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Abstract

We study the quantum state discrimination problem under the minimum error (ME) strategy for a
set of N pure equidistant states. These states are characterized by the property that the inner product
between any pair of states is given by a unique complex number S. We provide the explicit form
of the states and analyze their main structural properties. The optimal success probability for ME
discrimination is evaluated as a function of the number of states, as well as the modulus and phase
of the inner product S. Furthermore, we propose an experimental scheme for implementing the
ME discrimination of equidistant states. We also investigate the quantum coherence consumed in
the implementation of the minimum error discrimination of the equidistant states, which has an
established operational interpretation as cryptographic randomness gain. As an application, we
propose a quantum communication protocol in which Alice prepares and sends one of the equidistant
states, while Bob applies the minimum error discrimination to extract the classical information encoded
in the state. Finally, we discuss the optimal conditions under which the protocol achieves an optimal
balance of classical correlations and quantum coherence, thereby ensuring effective information
transfer and cryptographic security.

Keywords: mutual information; quantum coherence; quantum state discrimination; equidistant states

1. Introduction
One of the main applications of quantum information theory is the development of quantum

communication protocols [1,2]. In such protocols, two legitimate parties, commonly referred to as
Alice and Bob, aim to share information securely. Meanwhile, an adversary, known as Eve, attempts to
intercept the information without being detected. To establish communication, Alice and Bob agree on
a set of quantum states, which are typically chosen to be nonorthogonal. A key property of nonorthog-
onal quantum states is that they cannot be perfectly distinguishability by any quantum measurement
[3,4]. This inherent indistinguishability underlies the security of quantum communication protocols,
such as the well-known BB84 scheme [5]. In a typical communication protocol, Alice prepares and
transmits classical information encoded in a set of nonorthogonal quantum states. At the distant
end of the communication channel, Bob receives the quantum state and performs a measurement
to extract the information sent by Alice. The specific quantum measurement employed by Bob is
chosen to optimize a predefined figure of merit. For example, he may implement a measurement
that minimizes the probability of error in identifying the transmitted states (ME) [6–8] or one that
allows the extraction of the accessible information (MI) [9–11], which quantifies the maximal classical
correlation that can be established between the legitimate parties. In general, these correspond to
two distinct optimization problems [12]. However, when the set consists of two pure nonorthogonal
states prepared with arbitrary a priori probabilities, it is known that ME and MI measurements coincide
[4,11–15]. The optimization problem consists of finding the optimal set of quantum measurement
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operators. For minimum error discrimination, the necessary and sufficient conditions that the optimal
measurement operators must satisfy are well establish [6,7]. In contrast, for the accessible information
only necessary condition are known [6,16,17]. Analytical solutions for the ME strategy are available
for specific classes of quantum states [6–8,17–21]. On the other hand, the MI optimization problem
is significantly more challenging, and exact solutions are known only for a few cases [22–24]. Nev-
ertheless, there exists lower and upper bounds for the accessible information [16,25,26], and several
results have been reported regarding the number of measurement operators required to implement the
MI strategy [10,11]. Minimum error discrimination plays a key role in various quantum information
processing tasks, including quantum teleportation [27,28], entanglement swapping [29,30], quantum
cryptography [31] and dense coding [32], among others. Furthermore, the ME of nonorthogonal
states has been successfully demonstrated in several experimentally settings [12,33–35]. On the other
hand, the accessible information strategy finds application in quantum cryptography [16], and its
experimental implementation has been reported in specific scenarios [12].

In this work, we study the minimum error discrimination of a set of N pure, nonorthogonal
equidistant quantum states, each prepared with equal a priori probability. We derive the optimum
measurement operators and the corresponding success probability for ME, and we also propose
an experimental scheme for its implementation. Moreover, we evaluate the quantum coherence, in-
volved in applying the ME strategy to the equidistant states, which has the operational interpretation
as a cryptographic randomness gain. We then determine the classical correlations shared between
Alice and Bob when the ME strategy is employed. Finally, we study the relationship between clas-
sical correlations and quantum coherence within the ME protocol. Interestingly, our results reveal
a fundamental trade-off: greater classical information sharing between Alice and Bob corresponds to
reduced randomness generation, and vice versa.

This article is organized as follows: In Section 2, we introduce and describe the set of N pure,
nonorthogonal equidistant quantum states. In Section 3, we derive the optimal measurement operators
and the corresponding success probability for the minimum error discrimination of these states,
together with a proposal for their experimental implementation. In Section 4, we focuses on the
analysis of quantum coherence of the set of equidistant states. In Section 5, We describe the initial
and final global states of the composite system shared by Alice and Bob, resulting from the minimum
error (ME) measurement performed by Bob. In Section 6, we study the classical correlations shared
between Alice and Bob when ME is implemented by Bob. Moreover, we examine the trade-off between
Bob’s information gain and the quantum coherence consumed in the process. Finally, in Section 7, we
summarize our findings and present concluding remarks.

2. Equidistant States
Let us consider a set of N pure, nonorthogonal quantum states denoted by {|ψj⟩} with j =

0, ..., N − 1, satisfying the following property:

⟨ψj|ψj′⟩ = S = |S|eiθ , ∀ j > j′, (1)

that is, the inner product between any two states in the set depends solely on a single complex number
S or equivalently, on two real parameters: its modulus |S| and its phase θ. Due to this property, the set
is referred to as equidistant [36–38]. For such a set states, the modulus |S| is constrained to lie within
the interval |S| ∈ [0, |Sθ |], where |Sθ | is a function of the phase θ and the number N of states in the set,
given by

|Sθ | =
sin
(

π−θ
N

)
sin
(

θ + π−θ
N

) . (2)
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The explicit form of the set of N pure, nonorthogonal equidistant states is given in [37] as:

|ψj⟩ =
N−1

∑
k=0

Ckω
j
k|k⟩, for j = 0, 1, ..., N − 1, (3)

where N is fixed, and all the real coefficients Ck in Equation (3) depend only on the modulus |S| and
the phase θ of the inner product S. These coefficients are given by

Ck =

√√√√√ 1
N

1 − |S|
sin
(

θ + kπ−θ
N

)
sin
(

kπ−θ
N

)
, for k = 0, 1, ..., N − 1. (4)

Given the symmetry of the equidistant states, as illustrated in Figure 2, we restrict the phase θ of the
inner product S to the interval [0, π]. Within this interval, the coefficients exhibit an ordering property,
namely

C1 ≤ C2 ≤ C3 ≤ ... ≤ C0, (5)

and the phases ωk in Equation (3) are defined as

ωk = e
2i
N (kπ−θ), for k = 0, 1, ..., N − 1. (6)

Figure 1 illustrates the ordering of the coefficients Ck, as defined in Equation (5), as a function of |S|,
for: (a) N = 3, (b) N = 4, and (c) N = 5, with θ = π/36. As shown in all cases, the maximum and
minimum values of the coefficients correspond to C0 and C1, respectively. Moreover, when the states
are orthogonal, |S| = 0, all coefficients become equal and take the value 1/

√
N, where N is the number

of states in the set.
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Figure 1. Ordering property of the coefficients Ck from Equation (5) as a function of |S|, shown for: (a) N = 3, (b)
N = 4, and (c) N = 5, with θ = π/36.

Given the coefficients Ck defined in Equation (4), the equidistant states in Equation (3) are properly
normalized, that is,

N−1

∑
k=0

C2
k = 1. (7)

Figure 2 shows, in polar coordinates, the possible values of the inner product S for sets of pure
equidistant states, with: a) N=3, b) N=7 and c) N=15. For a given phase θ, the modulus of the inner
product S is constrained to lie within the interval |S| ∈ [0, |Sθ |]. The blue line in Figure 2 corresponds
to the case |S| = |Sθ |, for which the set of equidistant states becomes linearly dependent. For instance,
when θ = 0, the condition |S| = |Sθ | = 1 implies that all N states are all identical to |0⟩. In this case,
the states span a one-dimensional Hilbert space and are therefore linearly dependent. For any other
value of θ, the condition |S| = |Sθ | defines a set of N equidistant states that are linearly dependent and
span an (N − 1)−dimensional Hilbert space. On the other hand, the set of pure equidistant states is
linearly independent when the modulus of the inner product lies within the region bounded by the
blue line, i.e., for |S| ∈ [0, |Sθ |). In this case, the states span an N-dimensional Hilbert space. Figure
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2 illustrate how the range of possible values for |S| decreases as the the number of states N increase.
This implies that, as N increases, the phase θ of the inner product becomes progressively less relevant,
ultimately leaving only the case θ = 0 in the limit of large N.
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Figure 2. Polar graph of the inner product S. The blue line indicates the boundary |S| = |Sθ |, where the set of
equidistant states becomes linearly dependent. Each point inside the bounded region corresponds to a specific
value of S and represents a set of N linearly independent equidistant states: (a) N=3, (b) N=7 and (c) N=15.

Another important property of the set of equidistant states is that there exist a unitary transforma-
tion U that generates the entire set from a single state, namely

|ψj⟩ = U j|ψ0⟩, with j = 1, 2, ..., N − 1, (8)

where

U =
N−1

∑
k=0

ωk|k⟩⟨k|, (9)

with ωk defined in Equation (6), and |ψ0⟩ is referred to as the fiducial state. Applying the unitary
transformation N times yields

UN =
N−1

∑
k=0

ωN
k |k⟩⟨k| =

N−1

∑
k=0

e2i(kπ−θ)|k⟩⟨k| = e−2θi1N . (10)

Under the condition UN = 1N , the set of equidistant states is also symmetric. This occurs when θ = 0
or θ = π. In the following, we provide a more detailed description of these two particular sets of
states.

For θ = 0, the inner product is a real and positive number, with S = |S| and |S| ∈ [0, 1]. In this
case, the fiducial state takes the form

|ψ0⟩ = C0|0⟩+ C1

N−1

∑
k=1

|k⟩, (11)

where the coefficients are given by C1 =
√
(1 − |S|)/N and C0 =

√
C2

1 + |S|. The set of N equidistant
states is linearly independent (dependent), and spans a N-dimensional( 1-dimensional) Hilbert space,
if |S| ∈ [0, 1) (|S| = 1), respectively.

For θ = π, the inner product is a real and negative, with S = −|S| and |S| ∈ [0,
1

N − 1
]. The

fiducial state in this case takes the form

|ψ0⟩ = C1|1⟩+ C0

N−1

∑
k=0,k ̸=1

|k⟩, (12)

with coefficients C1 =
√
(1 − (N − 1)|S|)/N and C0 =

√
C2

1 + |S|. Here, the set of N equidistant
states is linearly independent (dependent), and spans an N-dimensional (N-1 dimensional) Hilbert

space, if |S| ∈ [0,
1

N − 1
) (|S| = 1

N − 1
), respectively.
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3. Minimum Error Discrimination
Having defined the set of N pure nonorthogonal equidistant states {|ψj⟩}N−1

j=0 in [36] and described
it in detail in [38], we now study its quantum state discrimination under the minimum error strategy.
To this end, we assume that each state |ψj⟩ is prepared with equal a priori probability, i.e., ηj = 1/N for
j = 0, 1, ..., N − 1.

In general, the necessary and sufficient conditions for optimum discrimination with minimum
error among N density matrices ρk, each prepared with arbitrary a priori probabilities ηk, were found
by Holevo [6] and Yuen [7]. These conditions are given by

Πk(ηkρk − ηjρj)Πj = 0, ∀ j, k, (13)

(∑
k

ηkΠkρk)− ηjρj ≥ 0, ∀ j, (14)

where Πk are the detection operators to be determined for the optimum discrimination of the state ρk.
In the particular case of a set of N pure nonorthogonal equidistant states prepared with equal a priori
probability, the above conditions are satisfied when the detection operators are given by

Πk = |uk⟩⟨uk|, for k = 0, 1, ..., N − 1, (15)

where the states |uk⟩ are defined as

|uk⟩ =
1√
N

N−1

∑
j=0

e2πijk/N |j⟩, for k = 0, 1, ..., N − 1, (16)

and form an orthonormal basis generated by the discrete Fourier transform F acting on the N-
dimensional Hilbert space, i.e., |uk⟩ = F|k⟩, with

F =
1√
N

N−1

∑
j,m=0

e2πijm/N |j⟩⟨m|. (17)

Thus, there is a one by one correspondence between each orthonormal states |uk⟩ and one state from
the computational basis |k⟩. Moreover, the detection operators Πk, defined in Equation (15), form a
complete set in the N-dimensional Hilbert space,

N−1

∑
k=0

Πk = 1N. (18)

In general, the success probability Ps for ME of N quantum states ρk, each prepared with a priori
probability ηk, is given by [3,4]

Ps =
N−1

∑
k=0

ηktr(Πkρk). (19)

For the case of N pure nonorthogonal equidistant states, ρk = |ψk⟩⟨ψk|, prepared with equal a priori
probabilities, ηk = 1/N, the optimum success probability simplifies to

Ps = |⟨u0|ψ0⟩|2, (20)

as a consequence of the symmetry of the state set and the structure of the detectors operators Πk =

|uk⟩⟨uk|, defined in Equation (15). The corresponding minimum error probability is then

Pe = 1 − Ps. (21)
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Therefore, the optimum success probability in ME of N pure nonorthogonal equidistant states with
equal a priori probabilities, is given by

Ps =
1
N

(
N−1

∑
k=0

Ck

)2

, (22)

where the coefficients Ck correspond to those of the fiducial state |ψ0⟩. The success probability given
by Equation (22) is similar to that obtained for ME of N symmetric states prepare with equal a priori
probability [17,39,40]. We notice here that using detectors operator different from Πk = |uk⟩⟨uk| results
in a higher probability of error. The worst case scenario occurs when the state is guessed randomly,
which is equivalent to using the detectors operators of the form Π′

k = |k⟩⟨k|, that is, performing a
direct measurement of the equidistant states |ψj⟩ in the computational basis {|k⟩}N−1

k=0 . In such case, the
success probability is Ps = 1/N, independently of the form of the states. A similar result is obtained
even when using the optimum detector operators Πk = |uk⟩⟨uk|, if the inner product between the
states satisfies |S| = 1. This corresponds to the situation in which all the states are identical, i.e.,
|ψj⟩ = |0⟩ for j = 0, 1, ..., N − 1. Since the states are completely indistinguishable in this scenario, the
optimal success probability again reduces to Ps = 1/N.

Figure 3 shows the optimal success probability Ps, given by Equation (22), in the discrimination
by ME of N equidistant states as a function of |S|, for several values of θ, and for: (a) N = 3, (b) N = 7
and (c) N = 15. When the states are orthogonal, |S| = 0, the maximum success probability Ps = 1
is achieved. This shows the well-known result that orthogonal states can be perfectly discriminated
deterministically and without error. In all other cases, the discrimination involves some error, but this
strategy minimizes the error probability. For any fixed value of N and θ, the success probability Ps

decreases as |S| increases, reaching its minimum value when the states become linearly dependent,
that is, when |S| = |Sθ |. On the other hand, if the number of states N and the modulus |S| are fixed
(within the allowed range), the success probability Ps decreases as the phase θ increases. This implies
that it is more likely to correctly discriminate a set of linearly independent states than a set of linearly
dependent ones. Moreover, as the number of states N increases, the only relevant case becomes θ = 0.
This is because, for θ ̸= 0, the allowed values of |S| become increasingly close to zero, implying that
the success probability under the ME strategy tends to one.
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Figure 3. Success probability Ps for ME of equidistant states as a function of the modulus |S| of the inner product,
for the values: θ = 0 (solid green line), θ = π/6 (dotted red line), θ = π/3 (dashed-dotted blue line), and θ = π

(dashed black line), for: (a) N = 3, (b) N = 7, and (c) N = 15.

The ME strategy can be interpreted as a quantum communication scenario. On one side, Alice
prepares and sends a quantum state |ψj⟩, chosen from the set of equidistant states. On the other
side, Bob located at a distant location, receives the state and applies quantum state discrimination
to retrieve the classical information encoded in the state. To implement ME, Bob must first apply a
unitary transformation to the received states that he received |ψj⟩. For the set of equidistant states
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considered here, the appropriate transformation is the discrete inverse Fourier transform F−1. This
operation transforms the equidistant states according to:

F−1|ψj⟩ =
N−1

∑
n=0

Cnω
j
n|uN−n⟩, for j = 0, 1, ..., N − 1, (23)

where

|uN−n⟩ =
1√
N

N−1

∑
k=0

e−2πikn/N |k⟩, for n = 0, 1, ..., N − 1, (24)

and thus, the evolution of the equidistant states under the F−1 transformation is given by

F−1|ψj⟩ =
e−2iθ j/N
√

N

N−1

∑
k,n=0

Cne2πin(j−k)/N |k⟩, for j = 0, 1, ..., N − 1. (25)

We assume that the subtraction N − n in Equations (23) and (24) is performed modulo N. After
applying the discrete inverse Fourier transform F−1, Bob completes the ME by performing a projective
measurement on the transformed states |ψ̂j⟩ = F−1|ψj⟩ in the computational basis {|k⟩}. For instance,
if Alice prepares and sends the state |ψ1⟩, Bob applies the transformation and obtains |ψ̂1⟩ = F−1|ψ1⟩.
He then performs a projective measurement in the basis {|k⟩}, which yields one of N possible outcomes.
If the outcome is |1⟩, the state |ψ1⟩ has been correctly identified, and the discrimination is successful.
The corresponding success probability is given by Ps = |⟨1|F−1|ψ1⟩|2 = |⟨1|ψ̂1⟩|2. Conversely, if
the outcome is |k⟩ with k ̸= 1 an error occurs in the discrimination of |ψ1⟩. However, The ME
strategy guarantees that this error occurs with the lowest possible probability among all quantum
discrimination strategies.

A proposal for the experimental implementation of ME of N = 4 pure equidistant states is shown
in Figure 4. This scheme is similar to previously reported setups for the discrimination of symmetric
states [40,41]. The first stage corresponds to the state preparation. Alice prepares and sends one of
the equidistant states, say |ψ1⟩. For this purpose, a single photon with horizontal polarization |→⟩
enters the experimental setup. Alice can prepare any of the equidistant states by adjusting the phases
ωk in each paths of propagation of the photon |k⟩, and by setting the appropriate rotation angles in
the polarizing beam splitters to generate the desired amplitudes Ck for each path. The prepared state
then propagates through the channel. Upon receiving the state |ψ1⟩, Bob implements the inverse of the
discrete Fourier transform F−1 in a four-dimensional Hilbert space. Finally, he performs a projective
measurement in the computational basis {|k⟩}. The initial single photon, after propagating through
the discrimination setup, will be detected by one of the four detectors shown in Figure 4.
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Figure 4. Experimental proposal for ME of four equidistant states: (I) State preparation: Alice send one of the
equidistant states, e.g., |ψ1⟩, (II) Detection stage: Bob applies the inverse discrete Fourier transform F−1 in a
four-dimensional Hilbert space and performs a projective measurement in the computational basis {|k⟩}. HWP,
half-wave plate; PBS, polarizing beam splitter; PS, phase shifter; BS, beam splitter; M, mirror; D, detector.

4. Quantum Coherence
As previously mentioned, in a quantum communication scenario, Alice prepares and sends to Bob

one of the equidistant states |ψj⟩, each with equal a priori probability ηj = 1/N. Bob aims to extract the
encoded information by performing a quantum measurement on the received state. Therefore, the
ensemble of possible states received by Bob is described by the density matrix ρB, which is given by

ρB =
1
N

N−1

∑
j=0

|ψj⟩B⟨ψj|. (26)

Due to the symmetry of the equidistant states, this density matrix takes the simplified diagonal form

ρB =
N−1

∑
k=0

C2
k |k⟩B⟨k|, (27)

which is a diagonal state in the computational basis {|k⟩B}. Quantum coherence is associated with
the ability of a quantum system to exhibit interference effects [42]. Such interference arises when
the system’s density matrix possesses non zero off-diagonal elements in a given basis. Accordingly,
the state ρB, in Equation (27), exhibits no quantum coherence with respect to the basis {|k⟩B}, as it is
diagonal in that basis. A canonical example of a maximally coherent state in a d-dimensional Hilbert
space is given by [43,44]

|ψ⟩ = 1√
d

d−1

∑
k=0

|k⟩, (28)

which contains log2 d bits of coherence, also referred to as cobit [43], relative to the computational
basis {|k⟩}. Quantum coherence has been formally established as a fundamental resource for the
implementation of quantum protocols, and it is consumed during the execution of such protocols
[43,45,46]. Several measures have been proposed to quantify quantum coherence, including the
coherence cost, the relative entropy of coherence, and the ℓ1 norm of coherence, among others [43]. To
quantify the quantum coherence of the state ρB with respect to a given projective measurement Π, we
employ the relative entropy of coherence [43,44], defined as

C(ρB, Π) = H(pi)− S(ρB), (29)
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where, H(pi) is the Shannon entropy associated with the measurement outcome probabilities {pi},
given by

H(pi) = −
N−1

∑
i=0

pi log2 pi, (30)

and where
pi = tr(ρBΠi), (31)

with Π = {Πi}N−1
i=0 being the projective measurement performed by Bob, and S(ρ) is the von Neumann

entropy, which is

S(ρ) = −
N−1

∑
k=0

λk log2 λk, (32)

where, λk are the eingenvalues of the density matrix ρ. For the set of equidistant states, the von
Neumann entropy of ρB is given by

S(ρB) = −
N−1

∑
k=0

C2
k log2 C2

k , (33)

which depends solely on the coefficients Ck and is independent of the quantum measurement Π
applied by Bob. As shown in Equation (29), the quantum coherence depends both on the state ρB

and on the quantum measurement Π, which, in this case, corresponds to ME. Then, the probability
distribution {pi} is given by

pi = tr(ρBΠi) =
1
N

, for i = 0, 1, ..., N − 1. (34)

Therefore, the relative entropy of coherence when Bob implements ME is given by

C(ρB, Π) = log2 N +
N−1

∑
k=0

C2
k log2 C2

k , (35)

which corresponds to the maximum coherence attainable from any projective measurement Π on
the state ρB. This result holds because the Shannon entropy H(pi) reaches its maximum value,
H(pi) = log2 N, when the measurement is performed using the projectors Πk defined in Equation (15).
Thus, among all possible projective measurement, the ME strategy maximizes the quantum coherence
of ρB.

Quantum coherence plays a fundamental operational role in the context of cryptographic random-
ness gain [47,48]. In particular, when an eavesdropper (Eve) is present in the communication channel,
higher values of quantum coherence make it more difficult for her to extract information. For instance,
if the set of quantum states is orthogonal, |S| = 0, the quantum coherence vanishes, and Eve can
obtain complete information by performing a projective measurement without disturbing Bob’s state
ρB. At the opposite extreme, when all the states are identical, i.e., |ψj⟩ = |0⟩, for all j, the state is pure,
ρB = |0⟩B⟨0|, and the quantum coherence reaches its maximum value of log2 N, where N the number
of states in the ensamble. In this scenario, Eve cannot distinguish between the states and is left with no
better strategy than randomly guessing the state sent by Alice. Figure 5 shows quantum coherence of
ρB when is implemented ME of N pure equidistant states, as a function of |S| for various values of the
phase θ for: (a) N = 3, (b) N = 7, (c) N = 15. The behavior of quantum coherence C(ρB, Π) differs
notably from that of the success probability Ps. For any given values of θ and N, coherence reaches its
minimum (zero) when the states are orthogonal |S| = 0, and its maximum (log2 N) when the states are
linearly dependent with |Sθ=0| = 1. For a fixed number of states N, within the allowed range of |S|,
increasing the value of the phase θ from θ = 0 to θ = π results in an increase in quantum coherence.
This indicates that, for a given N, a more linearly dependent set of states exhibit greater coherence
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than a linearly independent one. Furthermore, for any fixed θ ̸= 0, increasing the number of states N
leads to a rapid decrease in coherence, which tends to zero as N becomes sufficiently large.
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Figure 5. Quantum coherence of the initial state ρB, given in Equation (27), as a function of the modulus |S| of
the inner product, for different values of the phase: θ = 0 (solid green line), θ = π/6 (dotted red line), θ = π/3
(dashed-dotted blue line), and θ = π (dashed black line) for: (a) N = 3, (b) N = 7 and (c) N = 15.

5. Channel Without Entanglement
In the ME scheme, Alice prepares a single copy of a quantum system in the state |ψj⟩ and sends it

to Bob with an a priori probability ηj = 1/N. We assume that, initially, Alice and Bob, share a separable
quantum state ρAB of the form

ρAB =
1
N

N−1

∑
j=0

|j⟩A⟨j| ⊗ |ψj⟩B⟨ψj|, (36)

where {|j⟩A}N−1
j=0 forms an orthonormal base for Alice’s N-dimensional quantum system, and

{|ψj⟩B}N−1
j=0 are the pure equidistant states that Bob receives. Thereby, Alice and Bob share quan-

tum and classical correlations encoded in the joint state ρAB defined in Equation (36). The initial state
ρA of Alice’s quantum system, that is, prior to the application of any transformation or measurement,
is obtained by ρA = trB(ρAB), where

ρA =
1
N

N−1

∑
j=0

|j⟩A⟨j|. (37)

In a similar form, the initial state of Bob’s quantum system can be obtained by tracing out Alice’s
subsystem from the global state, i.e., ρB = trA(ρAB), where

ρB =
1
N

N−1

∑
j=0

|ψj⟩B⟨ψj|. (38)

Once Bob receives a single copy of the quantum system prepared in one of the equidistant state |ψj⟩B,
he implements the ME strategy. For that purpose, Bob first applies the unitary transformation F−1 to
his quantum system, thereby transforming the global state ρAB into a new state ρ̂AB, given by

ρ̂AB =
1
N

1

∑
j=0

|j⟩A⟨j| ⊗ |ψ̂j⟩B⟨ψ̂j|, (39)

where |ψ̂j⟩B = F−1|ψj⟩B. The unitary operation F−1, defined in Equation (17) and applied by Bob, is a
reversible process [49]. Therefore, it does not change the quantum correlations between Alice and Bob
initially encoded in the global state ρAB. After this transformation, Bob performs a measurement on his
subsystem, which yields N possible outcomes and, correspondingly, N conditional post-measurement
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states ρk
A|B for Alice’s subsystem. Since Bob’s measurement projects the state |ψ̂j⟩B onto one the

orthonormal basis states |k⟩B, the resulting conditional state for Alice is given by

ρk
A|B =

N−1

∑
j=0

Pkj|j⟩⟨j|, for k = 0, 1, ..., N − 1, (40)

where

Pkj = |⟨k|ψ̂j⟩|2 = |⟨uk|ψj⟩|2 =
1
N

∣∣∣∣∣N−1

∑
n=0

Cn e2πi(k−j)n/N

∣∣∣∣∣
2

, (41)

with Pkk = Ps = |⟨k|ψ̂k⟩|2 is the success probability in ME for each k = 0, 1, ..., N − 1. The final average
joint state between Alice and Bob, denoted by ρ′AB, after Bob performs his measurement in the basis
{|k⟩B}, takes the following form:

ρ′AB =
1
N

N−1

∑
k=0

ρk
A|B ⊗ |k⟩B⟨k|. (42)

Then, the final reduced states for Alice’s and Bob’s quantum subsystems are given by

ρ′A =
1
N

N−1

∑
k=0

ρk
A|B =

1
N

1N , (43)

ρ′B =
1
N

N−1

∑
k=0

|k⟩B⟨k| =
1
N

1N . (44)

Thereby, the final reduced state for Alice’s subsystem remains unchanged, i.e., ρ′A = ρA. It is convenient,
using Equation (42) as follows:

ρ′AB =
1
N

N−1

∑
k,j=0

Pkj|j⟩A⟨j| ⊗ |k⟩B⟨k|. (45)

From Equation (45), we can notice that, if Bob successfully discriminates the state |ψj⟩B, which is one of
the states sent by Alice, the final shared state between Alice and Bob is |j⟩A ⊗ |j⟩B, and this occurs with
probability Pjj = Ps. Otherwise, if the discrimination attempt fails, the resulting state is |j⟩A ⊗ |k⟩B

with k ̸= j, indicating an error in identifying the state |ψj⟩. Such an error occurs with the minimum
error probability, given by Pe = 1 − Ps.

6. Classical Correlations and Quantum Discord
In a bipartite quantum state ρAB, the total amount of correlation, in the many copy scenario [50],

is quantified by the quantum mutual information. This is defined as [50,51]

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (46)

where S(ρ) denotes the von Neumann entropy of the state ρ. In our ME scheme, we assume that Alice
emits many independent and identically distributed (i.i.d.) copies of the bipartite state, i.e., σ = ρn

AB
for large n [52]. The entropy of the initial joint state ρAB, given by Equation (36), can be written as

S(ρAB) = S(ρA) +
1
N

N−1

∑
j=0

S(|ψj⟩B⟨ψj|) = S(ρA), (47)
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since each |ψj⟩B is a pure state and therefore has zero entropy. Thus, the total correlation between
Alice and Bob in the bipartite state ρAB, as defined in Equation (39), is given by the mutual information
I(ρAB) = S(ρB). Moreover, the quantum mutual information, I(ρAB), can be written as [51,53]

I(ρAB) = J(A|{ΠB}) + D(A|{ΠB}), (48)

where, J(A|{ΠB}) denotes the classical correlations and D(A|{ΠB}) the quantum discord. Both
quantities depend on the measurement implemented by Bob, represented by the set of projectors {ΠB}.
However, their sum, the total mutual information, is independent of the choice of measurement [54],
i.e., they are complementary to each other [14]. The classical correlations J(A|{ΠB}) between Alice
and Bob are defined as [53,55]

J(A|{ΠB}) = S(ρA)−
1
N

N−1

∑
i=0

S(ρi
A|b), (49)

which can be interpreted as the information about Alice’s system that Bob gains through the measure-
ment {ΠB}. In this work, we focus on quantifying the classical correlations between Alice and Bob,
J(A|{ΠB}), when Bob implements the ME on the set of pure equidistant states. On the other hand, the
problem of maximizing the classical correlation J(A|{Πb}) over all possible measurements performed
by Bob is a challenging task and is not addressed here. The maximal classical correlation

J(A|B) = max
{ΠB}

J(A|{ΠB}), (50)

is known as the accessible information [9,10]. It corresponds to the classical mutual information
maximized over all possible measurement strategies [12]. This optimization is generally difficult to
perform and lies beyond the cope of the present work. Nevertheless, it is known that for N = 2, the
quantum measurement that achieves the accessible information coincide with the one that minimizes
the error probability in state discrimination [4,11]. Furthermore, for any N, the accessible information
for a set of N pure, nonorthogonal equidistant states must be at least as large as the classical information
obtained through the ME measurement. The classical correlations J(A|{ΠB}) in ME, given the
symmetry, can be expressed as

J(A|{ΠB}) = S(ρA)− S(ρ0
A|B), (51)

where S(ρA) = log2 N, and the entropy of the conditional state ρ0
A|B is given by

S(ρ0
A|B) = −

N−1

∑
j=0

P0j log2 P0j, (52)

with, P0j defined in Equation (41). On the other hand, quantum discord D(A|{ΠB}), which quantifies
the quantum correlations consumed or lost during the measurement process, is given by

D(A|{ΠB}) = S(ρB)− S(ρA) + S(ρ0
A|B). (53)

Figure 6 shows the classical correlation between Alice and Bob as a function of the modulus |S| for:
(a) N = 3, (b) N = 7 and (c) N = 15, and several values of the phase θ. The classical correlation reaches
its maximum value when the equidistant states are orthogonal, i.e., |S| = 0. In this case, the maximum
value is log2 N, indicating that Alice and Bob share total classical correlation. The corresponding final
joint state is

ρ′AB =
1
N

N−1

∑
j=0

|j⟩A⟨j| ⊗ |j⟩B⟨j|. (54)
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As |S| increases, the classical correlation J(A|{ΠB}) decreases, reaching its minimum value of zero
when |S| = 1 and θ = 0. This behavior arises because the initial joint state between Alice and Bob
becomes a product state with no correlation, given by

ρAB =

(
1
N

N−1

∑
j=0

|j⟩A⟨j|
)
⊗ |0⟩B⟨0|. (55)

For a fixed value of N and an allow value of |S|, increasing the phase θ from 0 to π leads to a decrease
in the classical correlation. Moreover, we observe that larger values of N result in higher classical
correlation between Alice and Bob. This highlights the importance of using a greater number of states
in order to enhance the classical correlation, which is a desirable feature for the performance of the
protocol.
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Figure 6. Classical correlation between Alice and Bob as a function of the modulus |S| of the inner product, for
different values of the phase: θ = 0 (solid green line), θ = π/6 (dotted red line), θ = π/3 (dashed-dotted blue
line), and θ = π (dashed black line), for: (a) N = 3, (b) N = 7 and (c) N = 15.

Figure 7 shows quantum coherence versus classical correlation between Alice and Bob for various
values of the phase: θ = 0 (solid green line), θ = π/6 (dotted red line), θ = π/3 (dashed-dotted blue
line), and θ = π (dashed black line), for: (a) N = 3, (b) N = 7 and (c) N = 15. We observe that both
quantities, quantum coherence and classical correlations, lie within the same range, namely [0, log2 N].
It is important to highlight here the operational interpretation of the quantum coherence as a quantifier
of cryptographic randomness gain [47,48]. Therefore, for a secure and efficient protocol, we expect
that Alice and Bob share a significant amount of classical correlation while maintaining sufficiently
high quantum coherence. For example, when the set of states is orthogonal |S| = 0 the initial joint
state takes the form ρAB = 1

N ∑j |j⟩A⟨j| ⊗ |uj⟩B⟨uj|, which exhibits maximal classical correlation of
log2 N bit but zero quantum coherence. In contrast, when the set of states is identical |S| = 1, the
initial joint state becomes ρAB = ( 1

N ∑j |j⟩A⟨j|)⊗ |0⟩B⟨0|, a product state with no classical correlation
but exhibiting maximal quantum coherence, equivalent to log2 N bits of randomness. Hence, Alice
and Bob should choose an initial joint state ρAB that simultaneously exhibits high classical correlation
and high quantum coherence. This trade-off can be optimally achieved when the phase of the inner
product is θ = 0 and the number of states N is large.
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Figure 7. Quantum coherence versus classical correlation between Alice and Bob for different values of the phase:
θ = 0 (solid green line), θ = π/6 (dotted red line), θ = π/3 (dashed-dotted blue line), and θ = π (dashed black
line), for: (a) N = 3, (b) N = 7 and (c) N = 15.

7. Conclusions
We have studied the problem of minimum error discrimination for a set of N pure, nonorthogonal

equidistant states, each prepared with equal a priori probability. The equidistant states resemble sym-
metric states but are uniquely characterized by a single complex parameter, which is the inner product
S between any pair of the equidistant states. This feature allows for a detailed analysis of any quantity
of interest as a function of the number of states in the set N, the modulus |S|, and the phase θ of the
inner product. In this work, we described the behavior of the success probability, quantum coherence,
and classical correlations under the minimum error strategy in terms of these parameters. We also
proposed an experimental scheme for implementing minimum error discrimination of equidistant
states. As an application, we present a quantum communication protocol in which Alice prepares and
sends an equidistant state to Bob, who then applies the ME to extract the encoded classical information.
This framework allows us to quantify the classical information shared between Alice and Bob through
the ME process. Moreover, we determine the quantum coherence involved in Bob’s implementation of
the ME, interpreting it as the gain of cryptographic randomness. Interestingly, our findings reveal a
trade-off: greater classical information sharing between Alice and Bob corresponds to lower random-
ness generation in the protocol, and vice versa. Future work will focus on determining the accessible
information, i.e., the maximal classical correlation achievable over all possible measurements, for the
set of equidistant states. Although this quantity remains unknown, it must be no less than the classical
information obtained under the ME. Moreover, in the special case of two pure nonorthogonal states,
it is well established that the measurement that allows the extraction of the accessible information
coincides with the minimum error measurement.
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