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Abstract

Partial discharges (PDs) are critical phenomena in diagnosing the insulation condition of electrical
equipment using dielectric oils. Their early detection and characterization are fundamental for the
prevention of catastrophic failures. This work presents an innovative bimodal approach for
laboratory PD analysis through the training of a convolutional neural network (CNN) based on
YOLOVS. Firstly, a conventional DDX-type PD electrical detector is enhanced by endowing it with
smart capabilities. Through the CNN training, a system is then developed capable of automatically
reading and interpreting data displayed on an electrical detector screen, such as discharge
magnitude, pulse count, and applied voltage. This transforms a conventional instrument into an
autonomous source of digitized and structured data. The mean precision in the training was 0.91.
Concurrently, an optical visualization system using a high-resolution camera is employed to capture
direct images of PDs occurring in the dielectric oil. These images provide complementary qualitative
and quantitative information, enabling the classification of discharge types based on their visual
characteristics. For electrical voltages of 10, 13 and 16 kV, PDs were detected with confidence scores
of up to 0.92. This study therefore combines quantitative information intelligently extracted from an
electrical detector, with qualitative and morphological characterization obtained through optical
analysis.

Keywords: partial discharges; dielectric oil; electrical sensor; optical sensor; fault diagnosis;
predictive maintenance; artificial intelligence; YOLOvS

1. Introduction

Power transformers are fundamental components of a high-voltage electrical network, the
failure of which can cause costly interruptions and long periods of downtime [1]. Dielectric oil, also
known as transformer oil, is a high-purity, low-viscosity mineral oil which is essential for the
operation of transformers and other electrical equipment. It serves a dual purpose, acting firstly as
an electrical insulator between conductive components and secondly as a coolant, dissipating the heat
generated by the core and windings. Bubbles within mineral oil are one of the most common defects
in oil-paper insulation systems, weakening their structure and jeopardizing the operational safety of
transformers [2]. This weakening is a precursor to the partial discharges (PDs) that can occur in them.
The detection of PDs is a key aspect for preventive maintenance that helps to avoid transformer
failure and for optimization of the number of scheduled transformer shutdowns.
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PDs are important phenomena and one of the main indicators of the degradation of the integrity
of electrical insulation, whether solid, liquid, or gaseous. They manifest as very short-duration
electrical events —from tens of nanoseconds to microseconds— which the IEC 60270 [3] standard
defines as localized, low-magnitude dielectric breakdowns. Although they do not cause immediate
failure, their persistence over time can erode the insulation until it completely breaks down.
Therefore, their early detection and accurate characterization are crucial to prevent catastrophic
failures in high-voltage equipment.

Unimodal techniques (UTs) for PD detection are based on the diverse physical phenomena that
accompany them. Each discharge, stochastic and aperiodic in nature, produces a current pulse. This
pulse can produce acoustic waves, generate electromagnetic radiation, and release electrical charges
[4]. The electrical method, standardized by IEC 60270 [3], is the reference technique for measurements
in controlled laboratory environments due to its high sensitivity [5]. For monitoring under real-life
operating conditions, non-conventional methods such as ultra-high frequency [6] and acoustic
emission detection [7] are used. However, these techniques also present challenges such as the
sensitivity of the acoustic method to the sensor location or the effects of radio frequency interference
on the ultra-high frequency method [4].

It is well known that the patterns or signatures of PDs depend on the type of PD produced [8].
However, these patterns often require expert interpretation, which introduces subjectivity, limits
scalability, and makes it difficult to accurately differentiate between different types of failures. This
dependence on human factors constitutes a bottleneck for large-scale, real-time monitoring.

To overcome these limitations, the scientific community has turned to the use of artificial
intelligence (AI), which has demonstrated superior ability to automate feature extraction, recognize
complex patterns in data, and classify discharge types with accuracy, surpassing conventional
methods [9] and opening a new era in isolation status diagnosis.

Despite advances in Al using UTs, the information derived from this detection method remains
one-dimensional, whether electrical, acoustic, or electromagnetic in nature. Al analysis can optimize
the interpretation of such data, but cannot generate more information.

Multisensory data fusion, or multimodal techniques (MTs), has emerged as a key strategy for
overcoming the limitations of UT systems, representing one of the most promising frontiers in PD
diagnosis. Comprehensive reviews of the state of the art, such as those presented in [10,11], provide
in-depth analysis of the fundamentals, methodologies, benefits, and challenges of this discipline,
demonstrating its potential for achieving more robust and reliable diagnoses.

In [12], a novel analysis method was developed that combines multimodal data and time
sequences to provide rapid diagnosis in power transformers. In [13], an innovative bimodal
transformer-based deep learning model was developed that uses optical data for PD classification.
The system identifies sparks, corona, and surface discharges instantaneously, demonstrating near-
perfect efficiency.

To improve the low accuracy of traditional PD recognition methods, in [14] a new system based
on data fusion was presented. This method combines a statistical model and a CNN to analyze phase-
resolved PD [15] images. The results of both are integrated using the Dempster-Shafer theory [16,17]
achieving a recognition accuracy greater than 94%, which is a significant improvement over
conventional approaches.

A robust diagnosis requires the synergy of two or more types of information. The present study
integrates the information provided by an electrical sensor and an optical sensor. It combines the
quantification of electrical severity by assessing the magnitude of the charge and the characterization
of its location and physical morphology through optical imaging. Since no single method covers both
dimensions, the combination of modalities is presented as an indispensable strategy for a complete
understanding of the phenomenon.

Along these lines, our work proposes a bimodal approach that creates a unique synergy by
combining the precise quantification of the electrical method with the spatial and morphological
characterization of the optical method. Thus, while the electrical detector answers the question of the
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severity of the discharge magnitude, the optical detection analyzes the nature of the defect by locating
its origin and shape. In both cases, Al analysis automates and enhances these two complementary
procedures.

In PD detection in dielectric oils, the identification of the pulses produced is of great importance.
All our tests are video recorded in order to extract as much information as possible. In this way, we
detect and identify these pulses in real time. To carry out this task, YOLO (You Only Look Once) [18]
is used as a tool for object detection in an image. We evaluated the use of YOLO because it can be
used in Python environments with OpenCV [19].

YOLO models object detection as an extension of a regression problem, dividing the image into
a series of cells and predicting bounding boxes and their confidence levels for each cell. This allows
for a parallel search within the entire image, making it extremely fast when using graphics processing
units (GPUs) at the same time.

Object detection is a core technology in many Al applications and is the fundamental goal of
computer vision. In addition to detecting the presence of objects in images, it is also desirable to
determine their position within them with an acceptable level of precision, as well as a confidence
score of the class to which they belong.

It is a supervised learning problem that involves providing labeled data to an algorithm for
training. Subsequently, when new unlabeled data unknown to the algorithm is introduced, it will be
able to recognize certain patterns in the new data.

Presented by its authors in 2015 [18], YOLO is a set of open-source algorithms for real-time object
detection. Its architecture introduces a paradigm shift and marks a milestone in the study of computer
vision. It is a single-pass object detector that uses a complex CNN to predict bounding boxes and
class probabilities for objects of interest in input images.

Previously, the most widely used approach to analyze images was the use of CNN and the
sliding window concept. This involves choosing a window of a certain size and scanning the entire
image, thereby detecting any trace of an object within that window. This method is very slow because
it has to scan the entire image to try to find objects whose sizes, spatial orientations, and shapes can
vary greatly. In contrast, YOLO can process images in real time with acceptable average accuracy at
a speed of 155 frames per second (FPS).

Early versions of YOLO used a CNN architecture with a total of 24 convolutional layers, 4 max-
pooling layers, and 2 fully connected layers. To operate, YOLO resizes the image by normalizing the
input to 224, 448, or 640 pixels before passing it through the CNN.

Since the launch of its first version (YOLOv1), YOLO has evolved. Version v2 was launched in
2016 [20] and v3 in 2018 [21], with the introduction of the Darknet-19 architectures in v2 and Darknet-
53 in v3. Versions v4 [22] and v5 [23] were launched in 2020, v6 [24] and v7 [25] in 2022, and v8 in
2023 [26].

This evolution has focused on increasing the detection speed by optimizing hyperparameters
through the application of genetic algorithms. A comprehensive review of YOLO architectures in
computer vision from YOLOv1 to YOLOvVS can be found in [27]. At the time of writing, the most
recent released version is YOLOv12. For our work, we chose YOLOvS8 because it is a mature
technology and fits our real-time video processing needs, facilitating the use of GPUs to increase
training and inference speeds.

YOLO has played a prominent role in numerous activities including, among others, applications
in agriculture [28], industry [29], and the detection of objects in flight [30].

To implement this bimodal approach, two methods are combined. This article presents a novel
diagnostic system for PD analysis in dielectric oils that integrates data from a conventional DDX
electrical detector with high-speed image characterization using a YOLOv8 CNN [29]. The objective
is to demonstrate that this combination of methods provides a substantially more complete and
robust diagnostic view than that obtained separately, laying the foundation for more reliable and
intelligent monitoring.
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Based on this principle, our work presents a novel bimodal diagnostic system that combines
electrical quantification using a DDX detector with optical characterization using a high quality
camera (HQC). The main contribution lies in the synergistic fusion of these two electrical and optical
sensors and the comprehensive automation of data interpretation using a GPU.

One of the key contributions of this study is the automation of both data sources. For the
electrical sensor, a YOLOv8 model is developed that interprets and digitizes the DDX screen,
transforming a conventional instrument into an intelligent data source. In parallel, for the optical
sensor, a novel semi-automated methodology is presented for the generation of a high-quality
dataset, which is a fundamental step for training. In both cases, intelligent inference of electrical and
optical data is produced.

The rest of this paper is structured as follows. Section 2 describes the experimental set up, and
Sections 3 and 4 the CNN training and inference from DDX images and HQ images, respectively.
Finally, in Section 5 the main conclusions are presented.

2. Experimental Set Up

In the present work, the PDs were measured in a dielectric oil located inside a methacrylate cell
[31] containing two facing electrodes subjected to high electrical voltages (Figure 1). The experimental
installation complies with the IEC60270 standard [3].

Figure 1. Transparent methacrylate cell with the two electrodes.

All tests lasted 45 s and were carried out at an ambient temperature of 21 °C. The PDs were
monitored using a conventional DDX-9101 PD detector, and the high voltage was regulated using an
OT 248 terminal (Figure 2).

(@) (b)

Figure 2. (a) Operating terminal OT 248 system, Tettex-Haefely test AG. (b) PD detector DDX-9101, Tettex-
Haefely test AG.

The DDX-9101 screen was recorded by a digital camera to store the results of each test. This
camera records video in 1920x1080p at 30 FPS.

Preliminary tests showed that PDs were practically non-existent below 6 kV and that electric arc
breakdowns occurred from 18 kV onwards.
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Taking this information into account, the PD were analyzed in a first series ranging from 6 to 18
kV. The voltage was increased by 1 kV in each test, thus performing 13 independent tests. The total
duration of each experimental test was 45 s. The voltage applied to the electrodes started from 0 kV
and followed an ascending ramp lasting approximately 10 s until reaching the desired nominal
charge. After 45 s of testing, the electrical voltage was reduced to zero. A total of four sets of tests
were performed from 6 to 18 kV. Therefore, the number of tests performed in this first series is 52.

These tests showed that PDs increase significantly above 10 kV. Therefore, it was decided to
conduct a second series for voltages of 10, 13, and 16 kV. Four sets were performed following the
same methodology described above. Therefore, the number of tests performed in this second series
amounts to 12. These additional tests were performed where the PDs are greatest, near the arc break.
The total number of tests was 52 + 12 = 64.

An HQC was used to record the PDs produced between the electrodes (Figure 3a). Detailed
information about the HQC can be found in [32]. It is an affordable camera of exceptional quality
with a resolution of 12.3 megapixels and a 7.9 mm diagonal sensor. This camera works especially
well in low-light conditions.

In addition, two polarizers were introduced into the experimental device, rotated at a certain
angle so that the light that reaches the HQC, coming from a lamp, produces the greatest possible
contrast to view the PD [31] (see Figure 3b).

Polarizer 2 = —

....... 5§ NS

cell

polarizer 2 polarizer 1

(b) Simplified schematic of the arrangement of
(a) Position of the HQC relative to polarizer 2.  the lamp, polarizers, and HQC with respect to
the cell.

Figure 3. Position of the HQC and schematic of the experimental setup.

3. CNN Training and Inference from DDX Images

This section presents the CNN training and inference analysis in operational scenarios using
images obtained from the DDX electrical detector. The dataset was manually generated for this
purpose.

3.1. CNN Training

This section presents and analyzes the results obtained from the training and validation of the
YOLOV8 model for PD detection and classification, as well as its quantification. Training was
performed over 150 epochs using a partitioned dataset as described below.

3.1.1. Training Environment

Training and evaluation of the YOLOv8 model was carried out on a high-performance
workstation running Ubuntu 22.04.5 LTS (codename: jammy). The system is equipped with a 12-core
AMD Ryzen Threadripper 1920X processor (24 threads, 3.5 GHz base frequency) and 125 GB of RAM.

For the processing of deep learning tasks, an NVIDIA GeForce RTX 2070 SUPER GPU with 8192
MB (approximately 7.9 GB) of dedicated video memory (identified as CUDA:0) was used. This GPU
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operates with the NVIDIA driver version 570.133.07 and support for CUDA 12.8. The software
environment was configured with Python 3.10.16, PyTorch 2.5.1 and the Ultralytics YOLOVS
framework version 8.3.111 [27]. The specific model employed presents an architecture of 92 fused
layers, adding a total of 25,842,655 parameters and requiring approximately 78.7 GFLOPs for its
execution in inference.

3.1.2. Manual Labeling of DDX Images

Figure 4 shows six images taken randomly during the tests at 6, 8, 10, 12, 14, and 16 kV. It can be
seen how the number of pulses progressively increases with increasing voltage applied to the
electrodes. A voltage limit of 16 kV was not exceeded to avoid the electric arc breakdowns that
occurred in the preliminary tests from 18 kV onwards.

(e) 14 kV (f) 16 kV

Figure 4. Images collected by the DDX for voltages from 6 to 16 kV.

As mentioned above, the camera records the DDX screen at 30 FPS. Each video therefore contains
45 s x 30 FPS = 1350 frames, giving us 64 videos.

Using Image-] version 1.54g [33], the region of interest (ROI) of each video was delimited, which
is necessary for the efficient analysis of the images obtained from the DDX screen. In this way, only
the rectangular area of each video containing the fields that will later be labeled and analyzed was
selected. The video format used for the camera was converted from MP4 to AVI, which can be
imported into Image-J. Once imported, the AVI file was converted to a set of images in PNG format.

For manual image labeling, 10 images were randomly selected from each test, resulting in the
labeling of a total of 640 images. The online software Roboflow [34] was used for this purpose.

The following classes were labeled in each image:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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e Attenuation value
e Negative pulse

e PD level value

e Positive pulse

e Voltage value

Figure 5 shows an example of an image labeled using the Roboflow program.

attenuation_value
negative_pulse
pd_level_value
positive_pulse

voltage_value

N

r‘“""**vb«m%w-"‘"”
|

PD Level : Voltage :
1.05 nCi(S) 10.0 kV
Figure 5. ROI labeling with Roboflow showing the five classes used: attenuation_value, negative_value,

pd_level_value, positive_pulse, and voltage_value.

3.1.3. Dataset Setup and Training

An additional 200 images that had been used in pre-training the CNN were added to the initial
dataset of 640 images. Hence, the final dataset comprised 840 images, managed and labeled using the
Roboflow platform. For the training and evaluation process, the dataset was divided into three
subsets:

e  Training : 594 images (71%).
e  Validation: 146 images (17%).
e  Test: 100 images (12%).

The YOLOV8 model was trained for 150 epochs. Learning curves and performance metrics were
monitored for both the training and validation sets.

3.1.4. Analysis of Loss Curves

Loss functions provide crucial information about how the model learns to minimize errors
during training. Three main loss components were analyzed: Box Loss, Classification Loss, and
Distribution Focal Loss (DFL). These three loss curves are analyzed below. In all three cases, small
errors were obtained during training.

Box Loss

Figure 6 shows the evolution of Box Loss for the training and validation sets. Box Loss measures
the accuracy with which the model predicts the coordinates of the object's bounding box. A constant
decrease in Training Box Loss is observed throughout the epochs, indicating that the model is
learning to localize objects progressively better.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Validation Box Loss also shows a decreasing trend, although with more pronounced initial
fluctuations and stabilizing at a value slightly higher than the Training Box Loss towards the end of
the epochs. This behavior is typical and suggests that the model generalizes adequately, although
there may be slight overfitting. Box Loss in YOLOvS uses a CloU (Complete Intersection over Union)
metric [35] following Eq. 1:

2(b,b
Leroy = 1 — 10U +%+ av @

where:

e L¢oy: Value of the CloU loss. The goal of YOLOVS is to minimize it.
e JoU: Intersection over Union, Eq. 2. It measures the overlap between the predicted and actual
boxes. Its value ranges from 0 with no overlap to 1 with perfect overlap. It is calculated as:

_ Area(b, N by,)

B Area(bzJ U bgt) @

e  b: Bounding box predicted by the model (coordinates xcenter, ycenter, width, height).

e by Real bounding box (ground truth) (coordinates xcenter_gt, ycenter_gt, width, height gt).

e p?(b,by): Squared euclidean distance between the center points of the predicted box b and the
actual box bgt. p represents the distance.

e c: Length of the diagonal of the smallest bounding box that completely encloses both b and bs:.
Normalizes the distance penalty.

e  a:Positive weighting parameter that adjusts the importance of the aspect ratio consistency term.

e v: Measure of the consistency of the aspect ratio between the predicted and real box. It is

calculated through Eq. 3:
4 2
Wyt wy
— — — — 3
v <7r2 arctan <hgt) arctan (hp )) 3)

where wg, and hg, are the width and height of the actual box, and w, and h, are the width and
height of the predicted box.

Training vs. Validation Box Loss

—— Training Box Loss

2.400- } Validation Box Loss

2.200
2.000
1]
81.800
o}
1.600-
1.400'

1.200- i
0 20 40 60 80 100 120 140
Epoch

Figure 6. Comparison between Training Box Loss and Validation Box Loss.

Classification Loss

Figure 7 illustrates the Classification Loss. This loss quantifies the model's error in assigning the
correct class to the detected objects. Both the Training and the Validation Box Loss consistently
decrease. The validation curve closely follows the training curve, also stabilizing and suggesting good
generalization capability for the classification task. YOLOv8 employs a loss function such as binary
cross-entropy for this task, Eq. 4, [36]:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Lys = —Z[Yilog(f’i) + (1 —y)log(1 -] ()

i

pd_level_value, positive_pulse and voltage_value, and where:

e L Classification Loss value.

¢  y;: Ground truth label for class i. y;=1 if the object belongs to class i, y;=0 if it does not.

e  §;: Probability predicted by the model that the object belongs to class i. It is the result of a sigmoid
function with value in [0,1].

Training vs. Validation Classification Loss

T e Py an Loee

—— Training Classification Loss

4.000 e e e Validation Classification Loss

3.000

Loss

2.000

1.000

0 20 40 60 80 100 120 140
Epoch

Figure 7. Comparison between Training Classification Loss and Validation Classification Loss.

3.1.4.3. Distribution Focal Loss

The DFL [37], shown in Figure 8, is a component that helps refine the prediction of bounding
box coordinates by modeling the location of the box edges as a probability distribution. The training
and validation DFL curves also show a decreasing trend and good correlation, indicating that the
model is effectively learning this more detailed representation of the location.

The DFL is expressed in Eq. 5:

LDFL(Pyy Pyr) =- (()’r - Y)IOQ(Py,) + - )’I)ZOQ(Pyr)) ®)
where:

e  Lpp: DFL value.

e y:Continue Ground truth coordinate of a box edge.

e  y;: Label of the discrete container immediately to the left of y.

e y,: Label of the discrete container immediately to the right of y.
e P,: Probability predicted by the model for container ;.

e P, :Probability predicted by the model for container y,.

e Theterms (¥, —y) and (y — ;) act as weights.
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Training vs. Validation DFL Loss

1.700- —— Training DFL Loss
] Validation DFL Loss
1.600- .
1.500-
©1.400- »
o ‘
=11.300 "

1.100° AN
VMl

1.000__ : ; : : ; 1
0 20 40 60 80 100 120 140
Epoch

Figure 8. Comparison between Training and Validation DFL Loss.

3.1.5. Performance Metrics

The model's performance was then evaluated using standard object detection metrics [38].
Specifically, the Precision, Recall, and Mean Average Precision metrics (mAP) were used. In all three
cases, the growth was constant, and the stabilization of the metrics at high values indicates good
detection and classification performance.

Precision and Recall in Training

Figures 9 and 10 show the evolution of Precision, Eq. 6, and Recall, Eq. 7, respectively, othe
training set. Both metrics tend to increase as training progresses, stabilizing at high values of 0.91 and
0.92 for Precision and Recall, respectively, indicating that the model learns to correctly identify
relevant objects while minimizing false positives and false negatives in the analyzed data.

P . e —_ TP (6)
recision = o0
TP
- 7
Recall TP T FN (7)

where TP are true positives, FP are false positives and FN are false negatives.

Precision (Training) ) Recall (Training)
0.900- A AN prf e Wwwww
0.900 A
i s
50.800 ¢ ' - dl
2 \ =o0.800| [l
- v
[*] [ ‘
£o0.700 - \
0.700 ‘
0.600 J {
0.600
0 200 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epoch Epoch
Figure 9. Precision on the training set. Figure 10. Recall on the training set.

3.1.5.2. mAP in the Validation

The mAP is a key metric for evaluating the overall performance of object detectors. Figure 11
shows the mAP at an Intersection over Union (IoU) threshold of 0.5 (mAP@0.5), while Figure 12
presents the mAP averaged over multiple IoU thresholds from 0.5 to 0.95 in steps of 0.05
(mAP@0.5:0.95). Both mAP curves on the validation set show a steady increase, reaching values of
0.94 and 0.62 for (mAP@0.5) and (mAP@0.5:0.95), respectively. The more strict mAP@0.5:0.95
provides a more robust assessment of the model's localization performance. The steady growth and

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0331.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 September 2025 d0i:10.20944/preprints202509.0331.v1

11 of 27

stabilization at high values indicate good detection and classification performance with validation
data not seen in the training set.

The Average Precision (AP) for a class, Eq. 8, is calculated as the area under the Precision-Recall
curve. One way to calculate it is:

AP = Z P(k)Ar(k) (8)
k=1

where:

e  AP: AP for a specific class.

e  k:Index of predictions ordered by confidence (from highest to lowest).

e  N:Total number of thresholds or data points considered.

e  P(k): Accuracy calculated at the kth Recall point or by considering the k highest confidence
detections.

e Ar(k): Change in Recall from point (k-1) to point k (i.e., Ar(k) = r(k) —r(k — 1)).
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Figure 11. mAP@0.5 on the validation set.
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Figure 12. mAP@0.5:0.95 on the validation set.

3.2. Confusion Matrix

This section presents a detailed overview of the successes and errors of the classes that were
considered through the study of the Confusion Matrix in the validation and in the test set.

3.2.1. Confusion Matrix on the Validation Set

The Confusion matrix [39], presented in Figure 13, provides a detailed view of the model’s
classification successes for each of the five classes in the validation set. Values on the main diagonal
represent correct classifications. A high number of correct predictions is observed for most classes:
negative_pulse (650), positive_pulse (615), attenuation_value (145), pd_level_value (145), and
voltage_value (144).

The attenuation_value, pd_level_value and voltage_value classes show very little confusion,
indicating good distinction by the model. However, some confusions are identified in the background
class, which is incorrectly classified as negative_pulse in 197 instances and as positive_pulse in 231
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instances. Furthermore, instances of negative_pulse (98) and positive_pulse (87) are wrongly
identified as background. These confusions could be due to the visual similarity of these signals with
background noise or to the inherent variability of background signals, which can resemble weak

pulses.

Confusion Matrix
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Figure 13. Confusion matrix of the model on the validation set.

3.2.2. Confusion Matrix on the Test Set

After training the YOLOv8 model for 150 epochs, its detection and classification performance
was evaluated on the test set, which consisted of 100 images not used during the training and
validation phases. This set contains a total of 1,025 labeled object instances belonging to the five
defined classes. The evaluated model, with 92 fused layers, 25,842,655 parameters, and a complexity
of 78.7 GFLOPs, was subjected to inference on this dataset.

The model's processing speed on the test set was remarkable, with an average time of 1.7 ms for
preprocessing, 11.3 ms for inference itself, and 5.3 ms for postprocessing per image. This results in an
efficient overall inference time, which is crucial for applications requiring real-time responses or the
processing of large volumes of data.

The overall evaluation results on the test set show robust model performance. An average
Precision of 0.93 and an average Recall of 0.93 were obtained. Regarding the mAP, a value of 0.95
was achieved with an IoU threshold of 0.5 (mAP@0.5). When considering a stricter range of IoU
thresholds, from 0.5 to 0.95 in steps of 0.05 (mAP@0.5:0.95), the model achieved a value of 0.62. These
values suggest a good ability of the model to correctly locate and classify events in the signals, with
mAP@0.5:0.95 being a stricter indicator of accuracy in locating bounding boxes.

Analyzing the performance broken down by class using the mAP@0.5:0.95 metric reveals the
following values: attenuation_value 0.67, negative_pulse 0.45, pd_level_value 0.77, positive_pulse
0.48, and voltage_value 0.71.

Excellent performance is observed for the pd_level value and voltage_value classes, followed
by attenuation_value. The negative_pulse and positive_pulse classes exhibit lower mAP@0.5:0.95,
indicating greater difficulty for the model in accurately localizing bounding boxes for these pulse
types under strict IoU criteria, although its performance at mAP@0.5 remains high.
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Figure 14 shows the confusion matrix obtained from the model's predictions on the test set. The
following correct predictions are observed on the main diagonal: attenuation_value 99,
negative_pulse 327, pd_level_value 99, positive_pulse 316, and voltage_value 99.

The attenuation_value, pd_level_value, and voltage_value classes show very little or no
confusion with other classes or the background, indicating excellent distinction by the model for these
specific events.

The model demonstrates a high ability to correctly classify most instances. However, some
significant confusions are identified, primarily related to the background class. Specifically, the true
background class is incorrectly classified as negative_pulse 76 times and as positive_pulse 86 times.

On the other hand, true instances of negative_pulse 47 and positive_pulse 37 are incorrectly
classified as background. That is, in these cases, the model either fails to detect them or mistakes them
for the background. There is also much less confusion between negative_pulse and positive_pulse,
with just one instance of negative_pulse predicted as positive_pulse. Background confusion for
positive and negative pulses could be attributed to the visual similarity of low amplitude pulses to
background noise or to inherent variability in the signal that makes distinction difficult.
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Figure 14. Confusion matrix model predictions on the test set.

3.3. Inference in Operational Scenarios

This section analyzes the inference of images from the DDX electrical detector videos using the
trained CNN. This automatically produces the five classes as the final result, and for three of them

the numerical value is obtained.

3.3.1. Inference Flowchart

Figure 15 shows the flowchart that explains how inference is performed from video sequences
from the DDX electrical detector for object detection and quantitative data extraction. The program
was made in Python, and its architecture designed to be efficient and clear. It is divided into three
phases: setup and initialization, frame-by-frame processing, and finalization.
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Figure 15. Flowchart explaining how inference is performed from video sequences from the electrical sensor for

object detection and quantitative data extraction.

Phase 1: Set up and initialization.

This is a preliminary phase that prepares all the components necessary for the analysis. It
performs three tasks sequentially:

1. Startup and configuration: the process begins by loading user-defined configurations, such as
the input video and YOLOvS8 model paths, confidence thresholds, and a list of interest classes
that will trigger optical character recognition (OCR).

2. Engine loading: the two main inference engines, the YOLOVS object detection model and the
Python EasyOCR OCR engine, are initialized and loaded into memory. This loading is
performed only once at startup to optimize system performance. The number of GPUs to be used
is also determined.

3. Opening files: the input video stream is opened and the output files are created, including the
new video with the visual annotations and the text file that will record its detailed data.

Phase 2: Frame by frame processing, main loop:
This is the operating core of the system, where each frame of the video is analyzed sequentially.

1. YOLOvS8 inference: the current frame is fed into the YOLOv8 model, which identifies and locates
all classes of interest that exceed the confidence threshold, returning their bounding boxes, class
labels, and confidence scores.

2. Detection loop: the system iterates through each of the detections found in the frame.
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3.  OCR class certification: for each detection, a decision is made based on its class label. If the class
is predefined as an OCR target —pd_level_value, voltage_value, and attenuation_value— the
system proceeds with OCR inference.

4. OCR inference: this critical step extracts the quantitative data:

a. ROI cropping: the exact portion of the image contained within the detection bounding box
is extracted from the frame.

b. OCR application: the OCR engine analyzes this small ROI to recognize the textual
information present.

c. Value interpretation: the extracted text is processed to convert it into a numerical value.

5. Output log: all detection data is logged. Bounding boxes and corresponding labels —confidence
and OCR value, if applicable — are drawn on the output video frame. Detailed information about
each detection, including the numerical value analyzed by the OCR, is added as a new line to
the text file.

Phase 3: End
Once all frames have been processed, the system performs an orderly shutdown, leaving the
output files ready for further analysis.

3.3.2. Results and Discussion

To test the performance and generalization capabilities of the YOLOv8 model trained and
verified in the previous sections, an inference evaluation was performed on completely new data. To
do this, three videos of 10 s were used, captured at voltage levels of 10 kV, 13 kV, and 16 kV,
respectively. Each video, corresponding to approximately 300 images, was processed by the trained
model to evaluate its effectiveness in detecting and classifying events under operating conditions not
seen during training.

Figures 16 (a), (b), and (c) present representative frames of the inference for each voltage level.
It is observed that the model not only successfully identifies the discharge pulses —negative_pulse
and positive_pulse—, but also correctly reads and classifies the instrument numerical values —
pd_level_value, voltage_value— and the attenuation value —attenuation_value. The high confidence
scores, generally >0.70, for all classes demonstrate the robustness of the model in a complex task
combining signal pattern detection with implicit optical character recognition.

Range :@“—W‘m PD Meter O/R : PD Meter OIR : Range :[i#B}ion_valie 080"~ PD Meter OIR

nt Range {BBABon-voler 085 "
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(a) PD detection for 10 kV. (b) PD detection for 13 kV. (c) PD detection for 16kV.

Figure 16. Inference for 3 images from the trained CNN.

For a deeper analysis of the relationship between PD activity and electrical magnitudes,
cumulative detection images were generated for each 10 s video, as illustrated in Figures 17a, b and
c. These images overlay all the bounding boxes of the detected pulses over the first frame of the video,
providing a comprehensive view of the PD activity signature.
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Figure 17. Accumulated detection images for each PD video of 10 s duration.

Analysis of these visualizations reveals a direct and physically consistent correlation between
the applied voltage, the measured discharge level, and the activity detected by the model.

1. At 10 kV, the model detects moderate discharge activity, with well-defined but relatively
compact green clusters of negative and magenta positive pulses. This corresponds to an
instrumental reading of PD Level 0.426 nC and Voltage 10.1 kV in Figure 17a.

2. At 13 kV, with increasing voltage, a significant increase in the density and spatial extent of
detections is observed. Both the negative and positive cumulative pulses are visibly larger and
denser. This increased visual activity directly correlates with the increased discharge level
measured by the instrument, which now shows PD Level 0.701 nC and Voltage 13.1 kV in Figure
17b.

3. At16kV, the phenomenon intensifies dramatically. The cumulative image shows a much larger
and more saturated area of activity, indicating a very severe PD regime. This exponential
increase in visual activity is consistent with the instrumental reading, which reaches a PD Level
of 3.88 nC and a Voltage of 16.6 kV, as shown in Figure 17c.

Table 1 presents a summary of the relationships between the main attributes obtained from the
inference of the trained CNN for accumulated experiments at 10 kV, 13 kV and 16 kV. It presents the
most significant Pearson correlation coefficients (r) [40], with a focus on the main electrical variables,
ocr_voltage and ocr_pd_level, and their relationships with other geometric characteristics such as the
pulse area, pulse coordinates CenterX and CenterY, as well as the number of positive and negative
pulses detected. It shows a correlation of 0.90 between the magnitudes obtained in the ocr_voltage
and ocr_pd_level classes, which confirms that these variables measure strongly related aspects of the
same physical phenomenon.

Table 1. Summary of the most relevant Pearson correlation coefficients (r).

Attribute 1 Attribute 2 Coefficient (r)
Strong positive correlations (r > 0.7)

ocr_voltage ocr_pd_level 0.90
num_pulse_negatives ocr_voltage 0.77
Area Height 0.90
Area Width 0.78
CenterX CenterY 0.77
Significant negative correlations (r <-0.3)

ocr_voltage Width -041
ocr_pd_level Width -0.39
num_pulsos_negativos Width -0.34
Other moderate positive correlations (0.5 < r < 0.7)
num_pulse_negatives ocr_pd_level 0.59
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Confidence Width 0.55
Area Confidence 0.53

We also observe a strong positive relationship of 0.77 between the increase in the magnitude of
ocr_voltage and the number of pulse_negatives detected, suggesting that higher voltages generate
more negative discharges. On the other hand, an inverse relationship is observed between voltage
and the geometric ratio. The most notable negative correlation 0.41 is between ocr_voltage and Width.
This indicates that pulses tend to become narrower as voltage increases. This is a non-obvious but
highly informative pattern that the machine learning model is using for classification.

In conclusion, this experimental validation on data not used in the training set demonstrates the
effectiveness of the trained model. Not only is it capable of generalizing and operating as a robust
monitoring system, but its visual detections act as a qualitative and quantitative analogue of electrical
measurements. The density, area, and frequency of bounding boxes detected by the model provide a
direct visual measure of the severity of the phenomenon, validating this approach as a powerful and
reliable tool for the automated diagnosis and quantification of PDs.

4. CNN Training and Inference from HQ Images

This section presents the CNN training and inference analysis in operational scenarios using
images obtained using the HQ camera. The training environment in this section is the same as that
used in section 3. However, in this section a semi-automatic generation of the dataset is realized,
which greatly facilitates the labeling of the training, validation, and test sets.

4.1. CNN Training

The purpose of this section is to train a CNN based on YOLOvVS8 architecture. The section is
divided into two subsections: semi-automatic dataset generation and training results.

4.1.1. Semi-Automatic Generation of the Dataset

To train the CNN based on the YOLOVS architecture for PD detection in videos obtained with
the HQC, a Python script was developed for video processing to obtain the training, validation, and
test images. This process automates the identification of candidate events, filters out known false
positives, and generates a structured and labeled dataset in the format required by YOLOvS. The
methodology is based on background subtraction, contour analysis, and a novel manual spatial
exclusion filter that significantly improves the quality of the final dataset by reducing noise and the
need for subsequent manual cleaning.

The structure of this section is as follows: first, the semi-automatic data acquisition model is
configured and initialized. Next, a Python program is created for PD detection and extraction. Data
filtering, validation, and collection are then performed. Finally, the dataset is generated in YOLOv8
format for CNN training. To facilitate understanding of this process, a flowchart summarizing the
overall method described is included.

Configuration and Initialization

The process begins with a configuration phase where key parameters are defined. The I/O paths
are defined first, and then the input video and output file paths are specified. These include
debugging videos —difference, threshold and detected events— and a .dat data file with the
characteristics of each PD.

Manual exclusion zones are then established. This is a crucial component of the system as it
allows the user to define a priori spatial regions in the image where recurring false positives —
reflections, sensor noise, etc.— are known to occur. Each zone is defined by a centroid, an exclusion
radius on the x and y axes, and, optionally, an expected area with its tolerance. Any detected event
whose centroid falls within one of these zones is automatically discarded.
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The parameters of YOLOvS dataset are defined below. The dataset's root directory, the class to
be detected (PD), and the ratios for dividing the data into training sets, 66.7%, validation sets, 22.0%,
and test sets, 11.3%, are named.

PD Detection and Extraction

The core of the Python script processes the video frame by frame to identify events of interest.
This process is broken down into four steps:

e  Background establishment: the first frame of the video is assumed to represent the static
background of the scene. This frame is converted to grayscale and stored for reference.

e Background subtraction: for each subsequent frame, the absolute difference with the
background frame is calculated. The result is an image that highlights only the regions where
changes have occurred (i.e., new PD).

e  Thresholding and morphological cleaning: the resulting image is binarized using a fixed
threshold to convert subtle changes into well-defined, white-on-black regions. A morphological
operation is then applied to remove noise.

e  Contour detection: on this last image, the OpenCV Python library algorithm [19] is applied to
determine the contours of all the change regions. Each contour represents a candidate PD.

Filtering, Validation and Data Collection
This process is carried out in the following steps:

¢  Minimum area filter: contours with an area smaller than a predefined threshold of 5 pixels are
discarded to remove residual noise.

e Manual exclusion filter: the contour centroid is calculated. If this centroid falls within any of the
manual exclusion zones defined in the configuration, the contour is classified as a false positive
and discarded.

e Data collection: if a contour passes both of the above filters, it is considered a valid PD.

e  For each valid PD, the following is extracted and stored:

1.  The bounding box.
The centroid coordinates, area and average RGB color intensity in a .dat text file for further
analysis.

3. A copy of the original, unprocessed frame and the list of bounding boxes for all valid events
found are saved. This pair (image, labels) is the input data in YOLOvS format.

Generating the Dataset in YOLOv8 Format

Once the entire video has been processed, the script uses the collection of frames with valid PDs
to build the final dataset and the following steps are performed:

e  Directory structuring: a folder structure compatible with YOLOvVS8 framework is created with
the subdirectories train, valid, and test, each containing folders for images and labels.

e  Data splitting: the data collection —images and their labels — is randomly shuffled and split into
training, validation, and test sets according to the ratios defined above.

e File generation for each image: the original image is saved as an image_name.jpg in the
corresponding images folder.

e Animage_label.txt file is created in the corresponding labels folder. Within this file, each line
represents an event detected in that image, in the format: [class_index, x_center_norm,
y_center_norm, width_norm, height_norm]. All bounding box coordinates are normalized by
dividing them by the frame width and height dimensions, as required by YOLOVS.

e  Configuration file (data.yaml): finally, a data.yaml file is generated at the root of the dataset.
This file is essential for YOLOVS to locate the datasets and identify the number of classes and
their names.
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The end result is a high-quality dataset, ready to be used directly in training a YOLOVS object
detection model, minimizing manual intervention and improving labeling consistency.

Summary Flowchart of the Process

To visualize the logical flow of the script used to generate the YOLOvS8 compatible dataset, a
flowchart was created as shown in Figure 18.

Phase 1. Setup and Loading
(paths, video, exclusion zones)

split data, create .jpg, .txt, .yaml file:

l

Phase 2. Video Processing Loop J,
( For each frame in video... )_ —_— ‘C Phase 3. YOLO Dataset Generation D
&)

Y
Event Detection & Filtering
(background substration, colours, area & exclusion filters)

Valid events
found?

test train valid data.yaml

( Temporarily Store

frame + coordinates (BBoxes)

End

Figure 18. High-level logical flow of the script focusing on the three main phases: configuration, processing and

detection, and dataset generation.

The three main phases of the flowchart are summarized below:

1. Setup and loading: in this initial phase, all resources are prepared. The script reads the file paths,
uploads the video, and manually defines exclusion zones, which are key to filtering out known
false positives.

2. Video processing loop: this is the core of the script. It operates frame by frame, performing two
main tasks in sequence:

2a) PD detection and filtering: this block encapsulates all the computer vision logic, subtracts the
background (see Figure 19a) to find the changes that occur, binarizes the image, finds the PD
boundaries and applies filters, both the minimum area filter and the manual exclusion zones filter.

2b) Temporary storage: if a frame contains at least one PD that has passed all filters, the script
saves the original image of that frame along with the coordinates of the bounding boxes (see Figures
19b and c of the valid PD).

3. YOLOVS dataset generation: once the entire video has been analyzed, this final phase takes all
the valid data collected and organizes it into the folder structure and file formats required by
YOLOVS. This includes splitting the data into training/validation/test sets, normalizing the
coordinates, and creating the .yaml configuration file.

Figure 19a shows the base or background image used as a reference, while Figures 19b and c
show images with three PDs and one PD, respectively, as well as their bounding boxes.
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bounding boxes. bounding box.

Figure 19. Background and PDs with bounding boxes.

4.1.2. Training Results

Three image series were used to train the CNN. The PD series occurring within the dielectric oil
correspond to an average voltage of 10 kV, 13 kV, and 16 kV, respectively. The total dataset consists
of 4,457 images, managed and labeled using the semi-automatic system explained in the flowchart
represented in Figure 18. For the training and evaluation process, the dataset was divided into three
subsets:

e  Training set: 2,967 images.
e  Validation set: 982 images.
e Test set: 508 images.

The training environment is the same as for the DDX image training seen in section 3. The
YOLOvV8 model was trained in four iterations: the first and second with 100 epochs, the third with
200, and the fourth, to ensure convergence, with 523. Some images from this dataset with box labeling
in YOLOvVS format can be seen in Figures 19b and c. The training speed is 18.9 s per epoch. This
demonstrates a very fast experimentation cycle, allowing for efficient model iteration and tuning.

The implemented object detector is based on a deep CNN architecture optimized for inference.
The model consists of 92 fused computational layers, a technique that improves speed by combining
operations such as convolution and batch normalization. With a total of 25,840,339 parameters, the
model has a high capacity to learn and represent the complex visual characteristics of the PD of
interest. Its computational load is quantified at 78.7 GFLOPs, a key metric that indicates the required
processing demand and positions the model as a robust solution, suitable for running on GPU-
accelerated hardware.

The evolution of performance metrics during training provides crucial information about the
model's learning process. Figures 20a and b depict the Training vs. Validation Box Loss and
Classification Loss curves, respectively. Figures 21a and b illustrate the Training vs. Validation DFL
Loss and Training Precision curves over 520 epochs, consisting of 982 images.
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Figure 21. Training vs Validation DFL Loss and Training Precision curves.

Consistent behavior is observed across the three loss graphs: Box Loss, Classification Loss, and
DFL Loss. During the first 375 epochs, the model demonstrates an effective learning phase. The loss
curves for both training (solid blue line) and validation (dashed orange line) slope downward
simultaneously. This indicates that the model is generalizing correctly, improving its ability to locate
Box Losses, correctly classify PD (Classification Loss), and refine the DFL Loss on unseen data.

However, starting at epoch 375, a clear inflection point becomes evident, signaling the onset of
overfitting. While the training set loss continues its downward trend, the three validation set loss
metrics reverse their trajectory and begin to increase steadily. This phenomenon is a classic indicator
that the model has begun to memorize the specific characteristics and noise of the training set, losing
its ability to generalize to new data. Therefore, the model with the best performance is not the one
obtained at the end of training, but the one whose weights correspond to the minimum point of the
validation loss, around epoch 375.

Regarding Precision, the graph in Figure 21b shows its evolution on the training set, where it
stabilizes at an average value close to 0.77. This behavior suggests that, even on the training data, the
model does not achieve perfect accuracy. This can be attributed to the nature of the dataset, which
likely contains a subset of PDs that are intrinsically difficult to detect, such as very small-area or low-
contrast PDs. The model assigns a lower confidence score to these complex detections which, when
averaged over the entire set, results in an accuracy metric that does not reach higher values. The
constant fluctuation in the accuracy curve reflects the model's continuous effort to adjust its
predictions to this PD variability.

In conclusion, the analysis of the training curves confirms the attainment of a functional model,
but also underscores the critical importance of employing an early stopping strategy or selecting the
model based on the minimum validation loss to avoid deploying an overfitted and underperforming
model in real-world applications.
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4.2. Inference in Operational Scenarios

Once the CNN was trained, the model's performance was evaluated on the inference task using
three independent test videos, corresponding to PDs generated under voltages of 10 kV, 13 kV, and
16 kV. The model's efficiency is remarkable, with an inference time of just 1.2 ms per frame. This
translates into a theoretical processing capacity of approximately 833 FPS, confirming its suitability
for real-time applications or for analyzing large volumes of video.

Figure 22 shows examples of inference on individual frames for each voltage level. The model is
observed to correctly identify PDs under all conditions. The variability in the assigned confidence
scores is notable. While events at 10 kV and 13 kV are detected with high confidence (0.91), 16 kV
receives a more dispersed range of scores (0.92, 0.84, and even 0.39 for a weaker PD). This behavior
is consistent with the analysis of the training accuracy curve and demonstrates the model's ability to

quantify the certainty of its own detections.

(a) Voltage of 10 kV (b) Voltage of 13 kV () Voltage of 16 kV

between electrodes. between electrodes. between electrodes.

Figure 22. PD inference and confidence estimated by CNN for 10 kV, 13 kV and 16 kV.

A more in-depth analysis is obtained by accumulating all detections over each video, lasting 45
s in this case. Figure 23 provides a visualization of the accumulated PD density over the image. In
addition, Figures 24 to 26 provide a detailed analysis of their spatial distribution, area and detection
confidence.

(a) Voltage of 10 kV between (b) Voltage of 13 kV between (c) Voltage of 16 kV between

electrodes. electrodes. electrodes.

Figure 23. Distribution of centers of PD inference estimated by CNN for 10 kV, 13 kV and 16 kV.
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Figure 24. Cumulative distribution of PD centers and magnitude of each associated box in pixels? and confidence

of each point for 10 kV.
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Figure 25. Cumulative distribution of PD centers and magnitude of each associated box in pixels? and confidence

of each point for 13 kV.
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Figure 26. Cumulative distribution of PD centers and magnitude of each associated box in pixels? and confidence
of each point for 16 kV.

The following conclusions can be drawn:
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a) Correlation between voltage and discharge activity: there is a clear relationship between
the voltage applied to the electrodes and the number of detected PDs. At 10 kV, 1,582 PDs were
accumulated (Figure 23a). As the voltage is increased to 13 kV, the activity increases significantly,
recording 2,050 PDs (Figure 23b). However, at 16 kV, the total number of detected PD drops slightly
to 1,981 (Figure 23c). A reasonable hypothesis for this small decrease is that at higher energies the
PDs are larger and may merge, being detected by the model as a single PD with a larger area instead
of multiple smaller PDs.

b) Spatial expansion of activity: the scatter plots shown in Figures 24 to 26 visually confirm
that the area of discharge activity expands with increasing voltage. The cluster of points, initially
highly concentrated in the dielectric space at 10 kV, expands both vertically and horizontally at 13 kV
and, more pronouncedly, at 16 kV. This suggests that at higher voltage levels in the dielectric, PDs
are not only more frequent but also occupy a larger volume.

C) Increasing the detection area and correlation with PD confidence: the most revealing
analysis comes from the direct comparison between the area and confidence of the PD in Figures 24
to 26:

e Area distribution (Figures 24a to 26a): at 10 kV, the vast majority of PDs are small in area
(blue and green dots). At 13 kV, a slight increase in the average area is observed. The change
is important at 16 kV, where a significant presence of large-area PDs appears, represented
by yellow and orange colors.

e Confidence distribution (Figures 24b to 26b): complementarily, the analysis of detection
confidence provides a new layer of information. A strong positive correlation is observed
between the area of a PD and the confidence with which it is detected. Larger PDs with
warm colors in Figures 24a to 26a consistently correspond to high-confidence detections,
with warm colors close to 1.0 in Figures 24b to 26b. This is physically consistent. Larger and
more energetic PDs are visually clearer and therefore more confidently identified by the
model. Conversely, low-confidence points —cool colors in Figures 24b to 26b- tend to
correspond to smaller PDs, which are harder to distinguish from background noise.

5. Conclusions

This work presents an innovative bimodal approach for laboratory PD analysis through training
of a CNN based on YOLOVS.

Firstly, a conventional DDX-type PD electrical detector is enhanced by endowing it with smart
capabilities. A system is developed capable of automatically reading and interpreting data displayed
on the electrical detector screen, such as discharge magnitude, pulse count, and applied voltage. In
this way we transform a passive conventional instrument into a smart and autonomous source of
digitized and structured data. The mean precision in the training was 0.91

Concurrently, an optical visualization system using a high quality camera is employed to
capture direct images of PDs occurring in the dielectric oil. In addition, the training dataset for the
camera is generated semi-automatically using a Python program. These images provide
complementary qualitative and quantitative information, enabling the classification of discharge
types based on their visual characteristics. This offers a new and complementary dimension
providing the spatial location and morphology of PDs. Image analysis makes it possible to identify
exactly where the PDs originate and how they propagate between the electrodes, vital information
for diagnosing the exact point of failure or insulation degradation. For electrical voltages of 10 kV, 13
kV and 16 kV, PDs were detected with confidence scores of up to 0.92.

This synergy offers a more complete, accurate, and automated diagnosis of PD behavior in
dielectric oils, improving the understanding of degradation mechanisms and the operational
reliability of electrical assets. In this way, both systems, operating in parallel, enhance each other. The
DDX electrical detector quantifies the charge, providing a measure of the magnitude of the problem,
while the optical detector finds the location of the source of the problem. The fusion of this bimodal
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information, the electrical magnitude and the spatiotemporal distribution, allows for a much more
complete and robust diagnosis of the dielectric insulation oil condition than could be achieved with
either system alone. This approach represents a significant advance toward smarter and more
accurate monitoring systems, capable of not only detecting the presence of PDs but also identifying
their root cause and predicting failures more effectively.
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