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Abstract: In this article, we first defined a stronger form of (r, s)-generalized fuzzy semi-closed sets ⟨briefly, (r, s)-
g f sc sets⟩ called (r, s)− g⊛ f sc sets and investigated some of its features. Moreover, we showed that (r, s)− f sc
set⇒ (r, s)− g⊛ f sc set⇒ (r, s)− g f sc set, but the converse may not be true. In addition, we explored novel

types of fuzzy generalized mappings between double fuzzy topological spaces (U, τ, τ∗) and (V, η, η∗), and the

relationships between these classes of mappings were examined with the help of some illustrative examples.

Thereafter, we introduced novel types of higher separation axioms called (r, s)-GFS-regular and (r, s)-GFS-

normal spaces with the help of (r, s)-g f sc sets and discussed some topological properties of them. Finally, some

novel types of compactness via (r, s)-g f so sets were defined and the relationships between them were introduced.

Keywords: intuitionistic fuzzy set; double fuzzy topology; (r, s)− g f sc set; (r, s)− g⊛ f sc set; continuity; (r, s)-
GFS-regular space; (r, s)-GFS-normal space; compactness
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1. Introduction and Preliminaries

The theory of fuzzy set was first presented by Zadeh [1]. Since then it has been improved and
applied in most all the branches of technology and science, where theory of sets and mathematical logic
play an important role. Also, many applications of these theory contributed to solving several practical
problems in mathematics, social science, engineering, economics, etc. In recent years, many authors
have contributed to fuzzy sets theory in the different directions in mathematics such as geometry,
topology, algebra, operation research, see [2,3]. The notion of fuzzy sets was used to introduce fuzzy
topological spaces in [4]. The study in [4] was particularly important in the development of the field
of fuzzy topology, see [5–10]. The authors of [11–18] studied topological structures inspired by the
hybridizations of soft sets [19] with fuzzy sets [1] and rough sets [20].

The concept of an intuitionistic fuzzy set was initiated by Atanassov [21,22], which is a gener-
alization of a fuzzy set. Coker [23,24] introduced the concept of an intuitionistic fuzzy topological
space based on the sense of Chang [4]. Later, Samanta and Mondal [25,26] gave the definition of an
intuitionistic fuzzy topological space based on the sense of Šostak [27]. The name (intuitionistic) was
replaced with the name (double) by Garcia and Rodabaugh [28]. The concept of (r, s)− g f c sets was
introduced and investigated by Abbas [29]. Thereafter, the concept of (r, s)− sg f c sets was introduced
by Zahran et al. [30] on double fuzzy topological space based on the sense of Šostak. Also, Taha
[31] defined the concept of (r, s)− g f sc sets and some characterizations were given. So far, lots of
spectacular and creative studies about the theories of an intuitionistic fuzzy set have been considered
by some scholars, see e. g. [32–36].

The organization of this article is as follows:

• Firstly, as a stronger form of (r, s)− g f sc sets [31], the notion of (r, s)− g⊛ f sc sets is introduced
and some properties are investigated. Moreover, we introduce new types of fuzzy mappings
between double fuzzy topological spaces and relationships are obtained.
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• Secondly, we define new types of fuzzy separation axioms with the help of (r, s)− g f sc sets and
establish some of their properties.

• Finally, some new types of compactness in double fuzzy topological spaces are defined and the
relationships between them are specified.

• In the end, we give some conclusions and make a plan for future works in Section 5.

Throughout this article, nonempty sets will be denoted by V, U, etc. The family of all fuzzy sets
on U is denoted by IU , and for µ ∈ IU , µc(u) = 1− µ(u), for all u ∈ U (where I = [0, 1], I1 = [0, 1),
and I◦ = (0, 1]). Also, for t ∈ I, t(u) = t, for all u ∈ U.

A fuzzy point ut on U is a fuzzy set, defined as follows: ut(k) = t if k = u, and ut(k) = 0 for all
k ∈ U − {u}. ut is said to belong to a fuzzy set µ, denoted by ut ∈ µ, if t ≤ µ(u). The family of all
fuzzy points on U is denoted by Pt(U).

A fuzzy set µ is a quasi-coincident with λ, denoted by µqλ, if there is u ∈ U, such that µ(u) +
λ(u) > 1, if µ is not quasi-coincident with λ, we denote µqλ.

The following results and notions will be used in the next sections:

Lemma 1.1 ([6]). Let U be a nonempty set and ν, µ ∈ IU . Then,
(i) νqµ iff there is ut ∈ ν such that utqµ,
(ii) ν ∧ µ ̸= 0 if νqµ,
(iii) νqµ iff ν ≤ µc,
(iv) µ ≤ ν iff ut ∈ µ implies ut ∈ ν iff utqµ implies utqν iff utqν implies utqµ,
(v) utq

∨
δ∈∆ νδ iff there is δ0 ∈ ∆ such that utqνδ0 .

Definition 1.1 ([25,30]). A double fuzzy topology on U is a pair (η, η∗) of the mappings η, η∗ : IU → I,
which satisfy the following conditions.

(i) η(ν) + η∗(ν) ≤ 1, for each ν ∈ IU .
(ii) η(ν1 ∧ ν2) ≥ η(ν1) ∧ η(ν2) and η∗(ν1 ∧ ν2) ≤ η∗(ν1) ∨ η∗(ν2), for each ν1, ν2 ∈ IU .
(iii) η(

∨
δ∈∆ νδ) ≥

∧
δ∈∆ η(νδ) and η∗(

∨
δ∈∆ νδ) ≤

∨
δ∈∆ η∗(νδ), for each {νδ}δ∈∆ ⊂ IU .

The triplet (U, η, η∗) is said to be a double fuzzy topological space ⟨briefly, dfts⟩ in the sense of Šostak.
η∗(ν) and η(ν) may be interpreted as gradation of nonopenness and openness for ν ∈ IU , respectively.

In a dfts (U, η, η∗), the interior of ν ∈ IU , the closure of ν ∈ IU , the semi-closure of ν ∈ IU and the
semi-interior of ν ∈ IU will be denoted by Iη,η∗(ν, r, s), Cη,η∗(ν, r, s), SCη,η∗(ν, r, s) and SIη,η∗(ν, r, s),
respectively [26,32,37].

Definition 1.2 ([37,38]). Let (U, η, η∗) be a dfts, ν ∈ IU , r ∈ I◦, and s ∈ I1, then we have
(i) ν is called an (r, s)- f sc ⟨resp., (r, s)- f pc and (r, s)- f rc⟩ set if ν ≥ Iη,η∗(Cη,η∗ (ν, r, s), r, s) ⟨resp.,

ν ≥ Cη,η∗(Iη,η∗ (ν, r, s), r, s) and ν = Cη,η∗(Iη,η∗ (ν, r, s), r, s)⟩.
(ii) ν is called an (r, s)- f so ⟨resp., (r, s)- f po and (r, s)- f ro⟩ set if ν ≤ Cη,η∗(Iη,η∗ (ν, r, s), r, s) ⟨resp.,

ν ≤ Iη,η∗(Cη,η∗ (ν, r, s), r, s) and ν = Iη,η∗(Cη,η∗ (ν, r, s), r, s)⟩.

Definition 1.3 ([29–31]). Let (U, η, η∗) be a dfts, µ, ν ∈ IU , r ∈ I◦, and s ∈ I1, then we have
(i) µ is called an (r, s)-generalized fuzzy closed ⟨briefly, (r, s)-g f c⟩ set if Cη,η∗(µ, r, s) ≤ ν whenever

µ ≤ ν and η(ν) ≥ r, η∗(ν) ≤ s.
(ii) µ is called an (r, s)-semi generalized fuzzy closed ⟨briefly, (r, s)-sg f c⟩ set if SCη,η∗(µ, r, s) ≤ ν

whenever µ ≤ ν and ν is (r, s)- f so set.
(iii) µ is called an (r, s)-generalized fuzzy semi-closed ⟨briefly, (r, s)-g f sc⟩ set if SCη,η∗(µ, r, s) ≤ ν

whenever µ ≤ ν and η(ν) ≥ r, η∗(ν) ≤ s.

Definition 1.4 ([26,30]). Let h : (U, τ, τ∗)→ (V, η, η∗) be a mapping, then h is said to be
(i) DF -continuous if τ(h−1(λ)) ≥ η(λ) and τ∗(h−1(λ)) ≤ η∗(λ) for each λ ∈ IV .
(ii) DF -open if η(h(ν)) ≥ τ(ν) and η∗(h(ν)) ≤ τ∗(ν) for each ν ∈ IU .
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(iii) DF -closed if η(hc(ν)) ≥ τ(νc) and η∗(hc(ν)) ≤ τ∗(µc) for each ν ∈ IU .

Definition 1.5 (29,31,37). Let h : (U, τ, τ∗)→ (V, η, η∗) be a mapping, r ∈ I◦, and s ∈ I1, then h is said to
be

(i) DFS-continuous ⟨resp., DFGS-continuous and DFG-continuous⟩ if h−1(µ) is (r, s)- f so ⟨resp.,
(r, s)-g f so and (r, s)-g f o⟩ set for each µ ∈ IV with η(µ) ≥ r , η∗(µ) ≤ s.

(ii)DFGS-irresolute ⟨resp.,DF -irresolute⟩ if h−1(µ) is (r, s)-g f so ⟨resp., (r, s)- f so⟩ set for each µ ∈ IV

is (r, s)-g f so ⟨resp., (r, s)- f so⟩ set.
(iii) DFS-open ⟨resp., DFGS-open and DFG-open⟩ if h(ν) is (r, s)- f so ⟨resp., (r, s)-g f so and (r, s)-

g f o⟩ set for each ν ∈ IU with τ(ν) ≥ r , τ∗(ν) ≤ s.
(iv) DFS-closed ⟨resp., DFGS-closed and DFG-closed⟩ if h(ν) is (r, s)- f sc ⟨resp., (r, s)-g f sc and

(r, s)-g f c⟩ set for each ν ∈ IU with τ(νc) ≥ r , τ∗(νc) ≤ s.

The basic results and notions that we need in the next sections are found in [29–31,39–41].

2. A Stronger Novel form of (r, s)− g f sc Sets

Here, we introduce and study a stronger form of (r, s)− g f sc sets called (r, s)− g⊛ f sc sets. Also,
we show that (r, s)− f sc set [37]⇒ (r, s)− g⊛ f sc set⇒ (r, s)− g f sc set [31], but the converse may
not be true. After that, we introduce new types of fuzzy mappings between double fuzzy topological
spaces and relationships are obtained.

Definition 2.1. Let (V, η, η∗) be a d f ts, ν, ρ ∈ IV , r ∈ I◦, and s ∈ I1, then we have:
(i) ρ is called an (r, s)-strongly generalized fuzzy semi-closed ⟨briefly, (r, s)− g⊖ f sc⟩ if SCη,η∗(ρ, r, s) ≤ ν

whenever ρ ≤ ν and ν is (r, s)− g f o set,
(ii) ρ is called an (r, s)-strongly∗ generalized fuzzy semi-closed ⟨briefly, (r, s)− g⊛ f sc⟩ if SCη,η∗(ρ, r, s) ≤

ν whenever ρ ≤ ν and ν is (r, s)− g f so set.

Remark 2.1. (i) A fuzzy set ρ ∈ IV is (r, s)− g⊖ f so if ρc is (r, s)− g⊖ f sc set.
(ii) A fuzzy set ρ ∈ IV is (r, s)− g⊛ f so if ρc is (r, s)− g⊛ f sc set.

Remark 2.2. From the previous definition, we can summarize the relationships among different types of fuzzy
closed subsets as in the next diagram.

(r, s)− f sc → (r, s)− g⊛ f sc

↓ ↓

(r, s)− sg f c (r, s)− g⊖ f sc

↓ ↓

(r, s)− g f sc

Remark 2.3. The converses of the above implications may not be true, as shown by Examples 2.1, 2.2, 2.3 and
2.4.

Example 2.1. Let V = {v1, v2, v3, v4} and ρ, ν ∈ IV defined as follows: ρ = { v1
1.0 , v2

1.0 , v3
1.0 , v4

0.0} and ν =

{ v1
0.0 , v2

0.0 , v3
1.0 , v4

1.0}. Also, (η, η∗) defined on V as follows:

η(µ) =


1, if µ ∈ {0, 1},
1
2 , if µ = ν,

0, otherwise,
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η∗(µ) =


0, if µ ∈ {0, 1},
1
2 , if µ = ν,

1, otherwise.

Thus, ρ is ( 1
2 , 1

2 )− g⊛ f sc set, but it is not ( 1
2 , 1

2 )− f sc set.

Example 2.2. Let V = {v1, v2, v3, v4} and ρ, λ1, λ2, λ3 ∈ IV defined as follows: ρ = { v1
1.0 , v2

0.0 , v3
1.0 , v4

0.0},
λ1 = { v1

0.0 , v2
1.0 , v3

1.0 , v4
1.0}, λ2 = { v1

0.0 , v2
1.0 , v3

1.0 , v4
0.0} and λ3 = { v1

0.0 , v2
0.0 , v3

1.0 , v4
0.0}. Also, (η, η∗) defined on V as

follows:

η(µ) =


1, if µ ∈ {0, 1},
1
4 , if µ ∈ {λ1, λ2, λ3},
0, otherwise,

η∗(µ) =


0, if µ ∈ {0, 1},
1
4 , if µ ∈ {λ1, λ2, λ3},
1, otherwise.

Thus, ρ is ( 1
4 , 1

4 )− g⊖ f sc set, but it is not ( 1
4 , 1

4 )− g⊛ f sc set.

Example 2.3. Let V = {v1, v2, v3} and ν,µ1, µ2 ∈ IV defined as follows: ν = { v1
1.0 , v2

0.0 , v3
0.0}, µ1 =

{ v1
0.0 , v2

0.0 , v3
1.0} and µ2 = { v1

1.0 , v2
1.0 , v3

0.0}. Also, (η, η∗) defined on V as follows:

η(µ) =


1, if µ ∈ {0, 1},
1
2 , if µ ∈ {µ1, µ2},
0, otherwise,

η∗(µ) =


0, if µ ∈ {0, 1},
1
2 , if µ ∈ {µ1, µ2},
1, otherwise.

Thus, ν is ( 1
2 , 1

2 )− sg f c set, but it is not ( 1
2 , 1

2 )− g⊛ f sc set.

Example 2.4. Let V = {v1, v2, v3} and ν, µ1, µ2 ∈ IV defined as follows: ν = { v1
1.0 , v2

0.0 , v3
1.0}, µ1 =

{ v1
1.0 , v2

0.0 , v3
0.0} and µ2 = { v1

1.0 , v2
1.0 , v3

0.0}. Also, (η, η∗) defined on V as follows:

η(µ) =


1, if µ ∈ {0, 1},
1
3 , if µ ∈ {µ1, µ2},
0, otherwise,

η∗(µ) =


0, if µ ∈ {0, 1},
1
3 , if µ ∈ {µ1, µ2},
1, otherwise.

Thus, ν is ( 1
3 , 1

3 )− g f sc set, but it is not ( 1
3 , 1

3 )− g⊛ f sc set.

Remark 2.4. In general, (r, s)− g f c sets [29] and (r, s)− g⊛ f sc sets are independent concepts, as shown by
Example 2.5.
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Example 2.5. Let V = {v1, v2, v3, v4} and ρ, ν, µ1, µ2 ∈ IV defined as follows: ρ = { v1
0.0 , v2

1.0 , v3
0.0 , v4

0.0},
ν = { v1

1.0 , v2
1.0 , v3

0.0 , v4
1.0}, µ1 = { v1

1.0 , v2
0.0 , v3

0.0 , v4
0.0} and µ2 = { v1

1.0 , v2
1.0 , v3

0.0 , v4
0.0}. Also, (η, η∗) defined on V as

follows:

η(µ) =


1, if µ ∈ {0, 1},
1
2 , if µ ∈ {µ1, µ2},
0, otherwise,

η∗(µ) =


0, if µ ∈ {0, 1},
1
2 , if µ ∈ {µ1, µ2},
1, otherwise.

Thus, ρ is ( 1
2 , 1

2 )− g⊛ f sc set, but it is not ( 1
2 , 1

2 )− g f c set. Also, ν is ( 1
2 , 1

2 )− g f c set, but it is not
( 1

2 , 1
2 )− g⊛ f sc set.

Remark 2.5. In general, any intersection of (r, s) − g⊛ f so sets is not (r, s) − g⊛ f so, and any union of
(r, s)− g⊛ f sc sets is not (r, s)− g⊛ f sc, as shown by Example 2.6.

Example 2.6. Let V = {v1, v2, v3, v4} and ν, ρ, µ1, µ2, µ3 ∈ IV defined as follows: ν = { v1
1.0 , v2

0.0 , v3
1.0 , v4

1.0},
ρ = { v1

0.0 , v2
1.0 , v3

1.0 , v4
1.0}, µ1 = { v1

1.0 , v2
0.0 , v3

0.0 , v4
0.0}, µ2 = { v1

0.0 , v2
1.0 , v3

0.0 , v4
0.0} and µ3 = { v1

1.0 , v2
1.0 , v3

0.0 , v4
0.0}. Also,

(η, η∗) defined on V as follows:

η(µ) =


1, if µ ∈ {0, 1},
1
3 , if µ ∈ {µ1, µ2, µ3},
0, otherwise,

η∗(µ) =


0, if µ ∈ {0, 1},
1
3 , if µ ∈ {µ1, µ2, µ3},
1, otherwise.

Thus, µ1 and µ2 are ( 1
3 , 1

3 )− g⊛ f sc sets, but µ1 ∨ µ2 is not ( 1
3 , 1

3 )− g⊛ f sc. Also, ρ and ν are ( 1
3 , 1

3 )−
g⊛ f so sets, but ρ ∧ ν is not ( 1

3 , 1
3 )− g⊛ f so.

Theorem 2.1. Let (V, η, η∗) be a d f ts, µ, λ ∈ IV , r ∈ I◦, and s ∈ I1, then λ is (r, s)− g⊛ f sc set iff every µ

is (r, s)− g f so set and λ ≤ µ, there is ρ is (r, s)− f sc set, such that λ ≤ ρ ≤ µ.

Proof. (⇒) Let λ be an (r, s)− g⊛ f sc, λ ≤ µ and µ be an (r, s)− g f so set, then SCη,η∗(λ, r, s) ≤ µ. Put
ρ = SCη,η∗(λ, r, s), there is ρ is (r, s)− f sc set such that λ ≤ ρ ≤ µ.

(⇐) Assume that λ ≤ µ and µ is (r, s)− g f so set, then by hypothesis, there is ρ is (r, s)− f sc set
such that λ ≤ ρ ≤ µ, therefore, SCη,η∗(λ, r, s) ≤ µ. So, λ is (r, s)− g⊛ f sc set.

Proposition 2.1. Let (V, η, η∗) be a d f ts, µ, λ ∈ IV , r ∈ I◦, and s ∈ I1, then the following properties hold.
(i) If λ is (r, s)− g⊛ f sc and λ ≤ µ ≤ SCη,η∗(λ, r, s), then µ is (r, s)− g⊛ f sc set.
(ii) If λ is (r, s)− g⊛ f so and SIη,η∗(λ, r, s) ≤ µ ≤ λ, then µ is (r, s)− g⊛ f so set.
(iii) If one of the following two cases hold:
(a) λ is (r, s)− g⊛ f sc and (r, s)− g f so.
(b) λ is (r, s)− g⊛ f sc and η(λ) ≥ r, η∗(λ) ≤ s.
Then, λ is (r, s)− f sc set.

Proof. (i) Let ν be an (r, s) − g f so set and µ ≤ ν, then λ ≤ ν. Since λ is (r, s) − g⊛ f sc set, hence
SCη,η∗(λ, r, s) ≤ ν, but µ ≤ SCη,η∗(λ, r, s). Then, SCη,η∗(µ, r, s) ≤ ν. So, µ is (r, s)− g⊛ f sc set.
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(ii) and (iii) are easily proved by a similar way.

Theorem 2.2. Let (V, η, η∗) be a d f ts, ν ∈ IV , s ∈ I1, and r ∈ I◦, then the following statements are equivalent.
(i) ν is (r, s)− f ro set.
(ii) ν is (r, s)− g⊛ f sc set and η(ν) ≥ r, η∗(ν) ≤ s.

Proof. (i) ⇒ (ii) Let µ ∈ IV be an (r, s) − g f so set and ν ≤ µ. Since ν is (r, s) − f ro set, then ν ∨
Iη,η∗(Cη,η∗(ν, r, s), r, s) = ν ≤ µ. So, SCη,η∗(ν, r, s) ≤ µ, and hence ν is (r, s)− g⊛ f sc set.

(ii)⇒ (i) Since ν is (r, s)− g⊛ f sc set and η(ν) ≥ r, η∗(ν) ≤ s, then by Proposition 2.1(iii), ν is
(r, s)− f sc set. But, ν is (r, s)− f po set. Therefore, ν is (r, s)− f ro set.

Theorem 2.3. Let (V, η, η∗) be a d f ts, ρ, µ, ν ∈ IV , s ∈ I1, and r ∈ I◦, then the following statements are
equivalent.

(i) ν is (r, s)− g⊛ f so set.
(ii) For any µ is (r, s)− g f sc set and µ ≤ ν, then µ ≤ SIη,η∗(ν, r, s).
(iii) For any µ is (r, s)− g f sc set and µ ≤ ν, there is ρ is (r, s)− f so set such that µ ≤ ρ ≤ ν.

Proof. (i)⇒ (ii) Let µ be an (r, s)− g f sc set and µ ≤ ν. Then, νc ≤ µc, which is (r, s)− g f so set. Hence,
SCη,η∗(ν

c, r, s) ≤ µc implies µ ≤ (SCη,η∗(ν
c, r, s))c. Then, µ ≤ SIη,η∗(ν, r, s).

(ii)⇒ (iii) Let µ be an (r, s)− g f sc set and µ ≤ ν. Then, by hypothesis µ ≤ SIη,η∗(ν, r, s). Put
SIη,η∗(ν, r, s) = ρ. Hence, µ ≤ ρ ≤ ν.

(iii)⇒ (i) Let µ be an (r, s)− g f so set and νc ≤ µ. Then, µc ≤ ν and by hypothesis, there is ρ is
(r, s)− f so set such that µc ≤ ρ ≤ ν, that is, νc ≤ ρc ≤ µ. Therefore, by Theorem 2.1, νc is (r, s)− g⊛ f sc
set. Hence, ν is (r, s)− g⊛ f so set.

Definition 2.2. Let h : (U, τ, τ∗)→ (V, η, η∗) be a mapping, then h is said to be
(i) Strongly∗ double fuzzy generalized semi-continuous ⟨briefly, S∗DFGS-continuous⟩ if h−1(ν) is

(r, s)− g⊛ f so set for each ν ∈ IV and η(ν) ≥ r , η∗(ν) ≤ s .
(ii) S∗DFGS-irresolute if h−1(ν) is (r, s)− g⊛ f so set for each ν ∈ IV is (r, s)− g⊛ f so set.
(iii) S∗DFGS-open if h(ρ) is (r, s)− g⊛ f so set for each ρ ∈ IU and τ(ρ) ≥ r , τ∗(ρ) ≤ s .
(iv) S∗DFGS-closed if h(ρ) is (r, s)− g⊛ f sc set for ρ ∈ IU and τ(ρc) ≥ r , τ∗(ρc) ≤ s .

Remark 2.6. From the previous definitions, we can summarize the relationships among different types of
DF -continuity as in the next diagram.

DF − continuity

↙ ↘

DFG − continuity DFS − continuity

↓ ↓

DFGS − continuity ←− S∗DFGS − continuity

Remark 2.7. The converses of the above implications may not be true, as shown by Examples 2.7 and 2.8.

Example 2.7. Let V = {v1, v2, v3, v4} and ρ, ν ∈ IV defined as follows: ρ = { v1
0.0 , v2

0.0 , v3
1.0 , v4

1.0} and ν =

{ v1
0.0 , v2

0.0 , v3
0.0 , v4

1.0}. Define η, η∗, τ, τ∗ : IV −→ I as follows:

η(µ) =


1, if µ ∈ {0, 1},
1
2 , if µ = ρ,

0, otherwise,
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η∗(µ) =


0, if µ ∈ {0, 1},
1
2 , if µ = ρ,

1, otherwise,

τ(µ) =


1, if µ ∈ {0, 1},
1
2 , if µ = ν,

0, otherwise,

τ∗(µ) =


0, if µ ∈ {0, 1},
1
2 , if µ = ν,

1, otherwise.

Thus, the identity mapping idv : (V, η, η∗) → (V, τ, τ∗) is S∗DFGS-continuous, but it is not
DFS-continuous.

Example 2.8. Let V = {v1, v2, v3} and µ1, µ2, µ3 ∈ IV defined as follows: µ1 = { v1
0.0 , v2

0.0 , v3
1.0}, µ2 =

{ v1
1.0 , v2

1.0 , v3
0.0} and µ3 = { v1

0.0 , v2
1.0 , v3

1.0}. Define η, η∗, τ, τ∗ : IV −→ I as follows:

η(µ) =


1, if µ ∈ {0, 1},
1
2 , if µ ∈ {µ1, µ2},
0, otherwise,

η∗(µ) =


0, if µ ∈ {0, 1},
1
2 , if µ ∈ {µ1, µ2},
1, otherwise,

τ(µ) =


1, if µ ∈ {0, 1},
1
2 , if µ = µ3,

0, otherwise,

τ∗(µ) =


0, if µ ∈ {0, 1},
1
2 , if µ = µ3,

1, otherwise.

Thus, the identity mapping idv : (V, η, η∗)→ (V, τ, τ∗) is DFGS-continuous, but it is not S∗DFGS-
continuous.

Lemma 2.1. Every S∗DFGS-irresolute mapping is S∗DFGS-continuous.

Remark 2.8. The converse of Lemma 2.1 may not be true, as shown by Example 2.9.

Example 2.9. Let V = {v1, v2}. Define η, η∗, τ, τ∗ : IV −→ I as follows:

η(ρ) =


1, if ρ ∈ {0, 1},
1
2 , if ρ ∈ {0.1, 0.3},
0, otherwise,
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η∗(ρ) =


0, if ρ ∈ {0, 1},
1
2 , if ρ ∈ {0.1, 0.3},
1, otherwise,

τ(ρ) =


1, if ρ ∈ {0, 1},
1
2 , if ρ = 0.1,

0, otherwise,

τ∗(ρ) =


0, if ρ ∈ {0, 1},
1
2 , if ρ = 0.1,

1, otherwise.

Thus, the identity mapping idv : (V, η, η∗) → (V, τ, τ∗) is S∗DFGS-continuous, but it is not
S∗DFGS-irresolute.

3. Some Novel Higher Separation Axioms

Here, we are going to give the definitions of two types of higher fuzzy separation axioms with the
help of (r, s)− g f sc sets [31] called (r, s)-GFS-regular ⟨resp., (r, s)-GFS-normal⟩ spaces and establish
some of their properties.

Definition 3.1. A dfts (U, η, η∗) is said to be
(i) (r, s)-GFS-regular iff utqµ for each µ ∈ IU is (r, s)− g f sc set implies that, there is νδ ∈ IU with

η(νδ) ≥ r, η∗(νδ) ≤ s for δ ∈ {1, 2}, such that ut ∈ ν1, µ ≤ ν2 and ν1qν2.
(ii) (r, s)-GFS-normal iff µ1qµ2 for each (r, s)− g f sc sets µδ ∈ IU for δ ∈ {1, 2} implies that, there is

νδ ∈ IU with η(νδ) ≥ r and η∗(νδ) ≤ s, such that µδ ≤ νδ and ν1qν2.

Theorem 3.1. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1, then the following statements are equivalent.
(i) (U, η, η∗) is (r, s)-GFS-regular space.
(ii) If ut ∈ λ for each λ ∈ IU is (r, s)− g f so, there is µ ∈ IU with η(µ) ≥ r and η∗(µ) ≤ s, such that

ut ∈ µ ≤ Cη,η∗(µ, r, s) ≤ λ.
(iii) If utqλ for each λ ∈ IU is (r, s)− g f sc, there is µδ ∈ IU with η(µδ) ≥ r, η∗(µδ) ≤ s for δ ∈ {1, 2},

such that ut ∈ µ1, λ ≤ µ2 and Cη,η∗(µ1, r, s)qCη,η∗(µ2, r, s).

Proof. (i)⇒ (ii) Let ut ∈ λ for each λ ∈ IU is an (r, s)− g f so, then utqλc for (r, s)− g f sc set λc. Since
(U, η, η∗) is (r, s)-GFS-regular, there is µ, ν ∈ IU with η(µ) ≥ r, η∗(µ) ≤ s and η(ν) ≥ r, η∗(ν) ≤ s
such that ut ∈ µ, λc ≤ ν and µqν. It implies ut ∈ µ ≤ νc ≤ λ. Since η(ν) ≥ r and η∗(ν) ≤ s,
ut ∈ µ ≤ Cη,η∗(µ, r, s) ≤ λ.

(ii)⇒ (iii) Let utqλ for each λ ∈ IU is an (r, s)− g f sc, then ut ∈ λc for (r, s)− g f so set λc. By (ii),
there is µ ∈ IU with η(µ) ≥ r, η∗(µ) ≤ s such that ut ∈ µ ≤ Cη,η∗(µ, r, s) ≤ λc. Since η(µ) ≥ r and
η∗(µ) ≤ s, then µ is (r, s)− g f so and ut ∈ µ. Again, by (ii), there is µ1 ∈ IU with η(µ1) ≥ r, η∗(µ1) ≤ s
such that

ut ∈ µ1 ≤ Cη,η∗(µ1, r, s) ≤ µ ≤ Cη,η∗(µ, r, s) ≤ λc.

It implies λ ≤ (Cη,η∗(µ, r, s))c = Iη,η∗(µ
c, r, s) ≤ µc. Put µ2 = Iη,η∗(µ

c, r, s), then η(µ2) ≥ r, η∗(µ2) ≤ s.
So, Cη,η∗(µ2, r, s) ≤ µc ≤ (Cη,η∗(µ1, r, s))c, that is, Cη,η∗(µ1, r, s)qCη,η∗(µ2, r, s).
(iii)⇒ (i) It is trivial.

In a similar way, we can prove Theorem 3.2.

Theorem 3.2. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1, then the following statements are equivalent.
(i) (U, η, η∗) is (r, s)-GFS-normal space.
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(ii) If ν ≤ λ for each ν ∈ IU is (r, s) − g f sc and λ ∈ IU is (r, s) − g f so set, there is µ ∈ IU with
η(µ) ≥ r and η∗(µ) ≤ s, such that ν ≤ µ ≤ Cη,η∗(µ, r, s) ≤ λ.

(iii) If λ1qλ2 for each (r, s)− g f sc sets λδ ∈ IU for δ ∈ {1, 2}, there is µδ ∈ IU with η(µδ) ≥ r and
η∗(µδ) ≤ s, such that λδ ≤ µδ and Cη,η∗(µ1, r, s)qCη,η∗(µ2, r, s).

Theorem 3.3. If h : (U, τ, τ∗) → (V, η, η∗) is DF -irresolute, DF -open and bijective map, and (U, τ, τ∗)

is (r, s)-GFS-regular ⟨resp., (r, s)-GFS-normal⟩ space, then (V, η, η∗) is (r, s)-GFS-regular ⟨resp., (r, s)-
GFS-normal⟩ space.

Proof. Let vtqµ for each µ ∈ IV is (r, s)− g f sc. Since h is DF -irresolute, DF -open and bijective map,
then by Theorem 4.11 [31], h is DFGS-irresolute. Hence, h−1(µ) is (r, s)− g f sc set. Put vt = h(ut).
Then, utqh−1(µ). Since (U, τ, τ∗) is (r, s)-GFS-regular, there is µδ ∈ IU with τ(µδ) ≥ r, τ∗(µδ) ≤ s
and δ ∈ {1, 2} such that ut ∈ µ1, h−1(µ) ≤ µ2 and µ1qµ2. Since h is DF -open and bijective map, we
have

vt ∈ h(µ1), µ = h(h−1(µ)) ≤ h(µ2), h(µ1)qh(µ2).

Hence, (V, η, η∗) is (r, s)-GFS-regular space. The other case follows similar lines.

Theorem 3.4. If h : (U, τ, τ∗)→ (V, η, η∗) is DF -continuous, DFGS-irresolute closed and injective map,
and (V, η, η∗) is (r, s)-GFS-regular ⟨resp., (r, s)-GFS-normal⟩, then (U, τ, τ∗) is (r, s)-GFS-regular ⟨resp.,
(r, s)-GFS-normal⟩.

Proof. Let utqλ for each λ ∈ IU is (r, s)− g f sc. Since h isDFGS-irresolute closed, h(λ) is (r, s)− g f sc.
Since h is injective, utqλ implies h(ut)qh(λ). Since (V, η, η∗) is (r, s)-GFS-regular, there is µδ ∈ IU

with η(µδ) ≥ r, η∗(µδ) ≤ s and δ ∈ {1, 2} such that h(ut) ∈ µ1, h(λ) ≤ µ2 and µ1qµ2. Since h is
DF -continuous, ut ∈ h−1(µ1), λ ≤ h−1(µ2) with η(h−1(µδ)) ≥ r, η∗(h−1(µδ)) ≤ s and δ ∈ {1, 2} and
h−1(µ1)qh−1(µ2). Hence, (U, τ, τ∗) is (r, s)-GFS-regular. The other case follows similar lines.

Theorem 3.5. If h : (U, τ, τ∗)→ (V, η, η∗) is DFGS-irresolute, DF -open, DF -closed and surjective map,
and (U, τ, τ∗) is (r, s)-GFS-regular ⟨resp., (r, s)-GFS-normal⟩, then (V, η, η∗) is (r, s)-GFS-regular ⟨resp.,
(r, s)-GFS-normal⟩.

Proof. Let vt ∈ µ for each µ ∈ IV is (r, s)− g f so. Since h is DFGS-irresolute and surjective then, there
is u ∈ h−1({v}) such that ut ∈ h−1(µ) with (r, s)− g f so set h−1(µ). Since (U, τ, τ∗) is (r, s)-GFS-
regular, by Theorem 3.1, there is ν ∈ IU with τ(ν) ≥ r, τ∗(ν) ≤ s such that ut ∈ ν ≤ Cτ,τ∗(ν, r, s) ≤
h−1(µ). It implies

vt ∈ h(ν) ≤ h(Cτ,τ∗(ν, r, s)) ≤ µ.

Since h is DF -open and DF -closed, then η(h(ν)) ≥ r, η∗(h(ν)) ≤ s and η(hc(Cτ,τ∗(ν, r, s))) ≥ r.
Hence, vt ∈ h(ν) ≤ Cη,η∗(h(ν), r, s) ≤ Cη,η∗(h(Cτ,τ∗(ν, r, s)), r, s) ≤ µ. Thus, (V, η, η∗) is (r, s)-GFS-
regular. The other case follows similar lines.

4. Novel Types of Compactness

Here, several types of compactness in double fuzzy topological spaces were introduced and the
relationships between them were studied.

Definition 4.1. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1, then µ ∈ IU is called an (r, s)-fuzzy compact iff
for each family {λj ∈ IU | η(λj) ≥ r and η∗(λj) ≤ s}j∈𭟋, such that µ ≤ ∨

j∈𭟋 λj, there is a finite subset 𭟋◦
of 𭟋, such that µ ≤ ∨

j∈𭟋◦ λj.
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Definition 4.2. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1, then µ ∈ IU is called an (r, s)-fuzzy GS-compact
iff for each family {λj ∈ IU | λj is (r, s)− g f so}j∈𭟋, such that µ ≤ ∨

j∈𭟋 λj, there is a finite subset 𭟋◦ of 𭟋,
such that µ ≤ ∨

j∈𭟋◦ λj.

Lemma 4.1. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1. If µ ∈ IU is (r, s)-fuzzy GS-compact, then µ is
(r, s)-fuzzy compact.

Proof. Follows from Definitions 4.1 and 4.2.

Theorem 4.1. Let h : (U, τ, τ∗) → (V, η, η∗) be a DFGS-continuous mapping, r ∈ I◦, and s ∈ I1. If
µ ∈ IU is (r, s)-fuzzy GS-compact, then h(µ) is (r, s)-fuzzy compact.

Proof. Let {λj ∈ IV | η(λj) ≥ r and η∗(λj) ≤ s}j∈𭟋 with h(µ) ≤ ∨
j∈𭟋 λj, then {h−1(λj) ∈

IU | h−1(λj) is (r, s) − g f so} (by h is DFGS-continuous), such that µ ≤ ∨
j∈𭟋 h−1(λj). Since µ

is (r, s)-fuzzy GS-compact, there is a finite subset 𭟋◦ of 𭟋, such that µ ≤ ∨
j∈𭟋◦ h−1(λj). Thus,

h(µ) ≤ ∨
j∈𭟋◦ λj. Hence, the proof is completed.

Definition 4.3. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1, then µ ∈ IU is called an (r, s)-fuzzy almost
compact iff for each family {λj ∈ IU | η(λj) ≥ r and η∗(λj) ≤ s}j∈𭟋, such that µ ≤ ∨

j∈𭟋 λj, there is a finite
subset 𭟋◦ of 𭟋, such that µ ≤ ∨

j∈𭟋◦ Cη,η∗(λj, r, s).

Definition 4.4. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1, then µ ∈ IU is called an (r, s)-fuzzy almost
GS-compact iff for each family {λj ∈ IU | λj is (r, s)− g f so}j∈𭟋, such that µ ≤ ∨

j∈𭟋 λj, there is a finite
subset 𭟋◦ of 𭟋, such that µ ≤ ∨

j∈𭟋◦ Cη,η∗(λj, r, s).

Lemma 4.2. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1. If µ ∈ IU is (r, s)-fuzzy almost GS-compact, then µ

is (r, s)-fuzzy almost compact.

Proof. Follows from Definitions 4.3 and 4.4.

Lemma 4.3. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1. If µ ∈ IU is (r, s)-fuzzy compact (resp., GS-compact),
then µ is (r, s)-fuzzy almost compact (resp., almost GS-compact).

Proof. Follows from Definitions 4.1, 4.2, 4.3 and 4.4.

Remark 4.1. The converse of Lemma 4.3 may not be true, as shown by Example 4.1.

Example 4.1. Let V = I, k ∈ N − {1}, and ρ, λk ∈ IV defined as follows:

ρ(v) =

{
1, if v = 0,
1
2 , otherwise,

λk(v) =


0.8, if v = 0,

kv, if 0 < v ≤ 1
k ,

1 , if 1
k < v ≤ 1.
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Also, (η, η∗) defined on V as follows:

η(µ) =


1, if µ ∈ {0, 1},
2
3 , if µ ≤ ρ,

k
k+1 , if µ ≤ λk,

0, otherwise,

η∗(µ) =


0, if µ ∈ {0, 1},
1
3 , if µ ≤ ρ,

1
k+1 , if µ ≤ λk,

1, otherwise.

Thus, V is ( 1
2 , 1

2 )-fuzzy almost compact, but it is not ( 1
2 , 1

2 )-fuzzy compact.

Theorem 4.2. Let h : (U, τ, τ∗)→ (V, η, η∗) be a DF -continuous mapping, r ∈ I◦, and s ∈ I1. If µ ∈ IU is
(r, s)-fuzzy almost GS-compact, then h(µ) is (r, s)-fuzzy almost compact.

Proof. Let {λj ∈ IV | η(λj) ≥ r and η∗(λj) ≤ s}j∈𭟋 with h(µ) ≤ ∨
j∈𭟋 λj, then {h−1(λj) ∈

IU | h−1(λj) is (r, s) − g f so} (by h is DFGS-continuous), such that µ ≤ ∨
j∈𭟋 h−1(λj). Since µ is

(r, s)-fuzzy almost GS-compact, there is a finite subset 𭟋◦ of 𭟋, such that µ ≤ ∨
j∈𭟋◦ Cτ,τ∗(h−1(λj), r, s).

Since h is DF -continuous mapping, it follows

µ ≤
∨

j∈𭟋◦
Cτ,τ∗(h−1(λj), r, s)

≤
∨

j∈𭟋◦
h−1(Cη,η∗(λj, r, s))

= h−1(
∨

j∈𭟋◦
Cη,η∗(λj, r, s)).

Thus, h(µ) ≤ ∨
j∈𭟋◦ Cη,η∗(λj, r, s). Hence, the proof is completed.

Definition 4.5. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1, then µ ∈ IU is called an (r, s)-fuzzy nearly
compact iff for each family {λj ∈ IU | η(λj) ≥ r and η∗(λj) ≤ s}j∈𭟋, such that µ ≤ ∨

j∈𭟋 λj, there is a finite
subset 𭟋◦ of 𭟋, such that µ ≤ ∨

j∈𭟋◦ Iη,η∗(Cη,η∗(λj, r, s), r, s).

Definition 4.6. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1, then µ ∈ IU is called an (r, s)-fuzzy nearly
GS-compact iff for each family {λj ∈ IU | λj is (r, s)− g f so}j∈𭟋, such that µ ≤ ∨

j∈𭟋 λj, there is a finite
subset 𭟋◦ of 𭟋, such that µ ≤ ∨

j∈𭟋◦ Iη,η∗(Cη,η∗(λj, r, s), r, s).

Lemma 4.4. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1. If µ ∈ IU is (r, s)-fuzzy nearly GS-compact, then µ

is (r, s)-fuzzy nearly compact.

Proof. Follows from Definitions 4.5 and 4.6.

Lemma 4.5. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1. If µ ∈ IU is (r, s)-fuzzy compact (resp., GS-compact),
then µ is (r, s)-fuzzy nearly compact (resp., nearly GS-compact).

Proof. Follows from Definitions 4.1, 4.2, 4.5 and 4.6.

Remark 4.2. The converse of Lemma 4.5 may not be true, as shown by Example 4.2.
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Example 4.2. Let V = I, 0 < k < 1, and ν, ρ, λk ∈ IV defined as follows:

ν(v) =

{
1
2 , if 0 ≤ v < 1,

1, if v = 1,

ρ(v) =

{
1, if v = 0,
1
2 , if 0 < v ≤ 1,

λk(v) =

{
v
k , if 0 ≤ v ≤ k,
1−v
1−k , if k < v ≤ 1.

Also, (η, η∗) defined on V as follows:

η(µ) =


1, if µ ∈ {ν, ρ, 0, 1},
max({1− k, k}), if µ = λk,

0, otherwise,

η∗(µ) =


0, if µ ∈ {ν, ρ, 0, 1},
min({k, 1− k}), if µ = λk,

1, otherwise.

Thus, V is ( 1
2 , 1

2 )-fuzzy nearly compact, but it is not ( 1
2 , 1

2 )-fuzzy compact.

Theorem 4.3. Let h : (U, τ, τ∗) → (V, η, η∗) be a DF -continuous and DF -open mapping, r ∈ I◦, and
s ∈ I1. If µ ∈ IU is (r, s)-fuzzy nearly GS-compact, h(µ) is (r, s)-fuzzy nearly compact.

Proof. Let {λj ∈ IV | η(λj) ≥ r and η∗(λj) ≤ s}j∈𭟋 with h(µ) ≤ ∨
j∈𭟋 λj, then {h−1(λj) ∈

IU | h−1(λj) is (r, s)− g f so} (by h is DFGS-continuous), such that µ ≤ ∨
j∈𭟋 h−1(λj). Since µ is (r, s)-

fuzzy nearly GS-compact, there is a finite subset𭟋◦ of𭟋, such that µ ≤ ∨
j∈𭟋◦ Iτ,τ∗(Cτ,τ∗(h−1(λj), r, s), r, s).

Since h is DF -continuous and DF -open, it follows

h(µ) ≤
∨

j∈𭟋◦
h(Iτ,τ∗(Cτ,τ∗(h−1(λj), r, s), r, s))

≤
∨

j∈𭟋◦
Iη,η∗(h(Cτ,τ∗(h−1(λj), r, s)), r, s)

≤
∨

j∈𭟋◦
Iη,η∗(h(h−1(Cη,η∗(λj, r, s))), r, s)

≤
∨

j∈𭟋◦
Iη,η∗(Cη,η∗(λj, r, s), r, s).

Hence, the proof is completed.

Lemma 4.6. Let (U, η, η∗) be a d f ts, r ∈ I◦, and s ∈ I1. If µ ∈ IU is (r, s)-fuzzy soft nearly GS-compact
(resp., nearly compact), then µ is (r, s)-fuzzy soft almost GS-compact (resp., almost compact).

Proof. Follows from Definitions 4.3, 4.4, 4.5 and 4.6.

Remark 4.3. We can summarize the relationships among different types of fuzzy compactness as in the next
diagram.

GS-compactness → compactness
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↓ ↓

nearly GS-compactness → nearly compactness

↓ ↓

almost GS-compactness → almost compactness

5. Conclusion and Future Work

In this article, we have introduced a novel class of generalizations of fuzzy closed subsets called
“(r, s)− g⊛ f sc sets” via double fuzzy topologies and some characterizations have been discussed. More-
over, we have defined novel types of fuzzy mappings and the relationship between these mappings
have been introduced with the help of some problems. Also, we have shown that

(r, s)− f sc ⇒ (r, s)− g⊛ f sc

⇓ ⇓

(r, s)− sg f c (r, s)− g⊖ f sc

⇓ ⇓

(r, s)− g f sc

but in general, the converses of the above implications may not be true. Thereafter, “(r, s)-GFS-
regular” and “(r, s)-GFS-normal” spaces have been defined as two new notions of higher fuzzy
separation axioms and some characterizations of these separation axioms have been obtained. In the
end, several novel types of fuzzy compactness in the frame of double fuzzy topologies have been
introduced and some properties have been given. Also, the relationship between them have been
explored.

In the upcoming papers, we shall discuss the concepts given here in the frames of a fuzzy
idealization [42,43] and fuzzy soft r-minimal structures [44,45]. Moreover, we will study the main
properties of classical compactness in the frame of double fuzzy topologies.
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