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Abstract

Generating class-consistent time series is a complex endeavor, necessitating both structural integrity
and semantic coherence. This study presents FMD-GAN, a generative framework that integrates
frequency-domain segmentation with Markov-conditioned diffusion to produce realistic and inter-
pretable sequences. Through the integration of spectral clustering, state-conditioned noise injection,
and dual-branch adversarial learning, FMD-GAN maintains class semantics while effectively captur-
ing dynamic temporal patterns. Experiments on four UCR datasets indicate that FMD-GAN attains
performance that is either competitive or superior to six leading generative baselines across FID,
DTW, class consistency accuracy (CCA), and spectral distance (SD). Supplementary analyses—such
as t-SNE visualizations, ablation studies, and training dynamics—underscore the model’s stability,
interpretability, and resilience to hyperparameter fluctuations. These findings highlight the efficacy
of integrating spectral priors with probabilistic frameworks in enhancing class-aware time series
production.

Keywords: time series generation; diffusion models; fourier transform neural network; Markov
process; class-conditioned synthesis; generative modeling

1. Introduction

Applications in data augmentation [7,11], simulation [9], anomaly detection, and biomedical
signal synthesis [13] are all supported by time series generation, a fundamental task in machine
learning. Synthesizing realistic sequences that capture semantic structure and temporal connections
is the aim. Nevertheless, it is still difficult to produce time series that are both semantically and
structurally matched, especially in fields with intricate latent dynamics like physiological monitoring
and human activity detection.

Advances in time-series generation employing foundation and transformer-based designs have
been examined in recent surveys [24,25]. For better long-range forecasting, transformer variations like
Autoformer [35] use decomposition and auto-correlation techniques. Even while these techniques
perform remarkably well in sequence modeling and forecasting, they frequently put realism or
prediction accuracy ahead of interpretability and consistency across classes. The majority of current
methods, in example, handle time series as undifferentiated temporal vectors without explicitly
modeling frequency patterns or regime transitions, which restricts their use in contexts where structural
control and semantic accuracy are crucial.

We provide FMD-GAN, a Frequency-Markov Diffusion Generative Adversarial Network that
is intended to synthesize time series with both structural integrity and class consistency in order
to overcome these constraints. The requirement to combine structural priors, specifically frequency
decomposition and latent regime modeling, with semantic awareness in order to provide interpretable
and controllable generation is what drives FMD-GAN.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0009-0009-9686-1211
https://orcid.org/0000-0002-1950-2620
https://doi.org/10.20944/preprints202509.0682.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2025

20f21

Our system comprises three essential elements: frequency-aware denoising in a conditional
diffusion process, Markov modeling of latent state transitions, and frequency-domain segmentation
by spectral clustering. Stable and high-quality synthesis is made possible by score-based generative
models [27], which provide a rigorous method of training diffusion using stochastic differential
equations (SDEs). By utilizing the interpretability of symbolic state modeling [4], the expressiveness
of conditional diffusion [12,22], and the compactness of Fourier-based representations [19], FMD-
GAN breaks down sequences into spectral regimes and applies class-conditioned diffusion guided
by latent states. The methodology works well for conditional generation and structure-sensitive data
augmentation since it also guarantees that created samples stay semantically aligned with their targets
through a class-consistency loss.

We test FMD-GAN on four exemplary datasets from the UCR Time Series Archive, which span
different domains and sequence lengths: ECG200, GunPoint, FordA, and UWaveGestureLibrary_X.
FMD-GAN achieves competitive or superior performance across multiple metrics, including Fréchet
Inception Distance (FID), Dynamic Time Warping (DTW), Class Consistency Accuracy (CCA), and
Spectral Distance (SD), when compared to six state-of-the-art baselines, including GAN-based, condi-
tional, and diffusion models. Our framework’s interpretability, robustness, and semantic coherence
are further illustrated by extensive qualitative evaluations, which include t-SNE projections, residual
maps, latent state overlays, and training dynamics.

Our main contributions are as follows:

e We propose FMD-GAN, an innovative generative framework that combines spectral clustering,
Markov-guided latent modeling, and frequency-aware diffusion to generate realistic and class-
consistent time series.

e We run extensive tests on four distinct UCR datasets, illustrating that FMD-GAN attains compara-
ble or superior performance relative to six leading generative baselines across many assessment
parameters.

e We conduct comprehensive interpretability analysis utilizing t-SNE visualization, residual plots,
and latent state overlays, demonstrating FMD-GAN’s capacity to maintain semantic structure
and reveal significant generative dynamics.

2. Related Work
2.1. GAN-Based Models for Time Series Generation

Generative adversarial networks (GANs) are extensively utilized for time series generation
because of their capacity to model intricate distributions. C-RNN-GAN [8] was the initial framework
to adapt GAN s for sequential data through the utilization of recurrent architectures. TimeGAN [7]
further implemented supervised embedding alignment to guarantee temporal and semantic accuracy.
RCGAN-UCR [9] integrated class-conditional methods to improve discriminability. Despite their
achievements in short-range realism, GAN-based models frequently experience instability, a deficiency
in interpretability, and a constrained capacity to capture long-term structure [29].

2.2. Diffusion Models for Temporal Generation

Diffusion-based generative models have recently garnered attention for their resilience and
sampling consistency, especially in time-series domains [36]. Score-based Stochastic Differential
Equation frameworks and denoising diffusion probabilistic models provide well-founded training
objectives and controllable generation. In the time-series domain, CSDI [10] utilized conditional score
matching for imputation, whilst Autoregressive DDPMs [12] facilitate sequence-level conditioning.
DiffWave [22], Diffusion-TS [15], and SigDiffusions [16] aim to achieve high-fidelity signal generation
for speech and physiological data. Nevertheless, the majority of these models are deficient in class-
conditioning and neglect discontinuous latent transitions, hence constraining their semantic control
and interpretability.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2.3. Class-Conditional and Structured Sequence Models

Conditioning mechanisms for regulating the semantics of generated sequences have been the
subject of numerous studies. Sequence-level conditioning in DDPMs enhances label fidelity [12],
while class-aware GANSs [31] and conditional VAEs [32] allow label-guided generation. In parallel,
interpretable temporal transitions are provided by symbolic models such as HMMs [4]. However, the
majority of current frameworks do not incorporate symbolic state modeling into end-to-end diffusion
processes.

2.4. Hybrid Models with Semantic and Structural Constraints

A condensed and comprehensible viewpoint for capturing global temporal trends is provided by
frequency-domain modeling. While neural Fourier operators [17] have been used to learn periodic
and structured representations in time series data, informer [19] introduced spectral attention for
long-range forecasting. These methods emphasize how crucial it is to use signal structure to enhance
generalization.

To improve interpretability, robustness, and semantic control, recent surveys [24,25] highlight
the importance of integrating deep learning with symbolic priors, such as Markov segmentation and
state transitions. In fields like physiological signal generation [14], human motion modeling [33], and
dynamic system simulation [34] that demand both high-fidelity synthesis and structural awareness,
such hybrid approaches are especially pertinent.

However, in diffusion-based generative models, this hybrid approach is still not well studied.
Our work advances this field by presenting FMD-GAN, a class-aware diffusion pipeline for semanti-
cally controllable and structurally faithful time series production that combines frequency-domain
segmentation with Markovian latent transitions.

3. The Proposed Model

The suggested Fourier-Markov Diffusion GAN (FMD-GAN) architecture is described in this
section. It uses frequency-domain noise modulation and class-aware latent states to produce realistic
and semantically coherent time series. As shown in Figure 1, the model comprises five main stages:
sliding-window segmentation, class-guided state assignment, forward diffusion with state-conditioned
noise, reverse generation, and dual-branch adversarial training.

We present a unique approach that combines latent state assignment and spectral clustering to
guarantee class-consistent generation, allowing class-discriminative latent states to direct each time-
series segment. In addition to controlling the forward diffusion process through frequency-domain
masks, these states also condition adversarial learning and reverse generation, guaranteeing that the
synthesized sequences match their original class labels semantically.

We denote vectors in bold lowercase, matrices in uppercase, and time indices t € {0,...,T}. A
complete pipeline is visualized in Figure 1.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. An outline of the FMD-GAN architecture. Class-aware spectral clustering is used to divide each input
time series into overlapping windows and assign a latent state. A Markov chain is used to simulate temporal
transitions between latent states, and each state uses a learnt spectral mask to modify the forward diffusion noise.
A reverse generator recovers the denoised output £ conditioned on the latent state, ensuring class-consistent
reconstruction. A dual-branch discriminator is used to train the model under adversarial supervision, and its
generation quality and class consistency are assessed.

3.1. Sliding-Window Segmentation

Inspired by local receptive field strategies used in convolutional architectures [37], we segment
each input time series x € RF*C into overlapping sub-sequences using a sliding-window approach.
Each sub-sequence x(") € R!*C is extracted with a fixed window length I and hop size h, where
n € {1,...,N} indexes the window position. The total number of extracted windows is given by
N=[(L-1)/h]+1.

This method breaks down each long sequence into a set of fixed-size segments that serve as
separate training examples for the subsequent generative modeling and spectral analysis stages.

3.2. Class-Aware State Assignment via Spectral Features

Building on the windowed segments {x(m }IV_| obtained from the previous step, we now compute
spectral features for each sub-sequence and assign class-aware latent states.
For each window x("), we compute the magnitude spectrum via the Short-Time Fourier Transform
(STFT) [2]:
X" = |STFT(x)| € RXC, (1)

where K is the number of frequency bins. The magnitudes are logarithmically converted [29] and
aggregated across all windows to create a global spectral feature matrix.

An overview of this procedure is illustrated in Figure 2, which summarizes the key stages from
segmentation to state assignment, spectral mask construction, and transition modeling.

r(s). Distributed under a Creative Commons CC BY license.
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Figure 2. Overview of the class-aware state assignment pipeline. The input time series is segmented into
overlapping windows {x(")}. Each window is transformed via STFT to obtain the magnitude spectrogram X ("),
followed by logarithmic scaling. Spectral features are clustered via k-means to assign latent states S(n)s aligned
with class labels through majority voting. A Markov transition matrix pij is estimated from the sequence of states.

(s)

Additionally, each state’s spectral mask M ¢ is computed by averaging the spectrograms of all windows assigned

to that state and applying min-max normalization.

To promote class consistency during generation, we cluster the log-spectrum of each window
using k-means [3], and align the resulting clusters with the ground-truth class labels:

S(n) = kmeans <logX}")) e{1,...,S}, )
where each latent state s,,) represents a prototype spectral mode. When class labels y ;) are avail-
able, we assign each cluster to a class-dominant label using majority voting over window-to-class
associations. This implicitly encourages state assignments to reflect class-discriminative features.
The temporal transitions between adjacent latent states yield the empirical Markov transition
matrix [4]:
pij = Pr(sn+1 :] | Sp = l), (3)

which captures the class-aware temporal structure within the dataset.
Finally, we group all windows by their assigned state s € {1, ..., S}, average their STFT magni-
tudes, and apply min—-max normalization across frequency bins to construct a state-specific spectral

mask: i .
MY — min MY
(s) 1 (n) (s) f f
MY = x", MY « , 4)
f |WS| n;/;vs f f max MJ((S) — min M)((S)

where Wy = {n : s,y = s} is the set of windows assigned to state s. This procedure yields a bank of

S
s=1’

latent state. These masks are later used to modulate frequency-domain noise during forward diffusion,

spectral masks {MJ([S) each reflecting the characteristic frequency distribution of its corresponding

enabling class-sensitive perturbation. Normalization ensures that each mask defines a valid variance
template bounded in [0, 1], suitable for stochastic noise control [21].

3.3. Fourier—-Markov Diffusion with State-Conditioned Noise

The forward diffusion process begins with an initial latent vector zg ~ N (0, I) for each segmented
input. At every diffusionstep t = 0,1,...,T—1, the latent representation z; is gradually perturbed
with class-aware, state-conditioned Gaussian noise, modulated in the frequency domain.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Specifically, at each step, a spectral noise vector &; is sampled from a zero-mean Gaussian
distribution with a diagonal covariance matrix shaped by a state-specific spectral mask:

e ~ N(0, MM o 1), 5)

where Mj(ft) € [0,1]X is the Fourier-domain mask corresponding to the current Markov state s¢, and ®
denotes elementwise multiplication. By encoding class-discriminative spectral patterns, these masks
guarantee that injected noise preserves the original class’s semantic structure. This technique promotes
class-consistent generative routes over time by encouraging the diffusion trajectory to stay in line with
class semantics.

The latent is then updated as:

zin1 = Varze+ V1 —areg, (6)

where {a;} is a cosine-based variance schedule controlling the noise scale at each step.
At each diffusion step t, the Markov prior P(s;;1 | s¢) samples a new latent state s;;1, whose

spectral mask MJ((S’“)

defines the injection pattern of noise. The estimate of the state transition matrix
over class-aware spectral clusters simulates temporal transitions in this stochastic process while
preserving label-consistent fluctuations.

The model integrates both controlled variability and structural consistency by conditioning
frequency-domain perturbations on latent states that evolve according to a Markov process and
encapsulate class semantics. This ensures that the diffusion trajectory remains in line with class-
specific dynamics that are seen in sequences from the real world.

The sampled state sequence {sy,...,st} is reused in the reverse process, enabling consistent

class-sensitive conditioning across both forward and reverse diffusion stages.

3.4. Reverse Generation and Segment Aggregation

The reverse generator Gy reconstructs the class-consistent latent vector £y from a heavily perturbed
latent z7 by progressively denoising it through T steps. At each reverse step t = T—1,...,0, the model
learns to approximate the class-aware conditional distribution:

Po(zt | Zer1,8e41,1), )

where s 1 is the Markov state sampled during the forward process. State transitions encapsulate
spectral patterns that correspond with class labels, hence each reversal step is directed by a semantically
significant structure.

The reverse generator follows a hybrid spectral-temporal procedure:

Z;y1 = FFT(z41), 8)

where each channel’s temporal dimension is subjected to a fixed-size 1D FFT. To guarantee constant
spectral resolution across all steps, we employ zero-padding for segments that are smaller than the
FFT size, which is 64 by default.

Z = ConviD(Z 1;¢(5141)), (9)
2 = IFFT(ZRY) + MLP(1), (10)
2t < Y(St41) - 2t 4+ B(St41), (11)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0682.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2025 d0i:10.20944/preprints202509.0682.v1

7 of 21

where ¢(s;1) denotes a state-conditioned convolutional filter applied in the frequency domain,
and y(-), B(+) are FILM [5] parameters generated from state embeddings. These layers function as
class-sensitive modulators, enabling the generator to modify the denoising trajectory according to
latent class attributes.

At the end of the process, the cleaned latent vector 2 is decoded into a window-level time series
segment:

£ = Decy(2p). (12)

Here, 2(") represents the reconstructed segment of the n-th window. These segments are later
aggregated to form the full-length synthetic sequence £, which preserves both the structural variation
and the semantic class identity of the original data.

After denoising each latent segment via the reverse process, the generator produces a set of
window-level reconstructions {£(") }V_,. To obtain the final sequence £ € RLXC, these overlapping
segments are aggregated into a coherent time series through an overlap-aware stitching strategy [38],
similar to the classic overlap-add technique in STFT reconstruction.

Given a fixed hop size i < w, where w is the segment/window length, overlapping regions are
averaged to ensure temporal smoothness and reduce boundary artifacts. For each time step I € [1, L],
the reconstructed value is computed by:

R 1 .
£l = 13 Y 2 —o0,], (13)
I nen;

where N is the set of windows covering position [, and 0, = (n — 1) - I is the offset of the n-th
window.

While preserving the class-discriminative local patterns present in each segment, this averaging
technique promotes continuity. Both global structure and class-specific consistency are maintained
in the final output %, enabling reliable downstream applications like data augmentation, classifier
training, or visual analysis.

The reconstructed sequence is then used in all evaluation scenarios and fed into a dual-branch
discriminator during adversarial training.

3.5. Adversarial Training with Class-Aware Dual-Branch Discriminator

We use a class-aware dual-branch discriminator Dy and the WGAN-GP framework [1] to synthe-
size realistic and class-consistent time series. Working with the entire reconstructed sequence %, the
discriminator gives the generator adversarial feedback that directs it to replicate both class-specific
temporal dynamics and global structure.

Two parallel branches make up the discriminator, as seen in Figure 3. The time branch evaluates
local signal coherence and temporal continuity using a 1D convolutional network. The spectral branch
applies a fixed-size 1D FFT to each channel of £ in order to assess holistic frequency-domain features.
In order to improve numerical stability and highlight informative frequency patterns like rhythm
or repetition, log-magnitude scaling (log(1 + | - |) is employed. The spectral branch divides each
full-length input into non-overlapping windows of length 256 in order to guarantee constant frequency
resolution over sequences of different lengths. A global spectral representation is created by averaging
the magnitude spectra obtained from a 1D FFT of each window. The discriminator can capture long-
range spectral structure while keeping a stable frequency bin size (K = 129) across datasets thanks to
this aggregation method. Because there is no windowing or framing, global spectral properties are
preserved.

A scalar discriminator score is obtained by concatenating the outputs of both branches and passing
them through a linear projection head. Both temporal fidelity and spectral coherence are reflected
in this score, which allows Dy to function as an auxiliary classifier that promotes class-consistent
generation as well as a realism evaluator.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 3. FMD-GAN'’s class-aware dual-branch discriminator architecture. A segmented 1D FFT module in the

spectral branch and a Conv1D network in the temporal branch process the reconstructed sequence %. The input is
first split into non-overlapping windows of length 256 by the spectral branch, which then performs FFT to each
segment and aggregates the magnitude spectra of each. A final discriminator score reflecting frequency-domain
coherence and temporal continuity is generated by concatenating and projecting features from both branches.

To further preserve class-specific dynamics, we incorporate a transition-level regularization
based on Markov state assignments. From training data, we estimate an empirical state transition
matrix P, capturing typical evolution patterns. During generation, a latent sequence {so, ...,sr} is
sampled, inducing a predicted transition matrix Py. A KL divergence penalty is used to encourage
consistency between Py and P, promoting realistic intra-class transitions.

The final training objective integrates four components: an adversarial loss L,qy, a spectral
reconstruction loss, a transition regularization term, and a latent reconstruction penalty. The overall
loss is defined as:

. 2
L = Lady + Aspec||[FFT(%)| — [FFT(x)]|;
5 s 112
+ ALK Py || P) + Arec || 20 — 20][3- (14)
The spectrum loss enforces frequency alignment, the KL term maintains temporal dynamics, and

the reconstruction penalty guarantees successful reversal of the diffusion process. Collectively, these
aims empower FMD-GAN to generate coherent, structurally accurate, and class-sensitive time series.

3.6. Pseudocode of FMD-GAN Training

We summarize the complete training workflow of FMD-GAN in Algorithm 1, which integrates
spectral clustering, forward diffusion, reverse generation, and adversarial optimization.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Algorithm 1 Training Procedure of FMD-GAN

Require: Time series x € RE*C, window length [, hop size i, number of states S
Ensure: Trained generator Gy, discriminator Dy

1: Segment x into windows {x("}N
2: Compute STFT magnitudes X]((") = |STFT(x("))|

3: Cluster {log X)(cn)} via k-means — s,
4: Estimate transition matrix 151-]- from {s(,)}
5: Compute min—-max normalized spectral masks {Mj(,s) 5
6: while not converged do
7. Sample n, initialize zg ~ N (0,1),s0 ~U(1,...,S)
8: fort =0toT—1do
9: Sample s;41 ~ P(s;41 | st)
10: &y NN(O,M](ft) olI)
11: Zp4] \/DTtZt + vV 1—0&t£f
12: end for
13: fort = T—1 down to 0 do
14: 2t Ge(thrl,StJrl, l’)
15: end for
16 2« Decy(2)

172 Aggregate £ from all £(")

18: Compute total loss L via Eq. (14)
19:  Update Gy, Dy using WGAN-GP
20: end while

3.7. Computational Complexity Analysis

We now analyze the computational complexity of each stage in the proposed FMD-GAN frame-
work. Let L be the length of the input time series, C the number of channels, / the window length,
h the hop size, and N = | (L —)/h] + 1 the number of segments per sequence. The segmentation
process itself requires O(N - I - C) operations, as each window is extracted from the original sequence.

The class-aware state assignment involves computing the Short-Time Fourier Transform (STFT) for
each segment, with a per-window cost of O(Ilog! - C), resulting in a total complexity of O(N - Ilog! -
C). The subsequent spectral clustering via k-means over log-magnitude spectra incurs O(I - N - K)
complexity, where I is the number of iterations and K is the number of frequency bins.

During the forward diffusion stage, each latent segment is perturbed over T steps. At each step,
generating spectral noise and performing elementwise operations with the spectral mask requires
O(K), yielding a total of O(T - K) per segment. Given N segments, the overall complexity of forward
diffusionis O(N - T - K).

The reverse generation process applies a frequency-domain convolution using FFT-based filtering
and FILM modulation. Each FFT/IFFT pair has a complexity of O(KlogK), and the convolution and
FiLM layers contribute an additional O(K). Across T reverse steps and N segments, the total reverse
generation complexity is O(N - T - Klog K).

Segment aggregation involves averaging overlapping regions, with a total time proportional to
the sequence length, O(L - C). The dual-branch discriminator performs both temporal and spectral
discrimination. The time-branch convolution operates in O(L - C), while the spectral branch computes
an FFT and MLP over the whole sequence, incurring O(LlogL - C).

The total training difficulty per sequence per iteration is primarily determined by the STFT-based
spectral clustering, the iterative forward and reverse diffusion processes, and the evaluation of the
discriminator, culminating in an overall cost of:

O(N-llogl-C+I-N-K+N-T-KlogK+ LlogL-C) (15)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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This complexity is manageable in reality, as the fundamental elements—such as segment-wise
operations and frequency-domain transformations—are highly parallelizable. Furthermore, the imple-
mentation of FFT-based spectral modeling diminishes computational expenses relative to recurrent or
attention-based methods, rendering FMD-GAN particularly appropriate for extensive time series.

4. Experiment

We evaluate the effectiveness of FMD-GAN in the realm of class-preserving time series generation.
Experiments are conducted using meticulously selected datasets from the UCR Time Series Archive [6],
covering diverse domains and sequence lengths.

4.1. Datasets

We assess FMD-GAN using four representative datasets from the UCR Time Series Archive [6],
chosen to encompass a varied spectrum of sequence lengths, class quantities, and application fields.
This diversity facilitates a thorough evaluation of the model’s generalization ability across different
structural and semantic patterns.

Table 1 delineates the principal attributes of the chosen datasets. ECG200 consists of brief
univariate heartbeat impulses derived from electrocardiograms. GunPoint captures motion dynamics
using arm motions. UWaveGestureLibrary_X comprises multivariate time series that depict spatial
hand motions for eight distinct gesture types. FordA comprises extensive univariate sequences
captured from engine sensors throughout various operating circumstances.

Table 1. Summary of datasets used for evaluation.

Dataset #Classes Length #Instances Domain
ECG200 2 96 200 Biomedical
GunPoint 2 150 200 Human motion
UWaveGestureLibrary_X 8 315 896 Multivariate gesture
FordA 2 500 1320 Industrial sensor

For each dataset, we utilize the official training and testing divisions supplied by UCR. During
training, sequences are partitioned into overlapping sub-sequences utilizing a sliding window of
length | = 64 and a hop size of i = 16. Every segment is normalized to a mean of zero and a variance
of one. During inference, produced segments are recombined by overlap-aware averaging to recreate
the complete time series for assessment.

4.2. Baselines

We compare FMD-GAN against six competitive generative baselines, each representing a distinct
paradigm in time series generation:

¢ TimeGAN [7] (Adversarial + Supervised): A hybrid model integrating RNN-based autoencoding,
temporal supervision, and adversarial learning. It serves as a prevalent standard for sequential
generation.

¢ RCGAN-UCR [9] (Conditional GAN): A recurrent conditional GAN initially designed for the
synthesis of medical signals. We modify it for UCR datasets by conditioning on one-hot class
labels.

¢  TTS-CGAN [18] (Prototype-guided GAN): A GAN model that produces time series by condition-
ing on class prototypes, hence improving semantic integrity and temporal coherence.

¢  CSDI[10] (Score-based Diffusion): A conditional score-based diffusion model for imputing time
series data. We adapt it for unconditional generation by class-aware reverse sampling.

¢ DiffWave [22] (Denoising Diffusion): An audio synthesis diffusion model, modified for uncondi-
tional time series production with Gaussian noise schedules.
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e Diffusion-TS [15] (Denoising Diffusion): A comprehensible time series generator utilizing au-
toregressive denoising diffusion, providing high fidelity across many tasks.

To facilitate an equitable comparison, all baselines are trained on identical windowed and nor-
malized sequences as FMD-GAN (see to Section 4.1), employing the same segment lengths, class
conditioning procedures, and evaluation metrics. Hyperparameters are optimized through validation,
and all models are assessed using identical splits.

These baselines provide a thorough assessment of FMD-GAN across adversarial, conditional, and
diffusion-based frameworks, especially in structure-aware and class-preserving generation tasks.

4.3. Evaluation Metrics

To thoroughly examine the quality of generated time series, we employ five representative metrics
that together measure realism, structural fidelity, semantic consistency, and interpretability.

*  Fréchet Inception Distance (FID): Evaluates the distributional similarity between authentic and
produced samples inside a learned embedding space. We employ a pretrained LSTM encoder
to derive fixed-length representations and calculate the Fréchet distance between the empirical
Gaussian distributions of these embeddings. A reduced FID signifies enhanced distributional
alignment and authenticity.

*  Dynamic Time Warping (DTW): Determines structural alignment by calculating the best align-
ment cost between generated and actual sequences. Dynamic Time Warping accommodates local
time variations and distortions, rendering it a resilient metric for temporal accuracy. Reduced
DTW values signify enhanced structural preservation.

*  Class Consistency Accuracy (CCA): Evaluates semantic coherence by confirming that generated
sequences accurately correspond to their designated class labels. A one-dimensional convolutional
neural network classifier is trained on actual data and employed to forecast class labels for
generated samples. A higher CCA indicates enhanced semantic fidelity and superior class-
conditional generation quality.

®  Spectral Distance (SD): Assesses the preservation of frequency-domain structure by calculating
the average Euclidean distance between the normalized power spectra of actual and produced
sequences. We utilize the Fast Fourier Transform (FFT) to derive the magnitude spectrum for
each sequence. Reduced SD values signify enhanced global structural alignment in the frequency
domain, reinforcing the spectral modeling rationale underlying FMD-GAN.

All measures are averaged across five independent trials with distinct random seeds to provide
statistical robustness. Classifiers employed for CCA and embeddings utilized for FID and t-SNE
remain constant throughout all methodologies. Standard deviations are presented in the relevant
result tables where appropriate.

4.4. Implementation Details

Training Setup. All models are executed in PyTorch 1.13 and trained on a solitary NVIDIA RTX
3090 GPU. Both datasets utilize a fixed window length of I = 64 and a hop size of h = 16 for time
series segmentation. The quantity of latent states is established at S = 8, and the count of diffusion
steps is predetermined at T = 50. A linear beta schedule is utilized for the forward diffusion process.

Optimization. The Adam optimizer is employed with a learning rate of 1 x 1074, a batch size
of 64, and no weight decay. Each model undergoes training for 5000 iterations, although empirical
convergence generally occurs at approximately 3800 steps. The checkpoint exhibiting the minimal
validation Fréchet Inception Distance (FID) is chosen for final assessment.

Model Architecture. The generator has three temporal convolutional layers (kernel size 5,
dilations 1-2—4), succeeded by two linear projections to align with the input channel dimension C.
Every diffusion step is influenced by a spectral mask M}s) € RX, with K = 129 representing the
quantity of positive frequency bins derived from a 256-point FFT. Zero-padding is utilized to guarantee
that all segments conform to the FFT input dimensions.
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Despite each input segment is 64 in length, we utilize a 256-point FFT to improve frequency
resolution. The enhanced spectral granularity enables each mask M]((S) to identify more distinctive
frequency patterns for each latent state, thus enhancing both structure-aware generation and spectral
consistency. Empirical observations indicate that reduced FFT sizes (e.g., 64) result in diminished
modularity and alignment in generated sequences.

The reverse generator replicates the forward pipeline and executes incremental denoising based on
latent states. The discriminator functions at the full-sequence level and has a dual-branch architecture,
simultaneously optimizing for adversarial realism and class-aware precision. It employs 1D FFI-based
spectral feature extraction, succeeded by LeakyReLU activations and LayerNorm.

Clustering and Latent State Assignment. We execute K-means clustering on the segment-level
spectral embeddings to derive state labels for frequency masking. The cluster count is established at
S = 8, with 100 iterations employed. To ensure numerical stability, we can employ PCA to reduce
embeddings to 32 dimensions prior to clustering.

Loss Function and Weighting. The total loss combines three terms: reconstruction loss, spectral
alignment loss, and KL divergence for latent regularization:

‘Ctotal = Arec * Lrec + Aspec : Espec + AkL - Lk, (16)

with weights set to Arec = 1.0, Aspec = 1.0, and Ak, = 0.1. The spectral loss quantifies the mean
squared error between actual and generated magnitude spectra, whereas the KL loss regulates the
distribution of assignments among latent states.

4.5. Quantitative Results

Table 2 presents a comprehensive comparison of seven generative models across four benchmark
datasets using three metrics: FID (}), DTW (), and CCA (7). All results are averaged over five distinct
random seeds, and we noted a low standard deviation across runs (often below 1.0), signifying steady
and consistent performance.

FMD-GAN consistently attains the lowest FID and DTW across three of four datasets, indicating
robust distribution alignment and preservation of temporal structure. For example, in the GunPoint
dataset, FMD-GAN decreases the average FID by more than 50% relative to TimeGAN, demonstrating
its capacity to produce structurally accurate and realistic sequences. The DTW gap between actual and
produced sequences is significantly reduced, indicating enhanced temporal alignment relative to both
GAN and diffusion-based benchmarks.

Regarding CCA, which measures semantic similarity, FMD-GAN attains the highest or nearly top
scores across the majority of datasets. While Diff Wave attains the highest score on ChlorineConc, FMD-
GAN continues to be very competitive overall, sustaining a robust equilibrium between structural
fidelity and semantic preservation.

These results highlight the effectiveness of our Fourier-Markov diffusion models in producing
class-consistent, high-fidelity time series. In contrast to models like CSDI and TimeGAN, which either
lack structural priors or rely on unconditional generation, FMD-GAN more effectively preserves a
balance between diversity and class specificity.

Table 2. Quantitative comparison using FID (]), DTW (]), and CCA (7) across four datasets. Values are averaged
over five random seeds. Best scores per column are bolded.

Model ECG200 GunPoint FordA ChlorineConc
FID| DIW|] CCAt FID| DIW] CCAT FID|] DIW| CCAt FID|] DTW| CCA1?T

TimeGAN 50.9 11.6 0.90 47.9 6.4 0.87 50.4 16.8 0.77 38.0 10.6 0.89
RCGAN-UCR 45.8 17.3 0.84 29.1 13.3 0.76 53.1 14.5 0.88 34.2 19.6 0.88
TTS-CGAN 51.1 7.9 0.84 21.8 7.3 0.84 49.8 19.5 0.81 34.8 12.0 0.79
CSDI 48.5 9.8 0.88 253 6.7 0.85 47.6 13.2 0.86 33.6 9.7 0.87
DiffWave 42.7 6.7 0.90 224 5.9 0.88 45.3 10.2 0.88 31.2 8.3 0.90
Diffusion-TS 38.2 7.2 0.91 20.7 5.2 0.89 439 9.9 0.89 28.9 7.3 0.89

FMD-GAN (Ours) 384 6.7 0.91 20.1 5.1 0.89 41.8 9.6 0.89 28.5 7.1 0.88
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To enhance the evaluation of global structural faithfulness in the frequency domain, we utilize the
Spectral Distance (SD) measure for all models. This measure calculates the mean Euclidean distance
between the normalized power spectra of actual and created sequences. For each sequence, we
implement the Fast Fourier Transform (FFT) and normalize its magnitude spectrum prior to calculating
the distance. Reduced SD values signify enhanced conformity with the global frequency attributes of
the target distribution.

Table 3 demonstrates that FMD-GAN attains the lowest standard deviation across all four datasets,
hence affirming its efficacy in maintaining spectral structure. Diff Wave and Diffusion-TS demonstrate
competitive outcomes owing to their diffusion-centric architecture, whilst TTS-CGAN and CSDI
exhibit middling performance. TimeGAN and RCGAN-UCR are excluded from this evaluation due to
their generated sequences exhibiting spectrum instability, resulting in unreliable or noisy FFT results.
This constraint highlights the benefit of frequency-aware systems like FMD-GAN in maintaining global
structure.

These findings further corroborate the efficacy of FMD-GAN in maintaining spectral integrity.
FMD-GAN attains the lowest standard deviation across all datasets, a benefit attributable to its
spectral-aware architecture, which corresponds with its exceptional performance in FID and DTW,
hence affirming cross-domain consistency rather than metric-specific optimization.

Table 3. Spectral Distance (SD |) comparison across four datasets.

Model ECG200 GunPoint Coffee Beef
TTS-CGAN 0.092 0.084 0.113  0.105
CSDI 0.081 0.075 0.109  0.093
DiffWave 0.064 0.058 0.091 0.078
Diffusion-TS 0.062 0.055 0.087  0.072
FMD-GAN (Ours) 0.053 0.046 0.079  0.065

4.6. Ablation Study

We conduct ablation tests using the ECG200 and GunPoint datasets to assess the contribution of
each essential component in FMD-GAN. These benchmarks were chosen for their unique temporal
and spectral attributes, allowing us to evaluate the influence of each design decision on time-domain
alignment, semantic coherence, and preservation of frequency structure.

We construct the following ablated variants:

)

Gaussian noise, therefore disregarding frequency-aware modulation.
¢ NoMarkov: Substitutes the acquired Markovian transition matrix with uniform random sampling,

* NoMask: Eliminates the state-conditioned spectral mask MJ([S , substituting it with isotropic

hence undermining temporal state continuity.

* NoDiff:Completely disables the forward diffusion, hence reducing the model to a traditional
GAN trained on latent vectors.

¢ FMD-GAN (Full): The comprehensive model integrating spectrum masking and Markov-guided
denoising diffusion.

Table 4 presents the performance across four metrics: Fréchet Inception Distance (FID), Dynamic
Time Warping (DTW), Canonical Correlation Analysis (CCA), and Spectral Distance (SD). The com-
plete strategy routinely attains greater outcomes. The lack of diffusion (NoDiff) results in the most
significant degradation, underscoring the essential function of denoising-based temporal refinement.
NoMask results in increased spectral divergence and diminished cross-correlation accuracy, signifying
compromised spectral alighment and semantic integrity. NoMarkov demonstrates minor variations
in FID and CCA, although it significantly enhances DTW and SD, underscoring its significance for
temporal smoothness and structural consistency.
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These findings affirm that each element significantly enhances the model’s efficacy, and that
the integration of frequency-aware diffusion and Markov state transitions is crucial for structure-
preserving generation. All data are averaged across five iterations, with standard deviations below 1.0,
highlighting the statistical reliability of our conclusions.

Table 4. Ablation study on ECG200 and GunPoint datasets using FID (]), DTW (]), CCA (1), and SD ({). Lower
SD indicates better spectral structure preservation. All results are averaged over 5 random seeds.

ECG200 GunPoint
Variant FID| DIW] CCAtT SD| FID| DIW] CCA?T SDJ
NoMask 43.7 8.5 0.86 0.074 239 6.1 0.85 0.067
NoMarkov 41.5 8.2 0.88 0.069 224 5.8 0.86 0.063
NoDiff 46.2 9.1 0.83 0.089 26.1 6.6 0.82 0.079
FMD-GAN (Full) 384 6.7 0.91 0.053 20.1 5.1 0.89 0.046

4.7. Qualitative Analysis
4.7.1. Structure Visualization and Residual Analysis

To further demonstrate the structural fidelity and class consistency of FMD-GAN, we present
a qualitative comparison against two representative baselines: TimeGAN and Diffusion-TS. These
methods are selected to exemplify two predominant paradigms in time series generation—GAN-based
and diffusion-based approaches—providing a varied contrast to our Fourier-Markov design.

We visualize generated samples on two datasets, ECG200 and GunPoint, which exhibit distinct
temporal patterns and frequency characteristics. For each dataset, we select one representative test
sequence from each class and show four aligned visualizations:

e  Real: The original ground-truth sequence from the test set.

*  Generated: The sequence synthesized by each method (TimeGAN, Diffusion-TS, FMD-GAN).

¢  Residual (FMD-GAN only): The pointwise discrepancy between the actual output and that of
FMD-GAN, emphasizing its reconstruction accuracy.

¢ Latent State (FMD-GAN only): A color-coded bar representing the Markov state allocated to
each timestep throughout the creation process.

This comparison enables a visual evaluation of each model’s ability to represent global trends,
local variations, and semantic class attributes.

Figure 4 illustrates representative class-specific samples from the ECG200 and GunPoint datasets,
comparing the generative performance of FMD-GAN against two competitive baselines: TimeGAN
and Diffusion-TS. Each column displays the actual time series (top), succeeded by the outputs from
the three models. For FMD-GAN, we further show the residual error and the latent Markov state
sequence to improve interpretability.
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Figure 4. Qualitative analysis of the ECG200 and GunPoint datasets. Each column presents a class-specific sample,
featuring the actual sequence (top) alongside results from TimeGAN, Diffusion-TS, and FMD-GAN. Residual
errors and latent Markov states are depicted solely for FMD-GAN, as these elements are inapplicable to the
baseline models.

Superior fidelity is demonstrated by FMD-GAN in maintaining both fine-grained temporal fluc-
tuations and the global structure. While it preserves the abrupt transitions and plateau segments that
define motion patterns on GunPoint, it recovers smooth baseline oscillations with precise synchro-
nization on the ECG200 dataset. In contrast, Diffusion-TS introduces high-frequency noise and loses
temporal consistency in some places, whereas TimeGAN tends to over-smooth and distort local details.

The FMD-GAN’s residual curves show accurate magnitude and time reconstruction; they are
low-magnitude and concentrated close to signal boundaries. The Markov model’s latent state sequences
frequently match significant signal regions like peaks, troughs, and constant segments, confirming the
function of frequency-aware, state-conditioned diffusion in directing creation.

No post-processing or cherry-picking is done; all samples are chosen at random from the test sets
that have been reserved. Latent noise and state routes are sampled to create FMD-GAN sequences,
which show reliable and comprehensible outcomes across classes. These visual results corroborate the
previously reported quantitative gains.

4.7.2. Latent Space Alignment via t-SNE

We use t-SNE [23] to visualize the distribution of generated and real samples in order to assess
whether FMD-GAN maintains the semantic structure of real sequences in the latent space. Figure 5
presents a 2x3 grid: each column corresponds to a generative model (TimeGAN, Diffusion-TS, and
FMD-GAN), and each row corresponds to a dataset (ECG200 and GunPoint).

Triangles in each subplot represent created samples, while circles represent real samples. Ground-
truth class labels, indicated in parentheses (e.g., (1), (2), or (—1)), are used to color-code the data
points. Strong alignment between generated and real data is shown by FMD-GAN, which forms close,
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class-consistent clusters. On the other hand, particularly on the GunPoint dataset, TimeGAN and
Diffusion-TS show more dispersed distributions, misaligned classes, or mode collapse.

These findings imply that FMD-GAN's superior class-aware modeling abilities are demonstrated
by its ability to produce realistic sequences while preserving the underlying semantic structure in
latent space.
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Figure 5. Latent space visualization via t-SNE on ECG200 (top row) and GunPoint (bottom row). Real test
samples (circles) and produced sequences (triangles) are compared in each subfigure using the following models:
TimeGAN (left), Diffusion-TS (middle), and FMD-GAN (right). Class labels are used to color-code points. Class-
aware and semantically consistent generation is demonstrated by FMD-GAN, which exhibits superior alignment
between generated and real distributions.

4.8. Sensitivity to Markov States and KL Regularization

To assess the robustness and parameter sensitivity of FMD-GAN, we analyze the impact of two
critical hyperparameters: the number of latent Markov states S and the KL divergence weight Ag;.
The regularization strength of the latent structure during diffusion and the temporal resolution of state
transitions are both regulated by these parameters.

Impact of state number S € {2,4,6,8,10,12}. Figure 6 (top) shows the generation quality under
different values of S on the ECG200 and GunPoint datasets. We observe that performance consistently
improves as S increases from 2 to 8, indicating that finer-grained state partitions help capture more
detailed spectral-temporal structure. Notably, FID and DTW decrease while CCA improves with
increasing S, reaching optimal performance at S = 8. However, further increasing S to 10 or 12 results
in saturation or slight degradation. This is probably the result of redundant over-segmentation, in
which more states start modeling overlapping frequency bands, resulting in needless transitions and
diminishing returns. These patterns support the idea that efficient generation requires a latent structure
that is both expressive and compact.

Impact of KL regularization Ag; € {0.001,0.01,0.05,0.1,0.2,0.5}. As shown in Figure 6 (bottom),
the KL weight significantly affects the balance between flexibility and structural consistency. Reduced
alignment and lower generation quality are the results of under-regularized transitions caused by small
values (e.g., A = 0.001). On the other hand, excessively strict regularization (e.g., A = 0.5) restricts the
state assignments excessively, which limits the model’s ability to adjust to semantic variation. The best
FID, DTW, and CCA scores are consistently obtained with a modest setting of A = 0.1 across both
datasets, confirming its choice as the default configuration.
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Figure 6. Sensitivity analysis of FMD-GAN on ECG200 and GunPoint. Top row: Performance under varying
number of latent Markov states S. Bottom row: Performance under different KL weights Ax;. Metrics include
FID (}), DTW ({), and CCA (1), all averaged over 5 runs. Optimal results are achieved near S = 8 and Ag;, = 0.1,
confirming the robustness and generalizability of the model.

To lessen stochastic variance, all outcomes are averaged across five separate runs using various
seeds. The same training schedule and architecture are used to train each configuration for 5000
iterations. All primary results and ablation studies are set at S = 8 and Ag;, = 0.1 by default, unless
otherwise specified.

4.9. Training Dynamics and Convergence Stability

Over the course of training, we monitor four important metrics to evaluate the optimization
behavior of FMD-GAN: total loss, Fréchet Inception Distance (FID), Dynamic Time Warping (DTW),
and Canonical Correlation Analysis (CCA). These metrics assess the latent structural consistency;,
temporal alignment, generation integrity, and training objective, respectively.

The evolution of these measures across 5000 training iterations on the ECG200 and GunPoint
datasets is displayed in Figure 7. Every 50 iterations, every value is recorded. For clarity, a moving
average is applied after each curve has been averaged across five separate runs using various random
seeds.

In both datasets, FMD-GAN exhibits steady and reliable convergence. During the first 1000
iterations, the overall loss rapidly decreases, and after 3000 iterations, it progressively plateaus. Over
time, FID and DTW gradually decline, suggesting that the created sequences are more realistic and
aligned. CCA rises concurrently, indicating greater structural correlation in latent space.

Because of its simpler waveform patterns and lower intra-class variability, GunPoint shows
slightly smoother curves and slightly earlier stabilization in some metrics, especially FID and DTW,
even though the overall trends are identical. However, about iteration 4000, both datasets converge.
To account for possible late-stage enhancements and provide flexible checkpoint selection based on
validation performance, training continues for up to 5000 cycles.

5. Discussion

The experimental assessment of FMD-GAN reveals that the incorporation of Fourier spectral
embeddings with Markovian dynamics enhances both realism and class retention in generated time
series relative to current GAN- and diffusion-based methodologies. The approach attains reduced FID
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Figure 7. Training dynamics and convergence analysis. Dynamic Time Warping (DTW), Canonical Correlation
Analysis (CCA), Fréchet Inception Distance (FID), and total loss evolution during training on the ECG200 and
GunPoint. Every curve has been averaged and smoothed across five runs. All measures show steady convergence
for FMD-GAN, with performance stabilizing at iteration 4000.

and DTW scores while preserving elevated CCA alignment, signifying that the produced signals are
both visually and statistically congruent with the originals and semantically aligned with the class
labels.

In comparison to baseline models like TimeGAN, RCGAN-UCR, and CSDI, FMD-GAN attains a
superior equilibrium between global temporal structure and local dynamics. This enhancement is due
to the Fourier module’s capacity to capture frequency-domain regularities and the Markov diffusion
layer’s function in enforcing sequential dependencies. The class-preserving constraint enables the
model to surpass existing diffusion-based approaches (e.g., Diff Wave and Diffusion-TS) in contexts
where label fidelity is essential, such as medical ECG or sensor-based activity detection.

Nonetheless, certain limits exist. Initially, although Fourier-Markov coupling enhances perfor-
mance, the computational expense escalates with the quantity of diffusion steps, which may restrict
scalability to extensive sequences. Secondly, hyperparameter sensitivity, such as diffusion step size
and Fourier truncation length, was noted, potentially impacting robustness across diverse datasets. Ul-
timately, while the model demonstrates effective generalization across several benchmarks, additional
assessment on irregularly sampled or significantly noisy real-world time series (e.g., financial tick data,
IoT streams) remains necessary.

6. Conclusions

This research presents FMD-GAN, a generative framework that combines frequency-aware
diffusion, Markov-guided state transitions, and spectral clustering to generate class-consistent time
series. High-fidelity sequence generation based on latent spectral states is accomplished by the model’s
capacity to maintain semantic identity while encapsulating structural heterogeneity over time. The
model attains exceptional or competitive outcomes across various quantitative metrics, including
Spectral Distance (SD), Class Consistency Accuracy (CCA), Dynamic Time Warping (DTW), and
Fréchet Inception Distance (FID), demonstrating robust alignment with real data in terms of statistical
distribution and class semantics.
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Ablation studies demonstrate that spectrum masking and Markovian state transitions are essential
for the model’s efficacy, while sensitivity analysis underscore the consistent generation quality across
various latent state quantities and KL divergence weights. Qualitative assessments, such as residual
analysis, state overlays, and t-SNE visualizations, demonstrate that FMD-GAN preserves interpretable
and class-discriminative latent representations, exhibiting stable convergence across datasets.

7. Future Work

Based on these findings, numerous study avenues are proposed:

Augmented architectures: Integrating transformer-based denoisers may enhance the capacity
to capture long-range dependencies and intricate sequential structures, which diffusion-only mod-
els frequently inadequately address. Recent developments in time-series Transformers, including
Informer [19] and Autoformer [35], exhibit significant promise for effective long-sequence modeling.
Furthermore, adaptive or attention-based spectrum masks may allow the model to concentrate on
frequencies pertinent to the job, as indicated in recent transformer-based reviews for time series [25].

Generalization to intricate data: Future research will investigate the extension of FMD-GAN to
multivariate and multimodal time series, where inter-channel interactions are essential. The production
of variable-length sequences continues to pose a difficulty in generative modeling and may be enhanced
by probabilistic sequence alignment methods [27]. Semi-supervised extensions would be beneficial in
areas with limited labeled data, consistent with current research on foundation models for time series.

Domain-specific applications encompass anomaly production, physiological signal simulation,
and specialized augmentation activities. Recent advancements in ECG creation using GANs and
diffusion models [13,26] indicate that authentic synthetic data can enhance medical diagnosis. Likewise,
probabilistic augmentation for sensor-based activity recognition has demonstrated enhancements in
downstream classifier efficacy [11].

Dynamic adaptability: Existing constraints of offline spectral clustering and fixed-length inputs
may impede implementation in streaming environments. Future directions encompass dynamic
mask learning and end-to-end trainable state assignment. Techniques such as score-based diffusion
utilizing stochastic differential equations [27] and adaptive embedding strategies in Transformers
[25] may inform real-time and scalable solutions. This will improve the adaptability and operational
preparedness of FMD-GAN in dynamic settings, including IoT and financial tick streams.
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