs$ sets [31] called $(r, s) - \mathcal{GFS}$ -regular (resp., $(r, s) - \mathcal{GFS}$ -normal) spaces and establish some of their properties.

Definition 3.1. A dfts (U, η, η^*) is said to be

- (i) $(r, s) - \mathcal{GFS}$ -regular iff $u_t \bar{q} \mu$ for each $\mu \in I^U$ is $(r, s) - gfs$ set implies that, there is $v_\delta \in I^U$ with $\eta(v_\delta) \geq r$, $\eta^*(v_\delta) \leq s$ for $\delta \in \{1, 2\}$, such that $u_t \in v_1$, $\mu \leq v_2$ and $v_1 \bar{q} v_2$.
- (ii) $(r, s) - \mathcal{GFS}$ -normal iff $\mu_1 \bar{q} \mu_2$ for each $(r, s) - gfs$ sets $\mu_\delta \in I^U$ for $\delta \in \{1, 2\}$ implies that, there is $v_\delta \in I^U$ with $\eta(v_\delta) \geq r$ and $\eta^*(v_\delta) \leq s$, such that $\mu_\delta \leq v_\delta$ and $v_1 \bar{q} v_2$.

Theorem 3.1. Let (U, η, η^*) be a dfts, $r \in I_\circ$, and $s \in I_1$, then the following statements are equivalent.

- (i) (U, η, η^*) is $(r, s) - \mathcal{GFS}$ -regular space.
- (ii) If $u_t \in \lambda$ for each $\lambda \in I^U$ is $(r, s) - gfs$, there is $\mu \in I^U$ with $\eta(\mu) \geq r$ and $\eta^*(\mu) \leq s$, such that $u_t \in \mu \leq C_{\eta, \eta^*}(\mu, r, s) \leq \lambda$.
- (iii) If $u_t \bar{q} \lambda$ for each $\lambda \in I^U$ is $(r, s) - gfs$, there is $\mu_\delta \in I^U$ with $\eta(\mu_\delta) \geq r$, $\eta^*(\mu_\delta) \leq s$ for $\delta \in \{1, 2\}$, such that $u_t \in \mu_1$, $\lambda \leq \mu_2$ and $C_{\eta, \eta^*}(\mu_1, r, s) \bar{q} C_{\eta, \eta^*}(\mu_2, r, s)$.

Proof. (i) \Rightarrow (ii) Let $u_t \in \lambda$ for each $\lambda \in I^U$ is an $(r, s) - gfs$, then $u_t \bar{q} \lambda^c$ for $(r, s) - gfs$ set λ^c . Since (U, η, η^*) is $(r, s) - \mathcal{GFS}$ -regular, there is $\mu, \nu \in I^U$ with $\eta(\mu) \geq r$, $\eta^*(\mu) \leq s$ and $\eta(\nu) \geq r$, $\eta^*(\nu) \leq s$ such that $u_t \in \mu$, $\lambda^c \leq \nu$ and $\mu \bar{q} \nu$. It implies $u_t \in \mu \leq \nu^c \leq \lambda$. Since $\eta(\nu) \geq r$ and $\eta^*(\nu) \leq s$, $u_t \in \mu \leq C_{\eta, \eta^*}(\mu, r, s) \leq \lambda$.

(ii) \Rightarrow (iii) Let $u_t \bar{q} \lambda$ for each $\lambda \in I^U$ is an $(r, s) - gfs$, then $u_t \in \lambda^c$ for $(r, s) - gfs$ set λ^c . By (ii), there is $\mu \in I^U$ with $\eta(\mu) \geq r$, $\eta^*(\mu) \leq s$ such that $u_t \in \mu \leq C_{\eta, \eta^*}(\mu, r, s) \leq \lambda^c$. Since $\eta(\mu) \geq r$ and $\eta^*(\mu) \leq s$, then μ is $(r, s) - gfs$ and $u_t \in \mu$. Again, by (ii), there is $\mu_1 \in I^U$ with $\eta(\mu_1) \geq r$, $\eta^*(\mu_1) \leq s$ such that

$$u_t \in \mu_1 \leq C_{\eta, \eta^*}(\mu_1, r, s) \leq \mu \leq C_{\eta, \eta^*}(\mu, r, s) \leq \lambda^c.$$

It implies $\lambda \leq (C_{\eta, \eta^*}(\mu, r, s))^c = I_{\eta, \eta^*}(\mu^c, r, s) \leq \mu^c$. Put $\mu_2 = I_{\eta, \eta^*}(\mu^c, r, s)$, then $\eta(\mu_2) \geq r$, $\eta^*(\mu_2) \leq s$. So, $C_{\eta, \eta^*}(\mu_2, r, s) \leq \mu^c \leq (C_{\eta, \eta^*}(\mu_1, r, s))^c$, that is, $C_{\eta, \eta^*}(\mu_1, r, s) \bar{q} C_{\eta, \eta^*}(\mu_2, r, s)$.

(iii) \Rightarrow (i) It is trivial. \square

In a similar way, we can prove Theorem 3.2.

Theorem 3.2. Let (U, η, η^*) be a dfts, $r \in I_\circ$, and $s \in I_1$, then the following statements are equivalent.

- (i) (U, η, η^*) is $(r, s) - \mathcal{GFS}$ -normal space.

(ii) If $v \leq \lambda$ for each $v \in I^U$ is $(r, s) - gfsc$ and $\lambda \in I^U$ is $(r, s) - gfs$ set, there is $\mu \in I^U$ with $\eta(\mu) \geq r$ and $\eta^*(\mu) \leq s$, such that $v \leq \mu \leq C_{\eta, \eta^*}(\mu, r, s) \leq \lambda$.

(iii) If $\lambda_1 \bar{q} \lambda_2$ for each $(r, s) - gfsc$ sets $\lambda_\delta \in I^U$ for $\delta \in \{1, 2\}$, there is $\mu_\delta \in I^U$ with $\eta(\mu_\delta) \geq r$ and $\eta^*(\mu_\delta) \leq s$, such that $\lambda_\delta \leq \mu_\delta$ and $C_{\eta, \eta^*}(\mu_1, r, s) \bar{q} C_{\eta, \eta^*}(\mu_2, r, s)$.

Theorem 3.3. If $h : (U, \tau, \tau^*) \rightarrow (V, \eta, \eta^*)$ is \mathcal{DF} -irresolute, \mathcal{DF} -open and bijective map, and (U, τ, τ^*) is (r, s) - \mathcal{GFS} -regular (resp., (r, s) - \mathcal{GFS} -normal) space, then (V, η, η^*) is (r, s) - \mathcal{GFS} -regular (resp., (r, s) - \mathcal{GFS} -normal) space.

Proof. Let $v_t \bar{q} \mu$ for each $\mu \in I^V$ is $(r, s) - gfsc$. Since h is \mathcal{DF} -irresolute, \mathcal{DF} -open and bijective map, then by Theorem 4.11 [31], h is $\mathcal{DFG}\mathcal{S}$ -irresolute. Hence, $h^{-1}(\mu)$ is $(r, s) - gfsc$ set. Put $v_t = h(u_t)$. Then, $u_t \bar{q} h^{-1}(\mu)$. Since (U, τ, τ^*) is (r, s) - \mathcal{GFS} -regular, there is $\mu_\delta \in I^U$ with $\tau(\mu_\delta) \geq r$, $\tau^*(\mu_\delta) \leq s$ and $\delta \in \{1, 2\}$ such that $u_t \in \mu_1$, $h^{-1}(\mu) \leq \mu_2$ and $\mu_1 \bar{q} \mu_2$. Since h is \mathcal{DF} -open and bijective map, we have

$$v_t \in h(\mu_1), \mu = h(h^{-1}(\mu)) \leq h(\mu_2), h(\mu_1) \bar{q} h(\mu_2).$$

Hence, (V, η, η^*) is (r, s) - \mathcal{GFS} -regular space. The other case follows similar lines. \square

Theorem 3.4. If $h : (U, \tau, \tau^*) \rightarrow (V, \eta, \eta^*)$ is \mathcal{DF} -continuous, $\mathcal{DFG}\mathcal{S}$ -irresolute closed and injective map, and (V, η, η^*) is (r, s) - \mathcal{GFS} -regular (resp., (r, s) - \mathcal{GFS} -normal), then (U, τ, τ^*) is (r, s) - \mathcal{GFS} -regular (resp., (r, s) - \mathcal{GFS} -normal).

Proof. Let $u_t \bar{q} \lambda$ for each $\lambda \in I^U$ is $(r, s) - gfsc$. Since h is $\mathcal{DFG}\mathcal{S}$ -irresolute closed, $h(\lambda)$ is $(r, s) - gfsc$. Since h is injective, $u_t \bar{q} \lambda$ implies $h(u_t) \bar{q} h(\lambda)$. Since (V, η, η^*) is (r, s) - \mathcal{GFS} -regular, there is $\mu_\delta \in I^U$ with $\eta(\mu_\delta) \geq r$, $\eta^*(\mu_\delta) \leq s$ and $\delta \in \{1, 2\}$ such that $h(u_t) \in \mu_1$, $h(\lambda) \leq \mu_2$ and $\mu_1 \bar{q} \mu_2$. Since h is \mathcal{DF} -continuous, $u_t \in h^{-1}(\mu_1)$, $\lambda \leq h^{-1}(\mu_2)$ with $\eta(h^{-1}(\mu_\delta)) \geq r$, $\eta^*(h^{-1}(\mu_\delta)) \leq s$ and $\delta \in \{1, 2\}$ and $h^{-1}(\mu_1) \bar{q} h^{-1}(\mu_2)$. Hence, (U, τ, τ^*) is (r, s) - \mathcal{GFS} -regular. The other case follows similar lines. \square

Theorem 3.5. If $h : (U, \tau, \tau^*) \rightarrow (V, \eta, \eta^*)$ is $\mathcal{DFG}\mathcal{S}$ -irresolute, \mathcal{DF} -open, \mathcal{DF} -closed and surjective map, and (U, τ, τ^*) is (r, s) - \mathcal{GFS} -regular (resp., (r, s) - \mathcal{GFS} -normal), then (V, η, η^*) is (r, s) - \mathcal{GFS} -regular (resp., (r, s) - \mathcal{GFS} -normal).

Proof. Let $v_t \in \mu$ for each $\mu \in I^V$ is $(r, s) - gfs$. Since h is $\mathcal{DFG}\mathcal{S}$ -irresolute and surjective then, there is $u \in h^{-1}(\{v\})$ such that $u_t \in h^{-1}(\mu)$ with $(r, s) - gfs$ set $h^{-1}(\mu)$. Since (U, τ, τ^*) is (r, s) - \mathcal{GFS} -regular, by Theorem 3.1, there is $v \in I^U$ with $\tau(v) \geq r$, $\tau^*(v) \leq s$ such that $u_t \in v \leq C_{\tau, \tau^*}(v, r, s) \leq h^{-1}(\mu)$. It implies

$$v_t \in h(v) \leq h(C_{\tau, \tau^*}(v, r, s)) \leq \mu.$$

Since h is \mathcal{DF} -open and \mathcal{DF} -closed, then $\eta(h(v)) \geq r$, $\eta^*(h(v)) \leq s$ and $\eta(h^c(C_{\tau, \tau^*}(v, r, s))) \geq r$. Hence, $v_t \in h(v) \leq C_{\eta, \eta^*}(h(v), r, s) \leq C_{\eta, \eta^*}(h(C_{\tau, \tau^*}(v, r, s)), r, s) \leq \mu$. Thus, (V, η, η^*) is (r, s) - \mathcal{GFS} -regular. The other case follows similar lines. \square

4. Novel Types of Compactness

Here, several types of compactness in double fuzzy topological spaces were introduced and the relationships between them were studied.

Definition 4.1. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$, then $\mu \in I^U$ is called an (r, s) -fuzzy compact iff for each family $\{\lambda_j \in I^U \mid \eta(\lambda_j) \geq r \text{ and } \eta^*(\lambda_j) \leq s\}_{j \in F}$, such that $\mu \leq \bigvee_{j \in F} \lambda_j$, there is a finite subset F_o of F , such that $\mu \leq \bigvee_{j \in F_o} \lambda_j$.

Definition 4.2. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$, then $\mu \in I^U$ is called an (r, s) -fuzzy \mathcal{GS} -compact iff for each family $\{\lambda_j \in I^U \mid \lambda_j \text{ is } (r, s) - \text{gfs}\}$, such that $\mu \leq \bigvee_{j \in F} \lambda_j$, there is a finite subset F_o of F , such that $\mu \leq \bigvee_{j \in F_o} \lambda_j$.

Lemma 4.1. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$. If $\mu \in I^U$ is (r, s) -fuzzy \mathcal{GS} -compact, then μ is (r, s) -fuzzy compact.

Proof. Follows from Definitions 4.1 and 4.2. \square

Theorem 4.1. Let $h : (U, \tau, \tau^*) \rightarrow (V, \eta, \eta^*)$ be a \mathcal{DFGS} -continuous mapping, $r \in I_o$, and $s \in I_1$. If $\mu \in I^U$ is (r, s) -fuzzy \mathcal{GS} -compact, then $h(\mu)$ is (r, s) -fuzzy compact.

Proof. Let $\{\lambda_j \in I^V \mid \eta(\lambda_j) \geq r \text{ and } \eta^*(\lambda_j) \leq s\}_{j \in F}$ with $h(\mu) \leq \bigvee_{j \in F} \lambda_j$, then $\{h^{-1}(\lambda_j) \in I^U \mid h^{-1}(\lambda_j) \text{ is } (r, s) - \text{gfs}\}$ (by h is \mathcal{DFGS} -continuous), such that $\mu \leq \bigvee_{j \in F} h^{-1}(\lambda_j)$. Since μ is (r, s) -fuzzy \mathcal{GS} -compact, there is a finite subset F_o of F , such that $\mu \leq \bigvee_{j \in F_o} h^{-1}(\lambda_j)$. Thus, $h(\mu) \leq \bigvee_{j \in F_o} \lambda_j$. Hence, the proof is completed. \square

Definition 4.3. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$, then $\mu \in I^U$ is called an (r, s) -fuzzy almost compact iff for each family $\{\lambda_j \in I^U \mid \eta(\lambda_j) \geq r \text{ and } \eta^*(\lambda_j) \leq s\}_{j \in F}$, such that $\mu \leq \bigvee_{j \in F} \lambda_j$, there is a finite subset F_o of F , such that $\mu \leq \bigvee_{j \in F_o} C_{\eta, \eta^*}(\lambda_j, r, s)$.

Definition 4.4. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$, then $\mu \in I^U$ is called an (r, s) -fuzzy almost \mathcal{GS} -compact iff for each family $\{\lambda_j \in I^U \mid \lambda_j \text{ is } (r, s) - \text{gfs}\}_{j \in F}$, such that $\mu \leq \bigvee_{j \in F} \lambda_j$, there is a finite subset F_o of F , such that $\mu \leq \bigvee_{j \in F_o} C_{\eta, \eta^*}(\lambda_j, r, s)$.

Lemma 4.2. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$. If $\mu \in I^U$ is (r, s) -fuzzy almost \mathcal{GS} -compact, then μ is (r, s) -fuzzy almost compact.

Proof. Follows from Definitions 4.3 and 4.4. \square

Lemma 4.3. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$. If $\mu \in I^U$ is (r, s) -fuzzy compact (resp., \mathcal{GS} -compact), then μ is (r, s) -fuzzy almost compact (resp., almost \mathcal{GS} -compact).

Proof. Follows from Definitions 4.1, 4.2, 4.3 and 4.4. \square

Remark 4.1. The converse of Lemma 4.3 may not be true, as shown by Example 4.1.

Example 4.1. Let $V = I$, $k \in N - \{1\}$, and $\rho, \lambda_k \in I^V$ defined as follows:

$$\rho(v) = \begin{cases} 1, & \text{if } v = 0, \\ \frac{1}{2}, & \text{otherwise,} \end{cases}$$

$$\lambda_k(v) = \begin{cases} 0.8, & \text{if } v = 0, \\ kv, & \text{if } 0 < v \leq \frac{1}{k}, \\ 1, & \text{if } \frac{1}{k} < v \leq 1. \end{cases}$$

Also, (η, η^*) defined on V as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{2}{3}, & \text{if } \mu \leq \rho, \\ \frac{k}{k+1}, & \text{if } \mu \leq \lambda_k, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{3}, & \text{if } \mu \leq \rho, \\ \frac{1}{k+1}, & \text{if } \mu \leq \lambda_k, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, V is $(\frac{1}{2}, \frac{1}{2})$ -fuzzy almost compact, but it is not $(\frac{1}{2}, \frac{1}{2})$ -fuzzy compact.

Theorem 4.2. Let $h : (U, \tau, \tau^*) \rightarrow (V, \eta, \eta^*)$ be a \mathcal{DF} -continuous mapping, $r \in I_o$, and $s \in I_1$. If $\mu \in I^U$ is (r, s) -fuzzy almost \mathcal{GS} -compact, then $h(\mu)$ is (r, s) -fuzzy almost compact.

Proof. Let $\{\lambda_j \in I^V \mid \eta(\lambda_j) \geq r \text{ and } \eta^*(\lambda_j) \leq s\}_{j \in F}$ with $h(\mu) \leq \bigvee_{j \in F} \lambda_j$, then $\{h^{-1}(\lambda_j) \in I^U \mid h^{-1}(\lambda_j) \text{ is } (r, s) - \text{gfs}\}$ (by h is \mathcal{DFGS} -continuous), such that $\mu \leq \bigvee_{j \in F} h^{-1}(\lambda_j)$. Since μ is (r, s) -fuzzy almost \mathcal{GS} -compact, there is a finite subset F_o of F , such that $\mu \leq \bigvee_{j \in F_o} C_{\tau, \tau^*}(h^{-1}(\lambda_j), r, s)$. Since h is \mathcal{DF} -continuous mapping, it follows

$$\begin{aligned} \mu &\leq \bigvee_{j \in F_o} C_{\tau, \tau^*}(h^{-1}(\lambda_j), r, s) \\ &\leq \bigvee_{j \in F_o} h^{-1}(C_{\eta, \eta^*}(\lambda_j, r, s)) \\ &= h^{-1}\left(\bigvee_{j \in F_o} C_{\eta, \eta^*}(\lambda_j, r, s)\right). \end{aligned}$$

Thus, $h(\mu) \leq \bigvee_{j \in F_o} C_{\eta, \eta^*}(\lambda_j, r, s)$. Hence, the proof is completed. \square

Definition 4.5. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$, then $\mu \in I^U$ is called an (r, s) -fuzzy nearly compact iff for each family $\{\lambda_j \in I^U \mid \eta(\lambda_j) \geq r \text{ and } \eta^*(\lambda_j) \leq s\}_{j \in F}$, such that $\mu \leq \bigvee_{j \in F} \lambda_j$, there is a finite subset F_o of F , such that $\mu \leq \bigvee_{j \in F_o} I_{\eta, \eta^*}(C_{\eta, \eta^*}(\lambda_j, r, s), r, s)$.

Definition 4.6. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$, then $\mu \in I^U$ is called an (r, s) -fuzzy nearly \mathcal{GS} -compact iff for each family $\{\lambda_j \in I^U \mid \lambda_j \text{ is } (r, s) - \text{gfs}\}_{j \in F}$, such that $\mu \leq \bigvee_{j \in F} \lambda_j$, there is a finite subset F_o of F , such that $\mu \leq \bigvee_{j \in F_o} I_{\eta, \eta^*}(C_{\eta, \eta^*}(\lambda_j, r, s), r, s)$.

Lemma 4.4. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$. If $\mu \in I^U$ is (r, s) -fuzzy nearly \mathcal{GS} -compact, then μ is (r, s) -fuzzy nearly compact.

Proof. Follows from Definitions 4.5 and 4.6. \square

Lemma 4.5. Let (U, η, η^*) be a dfts, $r \in I_o$, and $s \in I_1$. If $\mu \in I^U$ is (r, s) -fuzzy compact (resp., \mathcal{GS} -compact), then μ is (r, s) -fuzzy nearly compact (resp., nearly \mathcal{GS} -compact).

Proof. Follows from Definitions 4.1, 4.2, 4.5 and 4.6. \square

Remark 4.2. The converse of Lemma 4.5 may not be true, as shown by Example 4.2.

Example 4.2. Let $V = I$, $0 < k < 1$, and $\nu, \rho, \lambda_k \in I^V$ defined as follows:

$$\nu(v) = \begin{cases} \frac{1}{2}, & \text{if } 0 \leq v < 1, \\ 1, & \text{if } v = 1, \end{cases}$$

$$\rho(v) = \begin{cases} 1, & \text{if } v = 0, \\ \frac{1}{2}, & \text{if } 0 < v \leq 1, \end{cases}$$

$$\lambda_k(v) = \begin{cases} \frac{v}{k}, & \text{if } 0 \leq v \leq k, \\ \frac{1-v}{1-k}, & \text{if } k < v \leq 1. \end{cases}$$

Also, (η, η^*) defined on V as follows:

$$\eta(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\nu, \rho, \underline{0}, \underline{1}\}, \\ \max(\{1-k, k\}), & \text{if } \mu = \lambda_k, \\ 0, & \text{otherwise,} \end{cases}$$

$$\eta^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\nu, \rho, \underline{0}, \underline{1}\}, \\ \min(\{k, 1-k\}), & \text{if } \mu = \lambda_k, \\ 1, & \text{otherwise.} \end{cases}$$

Thus, V is $(\frac{1}{2}, \frac{1}{2})$ -fuzzy nearly compact, but it is not $(\frac{1}{2}, \frac{1}{2})$ -fuzzy compact.

Theorem 4.3. Let $h : (U, \tau, \tau^*) \rightarrow (V, \eta, \eta^*)$ be a \mathcal{DF} -continuous and \mathcal{DF} -open mapping, $r \in I_0$, and $s \in I_1$. If $\mu \in I^U$ is (r, s) -fuzzy nearly \mathcal{GS} -compact, $h(\mu)$ is (r, s) -fuzzy nearly compact.

Proof. Let $\{\lambda_j \in I^V \mid \eta(\lambda_j) \geq r \text{ and } \eta^*(\lambda_j) \leq s\}_{j \in F}$ with $h(\mu) \leq \bigvee_{j \in F} \lambda_j$, then $\{h^{-1}(\lambda_j) \in I^U \mid h^{-1}(\lambda_j) \text{ is } (r, s) \text{-gfs}\}$ (by h is \mathcal{DFGS} -continuous), such that $\mu \leq \bigvee_{j \in F} h^{-1}(\lambda_j)$. Since μ is (r, s) -fuzzy nearly \mathcal{GS} -compact, there is a finite subset F_0 of F , such that $\mu \leq \bigvee_{j \in F_0} I_{\tau, \tau^*}(C_{\tau, \tau^*}(h^{-1}(\lambda_j), r, s), r, s)$. Since h is \mathcal{DF} -continuous and \mathcal{DF} -open, it follows

$$\begin{aligned} h(\mu) &\leq \bigvee_{j \in F_0} h(I_{\tau, \tau^*}(C_{\tau, \tau^*}(h^{-1}(\lambda_j), r, s), r, s)) \\ &\leq \bigvee_{j \in F_0} I_{\eta, \eta^*}(h(C_{\tau, \tau^*}(h^{-1}(\lambda_j), r, s)), r, s) \\ &\leq \bigvee_{j \in F_0} I_{\eta, \eta^*}(h(h^{-1}(C_{\eta, \eta^*}(\lambda_j, r, s))), r, s) \\ &\leq \bigvee_{j \in F_0} I_{\eta, \eta^*}(C_{\eta, \eta^*}(\lambda_j, r, s), r, s). \end{aligned}$$

Hence, the proof is completed. \square

Lemma 4.6. Let (U, η, η^*) be a dfts, $r \in I_0$, and $s \in I_1$. If $\mu \in I^U$ is (r, s) -fuzzy soft nearly \mathcal{GS} -compact (resp., nearly compact), then μ is (r, s) -fuzzy soft almost \mathcal{GS} -compact (resp., almost compact).

Proof. Follows from Definitions 4.3, 4.4, 4.5 and 4.6. \square

Remark 4.3. We can summarize the relationships among different types of fuzzy compactness as in the next diagram.

$$\mathcal{GS}\text{-compactness} \rightarrow \text{compactness}$$

$$\begin{array}{ccc}
 & \downarrow & \downarrow \\
 \text{nearly GS-compactness} & \rightarrow & \text{nearly compactness} \\
 & \downarrow & \downarrow \\
 \text{almost GS-compactness} & \rightarrow & \text{almost compactness}
 \end{array}$$

5. Conclusion and Future Work

In this article, we have introduced a novel class of generalizations of fuzzy closed subsets called “ $(r,s)-g^*fsc$ sets” via double fuzzy topologies and some characterizations have been discussed. Moreover, we have defined novel types of fuzzy mappings and the relationship between these mappings have been introduced with the help of some problems. Also, we have shown that

$$\begin{array}{ccc}
 (r,s)-fsc & \Rightarrow & (r,s)-g^*fsc \\
 & \Downarrow & \Downarrow \\
 (r,s)-sgfc & & (r,s)-g^\odot fsc \\
 & \Downarrow & \Downarrow \\
 & & (r,s)-gfsc
 \end{array}$$

but in general, the converses of the above implications may not be true. Thereafter, “ (r,s) -GFS-regular” and “ (r,s) -GFS-normal” spaces have been defined as two new notions of higher fuzzy separation axioms and some characterizations of these separation axioms have been obtained. In the end, several novel types of fuzzy compactness in the frame of double fuzzy topologies have been introduced and some properties have been given. Also, the relationship between them have been explored.

In the upcoming papers, we shall discuss the concepts given here in the frames of a fuzzy idealization [42,43] and fuzzy soft r -minimal structures [44,45]. Moreover, we will study the main properties of classical compactness in the frame of double fuzzy topologies.

Data Availability Statement: No data were used to support this article.

Conflicts of Interest: The authors declare no conflict of interest.

Use of AI Tools Declaration: The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

References

1. Zadeh, L.A. Fuzzy sets. *Inform. Control* 1965, 8, 338-353.
2. Zimmermann, H.J. Fuzzy set theory and its applications. *Kluwer Acad. Publ., Boston* 1991.
3. Li, H.X.; Yen, V.C. Fuzzy sets and fuzzy decision making. *CRC Press, London* 1995.
4. Chang, C.L. Fuzzy topological spaces. *J. Math. Anal. Appl.* 1968, 24, 182-190.
5. Kandil, A.; El-Etrby, A.M. On separation axioms in fuzzy topological spaces. *Tamkang J. Math.* 1987 18, 49-59.
6. Kandil, A.; El-Shafei, M.E. Regularity axioms in fuzzy topological spaces and FRi-proximities. *Fuzzy Set. Syst.* 1988, 27, 217-231.
7. Balasubramanian, G.; Sundaram, P. On some generalizations of fuzzy continuous functions. *Fuzzy Set. Syst.* 1997, 86, 93-100.
8. Chetty, P.G. Generalized fuzzy topology. *Ital. J. Pure Appl. Math.* 2008, 24, 91-96.
9. Das, B.; Chakraborty, J.; Paul, G.; Bhattacharya, B. A new approach for some applications of generalized fuzzy closed sets. *Comp. Appl. Math.* 2021, 40, 1-14.
10. Abu-Gdairi, R.; Nasef, A.A.; El-Gayar, M.A.; El-Bably, M.K. On fuzzy point applications of fuzzy topological spaces. *Int. J. Fuzzy Logic Intell. Syst.* 2023, 23(2), 162-172.

11. Taha, I.M. A new approach to separation and regularity axioms via fuzzy soft sets. *Ann. Fuzzy Math. Inform.* 2020, 20(2), 115-123.
12. El-Bably, M.K.; El Atik, A.A. Soft β -rough sets and its application to determine COVID-19. *Turk. J. Math.* 2021, 45(3), 1133-1148.
13. Taha, I.M. Some new separation axioms in fuzzy soft topological spaces. *Filomat* 2021, 35(6), 1775-1783.
14. Abu-Gdairi, R.; El-Gayar, M.A.; Al-shami, T.M.; Nawar, A.S.; El-Bably, M.K. Some topological approaches for generalized rough sets and their decision making applications. *Symmetry* 2022, 14, 1-16.
15. Ali, M.I.; El-Bably, M.K.; Abo-Tabl, E.A. Topological approach to generalized soft rough sets via near concepts. *Soft Computing* 2022, 26, 499-509.
16. Al-shami, T.M.; Mhemdi, A.; Abu-Gdairid, R. A novel framework for generalizations of soft open sets and its applications via soft topologies. *Mathematics* 2023, 11, 1-16.
17. Kaur, S.; Al-shami, T.M.; Ozkan, A.; Hosny, M. A new approach to soft continuity. *Mathematics* 2023, 11, 1-11.
18. Alshammari, I.; Taha, I.M. On fuzzy soft β -continuity and β -irresoluteness: some new results. *AIMS Mathematics* 2024, 9(5), 11304-11319.
19. Molodtsov, D. Soft set theory-first results. *Comput. Math. Appl.* 1999, 37, 19-31.
20. Feng, F.; Liu, X.; Fotea, V.L.; Jun, Y.B. Soft sets and soft rough sets. *Info. Sciences* 2011, 181(6), 1125-1137.
21. Atanassov, K. Intuitionistic fuzzy sets. *Fuzzy Sets Syst.* 1986, 20, 87-96.
22. Atanassov, K. New operators defined over the intuitionistic fuzzy sets. *Fuzzy Sets Syst.* 1993, 61, 131-142.
23. Coker, D. An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces. *J. Fuzzy Math.* 1996, 4, 749-764.
24. Coker, D. An introduction to intuitionistic fuzzy topological spaces. *Fuzzy Sets Syst.* 1997, 88, 81-89.
25. Samanta, S.K.; Mondal, T.K. Intuitionistic gradation of openness: intuitionistic fuzzy topology. *Busefal* 1997, 73, 8-17.
26. Samanta, M.S.K.; Mondal, T.K. On intuitionistic gradation of openness. *Fuzzy Sets Syst.* 2002, 131, 323-336.
27. Šostak, A.P. On a fuzzy topological structure. In: *Proceedings of the 13th winter school on abstract analysis, Section of topology, Palermo: Circolo Matematico di Palermo* 1985, 89-103.
28. Garcia, J.G.; Rodabaugh, S.E. Ordertheoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, intervalvalued; intuitionistic sets, intuitionistic fuzzy sets and topologies. *Fuzzy Sets Syst.* 2005, 156(3), 445-484.
29. Abbas, S.E. (r,s) -generalized intuitionistic fuzzy closed sets. *J. Egyptian Math. Soc.* 2006, 14, 331-351.
30. Zahran, A.M.; Abd-Allah, M.A.; Ghareeb, A. Several types of double fuzzy irresolute functions. *Int. J. Comput. Cognition* 2011, 8, 19-23.
31. Taha, I.M. Some properties of (r,s) -generalized fuzzy semi-closed sets and some applications. *J. Math. Comput. Sci.* 2022, 27(2), 164-175.
32. Demirci, M.; Coker, D. An introduction to intuitionistic fuzzy topological spaces in Šostaks sense. *Busefal* 1996, 67, 67-76.
33. Abbas, S.E.; Krsteska, B. Some properties of intuitionistic (r,s) - T_0 and (r,s) - T_1 spaces. *Int. j. math. math. sci.* 2008, 1-11.
34. El-Sanousy, E. (r,s) - $(\tau_{1,2}, \tau_{1,2}^*)$ - θ -generalized double fuzzy closed sets in bitopological spaces. *J. Egyptian Math. Soc.* 2016, 24, 574-581.
35. Bajpai, J.P.; Thakur, S.S. Intuitionistic fuzzy sgp -closed set. *Int. j. latest trends eng. technol.* 2017, 8(1), 636-642.
36. El-Sanousy, E.; Atef, A. (r,s) -fuzzy g^* p -closed sets and its applications. *Appl. Math. Inf. Sci.* 2022, 16(1), 17-24.
37. Lee, E.P. Semiopen sets on intuitionistic fuzzy topological spaces in Šostaks sense. *Int. J. Fuzzy Logic Intel. Sys.* 2004, 14, 234-238.
38. Lee, E.P.; Kim, J.I. Fuzzy strongly (r,s) -preopen and preclosed mappings. *Commun. Korean Math. Soc.* 2011, 26(4), 661-667.
39. Thakur, S.S.; Bajpai, J.P. Intuitionistic fuzzy sg -continuous mappings. *Int. J. Appl. Math. Anal. Appl.* 2010, 5(1), 45-51.
40. Thakur, S.S.; Bajpai, J.P. Semi generalized closed sets in intuitionistic fuzzy topology. *Int. Rev. Fuzzy Math.* 2011, 6(2), 69-76.
41. Mohammed, F.M.; Noorani, M.S.M.; Ghareeb, A. Several notions of generalized semi-compactness in double fuzzy topological spaces. *Int. J. Pure Appl. Math.* 2016, 109(2), 153-175.

42. Taha, I.M. On r -generalized fuzzy ℓ -closed sets: properties and applications. *J. Math.* 2021, 2021, 1-8.
43. Taha, I.M. r -fuzzy δ - ℓ -open sets and fuzzy upper (lower) δ - ℓ -continuity via fuzzy idealization. *J. Math. Comput. Sci.* 2022, 25(1), 1-9.
44. Taha, I.M. Compactness on fuzzy soft r -minimal spaces. *Int. J. Fuzzy Logic Intell. Syst.* 2021, 21(3), 251-258.
45. Taha, I.M. Some new results on fuzzy soft r -minimal spaces. *AIMS Math.* 2022, 7(7), 12458-12470.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.