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Abstract: One limitation of Assisted Reproductive Technology (ART) is its relatively low pregnancy 

success rate per cycle. A key contributing factor to this issue is the lack of precise and efficient sperm 

selection methods. The emergence of multimodal artificial intelligence (AI), which integrates diverse 

data types—including imaging, genomics, and clinical parameters—represents a transformative 

advancement in reproductive medicine. This system enhances the accuracy and comprehensiveness 

of sperm screening through dynamic functional assessments, molecular feature recognition, and 

advanced data integration strategies, thereby enabling the identification of sperm with high genomic 

integrity. This review explores recent innovations in multimodal AI for sperm screening, highlighting 

its potential to overcome the inherent limitations of traditional static morphological assessments. 

Furthermore, this paper addresses significant challenges, including data heterogeneity, model 

interpretability, and barriers to clinical translation. By systematically integrating machine learning, 

deep learning, and explainable AI techniques, multimodal AI offers promising strategies to improve 

ART outcomes through precise and comprehensive sperm analysis. 

Keywords: multimodal data; artificial intelligence; assisted reproductive technology; machine 

learning; deep learning; sperm screening 

 

1. Introduction 

Nearly half of all cases of infertility are caused by male infertility [1], male infertility is idiopathic 

in approximately 30-40% of cases [2]. Pregnancy rates per embryo transfer using ART remain 

relatively low [3]. One of the key challenges is the current lack of effective methods to isolate this 

specific sperm subpopulation for use in ART [4]. 

Artificial intelligence is playing a pivotal role in driving transformative changes across the 

medical technology field. The application of AI in medicine has advanced from single-modal analysis 

to sophisticated multi-dimensional intelligent systems, with its technical framework encompassing 

machine learning (ML), deep learning (DL), multi-modal fusion, and intelligent robotics. This 

evolution has significantly improved the efficiency of disease diagnosis, treatment planning, and 

medical resource allocation [5–7]. 

The emergence of multimodal AI has further transcended the limitations of single-source data, 

with its primary aim being to overcome the constraints of traditional empirical medicine through 

data-driven intelligent systems [8]. As one of the most intricate clinical application scenarios in 

reproductive medicine, ART encompasses multi-dimensional decision-making processes such as 

follicular monitoring, dynamic embryo assessment, and IVF outcome prediction. There is an urgent 

need for intelligent analysis systems capable of integrating multimodal heterogeneous data, 

including time-series embryo images, genomic maps, clinical biochemical indicators, and patient 

electronic health records [9,10]. In recent years, artificial intelligence systems have progressively 
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transformed the clinical decision-making paradigm in assisted reproductive technology by 

leveraging multimodal data integration [11]. 

This article focuses on the clinical translation of multimodal artificial intelligence technology in 

sperm screening for assisted reproductive technology. By combining dynamic functional analysis 

with molecular feature recognition, it systematically investigates the innovative approaches of 

intelligent algorithms to enhance the accuracy of sperm motility assessment and optimize metabolic 

function evaluation, thereby offering multi-dimensional and precise strategies for clinical evaluation 

and decision-making in ART. 

2. The Evolution of Artificial Intelligence 

The term artificial intelligence was first formally introduced by John McCarthy at the Dartmouth 

Conference in 1956. McCarthy defined AI as “the science and engineering of making intelligent 

machines,” with the core objective of replicating human cognitive abilities such as reasoning, 

learning, perception, and language understanding through algorithms and computational models 

[12,13]. The introduction of this concept not only inaugurated a new domain within computer science 

but also marked a pivotal shift in humanity’s exploration of intelligence, transitioning from 

philosophical speculation to practical technological implementation [14,15]. 

In the field of medical imaging diagnosis, AI has emerged as a robust image analysis tool, aiding 

radiologists in early disease detection and reducing misdiagnosis rates [16]. For instance, AI has 

shown promising results in the early identification of various diseases, including breast cancer, skin 

cancer, ophthalmic conditions, and pneumonia [16,17]. Additionally, AI can be utilized for predicting 

disease risk and managing health outcomes. Studies have utilized machine learning models to predict 

the likelihood of diabetes onset, with an enhanced decision tree model demonstrating superior 

performance in forecasting diabetes-related variables [18,19]. In drug development, AI also exhibits 

significant potential. AI utilizing bioinformatics and chemoinformatic can significantly reduce the 

time and cost associated with drug discovery [16,20]. Overall, AI is driving innovation in healthcare, 

encompassing areas such as medical imaging, disease prediction, and drug discovery [21]. 

 

Figure 1. AI + Human Brain > Brain: A Minimalist Vision of Intelligent Medicine. 

3. The Paradigmatic Innovation and Multi-dimensional Empowerment of 

Medical AI Approaches in ART 

AI methods are typically categorized into supervised, semi-supervised, and unsupervised 

approaches. 

Supervised learning, grounded in meticulous annotations, enables precise analysis of germ cells 

in microscopic images [22,23]. Deep convolutional neural networks (CNNs) utilizing high-resolution 

microscopic images can accurately detect subcellular structural variations in sperm—such as 

acrosome integrity and mitochondrial sheath defects—achieving discrimination accuracy that 

surpasses traditional manual microscopic examination standards [24–26]. Cross-modal supervised 

models further integrate spectral data and dynamic parameters to enable non-invasive quantitative 

assessment of the DNA fragmentation index, thereby significantly reducing the clinical risks 

associated with invasive testing [27,28]. 
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Semi-supervised, guided by clinical endpoints, addresses the practical challenge of limited 

annotation resources by leveraging coarse or indirect labels [29]. In analysing testicular tissue 

pathology sections, researchers employ a multi-instance learning framework to locate spermatogenic 

functional units by associating surgical outcome labels with specific tissue features, providing 

interpretable decision-making support for predicting sperm detection rates [30,31]. This approach 

effectively correlates overall surgical outcomes with local tissue features, enhancing both the 

interpretability and predictive performance of the model [32]. Cross-modal contrastive learning, 

through unsupervised alignment of motion trajectories and metabolic features, uncovers the 

potential regulatory mechanisms of oxidative stress levels on flagellar movement patterns, paving 

new pathways for diagnosing and treating male infertility [24,33,34]. 

Unsupervised learning, utilizing advanced algorithms, explores biological principles beyond 

empirical observations [35,36]. Self-supervised contrastive clustering techniques have identified 

clinically significant novel kinetic subgroups from large-scale motion parameters, with helical 

propulsion patterns showing a significant positive correlation with fertilization success rates [37–39]. 

The generative model synthesizes a sperm image library with controllable pathological 

characteristics, effectively addressing the generalization limitations of algorithms caused by the 

scarcity of data on rare sperm morphological abnormalities [40,41]. 

Table 1. Artificial intelligence and machine learning algorithms used to evaluate sperm morphology. 

Model Name Subtype Application 

Supervised Learning Cross-modal models, Deep 

CNNs 

Acrosome integrity detection, 

DNA fragmentation index 

prediction 

Semi-Supervised Learning Multi-instance learning, 

Attention-based models 

Testicular tissue analysis, sperm 

detection prediction 

Unsupervised Learning Self-supervised clustering, 

GANs 

Kinetic subgrouping, sperm 

motion pattern discovery 

Generative Models DCGAN, VAE Synthetic sperm image 

generation for rare cases 

Transformer Models Biomedical Transformers Multimodal fusion, sperm DNA 

prediction 

Contrastive Learning Cross-modal alignment, Self-

supervised contrastive clustering 

Motion-metabolic pattern 

alignment, sperm phenotype 

matching 

Explainable AI (XAI) Grad-CAM, Visual heatmaps Interpretable sperm quality 

prediction 

Meta-learning & Causal 

Reasoning 

Causal representation learning Generalizable and interpretable 

sperm screening 

4. The Technological Evolution of Multimodal Data Fusion and the Paradigm 

Shift in Medical Interpretation 

Multimodal data fusion is reshaping the analytical dimension of complex biological systems by 

leveraging the complementarity and synergy of heterogeneous data sources [6]. Supervised learning 

establishes precise cross-modal mapping benchmarks; semi-supervised learning mitigates the 

limitations posed by scarce annotated data; and unsupervised learning uncovers intrinsic data 

associations. [42,43] These three approaches form a closed-loop optimization through techniques 

such as adversarial training, contrastive learning, and generative models. 

Supervised learning establishes robust associations between modalities using annotated data 

[44]. In medical image diagnosis, the XLIP framework employs cross-modal attention masking 
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strategies to interactively exchange multi-modal features between annotated medical images and 

pathological reports, reconstructing both the image features and textual descriptions of lesion areas, 

thereby enhancing the learning of pathological characteristics [45]. In drug development, hierarchical 

fusion architectures guided by supervised signals (e.g., Stacking frameworks) optimize the allocation 

of multi-modal feature weights, integrating molecular structure data with clinical trial results, which 

significantly improves the cross-modal interpretability of drug efficacy predictions [6,46]. 

Additionally, joint training strategies promote complementary information exchange between 

modalities through supervised loss functions [47]. Supervised transfer learning combines single-

modal pre-trained models (e.g., ImageNet-pretrained CNNs) with newly introduced supervised data 

from other modalities [48,49], enabling rapid adaptation to multi-modal tasks [50]. 

semi-supervised facilitates semantic alignment between modalities using sparsely labelled data 

[51]. In pathological analysis, only malignant regions of some tissue sections are labelled, and a 

contrastive learning framework correlates pathological image features with unlabelled proteomics 

data across scales, revealing morphological-molecular interaction patterns [52]. Additionally, semi-

supervised fusion models incorporating attention mechanisms, such as multi-instance learning, 

address discrepancies in annotation granularity between modalities [53]. Adversarial training 

frameworks enhance the robustness of semi-supervised fusion models [54]. Furthermore, pre-

training Transformer architectures using unlabelled medical images and electronic health records 

captures latent cross-modal patterns of disease progression [6]. This approach offers an efficient and 

interpretable multimodal fusion pathway for medical image analysis, drug development, and other 

domains by reducing labelling costs and mining cross-modal relationships. 

Unsupervised learning highlights the superior performance of contrastive learning frameworks 

in unsupervised multi-modal alignment [55]. Through modal negative sampling strategies, it 

enhances feature discriminability, and adversarial generative networks (GANs) achieve cross-modal 

data distribution matching [56]. The Conditional Alignment Time Diffusion (CATD) framework 

proposed by Yao et al. aligns electroencephalogram (EEG) signals with functional magnetic 

resonance imaging (fMRI) images in a latent space, uncovering cross-modal dynamic mechanisms of 

neural activities [57]. Variational autoencoders (VAEs) model the joint distribution of multi-modal 

data, enabling the generation of virtual compounds that satisfy both structural features and activity 

predictions in drug design [58,59]. Additionally, constructing cross-modal associations of organ 

anatomical structures through unsupervised contrastive learning, followed by fine-tuning attention 

mechanisms with weakly labelled lesion annotations, optimizes diagnostic decision-making under 

full supervision [60,61]. This hierarchical supervision mechanism achieves an optimal balance 

between data labelling costs and model performance [62]. In mixed supervision learning models, 

meta-learning frameworks adaptively adjust the weights of different supervision signals, enhancing 

model generalization [63]. Incorporating causal reasoning modules distinguishes correlations from 

causations among variables, thereby improving the interpretability of decisions made by mixed 

supervision models [64]. The combination of meta-learning and causal reasoning not only boosts 

model performance but also enhances adaptability and reliability in complex tasks. 

The essence of multimodal data fusion lies in constructing alignment and mapping mechanisms 

across domain feature spaces to fully exploit the complementarity of different modalities [65]. Spatio-

temporal convolution architectures extract dynamic patterns of organ function evolution from 

dynamic image sequences and form spatio-temporally coupled joint representations with genomic 

features [66]. Self-supervised contrastive learning frameworks overcome the semantic limitations of 

traditional single-modal representations, achieving cross-scale semantic alignment of pathological 

image texture features and proteomics molecular markers [49,67], revealing the dynamic interaction 

network of morphology, function, and molecules during disease progression. Generative models 

mitigate distribution shifts arising from multimodal data heterogeneity by modelling joint 

distributions in latent space [68]. In the medical field, research on cross-modal intervention 

counterfactual models is emerging. For instance, Hu et al. proposed the interpretable multimodal 

fusion network gCAM-CCL, which performs automatic diagnosis and result interpretation 
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simultaneously. The gCAM-CCL model generates interpretable activation maps by combining 

intermediate feature maps with gradient-based weights, thereby quantifying pixel-level 

contributions of input features [69]. These multimodal data technologies offer cross-dimensional 

evidence chains for clinical decision-making, signifying a shift in medical artificial intelligence from 

fragmented single-modal analyses to system-level integrated diagnostics. 

5. The Limitations of Traditional Sperm Screening Methods and Potential 

Directions for Breakthrough 

In ART, traditional sperm screening predominantly depends on static morphological 

parameters, such as head shape, acrosome integrity, and flagellar structure. However, the inherent 

limitations of this approach have become increasingly evident, particularly in its inability to assess 

dynamic functionalities and genetic integrity. The traditional two-dimensional morphological 

assessment system is fundamentally grounded in empirical thresholds and thus limited to reflecting 

the phenotypic characteristics of sperm at a single time point, failing to capture critical biological 

information such as dynamic functionality and genetic integrity [24,70,71]. A mechanistic study by 

Komatsu et al. provides compelling evidence supporting this limitation. Although sperm selected 

based on traditional morphological criteria can form high-quality embryos, their mitochondrial 

membrane potential (ΔΨm) may consistently remain below the threshold observed in embryos 

derived from in vivo fertilization. Additionally, significant mitochondrial ultrastructural 

abnormalities may be detected. Consequently, the failure to incorporate dynamic evaluations of 

mitochondrial function may increase the risk of embryo arrest [72]. 

At the molecular level, Zhao et al. demonstrated that sperm with reduced expression of the Mfn2 

gene maintained normal morphology but had diminished embryonic developmental potential due 

to compromised mitochondrial fusion [73]. Collectively, these findings highlight a fundamental 

disconnect between traditional morphological assessments and the functional status of sperm 

mitochondria. Therefore, overcoming the limitations of static morphological assessments and 

developing a multimodal framework that integrates dynamic functionality, molecular integrity, and 

three-dimensional morphology is a critical scientific challenge to improve the success rates of ART. 

6. The Application of Multimodal Data Integration Strategies in Sperm 

Screening 

Theoretical breakthroughs in artificial intelligence for sperm screening have fundamentally 

redefined the evaluation criteria for “high-quality sperm” in reproductive medicine. This 

advancement addresses the limitations of traditional static morphological assessments by integrating 

dynamic functional data and genomic information through cross-scale modelling, thereby enabling 

the simultaneous evaluation of sperm morphology, motility, and genetic integrity. 
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Figure 2. An integrated pipeline of multimodal artificial intelligence for sperm screening. 

6.1. Strategies for Sperm Morphology Assessment 

Assessing sperm morphology is crucial for the success of assisted reproductive technologies. 

Normal sperm morphology indicates proper development, essential for fertilization, and correlates 

positively with successful pregnancy outcomes. The World Health Organization (WHO) has 

established morphological criteria, defining normal semen samples as those containing at least 4% 

morphologically normal sperm [74]. However, compared to other parameters such as sperm 

concentration and motility, standardizing sperm morphology assessment has proven particularly 

challenging [75]. Traditional methods primarily rely on staining techniques to evaluate static 

structural features, including head shape, acrosome integrity, and midpiece dimensions [76]. These 

approaches are limited by subjectivity, potential staining effects on sperm motility, and lack of 

dynamic physiological data [24]. 

Integrating multimodal data strategies offers innovative solutions for assessing sperm 

morphology. By combining diverse data sources, including microscopic imaging, molecular markers, 

and computer vision, a more comprehensive and objective evaluation of sperm morphology can be 

achieved. Yoav N. Nygate et al. developed HoloStain, a deep learning method that integrates 

holographic microscopy with virtual staining technology to analyse individual sperm cells without 

chemical staining. This approach uses quantitative phase imaging for high-resolution morphological 

features and employs a deep convolutional generative adversarial network (DCGAN) to generate 

virtual staining images. Consequently, HoloStain provides an accurate, artifact-free assessment of 

sperm morphology by eliminating potential distortions caused by traditional staining methods [77]. 

Kamieniczna et al. utilized digital holographic microscopy (DHM) for the morphological evaluation 

of live sperm, overcoming limitations of conventional techniques. DHM, a non-contact, label-free 

imaging technology, avoids compromising sperm activity and provides three-dimensional 

morphological parameters, including detailed head and tail characteristics [25]. 
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Figure 3. The three-dimensional structure, flagellar movement and biological characteristics of sperm cells. 

Zou et al. designed TOD-CNN, a convolutional neural network for detecting sperm cells in 

microscopic videos. The model was trained on an extensive dataset of 111 high-quality sperm videos, 

encompassing over 278,000 annotated instances, and achieved an impressive average precision (AP₅₀) 

of 85.60% in real-time sperm detection tasks. Integrating TOD-CNN into multimodal data strategies 

is anticipated to significantly enhance the comprehensiveness and precision of sperm morphology 

evaluations [78]. Dardikman-Yoffe et al. introduced an innovative high-resolution, stain-free imaging 

technique for optical computed tomography (CT) of freely swimming sperm. This approach 

reconstructs the three-dimensional trajectories and structures of individual sperm cells, capturing 

intricate details of internal organelles and flagellar dynamics. Employing a high-speed off-axis 

holographic system, this technique images live sperm without the need for cell staining or mechanical 

stabilization. The reconstruction process relies solely on the sperm’s natural movement and advanced 

computational algorithms, enabling precise four-dimensional reconstructions [79]. By leveraging 

these extensive datasets, artificial intelligence can construct dynamic models to enhance sperm 

morphology assessments [80]. 

6.2. Evaluate the Motility Characteristics of Individual Spermatozoa with Precision 

In the assessment of individual sperm motility, traditional methods have predominantly relied 

on microscopic examination and computer-assisted sperm analysis (CASA). While conventional 

microscopic examination requires trained laboratory personnel to evaluate sperm motility through 

visual observation of movement patterns, this methodology remains vulnerable to observer 

subjectivity, thereby limiting both the reproducibility and diagnostic accuracy of results [81]. The 

CASA system addresses these limitations by offering standardized quantitative assessment of sperm 

motility characteristics and morphological parameters via automated tracking algorithms coupled 

with video microscopy [82]. Nevertheless, traditional CASA platforms demonstrate reduced 

diagnostic reliability when analysing semen specimens with extreme concentrations (hyper-

concentrated or hypoconcentrated), particularly in scenarios involving cellular contaminants such as 

non-gamete cells and particulate debris [83]. These limitations underscore the need for 

methodological refinements in conventional semen analysis techniques. 
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The integration of multimodal artificial intelligence technology, which combines high-resolution 

imaging of sperm trajectories, physiological signals, and molecular-level information, offers more 

objective, accurate, and efficient solutions for sperm motility assessment. Klumpp et al. developed 

the Syntalos software, enabling synchronized operation across multiple devices and facilitating the 

detection of complex correlations between behaviour and single-cell activities. By integrating high-

resolution imaging of sperm trajectories with synchronous physiological signal recording, this 

multimodal data synchronization function allows simultaneous tracking of sperm motility behaviour 

and associated physiological parameters. This integration provides a more comprehensive analytical 

framework for assessing sperm motility. Compared to traditional sperm motility assessment 

methods, which predominantly rely on single motility parameters or physiological indicators, 

Syntalos excels in its capacity to integrate multimodal data [84]. Additionally, Syntalos supports the 

synchronized recording of high-resolution imaging and physiological signals, capturing subtle 

changes in sperm at different time points and revealing the dynamic processes underlying sperm 

functional characteristics [84]. 

 

Figure 4. 4D Imaging of Sperm Cell Movement. 

Pinto et al.’s research highlights the critical role of the CatSper channel, particularly CATSPER1, 

in regulating calcium ion influx within sperm cells—a process essential for sperm motility and male 

fertility. Traditional sperm motility assessment methods focus primarily on basic motility parameters 

and may fail to fully capture the comprehensive functional state of sperm. Incorporating the 

molecular understanding of CatSper channel function into the multimodal data integration strategy 

for sperm screening is anticipated to significantly enhance the accuracy of assessments [85]. By 

linking molecular-level information on CATSPER1 expression with dynamic imaging data (e.g., 

flagellar oscillation patterns), researchers can develop predictive models that correlate specific gene 

expression with functional sperm characteristics [86]. Dardikman-Yoffe et al. introduced a high-

speed off-axis holographic system capable of performing high-resolution four-dimensional 

reconstruction of freely swimming human sperm cells without staining or mechanical components. 

Combining this 4D imaging data with complementary modalities such as Raman spectroscopy or 
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metabolomics-based molecular profiles enables the development of cross-scale predictive models. 

These models connect molecular-level gene expression information with sperm functional traits, 

offering a deeper understanding of sperm motility [79]. This multimodal data integration strategy, 

coupled with advancements in CASA systems, overcomes the limitations of conventional sperm 

motility assessment techniques [88]. 

6.3. Evaluating the Integrity and Damage of Sperm DNA 

In traditional sperm DNA integrity assessment, clinical practice primarily depends on endpoint 

detection techniques such as chromatin structure analysis, in situ DNA break detection, and comet 

assays [88–90]. While these methods indicate the extent of DNA damage at a single time point, they 

have limitations, such as procedural complexity, subjective result interpretation, and standardization 

challenges [81,91]. Moreover, these methods involve significant sample destruction, are time-

consuming, and cannot dynamically monitor damage progression [92,93]. 

The innovative integration of multimodal data is expected to overcome these limitations. With 

the emergence of deep learning, unprocessed sperm images can be utilized to train predictive models, 

potentially uncovering important features overlooked by humans and improving prediction 

accuracy [94]. In a study by McCallum et al., a deep convolutional neural network was trained using 

approximately 1,000 human sperm cells with known DNA quality. This approach avoids destructive 

sperm processing and enables non-invasive DNA integrity assessment. The results demonstrated a 

moderate correlation (bivariate correlation coefficient of approximately 0.43) between sperm 

morphology images and DNA quality and could identify sperm cells with DNA integrity above the 

median [95]. Popova et al.’s research revealed that structured illumination microscopy (SIM) can 

capture high-resolution images of live sperm cells at high resolution, particularly in the 

mitochondrial region of the midpiece, achieving spatial resolutions up to 100 nm. Non-invasive 

quantitative phase microscopy (QPM), combined with machine learning techniques, elucidated the 

association between oxidative stress-induced morphological changes in the sperm head and reduced 

motility. By applying deep neural networks to QPM images, the study achieved 85.6% accuracy in 

distinguishing healthy and damaged sperm. Furthermore, a systematic review indicated that sperm 

mitochondrial DNA copy number correlates with DNA quality. Collectively, these findings suggest 

that advanced imaging techniques such as SIM and QPM, combined with analyses of mitochondrial 

DNA copy number, can serve as valuable tools for assessing sperm DNA integrity [96]. 

Micro-Raman spectroscopy, a non-invasive method, has been employed to detect sperm DNA 

damage [97]. Du et al.’s research integrated micro-Raman spectroscopy with image analysis to 

simultaneously provide dynamic morphological and biochemical information. They developed a 

rapid Raman spectroscopy-based method that uses fine glass pipettes to adsorb samples onto a metal 

substrate, measuring Raman spectra at the pipette tip to evaluate DNA damage [97]. Madan et al. 

reviewed the development and application of Transformer architectures in analysing diverse 

biomedical datasets, such as text data, protein sequences, structured longitudinal data, images, and 

graphs. Incorporating Transformer models into multimodal data strategies for sperm screening can 

effectively capture complex patterns across different data types, significantly enhancing analytical 

capabilities. Using the Transformer architecture to integrate genomic data (e.g., CATSPER1 gene 

expression) with dynamic imaging data (e.g., flagellar oscillation patterns) can more accurately 

predict sperm motility, DNA fragmentation index (DFI), and aneuploidy risk [98]. 

6.4. Explainable Artificial Intelligence Technology 

The “black box” problem is a central challenge in applying deep learning technology to medical 

contexts [99]. Its core issue stems from the inherent conflict between the irreducible complexity of a 

model’s internal decision-making logic and the necessity for clinical verifiability [100]. Within 

traditional deep learning frameworks, models abstract and integrate features from input data 

through multiple layers of nonlinear transformations, ultimately producing diagnostic outputs [27]. 

However, this end-to-end mapping process lacks transparency, leading to two critical concerns: first, 
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the discriminative features on which the model relies may diverge from established biological 

mechanisms [101]. For instance, in sperm quality assessment, algorithms might erroneously classify 

microscopic imaging artifacts, such as slide scratches, as abnormalities in sperm head structure [105]. 

Second, clinicians are unable to trace the decision-making rationale, making it challenging to verify 

whether the model’s judgments are based on appropriate biomarkers [106]. In sperm multimodal 

screening, the “black box” problem is further compounded by data heterogeneity. When multi-source 

data, such as digital holographic microscopy and Raman spectroscopy, are simultaneously input into 

the model, the feature fusion process within hidden layers can lead to unintuitive weight 

distributions [103]. 

Explainable artificial intelligence technology is expected to solve this problem. Suara et al. 

conducted a comprehensive study on interpretable deep learning principles, focusing particularly on 

the application of Gradient-weighted Class Activation Mapping (Grad-CAM) in medical imaging. 

They demonstrated how Grad-CAM enhances the interpretability of deep learning models by 

highlighting critical regions within medical images that significantly influence model decision-

making. By backpropagating gradients through the convolutional neural network, Grad-CAM 

generates spatial heat maps that correlate strongly with the model’s decisions, transforming the 

’input-output’ black box into a visually interpretable ’feature-decision’ association [104]. The 

integration of Grad-CAM into multimodal data strategies for sperm screening can substantially 

enhance the interpretability of predictive models [105]. Through the application of Grad-CAM, 

clinicians gain a clearer understanding of which morphological features and molecular markers most 

significantly influence the model’s predictions regarding sperm quality parameters [106]. Such an 

intuitively interpretable model enables direct validation of the artificial intelligence decision-making 

process, fostering greater trust and acceptance of AI-assisted diagnosis in reproductive medicine 

[107] [108]. 

7. Challenges and Breakthrough Paths in the Medical Application of Multi-

modal Data Fusion 

The clinical application of multimodal data fusion faces significant challenges due to the 

interplay between technical limitations and biological complexity [109–111]. The primary hurdle 

originates from the spatiotemporal asynchrony and semantic gap inherent in heterogeneous data 

sources [112,113]. Specifically, the millisecond temporal resolution of dynamic imaging contrasts 

sharply with the static nature of genomics data, creating a parsing scale discontinuity. Moreover, the 

nonlinear relationships between microscopic phenotypic features and metabolic molecular markers 

far exceed the characterization capabilities of traditional feature engineering approaches [114–116]. 

Additionally, the challenge of balancing information redundancy and complementarity across 

modalities limits model generalization. For example, in neurological disease diagnosis, the brain 

network topology derived from functional magnetic resonance imaging (fMRI) and 

electrophysiological oscillation signals exhibit both synergistic verification and potential interference 

[117,118]. A deeper challenge lies in overcoming the barrier to biological interpretability. Current 

black-box fusion mechanisms struggle to trace the causal chains underlying cross-modal associations, 

raising concerns about the credibility of clinical decision support systems [119–121]. 
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Figure 5. SWOT analysis of multimodal artificial intelligence applications in sperm screening and assisted 

reproductive technologies. 

Frontier research is exploring multiple pathways to address these challenges. Adaptive 

hierarchical fusion architectures leverage gating mechanisms to dynamically weight the 

contributions of different modalities, suppressing noise propagation while preserving modality-

specific characteristics [122,123]. Knowledge distillation techniques compress large multimodal 

models into lightweight clinical reasoning engines, mitigating the tension between computational 

constraints and real-time performance requirements [124,125]. Distributed multi-center data 

collaboration under the federated learning framework aims to resolve the trade-off between privacy 

protection and model generalization [126]. Notably, the introduction of causal representation 

learning offers a promising approach by simulating counterfactual interventions to uncover the 

driving relationships between imaging feature variations and molecular pathway abnormalities, 

providing a novel paradigm for constructing interpretable fusion decision systems [127,128]. The co-

evolution of these technologies is propelling multimodal fusion toward a substantive transition from 

laboratory validation to routine clinical application [129]. 

8. Conclusions 

In the provided document, the application of multimodal AI in sperm screening within ART is 

comprehensively discussed. The study emphasizes overcoming the limitations of traditional sperm 

selection methods, which primarily rely on static morphological parameters and subjective 

assessments. Multimodal AI incorporates diverse data, including dynamic imaging, genomic 

profiles, biochemical markers, and clinical parameters, enhancing the accuracy of sperm motility 

assessments and optimizing metabolic function evaluations. 

Key advancements highlighted include the integration of sophisticated AI models—such as 

machine learning, deep learning, and multimodal fusion techniques—to systematically assess sperm 

quality in multiple dimensions. These innovative approaches enable precise evaluations of sperm 

morphology, dynamic motility, and genetic integrity simultaneously, significantly improving clinical 

outcomes in ART. 
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However, the clinical application of multimodal AI faces several challenges. Issues such as data 

heterogeneity, model interpretability, biological complexity, and clinical translation barriers remain 

critical hurdles. Addressing these concerns requires advanced data fusion strategies, adaptive 

hierarchical modelling, and explainable artificial intelligence methods to facilitate clinical validation 

and acceptance. Overall, the study underscores the transformative potential of multimodal AI for 

reproductive medicine, providing a clear path forward by highlighting current technological 

opportunities and outlining strategic approaches to address ongoing challenges. 
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