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Abstract: In this article, we first defined a stronger form of (7, s)-generalized fuzzy semi-closed sets (briefly, (r,s)-
gfsc sets) called (r,s) — g® fsc sets and investigated some of its features. Moreover, we showed that (,s) — fsc
set = (r,5) — ¥ fsc set = (r,5) — gfsc set, but the converse may not be true. In addition, we explored novel
types of fuzzy generalized mappings between double fuzzy topological spaces (U, T, 7*) and (V, ,7*), and the
relationships between these classes of mappings were examined with the help of some illustrative examples.
Thereafter, we introduced novel types of higher separation axioms called (r,s)-GF S-regular and (r,s)-GFS-
normal spaces with the help of (r,s)-gfsc sets and discussed some topological properties of them. Finally, some

novel types of compactness via (7, s)-gfso sets were defined and the relationships between them were introduced.

Keywords: intuitionistic fuzzy set; double fuzzy topology; (r,s) — gfsc set; (r,s) — g® fsc set; continuity; (r,s)-
GF S-regular space; (r,s)-GF S-normal space; compactness

MSC: 03E72; 54A05; 54A40; 54C08; 54D15

1. Introduction and Preliminaries

The theory of fuzzy set was first presented by Zadeh [1]. Since then it has been improved and
applied in most all the branches of technology and science, where theory of sets and mathematical logic
play an important role. Also, many applications of these theory contributed to solving several practical
problems in mathematics, social science, engineering, economics, etc. In recent years, many authors
have contributed to fuzzy sets theory in the different directions in mathematics such as geometry,
topology, algebra, operation research, see [2,3]. The notion of fuzzy sets was used to introduce fuzzy
topological spaces in [4]. The study in [4] was particularly important in the development of the field
of fuzzy topology, see [5-10]. The authors of [11-18] studied topological structures inspired by the
hybridizations of soft sets [19] with fuzzy sets [1] and rough sets [20].

The concept of an intuitionistic fuzzy set was initiated by Atanassov [21,22], which is a gener-
alization of a fuzzy set. Coker [23,24] introduced the concept of an intuitionistic fuzzy topological
space based on the sense of Chang [4]. Later, Samanta and Mondal [25,26] gave the definition of an
intuitionistic fuzzy topological space based on the sense of Sostak [27]. The name (intuitionistic) was
replaced with the name (double) by Garcia and Rodabaugh [28]. The concept of (r,s) — gfc sets was
introduced and investigated by Abbas [29]. Thereafter, the concept of (,s) — sg fc sets was introduced
by Zahran et al. [30] on double fuzzy topological space based on the sense of Sostak. Also, Taha
[31] defined the concept of (r,s) — gfsc sets and some characterizations were given. So far, lots of
spectacular and creative studies about the theories of an intuitionistic fuzzy set have been considered
by some scholars, see e. g. [32-36].

The organization of this article is as follows:

e TFirstly, as a stronger form of (r,s) — ¢fsc sets [31], the notion of (r,s) — ¢® fsc sets is introduced
and some properties are investigated. Moreover, we introduce new types of fuzzy mappings
between double fuzzy topological spaces and relationships are obtained.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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*  Secondly, we define new types of fuzzy separation axioms with the help of (r,s) — gfsc sets and
establish some of their properties.

¢  Finally, some new types of compactness in double fuzzy topological spaces are defined and the
relationships between them are specified.

¢ Inthe end, we give some conclusions and make a plan for future works in Section 5.

Throughout this article, nonempty sets will be denoted by V, U, etc. The family of all fuzzy sets
on U is denoted by IY, and for u € T4, u°(u) = 1 — u(u), forall u € U (where I = [0,1], I; = [0,1),
and I, = (0,1]). Also, fort € I, t(u) = ¢, forall u € U.

A fuzzy point u; on U is a fuzzy set, defined as follows: u;(k) = t if k = u, and u;(k) = 0 for all
k € U— {u}. u; is said to belong to a fuzzy set y, denoted by u; € p, if t < p(u). The family of all
fuzzy points on U is denoted by P;(U).

A fuzzy set u is a quasi-coincident with A, denoted by ugA, if there is u € U, such that p(u) +
A(u) > 1, if p is not quasi-coincident with A, we denote ygA.

The following results and notions will be used in the next sections:

Lemma 1.1 ([6]). Let U be a nonempty set and v, u € IY. Then,
(i) vqu iff there is uy € v such that usqu,
(i) v A # Qif vy,
(iii) vqu iffv < uS,
(iv) u < viff uy € pimplies uy € v iff urqu implies uqu iff urqv implies urqu,
(v) utg \ sep Vs iff there is g € A such that uqug,.

Definition 1.1 ([25,30]). A double fuzzy topology on U is a pair (1,1*) of the mappings n,n* : 14 — I,
which satisfy the following conditions.

(i) n(v) +n*(v) <1, foreachv € 1Y,

(ii) n(vi Avp) > 51(v1) Ayp(va) and 7% (v1 Ava) < 7% (v1) V 7% (), for each vy, v, € 1Y,

(iii) 1(Vseavs) > Noea?1(Vs) and 1" (Vsea vs) < Voea 1 (vs), for each {vs}sea C IV )

The triplet (U, n,1*) is said to be a double fuzzy topological space (briefly, dfts) in the sense of Sostak.
1*(v) and (v) may be interpreted as gradation of nonopenness and openness for v € 1Y, respectively.

In a dfts (U, 7,7*), the interior of v € IY, the closure of v € IY, the semi-closure of v € IY and the
semi-interior of v € TY will be denoted by I ;- (v,7,s), Cy (v,7,9), SCy (v,7,s) and Sl (v,7,s),
respectively [26,32,37].

Definition 1.2 ([37,38]). Let (U,n,1*) beadfts, v € IV v €1, and s € I, then we have

(i) v is called an (r,s)-fsc (resp., (r,s)-fpc and (r,s)-frc) set if v > I y+(Cyy+ (v,7,5),7,5) (resp.,
v > Cn,ry*(In,rz* (v,7,8),1,8) and v = C,Y,U*(I,?,U* (v,7,5),1,9)).

(ii) v is called an (r,s)-fso (resp., (r,s)-fpo and (r,s)-fro) set if v < Cy y+ (I = (v,7,5),7,8) (resp.,
v < Iy (Cyp e (v,1,8),1,8) and v = I, < (Cy = (v,71,5),7,5)).

Definition 1.3 ([29-31]). Let (U, 7, n*) be a dfts, u,v € U,y e 1,,and s € I, then we have

(i) w is called an (r,s)-generalized fuzzy closed (briefly, (r,s)-gfc) set if Cyy«(p,7,5) < v whenever
u<vandn(v) >r,n*(v) <s.

(ii) p is called an (r,s)-semi generalized fuzzy closed (briefly, (r,s)-sgfc) set if SCyy«(p,1,5) < v
whenever y < vand v is (r,s)-fso set.

(iii) p is called an (r,s)-generalized fuzzy semi-closed (briefly, (r,s)-gfsc) set if SCy +(p,7,5) < v
whenever y < vandn(v) >r,n*(v) <s.

Definition 1.4 ([26,30]). Let h: (U, T, ") — (V,5,1*) be a mapping, then h is said to be
(i) DF-continuous if T(h=1(A)) > 5(A) and " (h=1(A)) < 5*(A) foreach A € V.
(ii) DF-open if y(h(v)) > t(v) and n* (h(v)) < *(v) for each v € I1Y.
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(iii) DF -closed if n(h*(v)) > t(v¢) and n* (h°(v)) < T (u) for each v € IY.

Definition 1.5 (29,31,37). Let h: (U, t,t*) — (V,n,1*) be a mapping, r € I,, and s € Iy, then h is said to
be

(i) DF S-continuous (resp., DFGS-continuous and DF G-continuous) if k=1 (u) is (r,s)-fso (resp.,
(r,8)-gfso and (r,s)-gfo) set for each u € 1V withn(p) >r,n*(u) <s.

(ii) DF GS-irresolute (resp., D F-irresolute) if h=1(u) is (r,s)-g fso (resp., (r,5)-fso) set foreach y € 1V
is (r,5)-gfso (resp., (r,s)-fso) set.

(iii) DF S-open (resp., DF GS-open and DF G-open) if h(v) is (r,s)-fso (resp., (r,s)-gfso and (r,s)-
gfo) set foreach v € 1Y with t(v) >r, 7% (v) <s.

(iv) DF S-closed (resp., DF GS-closed and DF G-closed) if h(v) is (r,s)-fsc (resp., (r,s)-gfsc and
(r,8)-gfc) set for each v € Y with T(v¢) > r, T*(v°) <s.

The basic results and notions that we need in the next sections are found in [29-31,39-41].

2. A Stronger Novel form of (r,s) — gfsc Sets

Here, we introduce and study a stronger form of (r,s) — gfsc sets called (r,s) — ¢ fsc sets. Also,
we show that (r,s) — fsc set [37] = (r,s) — ¢® fsc set = (r,s) — gfsc set [31], but the converse may
not be true. After that, we introduce new types of fuzzy mappings between double fuzzy topological
spaces and relationships are obtained.

Definition 2.1. Let (V,n,1*) beadfts, v,p € 1V, r €1, and s € 1, then we have:

(i) p is called an (r, s)-strongly generalized fuzzy semi-closed (briefly, (r,s) — g° fsc) if SCy 4+ (o, 7,5) < v
whenever p < vand v is (r,s) — gfo set,

(ii) p is called an (r, s)-strongly* generalized fuzzy semi-closed (briefly, (r,s) — g® fsc) if SCy (o, 7,5) <
v whenever p < vand v is (r,s) — gfso set.

Remark 2.1. (i) A fuzzy set p € 1V is (r,s) — g fso if p¢ is (r,s) — g° fsc set.
(ii) A fuzzy set p € 1V is (r,s) — g¥ fso if p° is (r,s) — g% fsc set.

Remark 2.2. From the previous definition, we can summarize the relationships among different types of fuzzy
closed subsets as in the next diagram.

(r,s) — fsc  — (r,s) —g®fsc

A A
(r,s) —sgfc  (r,s) —g"fsc
A 1
(r,s) —gfsc

Remark 2.3. The converses of the above implications may not be true, as shown by Examples 2.1, 2.2, 2.3 and
2.4.

Example 2.1. Let V = {v1,v,03,04} and p,v € 1V defined as follows: p = {15, 13, &, o5} and v =
o5 0% 150 15} Also, (17,1*) defined on 'V as follows:

L if pe{ol},
) =193 if u=v,
0, otherwise,
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0, if ne{o1},
() =33% if u=v,
1

, otherwise.

Thus, pis (1, 3) — ¥ fsc set, but it is not (%, 1) — fsc set.

Example 2.2. Let V = {v1,0p,03,04} and p, A1, Ay, A3 € 1V defined as follows: p = {Dh & okt
M = {gh, 75 10, 161 A2 = {ab 10 1o~ 06} and As = {gb, o5, 15 06 - Also, (1,17*) defined on V as
follows:

L if pef{0l},
() =9 3% if we{rAAs),
0, otherwise,
0, if pe{0l},
() =L if e {A, A A5,
1, otherwise.

Thus, pis (3, 1) — §° fsc set, but it is not (3, %) — g% fsc set.

Example 2.3. Let V
U1 0O

007 007 1o ) and pa = {14, 15

{v 1,1)2,03} and v,y pp € 1V defined as follows: v = {{, 53, 2
5 15, 05 - Also, (n,1*) defined on V as follows:

1, if ne{ol}
5Loif pe{pm},
0,

otherwise,
0, if pe{0l},
3 if ne{moml,
1, otherwise.

Thus, vis (1, 3) — sgfc set, but it is not (3, %) — g% fsc set.

Example 2.4. Let V = {v1,v5,03} and v, 1, pp € 1V defined as follows: v = {1}, 5%, 35} w1 =
Th 0% 05t and pr = {15, 15, o5 }- Also, (1,17*) defined on V as follows:

1.07 0.0~

Jay

L if pef{0l1},
Loif pe{pm},
0,

otherwise,

0, if me{01},
%/ lf 23S {‘111, "142},
1, otherwise.

Thus, v is (%, %) gfsc set, but it is not (%, %) ¢® fsc set.

Remark 2.4. In general, (r,s) — gfc sets [29] and (1, s)

— ¢® fsc sets are independent concepts, as shown by
Example 2.5.

d0i:10.20944/preprints202405.0781.v1
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Example 2.5. Let V = {v1,02,0v3,04} and p,v, p1, 4 € 1V defined as follows: p = {05 5 0506 1
v=A{1h T 05 15 H1 = {15 05 09 06} and 2 = {15, 15, 05- 05} Also, (11,11%) eﬁned on'V as
follows:

L if pe{01},
n(w) =93 if pe{pnl,
0

otherwise,

0, if nweio1},
(W) =935 if ue{pml}
1, otherwise.

Thus, p is (3, %) — % fsc set, but it is not (3, 1) — gfc set. Also, vis (1,3) — gfc set, but it is not
(3,3) — g¥fsc set.

Remark 2.5. In general, any intersection of (r,s) — g% fso sets is not (r,s)

— ¢®fso, and any union of
(r,8) — ¥ fsc sets is not (r,s) — g® fsc, as shown by Example 2.6.

Example 2.6. Let V = {v1,vp,03,04} and v, p, yl,yz,zljg, elv deﬁned as follows: 1{/) ={3. 55 15 15}
(% (% % (% (% U
= {ob 1 10161 11 = {1h ob 0b- o6} #2 = {ob. T o ob } @nd ws = {35, 15 o T} Also,

( 1n,1*) defined on V as follows:

L if pe{01},
() =193 if we{mu sl

0, otherwise,

0, if wef{o1},
7w =93 if ue{ppnsl,

1, otherwise.

Thus, uy and yy are (%, %) — g® fsc sets, but py V py is not (%, %) — g% fsc. Also, p and v are (%, %) _
¢® fso sets, but p A v is not (%, %) — ¢ fso.

Theorem 2.1. Let (V,n,17*) beadfts, u, A € IV, r € I, and s € I, then A is (r,s) — g¥ fsc set iff every p
is (r,5) — gfso set and A < y, there is p is (r,s) — fsc set, such that A < p < p.
Proof. (=) Let Abean (r,s) — §¥fsc, A < pand pbe an (r,s) — gfso set, then SC;, ,«(A,r,5) < p. Put
p = SCy (A,1,5), thereis pis (r,s) — fscsetsuch that A < p < p.

(<) Assume that A < y and pis (r,s) — gfso set, then by hypothesis, there is p is (r,s) — fsc set
such that A < p < y, therefore, SC;; ;< (A, 7,5) < p. So, Ais (r,s) — ¢¥fscset. O

Proposition 2.1. Let (V,n,n*) beadfts, u,A € 1V, r € I,,and s € Iy, then the following properties hold.
) If Ais (r,5) — g¥ fscand A < u < SCyy y+(A,1,5), then pis (r,s) — g¥ fsc set.
(i) If A is (r,s) — ¥ fso and SI y+(A,1,5) < p < A, then pis (r,s) — g% fso set.
(iii) If one of the following two cases hold:
(a) Ais (r,8) — g¥ fscand (r,s) — gfso.
(b) Nis (r,s) — g¥ fscand n(A) > r, 5" (1) <s.
Then, A is (r,s) — fsc set.

Proof. (i) Let v be an (r,s) — ¢fso set and u < v, then A < v. Since A is (r,s) — g¥ fsc set, hence
SCy+(A,1,8) <v,butu < SCy (A,7,s). Then, Scrm*(% r,s) <wv.So, uis (r,s) — ¢® fsc set.

d0i:10.20944/preprints202405.0781.v1
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(ii) and (iii) are easily proved by a similar way. [

Theorem 2.2. Let (V,1,17*) beadfts,v € 1V, s € Iy, and r € L, then the following statements are equivalent.
(i) vis (r,s) — fro set.
(i) vis (r,s) — g¥fscset and n(v) > r, n*(v) <s.

Proof. (i) = (ii) Let u € I be an (r,s) — gfso set and v < p. Since v is (r,s) — fro set, then vV
Ly - (Cy - (v,1,8),1,8) = v < p. So, SCyy y+(v,1,5) < p, and hence v is (r,s) — ¢® fsc set.

(ii) = (i) Since v is (r,s) — g® fsc set and 7 (v) > r, 5*(v) < s, then by Proposition 2.1(iii), v is
(r,s) — fscset. But, vis (r,s) — fpo set. Therefore, v is (r,s) — froset. [

Theorem 2.3. Let (V,1,1%) be a dfts, p,u,v € 1V, s € Iy, and r € L, then the following statements are
equivalent.

(i) vis (r,s) — g¥ fso set.

(ii) For any p is (r,s) — gfsc set and p < v, then p < SIy p(v,71,5).

(iii) For any w is (r,s) — gfsc set and u < v, there is p is (r,s) — fso set such that y < p < v.

Proof. (i) = (ii) Let y be an (r,s) — gfsc setand y < v. Then, v¢ < u¢, which s (r,s) — gfso set. Hence,
SCyp (v6,7,8) < ¢ implies u < (SCy 4+ (v, 7,8))¢. Then, u < Sl (v, 7,5).

(ii) = (iii) Let u be an (7,s) — gfsc set and y < v. Then, by hypothesis u < SI;; (v, 7,s). Put
Sl (v,7,8) = p. Hence, p < p < v.

(iii) = (i) Let u be an (r,s) — gfso set and v° < u. Then, u° < v and by hypothesis, there is p is
(r,s) — fso setsuch that u¢ < p < v, thatis, v° < p° < u. Therefore, by Theorem 2.1, 1¢ is (r,s) — g¥ fsc
set. Hence, v is (r,s) — g¥ fso set. [

Definition 2.2. Let h: (U, 7,T*) — (V,1,1*) be a mapping, then h is said to be

(i) Strongly* double fuzzy generalized semi-continuous (briefly, S*DFGS-continuous) if h='(v) is
(r,8) — g¥fso set foreachv € IV and n(v) >r,q*(v) <s.

(ii) S*DF GS-irresolute if k=1 (v) is (r,s) — g® fso set for each v € 1V is (r,s) — g® fso set.

(iii) S*DFGS-open if h(p) is (r,s) — g® fso set for each p € 1Y and t(p) > r, T"(p) < s.

(iv) S*DFGS~closed if h(p) is (r,s) — g% fsc set for p € Y and T(p°) >r, T°(p) <'s.

Remark 2.6. From the previous definitions, we can summarize the relationships among different types of
D F-continuity as in the next diagram.

DF — continuity
e N
DFG — continuity DFS — continuity

{ {
DFGS — continuity <+— S*DFGS — continuity

Remark 2.7. The converses of the above implications may not be true, as shown by Examples 2.7 and 2.8.

Example 2.7. Let V = {v1,v,03,04} and p,v € 1V defined as follows: p = {55, 53, &, 15} and v =

V1 Uy U3 U4 . * * . 7V .
00 05, 09 1o Define g, y*, T, : 1Y — I as follows:

L if pe{ol},
nuw) =<4 if u=p,
0, otherwise,

d0i:10.20944/preprints202405.0781.v1
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0, if pei{0l}h

7w =q3 if w=p
1, otherwise,
L if pe{ll}

W =93 i p=v
0, otherwise,
0, if pei0lh
3 if u=v,
1, otherwise.

Thus, the identity mapping id, : (V,n,n*) — (V,1,7") is S*DFGS-continuous, but it is not

D F S-continuous.

Example 2.8. Let V. = {v1,v5,03} and py, o, 3 € 1V defined as follows: y1 = {55, 53, 55} o =
1k, 1, 53} and ps = {55, 13, 35 }- Define n,n*, 7, 7" : 1V — I as follows:
L if ne{01},
1) =193 if pe{pml,
0, otherwise,
0, if we{o1},
7w =193 i we{pmm}
1, otherwise,
1, if ne{ol},
W) =93 if p=uns,
0, otherwise,
0, if pe{o1},
T =13 if n=ups
1, otherwise.
Thus, the identity mapping idy, : (V,n,4*) — (V, T, 7*) is DF GS-continuous, but it is not S*DF GS-

continuous.

Lemma 2.1. Every S*DJFGS-irresolute mapping is
Remark 2.8. The converse of Lemma 2.1 may not be

Example 2.9. Let V = {v1,v,}. Defineny, n*, 7, T*

if

n(p) if

1
1
27
0

S*DFGS-continuous.

true, as shown by Example 2.9.

: 1V — I as follows:

p {01},
p € {0.1,0.3},

otherwise,

d0i:10.20944/preprints202405.0781.v1
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0, if pe{01},
n"(p) =43 if pe{0103},
1, otherwise,

1, if pe{01},
Te) =43 if p=01
0,

otherwise,

0, if pe{01},
() =q3 if p=01,
1, otherwise.
(Vo) — (V,7,1%) is S*DFGS-continuous, but it is not

Thus, the identity mapping id,
S*DFGS-irresolute.

3. Some Novel Higher Separation Axioms

Here, we are going to give the definitions of two types of higher fuzzy separation axioms with the
help of (7,s) — gfsc sets [31] called (,s)-GF S-regular (resp., (r,s)-GF S-normal) spaces and establish
some of their properties.

Definition 3.1. A dfts (U, n,n*) is said to be

(i) (r,5)-GF S-reqular iff usgu for each u € 1Y is (r,s) — gfsc set implies that, there is vs € 1Y with
n(vs) >r, n*(vs) <sford € {1,2}, such that uy € vy, u < vy and v1qv,.

(i) (r,s)-GF S-normal iff u1quy for each (r,s) — gfsc sets us € IY for 5 € {1,2} implies that, there is
vs € 1Y with y(vs) > rand n*(vs) < s, such that ps < vs and viqvs.

Theorem 3.1. Let (U,n,n*) beadfts, r € I,, and s € I, then the following statements are equivalent.

(i) (U,n,n*) is (r,s)-GF S-regular space.

(ii) If uy € A for each A € 1% is (r,s) — gfso, thereis y € IY with y(u) > r and n*(u) < s, such that
Uurc U < C,],,]* (‘u, }’,S) <A

(iii) If u;gA for each A € 1% is (r,s) — gfsc, there is s € 1Y with (pus) > r, ¥ (us) < sford € {1,2},
such that uy € py, A < po and Cy - (1, 7,5)4Cy, 5+ (2,7, ).

Proof. (i) = (ii) Let u; € A for each A € [Y isan (r,s) — gfso, then u;gA° for (r,s) — gfsc set A°. Since
(U,y,7n%) is (r,5)-GF S-regular, there is u,v € 1Y with (u) > r, n*(u) < sand y(v) > r,n*(v) <s
such that u; € p, A° < v and pgv. It implies u; € p < v° < A. Since 7(v) > r and 7*(v) < s,
up € u < Cyye(p,1,8) <A

(i) = (iii) Let u;gA for each A € IY isan (r,s) — gfsc, then u; € A€ for (r,s) — gfso set A°. By (ii),
thereis y € IY with () > r, 7*(u) < s such that uy € p < Cy - (s, 7,5) < A°. Since n(p) > r and
7% (u) < s, then pis (r,s) — gfso and u; € p. Again, by (ii), there is uy € I¥ with y(u1) > r, 7*(u1) <s
such that

u € 1 < C,],,]*(ptl,r,s) <u < Cpys(p,r,s) <A

It implies A < (Cyy (1, 7,8))¢ = Ly = (0, 7,8) < pl. Put po = I = (46, 7,8), then iy (p2) > r, 1% (p2) <'s.
So, Cy - (p2,1,8) < u¢ < (Cyyp(pa,1,5))¢, thatis, Cy + (p1,7,5)GCy 5 (42, 7,5).
(iif) = (i) Itis trivial. OJ

In a similar way, we can prove Theorem 3.2.

Theorem 3.2. Let (U,1,n*) beadfts, r € I, and s € I, then the following statements are equivalent.
(i) (U,n,1*) is (r,s)-GF S-normal space.
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(i) If v < A foreach v € 1Y is (r,s) — gfscand A € IY is (r,s) — gfso set, there is u € IY with
n(p) = rand y*(u) <s,suchthatv < pu < Cyye(p,1,8) < A

(iii) If \GA; for each (r,s) — gfsc sets Ay € T4 for § € {1,2}, there is us € I with (us) > r and
n*(us) < s, such that As < ps and Cyp+ (p1,7,5)GCy e (p2, 7, 5).

Theorem 3.3. Ifh : (U, T,T") — (V,5,n*) is DF-irresolute, DF-open and bijective map, and (U, T, T*)
is (r,5)-GF S-regular (resp., (r,s)-GF S-normal) space, then (V,y,1*) is (r,s)-GF S-regqular (resp., (r,s)-
G FS-normal) space.

Proof. Let v;gu for each y € IV is (r,s) — gfsc. Since h is D F-irresolute, D F-open and bijective map,
then by Theorem 4.11 [31], h is DFGS-irresolute. Hence, h~!(u) is (r,s) — gfsc set. Put v; = h(u;).
Then, uggh~!(p). Since (U, T, T*) is (r,5)-GF S-regular, there is s € IY with (ps) > r, T (us) <'s
and 6 € {1,2} such that u; € py, h~' (1) < pp and p1Gus. Since h is DF -open and bijective map, we
have

or € W), p=h(h (1)) < h(ua), h(p1)gh(a).

Hence, (V,1,1*) is (r,s)-GF S-regular space. The other case follows similar lines. ]

Theorem 3.4. Ifh: (U, T, 7*) — (V,5,1n*) is DF-continuous, DF GS-irresolute closed and injective map,
and (V,n,n*) is (r,s)-GF S-reqular (resp., (r,5)-GF S-normal), then (U, T, T*) is (r,s)-GF S-reqular (resp.,
(r,5)-GFS-normal).

Proof. Let u;gA foreach A € IYis (r,s) — gfsc. Since h is DF GS-irresolute closed, h(A) is (r,s) — gfsc.
Since  is injective, u;gA implies h(u;)gh(A). Since (V,n,7*) is (r,s)-GF S-regular, there is pu; € 1Y
with n7(us) > r, n*(us) < sand § € {1,2} such that h(u;) € uy, h(A) < pp and p1gus. Since h is
D F-continuous, u¢ € h~ (1), A < h=Y(up) with (b= (us)) > r, 7" (h~1(ps)) <sand é € {1,2} and
h=(pu1)gh—'(p2). Hence, (U, T, T*) is (r,s)-GF S-regular. The other case follows similar lines. [J

Theorem 3.5. Ifh: (U, 7, T*) = (V,n,1*) is DFGS-irresolute, DF-open, DF-closed and surjective map,
and (U, T, T%) is (r,s)-GF S-regular (resp., (r,s)-GF S-normal), then (V,n,n*) is (r,s)-GF S-reqular (resp.,
(r,5)-GF S-normal).

Proof. Letv; € y foreach u € IV is (r,s) — gfso. Since h is DFGS-irresolute and surjective then, there
isu € h='({v}) such that uy € h=1(u) with (r,s) — gfso set k= (u). Since (U, 1, 7*) is (r,s)-GFS-
regular, by Theorem 3.1, there is v € IY with T(v) > r, T(v) < ssuch that u; € v < Crr+(v,7,8) <
h=1(p). It implies
v € h(v) < h(Cp(v,1,5)) < .
Since h is DF-open and DF-closed, then (h(v)) > r, n*(h(v)) < s and 5(h°(Cr=(v,7,5))) > 7.
C

Hence, v; € h(v) < Cyp(h(v),1,5) < Cyys (W(Cr o+ (v,1,8)),7,5) < p. Thus, (V,n,n*)is (r,5)-GFS-
regular. The other case follows similar lines. [

4. Novel Types of Compactness

Here, several types of compactness in double fuzzy topological spaces were introduced and the
relationships between them were studied.

Definition 4.1. Let (U,7,7*) bea dfts, r € I, and s € Iy, then u € 14 is called an (r,s)-fuzzy compact iff
for each family {Aj € IV | 7(A;) > rand 5*(A;) < s}icp, such that p < Vjer Aj, thereis a finite subset | o
of F, such that y < Vicp Aj.
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Definition 4.2. Let (U,7,7*) beadfts,r € I,,and s € Iy, then y € 1Y is called an (r, s)-fuzzy GS-compact
iff for each family {A; € 1Y | Ajis (r,s) — gfso}jey, such that p < Vjer Aj, there is a finite subset F o of F,
such that y < \/jeFo /\j.

Lemma 4.1. Let (U,n,17*) bea dfts,r € Io,and s € Iy. If u € 19 is (r,s)-fuzzy GS-compact, then y is
(r,s)-fuzzy compact.

Proof. Follows from Definitions 4.1 and 4.2. O

Theorem 4.1. Let h : (U, 7, 7") — (V,15,4*) be a DFGS-continuous mapping, r € I, and s € I. If
u € 1Y is (r,8)-fuzzy GS-compact, then h(u) is (r,s)-fuzzy compact.

Proof. Let {A; € IV | 7(A;) > r and 7*(A;) < s}jep with h(p) < Vjep Aj, then {h71(};) €
1Y | h=1(A)) is (r,s) — gfso} (by h is DFGS-continuous), such that y < Vier h~1(Aj). Since p

is (r,s)-fuzzy GS-compact, there is a finite subset /. of F, such that y < Vier, h’l()\j). Thus,
h(u) < Vjer, Aj- Hence, the proof is completed. [

Definition 4.3. Let (U,7,17*) bea dfts, r € Io, and s € Iy, then u € 1Y is called an (r,s)-fuzzy almost
compact iff for each family {A; € IV | y(A;) > rand y*(A;) < s}jer, such that p < \jep Aj, there is a finite
subset F o of F, such that y < \/jcp, Cy = (Aj,7,5).
Definition 4.4. Let (U,1,1*) bea dfts, r € I, and s € Iy, then u € 1Y is called an (r,s)-fuzzy almost
GS-compact iff for each family {A; € IV | A; is (r,s) — gfso}jcy, such that p < Vjer Aj, thereis a finite
subset F o of F, such that y < /iy, Cyy+ (Aj,7,5).

Lemma4.2. Let (U,n,7*) beadfts,r € I, and s € I. If y € IY is (r,s)-fuzzy almost GS-compact, then u
is (1, s)-fuzzy almost compact.

Proof. Follows from Definitions 4.3 and 4.4. O

Lemma4.3. Let (U,7,17*) beadfts,r € I,,ands € I1. If u € 1Y is (r,s)-fuzzy compact (resp., GS-compact),
then y is (r,s)-fuzzy almost compact (resp., almost GS-compact).

Proof. Follows from Definitions 4.1,4.2,4.3 and 4.4. O
Remark 4.1. The converse of Lemma 4.3 may not be true, as shown by Example 4.1.

Example 4.1. Let V =1,k € N — {1}, and p, A\, € 1" defined as follows:

p<v>—{1’ ¥ 2=0

otherwise,

08, if v=0,
M) =<ko, if 0<v
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Also, (,1*) defined on V as follows:

1, if pe{ol1}

2 0f u<p,
=% T EsP

s Zf ,‘MS/\k/

|3
0, otherwise,

0, if we{ol},
. Loif u<p,
prgy =3 T oEse

k1’ Uc.ug)\k/

|5
1, otherwise.

Thus, V is (%, 3)-fuzzy almost compact, but it is not (1, 3)-fuzzy compact.

Theorem 4.2. Let h: (U, 7, 7T*) — (V,1,1*) be a DF-continuous mapping, r € I,,ands € I. Ifu € 19 is
(r,s)-fuzzy almost GS-compact, then h(u) is (r,s)-fuzzy almost compact.

Proof. Let {A; € v | n(Aj) > r and 5*(A;) < stiep with h(p) < Vigp Aj, then {h_l(/\j) €
I | h=Y(Aj) is (r,5) — gfso} (by h is DFGS-continuous), such that u < \/;ep h™1(A;). Since p is
(r,s)-fuzzy almost GS-compact, there is a finite subset / - of /-, such that p < Vep, Cr 7 (b1 (Aj),7,s).
Since h is D F-continuous mapping, it follows

u<'\/ CT,T*(h_l()Lj),r,s)

j€Fo
<\ BN (Cyy(Ajm,9))
jEF
\/ Cyye(Aj,1,8)).
]GFO

Thus, h(n) < Vjep, Cyy(A),7,8). Hence, the proof is completed. [

Definition 4.5. Let (U,7,1%) be a dfts, r € Lo, and s € Iy, then u € 1Y is called an (r,s)-fuzzy nearly
compact iff for each family {A; € I | y(A;) > rand y*(Aj) < s}jey, such that p < \jep Aj, there is a finite
subset F o of F, such that y < /iy Iy - (C (A ,r,s),r,s).

Definition 4.6. Let (U,7,7*) be a dfts, r € I, and s € I, then y € 1Y is called an (r,s)-fuzzy nearly
GS-compact iff for each family {A; € I | A is (r,s) — gfso}jes, such that p < \jcp Aj, there is a finite
subset F o of F, such that u < \/jep Iy (Cy e (Aj,1,8),7,5).

Lemma 4.4. Let (U, 5,7*) beadfts, r € Io,and s € Iy. If u € 1Y is (r,s)-fuzzy nearly GS-compact, then u
is (,s)-fuzzy nearly compact.

Proof. Follows from Definitions 4.5 and 4.6. O

Lemmad.5. Let (U, 5, 7*) beadfts, r € Io,ands € Iy. If u € 1Y is (r,s)-fuzzy compact (resp., GS-compact),
then y is (r,s)-fuzzy nearly compact (resp., nearly GS-compact).

Proof. Follows from Definitions 4.1, 4.2,4.5and 4.6. [

Remark 4.2. The converse of Lemma 4.5 may not be true, as shown by Example 4.2.

d0i:10.20944/preprints202405.0781.v1
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Example 4.2. Let V. =1,0 <k < 1,and v,p, Ay € 1V defined as follows:

1 .

5, if 0<v<l],
V(v)—{2 .f -

1, if v=1,

p(v)z{l' yomo

I, if 0<ov<l,

v
Ak(’(]): k7’ Z_f Ogvgk/
Zo 0 df k<o <.

1, if we{vp01},
n(p) = max({1—k,k}), if p=Ag
0, otherwise,

0, if we{vp01},
n"(u) = qmin({k,1—k}), if p=>»A,
1, otherwise.

Thus, V is (3, §)-fuzzy nearly compact, but it is not (%, 3)-fuzzy compact.

Theorem 4.3. Let h : (U, t,7*) — (V,5,1*) be a DF-continuous and DF-open mapping, v € I,, and
s € I. If u € 1% is (v, s)-fuzzy nearly GS-compact, h(u) is (r,s)-fuzzy nearly compact.

Proof. Let {); € 1V | n(Aj) > rand 57%(A;) < stiep with h(p) < Vijgr Aj, then {h’l(/\]') €

Y [ h=1(Aj) is (r,5) — gfso} (by h is DFGS-continuous), such that u < V/;cp h™1(A;). Since p is (7, 5)-
fuzzy nearly GS-compact, there is a finite subset f o of F, such that u < Vcy, It v+ (Cree (h=Y(A)),1,8),1,5).
Since h is D F-continuous and D F-open, it follows

h(.u) < \/ h(IT,T* (CT,T* (hil()\j)/rls)lrls))

JEF o

< \/ I,M*(h(CT,T*(hfl()tj),r,s)),r,s)

Hence, the proof is completed. [

Lemma 4.6. Let (U, 5, n*) beadfts, r € I, and s € Iy. If u € IY is (r,s)-fuzzy soft nearly GS-compact
(resp., nearly compact), then  is (r, s)-fuzzy soft almost GS-compact (resp., almost compact).

Proof. Follows from Definitions 4.3, 4.4, 4.5 and 4.6. [
Remark 4.3. We can summarize the relationships among different types of fuzzy compactness as in the next

diagram.
GS-compactness —  compactness
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+ {
nearly GS-compactness —  nearly compactness
+ 4

almost GS-compactness — almost compactness

5. Conclusion and Future Work

In this article, we have introduced a novel class of generalizations of fuzzy closed subsets called
“(r,s) — g® fsc sets” via double fuzzy topologies and some characterizations have been discussed. More-
over, we have defined novel types of fuzzy mappings and the relationship between these mappings
have been introduced with the help of some problems. Also, we have shown that

(r,s) — fsc = (r,s)—g¥fsc

I N8
(r,s) —sgfc  (r;s)—g"fsc
I (3
(r,5) — gfsc

but in general, the converses of the above implications may not be true. Thereafter, “(r,s)-GF S-
regular” and “(r,s)-GF S-normal” spaces have been defined as two new notions of higher fuzzy
separation axioms and some characterizations of these separation axioms have been obtained. In the
end, several novel types of fuzzy compactness in the frame of double fuzzy topologies have been
introduced and some properties have been given. Also, the relationship between them have been
explored.

In the upcoming papers, we shall discuss the concepts given here in the frames of a fuzzy
idealization [42,43] and fuzzy soft r-minimal structures [44,45]. Moreover, we will study the main
properties of classical compactness in the frame of double fuzzy topologies.
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