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Abstract: One limitation of Assisted Reproductive Technology (ART) is its relatively low pregnancy
success rate per cycle. A key contributing factor to this issue is the lack of precise and efficient sperm
selection methods. The emergence of multimodal artificial intelligence (Al), which integrates diverse
data types—including imaging, genomics, and clinical parameters—represents a transformative
advancement in reproductive medicine. This system enhances the accuracy and comprehensiveness
of sperm screening through dynamic functional assessments, molecular feature recognition, and
advanced data integration strategies, thereby enabling the identification of sperm with high genomic
integrity. This review explores recent innovations in multimodal Al for sperm screening, highlighting
its potential to overcome the inherent limitations of traditional static morphological assessments.
Furthermore, this paper addresses significant challenges, including data heterogeneity, model
interpretability, and barriers to clinical translation. By systematically integrating machine learning,
deep learning, and explainable Al techniques, multimodal Al offers promising strategies to improve
ART outcomes through precise and comprehensive sperm analysis.
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1. Introduction

Nearly half of all cases of infertility are caused by male infertility [1], male infertility is idiopathic
in approximately 30-40% of cases [2]. Pregnancy rates per embryo transfer using ART remain
relatively low [3]. One of the key challenges is the current lack of effective methods to isolate this
specific sperm subpopulation for use in ART [4].

Artificial intelligence is playing a pivotal role in driving transformative changes across the
medical technology field. The application of Al in medicine has advanced from single-modal analysis
to sophisticated multi-dimensional intelligent systems, with its technical framework encompassing
machine learning (ML), deep learning (DL), multi-modal fusion, and intelligent robotics. This
evolution has significantly improved the efficiency of disease diagnosis, treatment planning, and
medical resource allocation [5-7].

The emergence of multimodal Al has further transcended the limitations of single-source data,
with its primary aim being to overcome the constraints of traditional empirical medicine through
data-driven intelligent systems [8]. As one of the most intricate clinical application scenarios in
reproductive medicine, ART encompasses multi-dimensional decision-making processes such as
follicular monitoring, dynamic embryo assessment, and IVF outcome prediction. There is an urgent
need for intelligent analysis systems capable of integrating multimodal heterogeneous data,
including time-series embryo images, genomic maps, clinical biochemical indicators, and patient
electronic health records [9,10]. In recent years, artificial intelligence systems have progressively
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transformed the clinical decision-making paradigm in assisted reproductive technology by
leveraging multimodal data integration [11].

This article focuses on the clinical translation of multimodal artificial intelligence technology in
sperm screening for assisted reproductive technology. By combining dynamic functional analysis
with molecular feature recognition, it systematically investigates the innovative approaches of
intelligent algorithms to enhance the accuracy of sperm motility assessment and optimize metabolic
function evaluation, thereby offering multi-dimensional and precise strategies for clinical evaluation
and decision-making in ART.

2. The Evolution of Artificial Intelligence

The term artificial intelligence was first formally introduced by John McCarthy at the Dartmouth
Conference in 1956. McCarthy defined Al as “the science and engineering of making intelligent
machines,” with the core objective of replicating human cognitive abilities such as reasoning,
learning, perception, and language understanding through algorithms and computational models
[12,13]. The introduction of this concept not only inaugurated a new domain within computer science
but also marked a pivotal shift in humanity’s exploration of intelligence, transitioning from
philosophical speculation to practical technological implementation [14,15].

In the field of medical imaging diagnosis, Al has emerged as a robust image analysis tool, aiding
radiologists in early disease detection and reducing misdiagnosis rates [16]. For instance, Al has
shown promising results in the early identification of various diseases, including breast cancer, skin
cancer, ophthalmic conditions, and pneumonia [16,17]. Additionally, Al can be utilized for predicting
disease risk and managing health outcomes. Studies have utilized machine learning models to predict
the likelihood of diabetes onset, with an enhanced decision tree model demonstrating superior
performance in forecasting diabetes-related variables [18,19]. In drug development, Al also exhibits
significant potential. Al utilizing bioinformatics and chemoinformatic can significantly reduce the
time and cost associated with drug discovery [16,20]. Overall, Al is driving innovation in healthcare,
encompassing areas such as medical imaging, disease prediction, and drug discovery [21].
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Figure 1. Al + Human Brain > Brain: A Minimalist Vision of Intelligent Medicine.

3. The Paradigmatic Innovation and Multi-dimensional Empowerment of
Medical AI Approaches in ART

Al methods are typically categorized into supervised, semi-supervised, and unsupervised
approaches.

Supervised learning, grounded in meticulous annotations, enables precise analysis of germ cells
in microscopic images [22,23]. Deep convolutional neural networks (CNNs) utilizing high-resolution
microscopic images can accurately detect subcellular structural variations in sperm—such as
acrosome integrity and mitochondrial sheath defects—achieving discrimination accuracy that
surpasses traditional manual microscopic examination standards [24-26]. Cross-modal supervised
models further integrate spectral data and dynamic parameters to enable non-invasive quantitative
assessment of the DNA fragmentation index, thereby significantly reducing the clinical risks
associated with invasive testing [27,28].
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Semi-supervised, guided by clinical endpoints, addresses the practical challenge of limited
annotation resources by leveraging coarse or indirect labels [29]. In analysing testicular tissue
pathology sections, researchers employ a multi-instance learning framework to locate spermatogenic
functional units by associating surgical outcome labels with specific tissue features, providing
interpretable decision-making support for predicting sperm detection rates [30,31]. This approach
effectively correlates overall surgical outcomes with local tissue features, enhancing both the
interpretability and predictive performance of the model [32]. Cross-modal contrastive learning,
through unsupervised alignment of motion trajectories and metabolic features, uncovers the
potential regulatory mechanisms of oxidative stress levels on flagellar movement patterns, paving
new pathways for diagnosing and treating male infertility [24,33,34].

Unsupervised learning, utilizing advanced algorithms, explores biological principles beyond
empirical observations [35,36]. Self-supervised contrastive clustering techniques have identified
clinically significant novel kinetic subgroups from large-scale motion parameters, with helical
propulsion patterns showing a significant positive correlation with fertilization success rates [37-39].
The generative model synthesizes a sperm image library with controllable pathological
characteristics, effectively addressing the generalization limitations of algorithms caused by the
scarcity of data on rare sperm morphological abnormalities [40,41].

Table 1. Artificial intelligence and machine learning algorithms used to evaluate sperm morphology.

Model Name Subtype Application
Supervised Learning Cross-modal models, Deep Acrosome integrity detection,
CNNs DNA fragmentation index
prediction
Semi-Supervised Learning Multi-instance learning, Testicular tissue analysis, sperm
Attention-based models detection prediction
Unsupervised Learning Self-supervised clustering, Kinetic subgrouping, sperm
GANs motion pattern discovery
Generative Models DCGAN, VAE Synthetic sperm image
generation for rare cases
Transformer Models Biomedical Transformers Multimodal fusion, sperm DNA
prediction
Contrastive Learning Cross-modal alignment, Self- Motion-metabolic pattern
supervised contrastive clustering alignment, sperm phenotype
matching
Explainable Al (XAI) Grad-CAM, Visual heatmaps Interpretable sperm quality
prediction
Meta-learning & Causal Causal representation learning Generalizable and interpretable
Reasoning sperm screening

4. The Technological Evolution of Multimodal Data Fusion and the Paradigm
Shift in Medical Interpretation

Multimodal data fusion is reshaping the analytical dimension of complex biological systems by
leveraging the complementarity and synergy of heterogeneous data sources [6]. Supervised learning
establishes precise cross-modal mapping benchmarks; semi-supervised learning mitigates the
limitations posed by scarce annotated data; and unsupervised learning uncovers intrinsic data
associations. [42,43] These three approaches form a closed-loop optimization through techniques
such as adversarial training, contrastive learning, and generative models.

Supervised learning establishes robust associations between modalities using annotated data
[44]. In medical image diagnosis, the XLIP framework employs cross-modal attention masking
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strategies to interactively exchange multi-modal features between annotated medical images and
pathological reports, reconstructing both the image features and textual descriptions of lesion areas,
thereby enhancing the learning of pathological characteristics [45]. In drug development, hierarchical
fusion architectures guided by supervised signals (e.g., Stacking frameworks) optimize the allocation
of multi-modal feature weights, integrating molecular structure data with clinical trial results, which
significantly improves the cross-modal interpretability of drug efficacy predictions [6,46].
Additionally, joint training strategies promote complementary information exchange between
modalities through supervised loss functions [47]. Supervised transfer learning combines single-
modal pre-trained models (e.g., ImageNet-pretrained CNNs) with newly introduced supervised data
from other modalities [48,49], enabling rapid adaptation to multi-modal tasks [50].

semi-supervised facilitates semantic alignment between modalities using sparsely labelled data
[51]. In pathological analysis, only malignant regions of some tissue sections are labelled, and a
contrastive learning framework correlates pathological image features with unlabelled proteomics
data across scales, revealing morphological-molecular interaction patterns [52]. Additionally, semi-
supervised fusion models incorporating attention mechanisms, such as multi-instance learning,
address discrepancies in annotation granularity between modalities [53]. Adversarial training
frameworks enhance the robustness of semi-supervised fusion models [54]. Furthermore, pre-
training Transformer architectures using unlabelled medical images and electronic health records
captures latent cross-modal patterns of disease progression [6]. This approach offers an efficient and
interpretable multimodal fusion pathway for medical image analysis, drug development, and other
domains by reducing labelling costs and mining cross-modal relationships.

Unsupervised learning highlights the superior performance of contrastive learning frameworks
in unsupervised multi-modal alignment [55]. Through modal negative sampling strategies, it
enhances feature discriminability, and adversarial generative networks (GANs) achieve cross-modal
data distribution matching [56]. The Conditional Alignment Time Diffusion (CATD) framework
proposed by Yao et al. aligns electroencephalogram (EEG) signals with functional magnetic
resonance imaging (fMRI) images in a latent space, uncovering cross-modal dynamic mechanisms of
neural activities [57]. Variational autoencoders (VAEs) model the joint distribution of multi-modal
data, enabling the generation of virtual compounds that satisfy both structural features and activity
predictions in drug design [58,59]. Additionally, constructing cross-modal associations of organ
anatomical structures through unsupervised contrastive learning, followed by fine-tuning attention
mechanisms with weakly labelled lesion annotations, optimizes diagnostic decision-making under
full supervision [60,61]. This hierarchical supervision mechanism achieves an optimal balance
between data labelling costs and model performance [62]. In mixed supervision learning models,
meta-learning frameworks adaptively adjust the weights of different supervision signals, enhancing
model generalization [63]. Incorporating causal reasoning modules distinguishes correlations from
causations among variables, thereby improving the interpretability of decisions made by mixed
supervision models [64]. The combination of meta-learning and causal reasoning not only boosts
model performance but also enhances adaptability and reliability in complex tasks.

The essence of multimodal data fusion lies in constructing alignment and mapping mechanisms
across domain feature spaces to fully exploit the complementarity of different modalities [65]. Spatio-
temporal convolution architectures extract dynamic patterns of organ function evolution from
dynamic image sequences and form spatio-temporally coupled joint representations with genomic
features [66]. Self-supervised contrastive learning frameworks overcome the semantic limitations of
traditional single-modal representations, achieving cross-scale semantic alignment of pathological
image texture features and proteomics molecular markers [49,67], revealing the dynamic interaction
network of morphology, function, and molecules during disease progression. Generative models
mitigate distribution shifts arising from multimodal data heterogeneity by modelling joint
distributions in latent space [68]. In the medical field, research on cross-modal intervention
counterfactual models is emerging. For instance, Hu et al. proposed the interpretable multimodal
fusion network gCAM-CCL, which performs automatic diagnosis and result interpretation
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simultaneously. The gCAM-CCL model generates interpretable activation maps by combining
intermediate feature maps with gradient-based weights, thereby quantifying pixel-level
contributions of input features [69]. These multimodal data technologies offer cross-dimensional
evidence chains for clinical decision-making, signifying a shift in medical artificial intelligence from
fragmented single-modal analyses to system-level integrated diagnostics.

5. The Limitations of Traditional Sperm Screening Methods and Potential
Directions for Breakthrough

In ART, traditional sperm screening predominantly depends on static morphological
parameters, such as head shape, acrosome integrity, and flagellar structure. However, the inherent
limitations of this approach have become increasingly evident, particularly in its inability to assess
dynamic functionalities and genetic integrity. The traditional two-dimensional morphological
assessment system is fundamentally grounded in empirical thresholds and thus limited to reflecting
the phenotypic characteristics of sperm at a single time point, failing to capture critical biological
information such as dynamic functionality and genetic integrity [24,70,71]. A mechanistic study by
Komatsu et al. provides compelling evidence supporting this limitation. Although sperm selected
based on traditional morphological criteria can form high-quality embryos, their mitochondrial
membrane potential (AWm) may consistently remain below the threshold observed in embryos
derived from in vivo fertilization. Additionally, significant mitochondrial ultrastructural
abnormalities may be detected. Consequently, the failure to incorporate dynamic evaluations of
mitochondrial function may increase the risk of embryo arrest [72].

At the molecular level, Zhao et al. demonstrated that sperm with reduced expression of the Mfn2
gene maintained normal morphology but had diminished embryonic developmental potential due
to compromised mitochondrial fusion [73]. Collectively, these findings highlight a fundamental
disconnect between traditional morphological assessments and the functional status of sperm
mitochondria. Therefore, overcoming the limitations of static morphological assessments and
developing a multimodal framework that integrates dynamic functionality, molecular integrity, and
three-dimensional morphology is a critical scientific challenge to improve the success rates of ART.

6. The Application of Multimodal Data Integration Strategies in Sperm
Screening

Theoretical breakthroughs in artificial intelligence for sperm screening have fundamentally
redefined the evaluation criteria for “high-quality sperm” in reproductive medicine. This
advancement addresses the limitations of traditional static morphological assessments by integrating
dynamic functional data and genomic information through cross-scale modelling, thereby enabling
the simultaneous evaluation of sperm morphology, motility, and genetic integrity.


https://doi.org/10.20944/preprints202503.1877.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 March 2025 d0i:10.20944/preprints202503.1877.v1

6 of 17

Data Resources
(Sperm 1mages. Gene expression, Clinical indicators,
Time-series signals. Molecular features)

Pre-processing
- Quality Control
- Data Cleaning
- Normalization
- Dimensional Unification

Feature Engineering
- Feature Extraction
- Morphological/Motility/Gene-Level Fusion
- Temporal-Spatial Structuring

Model Selection
ML: SVM. RF, XGBoost
DL: CNN. LSTM. Transformer
Generative: VAE. GAN
Explainable Al (Grad-CAM)

Output
- Sperm Quality Labels
- Motility & DNA Integrity
- Clinical Decision Support

Figure 2. An integrated pipeline of multimodal artificial intelligence for sperm screening.

6.1. Strategies for Sperm Morphology Assessment

Assessing sperm morphology is crucial for the success of assisted reproductive technologies.
Normal sperm morphology indicates proper development, essential for fertilization, and correlates
positively with successful pregnancy outcomes. The World Health Organization (WHO) has
established morphological criteria, defining normal semen samples as those containing at least 4%
morphologically normal sperm [74]. However, compared to other parameters such as sperm
concentration and motility, standardizing sperm morphology assessment has proven particularly
challenging [75]. Traditional methods primarily rely on staining techniques to evaluate static
structural features, including head shape, acrosome integrity, and midpiece dimensions [76]. These
approaches are limited by subjectivity, potential staining effects on sperm motility, and lack of
dynamic physiological data [24].

Integrating multimodal data strategies offers innovative solutions for assessing sperm
morphology. By combining diverse data sources, including microscopic imaging, molecular markers,
and computer vision, a more comprehensive and objective evaluation of sperm morphology can be
achieved. Yoav N. Nygate et al. developed HoloStain, a deep learning method that integrates
holographic microscopy with virtual staining technology to analyse individual sperm cells without
chemical staining. This approach uses quantitative phase imaging for high-resolution morphological
features and employs a deep convolutional generative adversarial network (DCGAN) to generate
virtual staining images. Consequently, HoloStain provides an accurate, artifact-free assessment of
sperm morphology by eliminating potential distortions caused by traditional staining methods [77].
Kamieniczna et al. utilized digital holographic microscopy (DHM) for the morphological evaluation
of live sperm, overcoming limitations of conventional techniques. DHM, a non-contact, label-free
imaging technology, avoids compromising sperm activity and provides three-dimensional
morphological parameters, including detailed head and tail characteristics [25].
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Figure 3. The three-dimensional structure, flagellar movement and biological characteristics of sperm cells.

Zou et al. designed TOD-CNN, a convolutional neural network for detecting sperm cells in
microscopic videos. The model was trained on an extensive dataset of 111 high-quality sperm videos,
encompassing over 278,000 annotated instances, and achieved an impressive average precision (APso)
of 85.60% in real-time sperm detection tasks. Integrating TOD-CNN into multimodal data strategies
is anticipated to significantly enhance the comprehensiveness and precision of sperm morphology
evaluations [78]. Dardikman-Yoffe et al. introduced an innovative high-resolution, stain-free imaging
technique for optical computed tomography (CT) of freely swimming sperm. This approach
reconstructs the three-dimensional trajectories and structures of individual sperm cells, capturing
intricate details of internal organelles and flagellar dynamics. Employing a high-speed off-axis
holographic system, this technique images live sperm without the need for cell staining or mechanical
stabilization. The reconstruction process relies solely on the sperm’s natural movement and advanced
computational algorithms, enabling precise four-dimensional reconstructions [79]. By leveraging
these extensive datasets, artificial intelligence can construct dynamic models to enhance sperm
morphology assessments [80].

6.2. Evaluate the Motility Characteristics of Individual Spermatozoa with Precision

In the assessment of individual sperm maotility, traditional methods have predominantly relied
on microscopic examination and computer-assisted sperm analysis (CASA). While conventional
microscopic examination requires trained laboratory personnel to evaluate sperm motility through
visual observation of movement patterns, this methodology remains vulnerable to observer
subjectivity, thereby limiting both the reproducibility and diagnostic accuracy of results [81]. The
CASA system addresses these limitations by offering standardized quantitative assessment of sperm
motility characteristics and morphological parameters via automated tracking algorithms coupled
with video microscopy [82]. Nevertheless, traditional CASA platforms demonstrate reduced
diagnostic reliability when analysing semen specimens with extreme concentrations (hyper-
concentrated or hypoconcentrated), particularly in scenarios involving cellular contaminants such as
non-gamete cells and particulate debris [83]. These limitations underscore the need for
methodological refinements in conventional semen analysis techniques.
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The integration of multimodal artificial intelligence technology, which combines high-resolution
imaging of sperm trajectories, physiological signals, and molecular-level information, offers more
objective, accurate, and efficient solutions for sperm motility assessment. Klumpp et al. developed
the Syntalos software, enabling synchronized operation across multiple devices and facilitating the
detection of complex correlations between behaviour and single-cell activities. By integrating high-
resolution imaging of sperm trajectories with synchronous physiological signal recording, this
multimodal data synchronization function allows simultaneous tracking of sperm motility behaviour
and associated physiological parameters. This integration provides a more comprehensive analytical
framework for assessing sperm motility. Compared to traditional sperm motility assessment
methods, which predominantly rely on single motility parameters or physiological indicators,
Syntalos excels in its capacity to integrate multimodal data [84]. Additionally, Syntalos supports the
synchronized recording of high-resolution imaging and physiological signals, capturing subtle
changes in sperm at different time points and revealing the dynamic processes underlying sperm
functional characteristics [84].

g
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Figure 4. 4D Imaging of Sperm Cell Movement.

Pinto et al.’s research highlights the critical role of the CatSper channel, particularly CATSPER1,
in regulating calcium ion influx within sperm cells —a process essential for sperm motility and male
fertility. Traditional sperm motility assessment methods focus primarily on basic motility parameters
and may fail to fully capture the comprehensive functional state of sperm. Incorporating the
molecular understanding of CatSper channel function into the multimodal data integration strategy
for sperm screening is anticipated to significantly enhance the accuracy of assessments [85]. By
linking molecular-level information on CATSPER1 expression with dynamic imaging data (e.g.,
flagellar oscillation patterns), researchers can develop predictive models that correlate specific gene
expression with functional sperm characteristics [86]. Dardikman-Yoffe et al. introduced a high-
speed off-axis holographic system capable of performing high-resolution four-dimensional
reconstruction of freely swimming human sperm cells without staining or mechanical components.
Combining this 4D imaging data with complementary modalities such as Raman spectroscopy or
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metabolomics-based molecular profiles enables the development of cross-scale predictive models.
These models connect molecular-level gene expression information with sperm functional traits,
offering a deeper understanding of sperm motility [79]. This multimodal data integration strategy,
coupled with advancements in CASA systems, overcomes the limitations of conventional sperm
motility assessment techniques [88].

6.3. Evaluating the Integrity and Damage of Sperm DNA

In traditional sperm DNA integrity assessment, clinical practice primarily depends on endpoint
detection techniques such as chromatin structure analysis, in situ DNA break detection, and comet
assays [88-90]. While these methods indicate the extent of DNA damage at a single time point, they
have limitations, such as procedural complexity, subjective result interpretation, and standardization
challenges [81,91]. Moreover, these methods involve significant sample destruction, are time-
consuming, and cannot dynamically monitor damage progression [92,93].

The innovative integration of multimodal data is expected to overcome these limitations. With
the emergence of deep learning, unprocessed sperm images can be utilized to train predictive models,
potentially uncovering important features overlooked by humans and improving prediction
accuracy [94]. In a study by McCallum et al., a deep convolutional neural network was trained using
approximately 1,000 human sperm cells with known DNA quality. This approach avoids destructive
sperm processing and enables non-invasive DNA integrity assessment. The results demonstrated a
moderate correlation (bivariate correlation coefficient of approximately 0.43) between sperm
morphology images and DNA quality and could identify sperm cells with DNA integrity above the
median [95]. Popova et al.’s research revealed that structured illumination microscopy (SIM) can
capture high-resolution images of live sperm cells at high resolution, particularly in the
mitochondrial region of the midpiece, achieving spatial resolutions up to 100 nm. Non-invasive
quantitative phase microscopy (QPM), combined with machine learning techniques, elucidated the
association between oxidative stress-induced morphological changes in the sperm head and reduced
motility. By applying deep neural networks to QPM images, the study achieved 85.6% accuracy in
distinguishing healthy and damaged sperm. Furthermore, a systematic review indicated that sperm
mitochondrial DNA copy number correlates with DNA quality. Collectively, these findings suggest
that advanced imaging techniques such as SIM and QPM, combined with analyses of mitochondrial
DNA copy number, can serve as valuable tools for assessing sperm DNA integrity [96].

Micro-Raman spectroscopy, a non-invasive method, has been employed to detect sperm DNA
damage [97]. Du et al.’s research integrated micro-Raman spectroscopy with image analysis to
simultaneously provide dynamic morphological and biochemical information. They developed a
rapid Raman spectroscopy-based method that uses fine glass pipettes to adsorb samples onto a metal
substrate, measuring Raman spectra at the pipette tip to evaluate DNA damage [97]. Madan et al.
reviewed the development and application of Transformer architectures in analysing diverse
biomedical datasets, such as text data, protein sequences, structured longitudinal data, images, and
graphs. Incorporating Transformer models into multimodal data strategies for sperm screening can
effectively capture complex patterns across different data types, significantly enhancing analytical
capabilities. Using the Transformer architecture to integrate genomic data (e.g.,, CATSPER1 gene
expression) with dynamic imaging data (e.g., flagellar oscillation patterns) can more accurately
predict sperm motility, DNA fragmentation index (DFI), and aneuploidy risk [98].

6.4. Explainable Artificial Intelligence Technology

The “black box” problem is a central challenge in applying deep learning technology to medical
contexts [99]. Its core issue stems from the inherent conflict between the irreducible complexity of a
model’s internal decision-making logic and the necessity for clinical verifiability [100]. Within
traditional deep learning frameworks, models abstract and integrate features from input data
through multiple layers of nonlinear transformations, ultimately producing diagnostic outputs [27].
However, this end-to-end mapping process lacks transparency, leading to two critical concerns: first,
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the discriminative features on which the model relies may diverge from established biological
mechanisms [101]. For instance, in sperm quality assessment, algorithms might erroneously classify
microscopic imaging artifacts, such as slide scratches, as abnormalities in sperm head structure [105].
Second, clinicians are unable to trace the decision-making rationale, making it challenging to verify
whether the model’s judgments are based on appropriate biomarkers [106]. In sperm multimodal
screening, the “black box” problem is further compounded by data heterogeneity. When multi-source
data, such as digital holographic microscopy and Raman spectroscopy, are simultaneously input into
the model, the feature fusion process within hidden layers can lead to unintuitive weight
distributions [103].

Explainable artificial intelligence technology is expected to solve this problem. Suara et al.
conducted a comprehensive study on interpretable deep learning principles, focusing particularly on
the application of Gradient-weighted Class Activation Mapping (Grad-CAM) in medical imaging.
They demonstrated how Grad-CAM enhances the interpretability of deep learning models by
highlighting critical regions within medical images that significantly influence model decision-
making. By backpropagating gradients through the convolutional neural network, Grad-CAM
generates spatial heat maps that correlate strongly with the model’s decisions, transforming the
‘input-output’ black box into a visually interpretable ’'feature-decision’ association [104]. The
integration of Grad-CAM into multimodal data strategies for sperm screening can substantially
enhance the interpretability of predictive models [105]. Through the application of Grad-CAM,
clinicians gain a clearer understanding of which morphological features and molecular markers most
significantly influence the model’s predictions regarding sperm quality parameters [106]. Such an
intuitively interpretable model enables direct validation of the artificial intelligence decision-making
process, fostering greater trust and acceptance of Al-assisted diagnosis in reproductive medicine
[107] [108].

7. Challenges and Breakthrough Paths in the Medical Application of Multi-
modal Data Fusion

The clinical application of multimodal data fusion faces significant challenges due to the
interplay between technical limitations and biological complexity [109-111]. The primary hurdle
originates from the spatiotemporal asynchrony and semantic gap inherent in heterogeneous data
sources [112,113]. Specifically, the millisecond temporal resolution of dynamic imaging contrasts
sharply with the static nature of genomics data, creating a parsing scale discontinuity. Moreover, the
nonlinear relationships between microscopic phenotypic features and metabolic molecular markers
far exceed the characterization capabilities of traditional feature engineering approaches [114-116].
Additionally, the challenge of balancing information redundancy and complementarity across
modalities limits model generalization. For example, in neurological disease diagnosis, the brain
network topology derived from functional magnetic resonance imaging (fMRI) and
electrophysiological oscillation signals exhibit both synergistic verification and potential interference
[117,118]. A deeper challenge lies in overcoming the barrier to biological interpretability. Current
black-box fusion mechanisms struggle to trace the causal chains underlying cross-modal associations,
raising concerns about the credibility of clinical decision support systems [119-121].

d0i:10.20944/preprints202503.1877.v1
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STRENGTHS WEAKNESSES
- Enhances sperm screening accuracy via dynamic and molecular datd - Complexity of Al models creates "black-box’ limitations
- Minimizes subjectivity through Al-driven interpretation - High cost and computational demand of multimodal systems
- Facilitates real-time 4D imaging and non-invasive DNA analysis - Limited standardization across clinics and institutions
- Improves sperm selection in ART with multimodal integration - Lack of trained personnel for Al system interpretation
- Advances morphology/motility/genetic assessment synergy - Sensitive to data heterogeneity and labeling inconsistency
[swoT

OPPORTUNITIES

- Growing global research in Al-powered reproductive medicine

- Emerging tools (e.g., Grad-CAM, Transformer) improve explainability
- Federated learning enables privacy-preserving data sharing

- Integration with molecular/genomic databases enhances prediction

- Support from WHO and research institutions toward ART innovation

Figure 5. SWOT analysis of multimodal artificial intelligence applications in sperm screening and assisted

reproductive technologies.

Frontier research is exploring multiple pathways to address these challenges. Adaptive
hierarchical fusion architectures leverage gating mechanisms to dynamically weight the
contributions of different modalities, suppressing noise propagation while preserving modality-
specific characteristics [122,123]. Knowledge distillation techniques compress large multimodal
models into lightweight clinical reasoning engines, mitigating the tension between computational
constraints and real-time performance requirements [124,125]. Distributed multi-center data
collaboration under the federated learning framework aims to resolve the trade-off between privacy
protection and model generalization [126]. Notably, the introduction of causal representation
learning offers a promising approach by simulating counterfactual interventions to uncover the
driving relationships between imaging feature variations and molecular pathway abnormalities,
providing a novel paradigm for constructing interpretable fusion decision systems [127,128]. The co-
evolution of these technologies is propelling multimodal fusion toward a substantive transition from
laboratory validation to routine clinical application [129].

8. Conclusions

In the provided document, the application of multimodal Al in sperm screening within ART is
comprehensively discussed. The study emphasizes overcoming the limitations of traditional sperm
selection methods, which primarily rely on static morphological parameters and subjective
assessments. Multimodal Al incorporates diverse data, including dynamic imaging, genomic
profiles, biochemical markers, and clinical parameters, enhancing the accuracy of sperm motility
assessments and optimizing metabolic function evaluations.

Key advancements highlighted include the integration of sophisticated AI models—such as
machine learning, deep learning, and multimodal fusion techniques —to systematically assess sperm
quality in multiple dimensions. These innovative approaches enable precise evaluations of sperm
morphology, dynamic motility, and genetic integrity simultaneously, significantly improving clinical
outcomes in ART.
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However, the clinical application of multimodal Al faces several challenges. Issues such as data
heterogeneity, model interpretability, biological complexity, and clinical translation barriers remain
critical hurdles. Addressing these concerns requires advanced data fusion strategies, adaptive
hierarchical modelling, and explainable artificial intelligence methods to facilitate clinical validation
and acceptance. Overall, the study underscores the transformative potential of multimodal Al for
reproductive medicine, providing a clear path forward by highlighting current technological
opportunities and outlining strategic approaches to address ongoing challenges.
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