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Abstract 

Partial discharges (PDs) are critical phenomena in diagnosing the insulation condition of electrical 
equipment using dielectric oils. Their early detection and characterization are fundamental for the 
prevention of catastrophic failures. This work presents an innovative bimodal approach for 
laboratory PD analysis through the training of a convolutional neural network (CNN) based on 
YOLOv8. Firstly, a conventional DDX-type PD electrical detector is enhanced by endowing it with 
smart capabilities. Through the CNN training, a system is then developed capable of automatically 
reading and interpreting data displayed on an electrical detector screen, such as discharge 
magnitude, pulse count, and applied voltage. This transforms a conventional instrument into an 
autonomous source of digitized and structured data. The mean precision in the training was 0.91. 
Concurrently, an optical visualization system using a high-resolution camera is employed to capture 
direct images of PDs occurring in the dielectric oil. These images provide complementary qualitative 
and quantitative information, enabling the classification of discharge types based on their visual 
characteristics. For electrical voltages of 10, 13 and 16 kV, PDs were detected with confidence scores 
of up to 0.92. This study therefore combines quantitative information intelligently extracted from an 
electrical detector, with qualitative and morphological characterization obtained through optical 
analysis. 

Keywords: partial discharges; dielectric oil; electrical sensor; optical sensor; fault diagnosis; 
predictive maintenance; artificial intelligence; YOLOv8 
 

1. Introduction 

Power transformers are fundamental components of a high-voltage electrical network, the 
failure of which can cause costly interruptions and long periods of downtime [1]. Dielectric oil, also 
known as transformer oil, is a high-purity, low-viscosity mineral oil which is essential for the 
operation of transformers and other electrical equipment. It serves a dual purpose, acting firstly as 
an electrical insulator between conductive components and secondly as a coolant, dissipating the heat 
generated by the core and windings. Bubbles within mineral oil are one of the most common defects 
in oil-paper insulation systems, weakening their structure and jeopardizing the operational safety of 
transformers [2]. This weakening is a precursor to the partial discharges (PDs) that can occur in them. 
The detection of PDs is a key aspect for preventive maintenance that helps to avoid transformer 
failure and for optimization of the number of scheduled transformer shutdowns. 
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PDs are important phenomena and one of the main indicators of the degradation of the integrity 
of electrical insulation, whether solid, liquid, or gaseous. They manifest as very short-duration 
electrical events —from tens of nanoseconds to microseconds— which the IEC 60270 [3] standard 
defines as localized, low-magnitude dielectric breakdowns. Although they do not cause immediate 
failure, their persistence over time can erode the insulation until it completely breaks down. 
Therefore, their early detection and accurate characterization are crucial to prevent catastrophic 
failures in high-voltage equipment. 

Unimodal techniques (UTs) for PD detection are based on the diverse physical phenomena that 
accompany them. Each discharge, stochastic and aperiodic in nature, produces a current pulse. This 
pulse can produce acoustic waves, generate electromagnetic radiation, and release electrical charges 
[4]. The electrical method, standardized by IEC 60270 [3], is the reference technique for measurements 
in controlled laboratory environments due to its high sensitivity [5]. For monitoring under real-life 
operating conditions, non-conventional methods such as ultra-high frequency [6] and acoustic 
emission detection [7] are used. However, these techniques also present challenges such as the 
sensitivity of the acoustic method to the sensor location or the effects of radio frequency interference 
on the ultra-high frequency method [4]. 

It is well known that the patterns or signatures of PDs depend on the type of PD produced [8]. 
However, these patterns often require expert interpretation, which introduces subjectivity, limits 
scalability, and makes it difficult to accurately differentiate between different types of failures. This 
dependence on human factors constitutes a bottleneck for large-scale, real-time monitoring. 

To overcome these limitations, the scientific community has turned to the use of artificial 
intelligence (AI), which has demonstrated superior ability to automate feature extraction, recognize 
complex patterns in data, and classify discharge types with accuracy, surpassing conventional 
methods [9] and opening a new era in isolation status diagnosis. 

Despite advances in AI using UTs, the information derived from this detection method remains 
one-dimensional, whether electrical, acoustic, or electromagnetic in nature. AI analysis can optimize 
the interpretation of such data, but cannot generate more information. 

Multisensory data fusion, or multimodal techniques (MTs), has emerged as a key strategy for 
overcoming the limitations of UT systems, representing one of the most promising frontiers in PD 
diagnosis. Comprehensive reviews of the state of the art, such as those presented in [10,11], provide 
in-depth analysis of the fundamentals, methodologies, benefits, and challenges of this discipline, 
demonstrating its potential for achieving more robust and reliable diagnoses. 

In [12], a novel analysis method was developed that combines multimodal data and time 
sequences to provide rapid diagnosis in power transformers. In [13], an innovative bimodal 
transformer-based deep learning model was developed that uses optical data for PD classification. 
The system identifies sparks, corona, and surface discharges instantaneously, demonstrating near-
perfect efficiency. 

To improve the low accuracy of traditional PD recognition methods, in [14] a new system based 
on data fusion was presented. This method combines a statistical model and a CNN to analyze phase-
resolved PD [15] images. The results of both are integrated using the Dempster-Shafer theory [16,17] 
achieving a recognition accuracy greater than 94%, which is a significant improvement over 
conventional approaches. 

A robust diagnosis requires the synergy of two or more types of information. The present study 
integrates the information provided by an electrical sensor and an optical sensor. It combines the 
quantification of electrical severity by assessing the magnitude of the charge and the characterization 
of its location and physical morphology through optical imaging. Since no single method covers both 
dimensions, the combination of modalities is presented as an indispensable strategy for a complete 
understanding of the phenomenon. 

Along these lines, our work proposes a bimodal approach that creates a unique synergy by 
combining the precise quantification of the electrical method with the spatial and morphological 
characterization of the optical method. Thus, while the electrical detector answers the question of the 
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severity of the discharge magnitude, the optical detection analyzes the nature of the defect by locating 
its origin and shape. In both cases, AI analysis automates and enhances these two complementary 
procedures. 

In PD detection in dielectric oils, the identification of the pulses produced is of great importance. 
All our tests are video recorded in order to extract as much information as possible. In this way, we 
detect and identify these pulses in real time. To carry out this task, YOLO (You Only Look Once) [18] 
is used as a tool for object detection in an image. We evaluated the use of YOLO because it can be 
used in Python environments with OpenCV [19]. 

YOLO models object detection as an extension of a regression problem, dividing the image into 
a series of cells and predicting bounding boxes and their confidence levels for each cell. This allows 
for a parallel search within the entire image, making it extremely fast when using graphics processing 
units (GPUs) at the same time. 

Object detection is a core technology in many AI applications and is the fundamental goal of 
computer vision. In addition to detecting the presence of objects in images, it is also desirable to 
determine their position within them with an acceptable level of precision, as well as a confidence 
score of the class to which they belong. 

It is a supervised learning problem that involves providing labeled data to an algorithm for 
training. Subsequently, when new unlabeled data unknown to the algorithm is introduced, it will be 
able to recognize certain patterns in the new data. 

Presented by its authors in 2015 [18], YOLO is a set of open-source algorithms for real-time object 
detection. Its architecture introduces a paradigm shift and marks a milestone in the study of computer 
vision. It is a single-pass object detector that uses a complex CNN to predict bounding boxes and 
class probabilities for objects of interest in input images. 

Previously, the most widely used approach to analyze images was the use of CNN and the 
sliding window concept. This involves choosing a window of a certain size and scanning the entire 
image, thereby detecting any trace of an object within that window. This method is very slow because 
it has to scan the entire image to try to find objects whose sizes, spatial orientations, and shapes can 
vary greatly. In contrast, YOLO can process images in real time with acceptable average accuracy at 
a speed of 155 frames per second (FPS). 

Early versions of YOLO used a CNN architecture with a total of 24 convolutional layers, 4 max-
pooling layers, and 2 fully connected layers. To operate, YOLO resizes the image by normalizing the 
input to 224, 448, or 640 pixels before passing it through the CNN. 

Since the launch of its first version (YOLOv1), YOLO has evolved. Version v2 was launched in 
2016 [20] and v3 in 2018 [21], with the introduction of the Darknet-19 architectures in v2 and Darknet-
53 in v3. Versions v4 [22] and v5 [23] were launched in 2020, v6 [24] and v7 [25] in 2022, and v8 in 
2023 [26]. 

This evolution has focused on increasing the detection speed by optimizing hyperparameters 
through the application of genetic algorithms. A comprehensive review of YOLO architectures in 
computer vision from YOLOv1 to YOLOv8 can be found in [27]. At the time of writing, the most 
recent released version is YOLOv12. For our work, we chose YOLOv8 because it is a mature 
technology and fits our real-time video processing needs, facilitating the use of GPUs to increase 
training and inference speeds. 

YOLO has played a prominent role in numerous activities including, among others, applications 
in agriculture [28], industry [29], and the detection of objects in flight [30]. 

To implement this bimodal approach, two methods are combined. This article presents a novel 
diagnostic system for PD analysis in dielectric oils that integrates data from a conventional DDX 
electrical detector with high-speed image characterization using a YOLOv8 CNN [29]. The objective 
is to demonstrate that this combination of methods provides a substantially more complete and 
robust diagnostic view than that obtained separately, laying the foundation for more reliable and 
intelligent monitoring. 
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Based on this principle, our work presents a novel bimodal diagnostic system that combines 
electrical quantification using a DDX detector with optical characterization using a high quality 
camera (HQC). The main contribution lies in the synergistic fusion of these two electrical and optical 
sensors and the comprehensive automation of data interpretation using a GPU. 

One of the key contributions of this study is the automation of both data sources. For the 
electrical sensor, a YOLOv8 model is developed that interprets and digitizes the DDX screen, 
transforming a conventional instrument into an intelligent data source. In parallel, for the optical 
sensor, a novel semi-automated methodology is presented for the generation of a high-quality 
dataset, which is a fundamental step for training. In both cases, intelligent inference of electrical and 
optical data is produced. 

The rest of this paper is structured as follows. Section 2 describes the experimental set up, and 
Sections 3 and 4 the CNN training and inference from DDX images and HQ images, respectively. 
Finally, in Section 5 the main conclusions are presented. 

2. Experimental Set Up 

In the present work, the PDs were measured in a dielectric oil located inside a methacrylate cell 
[31] containing two facing electrodes subjected to high electrical voltages (Figure 1). The experimental 
installation complies with the IEC60270 standard [3]. 

 
Figure 1. Transparent methacrylate cell with the two electrodes. 

All tests lasted 45 s and were carried out at an ambient temperature of 21 °C. The PDs were 
monitored using a conventional DDX-9101 PD detector, and the high voltage was regulated using an 
OT 248 terminal (Figure 2). 

(a) (b) 

Figure 2. (a) Operating terminal OT 248 system, Tettex-Haefely test AG. (b) PD detector DDX-9101, Tettex-
Haefely test AG. 

The DDX-9101 screen was recorded by a digital camera to store the results of each test. This 
camera records video in 1920x1080p at 30 FPS. 

Preliminary tests showed that PDs were practically non-existent below 6 kV and that electric arc 
breakdowns occurred from 18 kV onwards. 
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Taking this information into account, the PD were analyzed in a first series ranging from 6 to 18 
kV. The voltage was increased by 1 kV in each test, thus performing 13 independent tests. The total 
duration of each experimental test was 45 s. The voltage applied to the electrodes started from 0 kV 
and followed an ascending ramp lasting approximately 10 s until reaching the desired nominal 
charge. After 45 s of testing, the electrical voltage was reduced to zero. A total of four sets of tests 
were performed from 6 to 18 kV. Therefore, the number of tests performed in this first series is 52. 

These tests showed that PDs increase significantly above 10 kV. Therefore, it was decided to 
conduct a second series for voltages of 10, 13, and 16 kV. Four sets were performed following the 
same methodology described above. Therefore, the number of tests performed in this second series 
amounts to 12. These additional tests were performed where the PDs are greatest, near the arc break. 
The total number of tests was 52 + 12 = 64. 

An HQC was used to record the PDs produced between the electrodes (Figure 3a). Detailed 
information about the HQC can be found in [32]. It is an affordable camera of exceptional quality 
with a resolution of 12.3 megapixels and a 7.9 mm diagonal sensor. This camera works especially 
well in low-light conditions. 

In addition, two polarizers were introduced into the experimental device, rotated at a certain 
angle so that the light that reaches the HQC, coming from a lamp, produces the greatest possible 
contrast to view the PD [31] (see Figure 3b). 

  

(a) Position of the HQC relative to polarizer 2. 
(b) Simplified schematic of the arrangement of 
the lamp, polarizers, and HQC with respect to 

the cell. 

Figure 3. Position of the HQC and schematic of the experimental setup. 

3. CNN Training and Inference from DDX Images 

This section presents the CNN training and inference analysis in operational scenarios using 
images obtained from the DDX electrical detector. The dataset was manually generated for this 
purpose. 

3.1. CNN Training 

This section presents and analyzes the results obtained from the training and validation of the 
YOLOv8 model for PD detection and classification, as well as its quantification. Training was 
performed over 150 epochs using a partitioned dataset as described below. 

3.1.1. Training Environment 

Training and evaluation of the YOLOv8 model was carried out on a high-performance 
workstation running Ubuntu 22.04.5 LTS (codename: jammy). The system is equipped with a 12-core 
AMD Ryzen Threadripper 1920X processor (24 threads, 3.5 GHz base frequency) and 125 GB of RAM. 

For the processing of deep learning tasks, an NVIDIA GeForce RTX 2070 SUPER GPU with 8192 
MB (approximately 7.9 GB) of dedicated video memory (identified as CUDA:0) was used. This GPU 
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operates with the NVIDIA driver version 570.133.07 and support for CUDA 12.8. The software 
environment was configured with Python 3.10.16, PyTorch 2.5.1 and the Ultralytics YOLOv8 
framework version 8.3.111 [27]. The specific model employed presents an architecture of 92 fused 
layers, adding a total of 25,842,655 parameters and requiring approximately 78.7 GFLOPs for its 
execution in inference. 

3.1.2. Manual Labeling of DDX Images 

Figure 4 shows six images taken randomly during the tests at 6, 8, 10, 12, 14, and 16 kV. It can be 
seen how the number of pulses progressively increases with increasing voltage applied to the 
electrodes. A voltage limit of 16 kV was not exceeded to avoid the electric arc breakdowns that 
occurred in the preliminary tests from 18 kV onwards. 

(a) 6 kV (b) 8 kV 

 
(c) 10 kV (d) 12 kV 

 

(e) 14 kV 

 

(f) 16 kV 

Figure 4. Images collected by the DDX for voltages from 6 to 16 kV. 

As mentioned above, the camera records the DDX screen at 30 FPS. Each video therefore contains 
45 s x 30 FPS = 1350 frames, giving us 64 videos. 

Using Image-J version 1.54g [33], the region of interest (ROI) of each video was delimited, which 
is necessary for the efficient analysis of the images obtained from the DDX screen. In this way, only 
the rectangular area of each video containing the fields that will later be labeled and analyzed was 
selected. The video format used for the camera was converted from MP4 to AVI, which can be 
imported into Image-J. Once imported, the AVI file was converted to a set of images in PNG format. 

For manual image labeling, 10 images were randomly selected from each test, resulting in the 
labeling of a total of 640 images. The online software Roboflow [34] was used for this purpose. 

The following classes were labeled in each image: 
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• Attenuation value  
• Negative pulse 
• PD level value 
• Positive pulse 
• Voltage value 

Figure 5 shows an example of an image labeled using the Roboflow program. 

 

Figure 5. ROI labeling with Roboflow showing the five classes used: attenuation_value, negative_value, 
pd_level_value, positive_pulse, and voltage_value. 

3.1.3. Dataset Setup and Training 

An additional 200 images that had been used in pre-training the CNN were added to the initial 
dataset of 640 images. Hence, the final dataset comprised 840 images, managed and labeled using the 
Roboflow platform. For the training and evaluation process, the dataset was divided into three 
subsets: 

• Training : 594 images (71%). 
• Validation: 146 images (17%). 
• Test: 100 images (12%). 

The YOLOv8 model was trained for 150 epochs. Learning curves and performance metrics were 
monitored for both the training and validation sets. 

3.1.4. Analysis of Loss Curves 

Loss functions provide crucial information about how the model learns to minimize errors 
during training. Three main loss components were analyzed: Box Loss, Classification Loss, and 
Distribution Focal Loss (DFL). These three loss curves are analyzed below. In all three cases, small 
errors were obtained during training. 

Box Loss 

Figure 6 shows the evolution of Box Loss for the training and validation sets. Box Loss measures 
the accuracy with which the model predicts the coordinates of the object's bounding box. A constant 
decrease in Training Box Loss is observed throughout the epochs, indicating that the model is 
learning to localize objects progressively better. 
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Validation Box Loss also shows a decreasing trend, although with more pronounced initial 
fluctuations and stabilizing at a value slightly higher than the Training Box Loss towards the end of 
the epochs. This behavior is typical and suggests that the model generalizes adequately, although 
there may be slight overfitting. Box Loss in YOLOv8 uses a CIoU (Complete Intersection over Union) 
metric [35] following Eq. 1: 𝐿஼ூ௢௎ ൌ 1 − 𝐼𝑜𝑈 ൅ 𝜌ଶ൫𝑏, 𝑏௚௧൯𝑐ଶ ൅ 𝛼𝑣 (1)

where: 

• 𝐿஼ூ௢௎: Value of the CIoU loss. The goal of YOLOv8 is to minimize it. 
• 𝐼𝑜𝑈: Intersection over Union, Eq. 2. It measures the overlap between the predicted and actual 

boxes. Its value ranges from 0 with no overlap to 1 with perfect overlap. It is calculated as: 

𝐼𝑜𝑈 ൌ 𝐴𝑟𝑒𝑎൫𝑏௣ ∩ 𝑏௚௧൯𝐴𝑟𝑒𝑎൫𝑏௣ ∪ 𝑏௚௧൯ (2)

• 𝑏: Bounding box predicted by the model (coordinates xcenter, ycenter, width, height). 
• 𝑏௚௧: Real bounding box (ground truth) (coordinates xcenter_gt, ycenter_gt, width, height gt). 
• 𝜌ଶ൫𝑏, 𝑏௚௧൯: Squared euclidean distance between the center points of the predicted box b and the 

actual box bgt. 𝜌 represents the distance. 
• c: Length of the diagonal of the smallest bounding box that completely encloses both b and bgt. 

Normalizes the distance penalty. 
• 𝛼: Positive weighting parameter that adjusts the importance of the aspect ratio consistency term. 
• 𝑣 : Measure of the consistency of the aspect ratio between the predicted and real box. It is 

calculated through Eq. 3: 

𝑣 ൌ ൭ 4𝜋ଶ 𝑎𝑟𝑐𝑡𝑎𝑛 ቆ𝑤௚௧ℎ௚௧ቇ −  𝑎𝑟𝑐𝑡𝑎𝑛 ቆ𝑤௣ℎ௣ቇ൱ଶ (3)

where 𝑤௚௧ and ℎ௚௧ are the width and height of the actual box, and 𝑤௣ and ℎ௣ are the width and 
height of the predicted box. 

 
Figure 6. Comparison between Training Box Loss and Validation Box Loss. 

Classification Loss 

Figure 7 illustrates the Classification Loss. This loss quantifies the model's error in assigning the 
correct class to the detected objects. Both the Training and the Validation Box Loss consistently 
decrease. The validation curve closely follows the training curve, also stabilizing and suggesting good 
generalization capability for the classification task. YOLOv8 employs a loss function such as binary 
cross-entropy for this task, Eq. 4, [36]: 
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𝐿௖௟௦ = −෍ሾ𝑦௜𝑙𝑜𝑔ሺ𝑦ො௜ሻ + ሺ1 − 𝑦௜ሻ𝑙𝑜𝑔ሺ1 − 𝑦ො௜ሻሿ௜  (4)

where the summation ∑ ሾ⬚ሿ௜  is performed on the classes used: attenuation_value, negative_value, 
pd_level_value, positive_pulse and voltage_value, and where: 

• Lୡ୪ୱ: Classification Loss value. 
• y୧: Ground truth label for class i. y୧=1 if the object belongs to class i , y୧=0 if it does not. 
• yො୧: Probability predicted by the model that the object belongs to class i. It is the result of a sigmoid 

function with value in [0,1]. 
• logሺ⬚ሻ: Natural logarithm. 

 
Figure 7. Comparison between Training Classification Loss and Validation Classification Loss. 

3.1.4.3. Distribution Focal Loss 

The DFL [37], shown in Figure 8, is a component that helps refine the prediction of bounding 
box coordinates by modeling the location of the box edges as a probability distribution. The training 
and validation DFL curves also show a decreasing trend and good correlation, indicating that the 
model is effectively learning this more detailed representation of the location. 

The DFL is expressed in Eq. 5: 𝐿஽ி௅൫𝑃௬೗ ,𝑃௬ೝ൯ = −ቀሺ𝑦௥ − 𝑦ሻ𝑙𝑜𝑔൫𝑃௬೗൯ + ሺ𝑦 − 𝑦௟ሻ𝑙𝑜𝑔൫𝑃௬ೝ൯ቁ (5)

where: 

• 𝐿஽ி௅: DFL value. 
• 𝑦: Continue Ground truth coordinate of a box edge. 
• 𝑦௟: Label of the discrete container immediately to the left of y. 
• 𝑦௥: Label of the discrete container immediately to the right of y. 
• 𝑃௬೗: Probability predicted by the model for container 𝑦௟. 
• 𝑃௬ೝ: Probability predicted by the model for container 𝑦௥. 
• The terms ሺ𝑦௥ − 𝑦ሻ and ሺ𝑦 − 𝑦௟ሻ act as weights. 
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Figure 8. Comparison between Training and Validation DFL Loss. 

3.1.5. Performance Metrics 

The model's performance was then evaluated using standard object detection metrics [38]. 
Specifically, the Precision, Recall, and Mean Average Precision metrics (mAP) were used. In all three 
cases, the growth was constant, and the stabilization of the metrics at high values indicates good 
detection and classification performance. 

Precision and Recall in Training 

Figures 9 and 10 show the evolution of Precision, Eq. 6, and Recall, Eq. 7, respectively, othe 
training set. Both metrics tend to increase as training progresses, stabilizing at high values of 0.91 and 
0.92 for Precision and Recall, respectively, indicating that the model learns to correctly identify 
relevant objects while minimizing false positives and false negatives in the analyzed data. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (6)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (7)

where TP are true positives, FP are false positives and FN are false negatives. 

  

Figure 9. Precision on the training set. Figure 10. Recall on the training set. 

3.1.5.2. mAP in the Validation 

The mAP is a key metric for evaluating the overall performance of object detectors. Figure 11 
shows the mAP at an Intersection over Union (IoU) threshold of 0.5 (mAP@0.5), while Figure 12 
presents the mAP averaged over multiple IoU thresholds from 0.5 to 0.95 in steps of 0.05 
(mAP@0.5:0.95). Both mAP curves on the validation set show a steady increase, reaching values of 
0.94 and 0.62 for (mAP@0.5) and (mAP@0.5:0.95), respectively. The more strict mAP@0.5:0.95 
provides a more robust assessment of the model's localization performance. The steady growth and 
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stabilization at high values indicate good detection and classification performance with validation 
data not seen in the training set. 

The Average Precision (AP) for a class, Eq. 8, is calculated as the area under the Precision-Recall 
curve. One way to calculate it is: 

𝐴𝑃 = ෍𝑃ሺ𝑘ሻ∆𝑟ሺ𝑘ሻே
௞ୀଵ  (8)

where: 

• 𝐴𝑃: AP for a specific class. 
• 𝑘: Index of predictions ordered by confidence (from highest to lowest). 
• 𝑁: Total number of thresholds or data points considered. 
• 𝑃ሺ𝑘ሻ: Accuracy calculated at the kth Recall point or by considering the k highest confidence 

detections. 
• ∆𝑟ሺ𝑘ሻ: Change in Recall from point (k-1) to point k (i.e., ∆𝑟ሺ𝑘ሻ = 𝑟ሺ𝑘ሻ − 𝑟ሺ𝑘 − 1ሻሻ. 

 

Figure 11. mAP@0.5 on the validation set. 

 

Figure 12. mAP@0.5:0.95 on the validation set. 

3.2. Confusion Matrix 

This section presents a detailed overview of the successes and errors of the classes that were 
considered through the study of the Confusion Matrix in the validation and in the test set. 

3.2.1. Confusion Matrix on the Validation Set 

The Confusion matrix [39], presented in Figure 13, provides a detailed view of the model’s 
classification successes for each of the five classes in the validation set. Values on the main diagonal 
represent correct classifications. A high number of correct predictions is observed for most classes: 
negative_pulse (650), positive_pulse (615), attenuation_value (145), pd_level_value (145), and 
voltage_value (144). 

The attenuation_value, pd_level_value and voltage_value classes show very little confusion, 
indicating good distinction by the model. However, some confusions are identified in the background 
class, which is incorrectly classified as negative_pulse in 197 instances and as positive_pulse in 231 
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instances. Furthermore, instances of negative_pulse (98) and positive_pulse (87) are wrongly 
identified as background. These confusions could be due to the visual similarity of these signals with 
background noise or to the inherent variability of background signals, which can resemble weak 
pulses. 

 

Figure 13. Confusion matrix of the model on the validation set. 

3.2.2. Confusion Matrix on the Test Set 

After training the YOLOv8 model for 150 epochs, its detection and classification performance 
was evaluated on the test set, which consisted of 100 images not used during the training and 
validation phases. This set contains a total of 1,025 labeled object instances belonging to the five 
defined classes. The evaluated model, with 92 fused layers, 25,842,655 parameters, and a complexity 
of 78.7 GFLOPs, was subjected to inference on this dataset. 

The model's processing speed on the test set was remarkable, with an average time of 1.7 ms for 
preprocessing, 11.3 ms for inference itself, and 5.3 ms for postprocessing per image. This results in an 
efficient overall inference time, which is crucial for applications requiring real-time responses or the 
processing of large volumes of data. 

The overall evaluation results on the test set show robust model performance. An average 
Precision of 0.93 and an average Recall of 0.93 were obtained. Regarding the mAP, a value of 0.95 
was achieved with an IoU threshold of 0.5 (mAP@0.5). When considering a stricter range of IoU 
thresholds, from 0.5 to 0.95 in steps of 0.05 (mAP@0.5:0.95), the model achieved a value of 0.62. These 
values suggest a good ability of the model to correctly locate and classify events in the signals, with 
mAP@0.5:0.95 being a stricter indicator of accuracy in locating bounding boxes. 

Analyzing the performance broken down by class using the mAP@0.5:0.95 metric reveals the 
following values: attenuation_value 0.67, negative_pulse 0.45, pd_level_value 0.77, positive_pulse 
0.48, and voltage_value 0.71. 

Excellent performance is observed for the pd_level_value and voltage_value classes, followed 
by attenuation_value. The negative_pulse and positive_pulse classes exhibit lower mAP@0.5:0.95, 
indicating greater difficulty for the model in accurately localizing bounding boxes for these pulse 
types under strict IoU criteria, although its performance at mAP@0.5 remains high. 
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Figure 14 shows the confusion matrix obtained from the model's predictions on the test set. The 
following correct predictions are observed on the main diagonal: attenuation_value 99, 
negative_pulse 327, pd_level_value 99, positive_pulse 316, and voltage_value 99. 

The attenuation_value, pd_level_value, and voltage_value classes show very little or no 
confusion with other classes or the background, indicating excellent distinction by the model for these 
specific events. 

The model demonstrates a high ability to correctly classify most instances. However, some 
significant confusions are identified, primarily related to the background class. Specifically, the true 
background class is incorrectly classified as negative_pulse 76 times and as positive_pulse 86 times. 

On the other hand, true instances of negative_pulse 47 and positive_pulse 37 are incorrectly 
classified as background. That is, in these cases, the model either fails to detect them or mistakes them 
for the background. There is also much less confusion between negative_pulse and positive_pulse, 
with just one instance of negative_pulse predicted as positive_pulse. Background confusion for 
positive and negative pulses could be attributed to the visual similarity of low amplitude pulses to 
background noise or to inherent variability in the signal that makes distinction difficult. 

 

Figure 14. Confusion matrix model predictions on the test set. 

3.3. Inference in Operational Scenarios 

This section analyzes the inference of images from the DDX electrical detector videos using the 
trained CNN. This automatically produces the five classes as the final result, and for three of them 
the numerical value is obtained. 

3.3.1. Inference Flowchart 

Figure 15 shows the flowchart that explains how inference is performed from video sequences 
from the DDX electrical detector for object detection and quantitative data extraction. The program 
was made in Python, and its architecture designed to be efficient and clear. It is divided into three 
phases: setup and initialization, frame-by-frame processing, and finalization. 
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Figure 15. Flowchart explaining how inference is performed from video sequences from the electrical sensor for 
object detection and quantitative data extraction. 

Phase 1: Set up and initialization. 

This is a preliminary phase that prepares all the components necessary for the analysis. It 
performs three tasks sequentially: 

1. Startup and configuration: the process begins by loading user-defined configurations, such as 
the input video and YOLOv8 model paths, confidence thresholds, and a list of interest classes 
that will trigger optical character recognition (OCR). 

2. Engine loading: the two main inference engines, the YOLOv8 object detection model and the 
Python EasyOCR OCR engine, are initialized and loaded into memory. This loading is 
performed only once at startup to optimize system performance. The number of GPUs to be used 
is also determined. 

3. Opening files: the input video stream is opened and the output files are created, including the 
new video with the visual annotations and the text file that will record its detailed data. 

Phase 2: Frame by frame processing, main loop: 

This is the operating core of the system, where each frame of the video is analyzed sequentially. 

1. YOLOv8 inference: the current frame is fed into the YOLOv8 model, which identifies and locates 
all classes of interest that exceed the confidence threshold, returning their bounding boxes, class 
labels, and confidence scores. 

2. Detection loop: the system iterates through each of the detections found in the frame. 
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3. OCR class certification: for each detection, a decision is made based on its class label. If the class 
is predefined as an OCR target —pd_level_value, voltage_value, and attenuation_value— the 
system proceeds with OCR inference. 

4. OCR inference: this critical step extracts the quantitative data: 

a. ROI cropping: the exact portion of the image contained within the detection bounding box 
is extracted from the frame. 

b. OCR application: the OCR engine analyzes this small ROI to recognize the textual 
information present. 

c. Value interpretation: the extracted text is processed to convert it into a numerical value. 
5. Output log: all detection data is logged. Bounding boxes and corresponding labels —confidence 

and OCR value, if applicable— are drawn on the output video frame. Detailed information about 
each detection, including the numerical value analyzed by the OCR, is added as a new line to 
the text file. 

Phase 3: End 
Once all frames have been processed, the system performs an orderly shutdown, leaving the 

output files ready for further analysis. 

3.3.2. Results and Discussion 

To test the performance and generalization capabilities of the YOLOv8 model trained and 
verified in the previous sections, an inference evaluation was performed on completely new data. To 
do this, three videos of 10 s were used, captured at voltage levels of 10 kV, 13 kV, and 16 kV, 
respectively. Each video, corresponding to approximately 300 images, was processed by the trained 
model to evaluate its effectiveness in detecting and classifying events under operating conditions not 
seen during training. 

Figures 16 (a), (b), and (c) present representative frames of the inference for each voltage level. 
It is observed that the model not only successfully identifies the discharge pulses —negative_pulse 
and positive_pulse—, but also correctly reads and classifies the instrument numerical values —
pd_level_value, voltage_value— and the attenuation value —attenuation_value. The high confidence 
scores, generally >0.70, for all classes demonstrate the robustness of the model in a complex task 
combining signal pattern detection with implicit optical character recognition. 

   
(a) PD detection for 10 kV. (b) PD detection for 13 kV. (c) PD detection for 16kV. 

Figure 16. Inference for 3 images from the trained CNN. 

For a deeper analysis of the relationship between PD activity and electrical magnitudes, 
cumulative detection images were generated for each 10 s video, as illustrated in Figures 17a, b and 
c. These images overlay all the bounding boxes of the detected pulses over the first frame of the video, 
providing a comprehensive view of the PD activity signature. 
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(a) PD accumulation for 10 

kV. 

(b) PD accumulation for 13 

kV. 

(c) PD accumulation for 16 

kV. 

Figure 17. Accumulated detection images for each PD video of 10 s duration. 

Analysis of these visualizations reveals a direct and physically consistent correlation between 
the applied voltage, the measured discharge level, and the activity detected by the model. 

1. At 10 kV, the model detects moderate discharge activity, with well-defined but relatively 
compact green clusters of negative and magenta positive pulses. This corresponds to an 
instrumental reading of PD Level 0.426 nC and Voltage 10.1 kV in Figure 17a. 

2. At 13 kV, with increasing voltage, a significant increase in the density and spatial extent of 
detections is observed. Both the negative and positive cumulative pulses are visibly larger and 
denser. This increased visual activity directly correlates with the increased discharge level 
measured by the instrument, which now shows PD Level 0.701 nC and Voltage 13.1 kV in Figure 
17b. 

3. At 16 kV, the phenomenon intensifies dramatically. The cumulative image shows a much larger 
and more saturated area of activity, indicating a very severe PD regime. This exponential 
increase in visual activity is consistent with the instrumental reading, which reaches a PD Level 
of 3.88 nC and a Voltage of 16.6 kV, as shown in Figure 17c. 

Table 1 presents a summary of the relationships between the main attributes obtained from the 
inference of the trained CNN for accumulated experiments at 10 kV, 13 kV and 16 kV. It presents the 
most significant Pearson correlation coefficients (r) [40], with a focus on the main electrical variables, 
ocr_voltage and ocr_pd_level, and their relationships with other geometric characteristics such as the 
pulse area, pulse coordinates CenterX and CenterY, as well as the number of positive and negative 
pulses detected. It shows a correlation of 0.90 between the magnitudes obtained in the ocr_voltage 
and ocr_pd_level classes, which confirms that these variables measure strongly related aspects of the 
same physical phenomenon. 

Table 1. Summary of the most relevant Pearson correlation coefficients (r). 

Attribute 1  Attribute 2  Coefficient (r)  
Strong positive correlations (r > 0.7) 
ocr_voltage ocr_pd_level 0.90 
num_pulse_negatives ocr_voltage 0.77 
Area Height 0.90 
Area Width 0.78 
CenterX CenterY 0.77 
Significant negative correlations (r < -0.3) 
ocr_voltage Width -0.41 
ocr_pd_level Width -0.39 
num_pulsos_negativos Width -0.34 
Other moderate positive correlations (0.5 < r < 0.7) 
num_pulse_negatives ocr_pd_level 0.59 
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Confidence Width 0.55 
Area Confidence 0.53 

We also observe a strong positive relationship of 0.77 between the increase in the magnitude of 
ocr_voltage and the number of pulse_negatives detected, suggesting that higher voltages generate 
more negative discharges. On the other hand, an inverse relationship is observed between voltage 
and the geometric ratio. The most notable negative correlation 0.41 is between ocr_voltage and Width. 
This indicates that pulses tend to become narrower as voltage increases. This is a non-obvious but 
highly informative pattern that the machine learning model is using for classification. 

In conclusion, this experimental validation on data not used in the training set demonstrates the 
effectiveness of the trained model. Not only is it capable of generalizing and operating as a robust 
monitoring system, but its visual detections act as a qualitative and quantitative analogue of electrical 
measurements. The density, area, and frequency of bounding boxes detected by the model provide a 
direct visual measure of the severity of the phenomenon, validating this approach as a powerful and 
reliable tool for the automated diagnosis and quantification of PDs. 

4. CNN Training and Inference from HQ Images 

This section presents the CNN training and inference analysis in operational scenarios using 
images obtained using the HQ camera. The training environment in this section is the same as that 
used in section 3. However, in this section a semi-automatic generation of the dataset is realized, 
which greatly facilitates the labeling of the training, validation, and test sets. 

4.1. CNN Training 

The purpose of this section is to train a CNN based on YOLOv8 architecture. The section is 
divided into two subsections: semi-automatic dataset generation and training results. 

4.1.1. Semi-Automatic Generation of the Dataset 

To train the CNN based on the YOLOv8 architecture for PD detection in videos obtained with 
the HQC, a Python script was developed for video processing to obtain the training, validation, and 
test images. This process automates the identification of candidate events, filters out known false 
positives, and generates a structured and labeled dataset in the format required by YOLOv8. The 
methodology is based on background subtraction, contour analysis, and a novel manual spatial 
exclusion filter that significantly improves the quality of the final dataset by reducing noise and the 
need for subsequent manual cleaning. 

The structure of this section is as follows: first, the semi-automatic data acquisition model is 
configured and initialized. Next, a Python program is created for PD detection and extraction. Data 
filtering, validation, and collection are then performed. Finally, the dataset is generated in YOLOv8 
format for CNN training. To facilitate understanding of this process, a flowchart summarizing the 
overall method described is included. 

Configuration and Initialization 

The process begins with a configuration phase where key parameters are defined. The I/O paths 
are defined first, and then the input video and output file paths are specified. These include 
debugging videos —difference, threshold and detected events— and a .dat data file with the 
characteristics of each PD. 

Manual exclusion zones are then established. This is a crucial component of the system as it 
allows the user to define a priori spatial regions in the image where recurring false positives —
reflections, sensor noise, etc.— are known to occur. Each zone is defined by a centroid, an exclusion 
radius on the x and y axes, and, optionally, an expected area with its tolerance. Any detected event 
whose centroid falls within one of these zones is automatically discarded. 
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The parameters of YOLOv8 dataset are defined below. The dataset's root directory, the class to 
be detected (PD), and the ratios for dividing the data into training sets, 66.7%, validation sets, 22.0%, 
and test sets, 11.3%, are named. 

PD Detection and Extraction 

The core of the Python script processes the video frame by frame to identify events of interest. 
This process is broken down into four steps: 

• Background establishment: the first frame of the video is assumed to represent the static 
background of the scene. This frame is converted to grayscale and stored for reference. 

• Background subtraction: for each subsequent frame, the absolute difference with the 
background frame is calculated. The result is an image that highlights only the regions where 
changes have occurred (i.e., new PD). 

• Thresholding and morphological cleaning: the resulting image is binarized using a fixed 
threshold to convert subtle changes into well-defined, white-on-black regions. A morphological 
operation is then applied to remove noise. 

• Contour detection: on this last image, the OpenCV Python library algorithm [19] is applied to 
determine the contours of all the change regions. Each contour represents a candidate PD. 

Filtering, Validation and Data Collection 

This process is carried out in the following steps: 

• Minimum area filter: contours with an area smaller than a predefined threshold of 5 pixels are 
discarded to remove residual noise. 

• Manual exclusion filter: the contour centroid is calculated. If this centroid falls within any of the 
manual exclusion zones defined in the configuration, the contour is classified as a false positive 
and discarded. 

• Data collection: if a contour passes both of the above filters, it is considered a valid PD. 
• For each valid PD, the following is extracted and stored: 

1. The bounding box. 
2. The centroid coordinates, area and average RGB color intensity in a .dat text file for further 

analysis. 
3. A copy of the original, unprocessed frame and the list of bounding boxes for all valid events 

found are saved. This pair (image, labels) is the input data in YOLOv8 format. 

Generating the Dataset in YOLOv8 Format 

Once the entire video has been processed, the script uses the collection of frames with valid PDs 
to build the final dataset and the following steps are performed: 

• Directory structuring: a folder structure compatible with YOLOv8 framework is created with 
the subdirectories train, valid, and test, each containing folders for images and labels. 

• Data splitting: the data collection —images and their labels— is randomly shuffled and split into 
training, validation, and test sets according to the ratios defined above. 

• File generation for each image: the original image is saved as an image_name.jpg in the 
corresponding images folder. 

• An image_label.txt file is created in the corresponding labels folder. Within this file, each line 
represents an event detected in that image, in the format: [class_index, x_center_norm, 
y_center_norm, width_norm, height_norm]. All bounding box coordinates are normalized by 
dividing them by the frame width and height dimensions, as required by YOLOv8. 

• Configuration file (data.yaml): finally, a data.yaml file is generated at the root of the dataset. 
This file is essential for YOLOv8 to locate the datasets and identify the number of classes and 
their names. 
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The end result is a high-quality dataset, ready to be used directly in training a YOLOv8 object 
detection model, minimizing manual intervention and improving labeling consistency. 

Summary Flowchart of the Process 

To visualize the logical flow of the script used to generate the YOLOv8 compatible dataset, a 
flowchart was created as shown in Figure 18. 

 

Figure 18. High-level logical flow of the script focusing on the three main phases: configuration, processing and 
detection, and dataset generation. 

The three main phases of the flowchart are summarized below: 

1. Setup and loading: in this initial phase, all resources are prepared. The script reads the file paths, 
uploads the video, and manually defines exclusion zones, which are key to filtering out known 
false positives. 

2. Video processing loop: this is the core of the script. It operates frame by frame, performing two 
main tasks in sequence: 

2a) PD detection and filtering: this block encapsulates all the computer vision logic, subtracts the 
background (see Figure 19a) to find the changes that occur, binarizes the image, finds the PD 
boundaries and applies filters, both the minimum area filter and the manual exclusion zones filter. 

2b) Temporary storage: if a frame contains at least one PD that has passed all filters, the script 
saves the original image of that frame along with the coordinates of the bounding boxes (see Figures 
19b and c of the valid PD). 

3. YOLOv8 dataset generation: once the entire video has been analyzed, this final phase takes all 
the valid data collected and organizes it into the folder structure and file formats required by 
YOLOv8. This includes splitting the data into training/validation/test sets, normalizing the 
coordinates, and creating the .yaml configuration file. 

Figure 19a shows the base or background image used as a reference, while Figures 19b and c 
show images with three PDs and one PD, respectively, as well as their bounding boxes. 
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(a) Background image. (b) Three PDs with their 

bounding boxes. 

(c) One PD with its 

bounding box.  

Figure 19. Background and PDs with bounding boxes. 

4.1.2. Training Results 

Three image series were used to train the CNN. The PD series occurring within the dielectric oil 
correspond to an average voltage of 10 kV, 13 kV, and 16 kV, respectively. The total dataset consists 
of 4,457 images, managed and labeled using the semi-automatic system explained in the flowchart 
represented in Figure 18. For the training and evaluation process, the dataset was divided into three 
subsets: 

• Training set: 2,967 images. 
• Validation set: 982 images. 
• Test set: 508 images. 

The training environment is the same as for the DDX image training seen in section 3. The 
YOLOv8 model was trained in four iterations: the first and second with 100 epochs, the third with 
200, and the fourth, to ensure convergence, with 523. Some images from this dataset with box labeling 
in YOLOv8 format can be seen in Figures 19b and c. The training speed is 18.9 s per epoch. This 
demonstrates a very fast experimentation cycle, allowing for efficient model iteration and tuning. 

The implemented object detector is based on a deep CNN architecture optimized for inference. 
The model consists of 92 fused computational layers, a technique that improves speed by combining 
operations such as convolution and batch normalization. With a total of 25,840,339 parameters, the 
model has a high capacity to learn and represent the complex visual characteristics of the PD of 
interest. Its computational load is quantified at 78.7 GFLOPs, a key metric that indicates the required 
processing demand and positions the model as a robust solution, suitable for running on GPU-
accelerated hardware. 

The evolution of performance metrics during training provides crucial information about the 
model's learning process. Figures 20a and b depict the Training vs. Validation Box Loss and 
Classification Loss curves, respectively. Figures 21a and b illustrate the Training vs. Validation DFL 
Loss and Training Precision curves over 520 epochs, consisting of 982 images. 
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(a) Training vs. Validation Box Loss. (b) Training vs. Validation Classification 
Loss. 

Figure 20. Training vs Validation Box and Classification curves. 

  

(a) Training vs. Validation DFL Loss. (b) Training Precision. 

Figure 21. Training vs Validation DFL Loss and Training Precision curves. 

Consistent behavior is observed across the three loss graphs: Box Loss, Classification Loss, and 
DFL Loss. During the first 375 epochs, the model demonstrates an effective learning phase. The loss 
curves for both training (solid blue line) and validation (dashed orange line) slope downward 
simultaneously. This indicates that the model is generalizing correctly, improving its ability to locate 
Box Losses, correctly classify PD (Classification Loss), and refine the DFL Loss on unseen data. 

However, starting at epoch 375, a clear inflection point becomes evident, signaling the onset of 
overfitting. While the training set loss continues its downward trend, the three validation set loss 
metrics reverse their trajectory and begin to increase steadily. This phenomenon is a classic indicator 
that the model has begun to memorize the specific characteristics and noise of the training set, losing 
its ability to generalize to new data. Therefore, the model with the best performance is not the one 
obtained at the end of training, but the one whose weights correspond to the minimum point of the 
validation loss, around epoch 375. 

Regarding Precision, the graph in Figure 21b shows its evolution on the training set, where it 
stabilizes at an average value close to 0.77. This behavior suggests that, even on the training data, the 
model does not achieve perfect accuracy. This can be attributed to the nature of the dataset, which 
likely contains a subset of PDs that are intrinsically difficult to detect, such as very small-area or low-
contrast PDs. The model assigns a lower confidence score to these complex detections which, when 
averaged over the entire set, results in an accuracy metric that does not reach higher values. The 
constant fluctuation in the accuracy curve reflects the model's continuous effort to adjust its 
predictions to this PD variability. 

In conclusion, the analysis of the training curves confirms the attainment of a functional model, 
but also underscores the critical importance of employing an early stopping strategy or selecting the 
model based on the minimum validation loss to avoid deploying an overfitted and underperforming 
model in real-world applications. 
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4.2. Inference in Operational Scenarios 

Once the CNN was trained, the model's performance was evaluated on the inference task using 
three independent test videos, corresponding to PDs generated under voltages of 10 kV, 13 kV, and 
16 kV. The model's efficiency is remarkable, with an inference time of just 1.2 ms per frame. This 
translates into a theoretical processing capacity of approximately 833 FPS, confirming its suitability 
for real-time applications or for analyzing large volumes of video. 

Figure 22 shows examples of inference on individual frames for each voltage level. The model is 
observed to correctly identify PDs under all conditions. The variability in the assigned confidence 
scores is notable. While events at 10 kV and 13 kV are detected with high confidence (0.91), 16 kV 
receives a more dispersed range of scores (0.92, 0.84, and even 0.39 for a weaker PD). This behavior 
is consistent with the analysis of the training accuracy curve and demonstrates the model's ability to 
quantify the certainty of its own detections. 

(a) Voltage of 10 kV 

between electrodes. 

(b) Voltage of 13 kV 

between electrodes. 

(c) Voltage of 16 kV 

between electrodes. 

Figure 22. PD inference and confidence estimated by CNN for 10 kV, 13 kV and 16 kV. 

A more in-depth analysis is obtained by accumulating all detections over each video, lasting 45 
s in this case. Figure 23 provides a visualization of the accumulated PD density over the image. In 
addition, Figures 24 to 26 provide a detailed analysis of their spatial distribution, area and detection 
confidence. 

(a) Voltage of 10 kV between 

electrodes. 

(b) Voltage of 13 kV between 

electrodes. 

(c) Voltage of 16 kV between 

electrodes. 

Figure 23. Distribution of centers of PD inference estimated by CNN for 10 kV, 13 kV and 16 kV. 
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(a) Cumulative PD with box area. (b) Cumulative PD with Confidence. 

Figure 24. Cumulative distribution of PD centers and magnitude of each associated box in pixels² and confidence 
of each point for 10 kV. 

  
(a) Cumulative PD with box area. (b) Cumulative PD with Confidence. 

Figure 25. Cumulative distribution of PD centers and magnitude of each associated box in pixels² and confidence 
of each point for 13 kV. 

  
(a) Cumulative PD with box area. (b) Cumulative PD with Confidence. 

Figure 26. Cumulative distribution of PD centers and magnitude of each associated box in pixels² and confidence 
of each point for 16 kV. 

The following conclusions can be drawn: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2025 doi:10.20944/preprints202509.0331.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0331.v1
http://creativecommons.org/licenses/by/4.0/


 24 of 27 

 

a) Correlation between voltage and discharge activity: there is a clear relationship between 
the voltage applied to the electrodes and the number of detected PDs. At 10 kV, 1,582 PDs were 
accumulated (Figure 23a). As the voltage is increased to 13 kV, the activity increases significantly, 
recording 2,050 PDs (Figure 23b). However, at 16 kV, the total number of detected PD drops slightly 
to 1,981 (Figure 23c). A reasonable hypothesis for this small decrease is that at higher energies the 
PDs are larger and may merge, being detected by the model as a single PD with a larger area instead 
of multiple smaller PDs. 

b) Spatial expansion of activity: the scatter plots shown in Figures 24 to 26 visually confirm 
that the area of discharge activity expands with increasing voltage. The cluster of points, initially 
highly concentrated in the dielectric space at 10 kV, expands both vertically and horizontally at 13 kV 
and, more pronouncedly, at 16 kV. This suggests that at higher voltage levels in the dielectric, PDs 
are not only more frequent but also occupy a larger volume. 

c) Increasing the detection area and correlation with PD confidence: the most revealing 
analysis comes from the direct comparison between the area and confidence of the PD in Figures 24 
to 26: 

• Area distribution (Figures 24a to 26a): at 10 kV, the vast majority of PDs are small in area 
(blue and green dots). At 13 kV, a slight increase in the average area is observed. The change 
is important at 16 kV, where a significant presence of large-area PDs appears, represented 
by yellow and orange colors. 

• Confidence distribution (Figures 24b to 26b): complementarily, the analysis of detection 
confidence provides a new layer of information. A strong positive correlation is observed 
between the area of a PD and the confidence with which it is detected. Larger PDs with 
warm colors in Figures 24a to 26a consistently correspond to high-confidence detections, 
with warm colors close to 1.0 in Figures 24b to 26b. This is physically consistent. Larger and 
more energetic PDs are visually clearer and therefore more confidently identified by the 
model. Conversely, low-confidence points –cool colors in Figures 24b to 26b– tend to 
correspond to smaller PDs, which are harder to distinguish from background noise. 

5. Conclusions 

This work presents an innovative bimodal approach for laboratory PD analysis through training 
of a CNN based on YOLOv8.  

Firstly, a conventional DDX-type PD electrical detector is enhanced by endowing it with smart 
capabilities. A system is developed capable of automatically reading and interpreting data displayed 
on the electrical detector screen, such as discharge magnitude, pulse count, and applied voltage. In 
this way we transform a passive conventional instrument into a smart and autonomous source of 
digitized and structured data. The mean precision in the training was 0.91 

Concurrently, an optical visualization system using a high quality camera is employed to 
capture direct images of PDs occurring in the dielectric oil. In addition, the training dataset for the 
camera is generated semi-automatically using a Python program. These images provide 
complementary qualitative and quantitative information, enabling the classification of discharge 
types based on their visual characteristics. This offers a new and complementary dimension 
providing the spatial location and morphology of PDs. Image analysis makes it possible to identify 
exactly where the PDs originate and how they propagate between the electrodes, vital information 
for diagnosing the exact point of failure or insulation degradation. For electrical voltages of 10 kV, 13 
kV and 16 kV, PDs were detected with confidence scores of up to 0.92. 

This synergy offers a more complete, accurate, and automated diagnosis of PD behavior in 
dielectric oils, improving the understanding of degradation mechanisms and the operational 
reliability of electrical assets. In this way, both systems, operating in parallel, enhance each other. The 
DDX electrical detector quantifies the charge, providing a measure of the magnitude of the problem, 
while the optical detector finds the location of the source of the problem. The fusion of this bimodal 
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information, the electrical magnitude and the spatiotemporal distribution, allows for a much more 
complete and robust diagnosis of the dielectric insulation oil condition than could be achieved with 
either system alone. This approach represents a significant advance toward smarter and more 
accurate monitoring systems, capable of not only detecting the presence of PDs but also identifying 
their root cause and predicting failures more effectively. 
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