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Abstract: The increasing prevalence of encryption enhances network traffic confidentiality and 
integrity but complicates network management and security by obscuring traffic flows. This 
challenge makes detecting cyberattacks and enforcing policies increasingly difficult. Encrypted 
Traffic Intelligence (ETI), particularly network traffic classification (NTC), offers solutions using 
machine learning techniques. However, practical implementation remains challenging due to the 
inherent complexity of network environments, where traffic feature distributions vary because of 
factors such as network topology and delay. This variability undermines the robustness of classifiers 
trained on static datasets. Moreover, dynamic environments increase the likelihood of encountering 
unknown traffic, where inaccurate identification can lead to high false positive rates, unacceptable in 
critical applications like billing and cybersecurity. To address these challenges, we propose e-
FlowPrint, an enhanced FlowPrint-based open-set recognition (OSR) classifier designed for robust 
unknown traffic detection. Inspired by uncertainty sampling techniques in active learning, we 
introduce two novel methods: Probability Anomaly Recognition  (PAR) and Entropy-Based 
Uniformity Analysis (EnUniA). PAR utilizes the disparity between the highest and second-highest 
classification probabilities; a small disparity indicates uncertainty, suggesting that the sample is likely 
to be unknown. EnUniA calculates entropy values across all classes, where high entropy indicates a 
uniform distribution of probabilities, further increasing the likelihood of the sample being unknown. 
We evaluate the proposed model using the ITC-Net-blend-60 dataset across diverse real-world 
network environments and conduct long-term performance assessments through three-year network 
condition simulations. Our results demonstrate that e-FlowPrint improves FlowPrint’s unknown 
traffic detection performance by approximately 30%. Additionally, it enhances overall classifier 
performance by 2% in varying network environments. 

Keywords: network traffic analysis; traffic classification; mobile application identification; open-set 
recognition; unknown traffic detection; robustness; Encrypted Traffic 
 

1. Introduction 

The advent of encryption has greatly improved the confidentiality and integrity of network 
traffic [1], protecting sensitive data from unauthorized access and interception. This advancement 
ensures secure communication for both organizations and individuals. However, the widespread 
adoption of encryption also poses significant challenges for network management and security. By 
concealing the contents of data packets, encryption restricts network administrators’ visibility into 
the underlying traffic flows. As a result, they can no longer identify cyberattacks or implement traffic 
management policies [2]. 

This is where Encrypted Traffic Intelligence (ETI) comes into play. ETI is a technology that 
provides valuable information about network traffic without decryption and compromising users’ 
privacy.  

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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One of the key functions of ETI is network traffic classification (NTC) [3]. NTC employs 
advanced techniques such as machine learning (ML), deep learning (DL), and graph science to 
categorize network traffic. It can be performed at different levels of granularity, including protocol, 
application, and service levels, with each level having its own distinct methods and uses [4]. 

For example, in video applications like Netflix and YouTube, encryption complicates the 
distinction between downloading video and streaming on demand. With ETI, operators can identify 
the underlying service. They can prioritize streaming over downloads or compress on-demand 
streams to minimize buffering during network congestion. Similarly, frequently accessed video 
content from platforms like Instagram can be cached, while packets from email applications such as 
Gmail or Outlook can be run through extra filtering to detect security threats hidden in file 
attachments. 

Additionally, application awareness is essential for access management in corporate 
environments, especially those supporting remote work or BYOD policies. Shadow IT activity can be 
managed by whitelisting/blacklisting specific applications — a critical security measure in sensitive 
sectors like data centers, where restricting access to vulnerable applications helps safeguard 
infrastructure [5]. 

Therefore, insights delivered by NTC suite support a wide range of networking solutions, such 
as routers, network packet brokers, policy control engines, and security tools, including next-gen 
firewalls and cloud access security brokers [6]. 

Network environments are highly complex [7]. Despite extensive research has been conducted 
on the subject, practical implementation faces two key challenges: model robustness and detecting 
unknown traffic [8]. This complexity directly impacts model robustness. In real-world scenarios, the 
behavior of network traffic is highly affected by a range of factors such as network topology, 
bandwidth, and latency, causing significant variations in traffic feature distributions. These factors 
may vary across different network segments or even within the same network segment over time [9]. 
Recent studies [9,10] have demonstrated that while existing classifiers perform well when trained 
and tested on conventional machine learning datasets—where the data is divided into training and 
testing sets—they often suffer significant performance degradation when applied to different 
datasets. Given the substantial impact of network environments on the distribution of network traffic 
features and, consequently, on model performance, it is crucial to develop models that demonstrate 
robustness and compatibility across variant network environments [11].  

Beyond model robustness, this dynamic environment also necessitates robust unknown traffic 
detection, which is crucial for real-world deployment. The ability to identify whether or not a test 
sample belongs to one of the semantic classes in a classifier’s training set that is called open-set 
recognition (OSR) or out-of-distribution (OOD) detection, has received significant attention in recent 
years [12]. Nonetheless, most network traffic classification is created with a closed-world assumption, 
where all potential classes are known during training [13]. This approach limits classifiers to 
predefined label sets, hindering their ability to recognize new traffic data. Accordingly, unknown 
traffic data is misclassified as a known class, leading to a high false positive rate. In many use cases, 
false positives in the classification results are unacceptable. For example, operators have to rule out 
false positives in the area of billing, as this can have a negative revenue impact and potentially 
damage the brand image. In cybersecurity use cases, false positives can make a huge difference and 
enable attacks and data breaches. 

When the traffic network environment is constantly changed and updated, then the likelihood 
of appearing unknown traffic flow is higher [8]. Therefore, it is essential to identify and classify 
unknown traffic accurately.  

The majority of web traffic comes from mobile devices. In 2025, mobile devices (excluding 
tablets) accounted for over 62% of global web traffic [14]. The affordability of mobile devices, coupled 
with the rapid expansion of network infrastructure such as 5G and the popularity of mobile 
applications and services, has driven a significant increase in mobile traffic volumes [15]. For this 
reason, we focused on classifying mobile applications. However, identifying mobile applications 
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poses more greater challenges than classifying other types of network traffic, such as Internet of 
Things (IoT) traffic. This is primarily due to the homogeneous yet highly dynamic and continuously 
evolving nature of mobile apps [5]. Notably, new updates to an application can change its behavior, 
which complicates the classification process. Furthermore, mobile applications can behave differently 
depending on the device and operating system, they are running on [16]. As a result, two 
aforementioned challenges—model robustness and unknown traffic detection—are particularly 
pronounced in mobile traffic classification. These observations become the motivation for our work.  

In this study, we present a novel and robust model for mobile traffic classification, with a 
particular focus on detecting unknown traffic in dynamic and complex network environments. 
Unlike existing methods, our approach integrates uncertainty measures inspired by active learning 
techniques, which significantly improve the detection of unknown traffic. We introduce two key 
components: Probability Anomaly Recognition (PAR), which analyzes the disparity between the 
highest and second-highest classification probabilities, and Entropy-Based Uniformity Analysis 
(EnUniA), which measures the uniformity of classification probabilities across all classes. These 
innovations allow our model to more accurately identify unknown traffic, which is crucial for real-
world applications such as cybersecurity and billing, where misclassification can lead to severe 
consequences.  

The model’s performance is evaluated using the ITC-Net-blend-60 dataset, an in-house dataset 
specifically collected to address the challenges of mobile network traffic classification. To further 
validate the model, we conduct extensive long-term simulations replicating real-world network 
conditions, enabling us to assess its robustness and adaptability in dynamic environments. Our 
results show a significant improvement in unknown traffic detection, with a 30% enhancement over 
traditional methods, as well as a 2% overall improvement in classification performance across 
varying network conditions. 

The rest of the paper is organized as follows. Section 2 reviews some of the most significant and 
recent studies on mobile network traffic classification. In Section 3, we introduce our proposed 
method. Section 4 presents the results of applying this method in both invariant and variant network 
environments. Section 5 discusses the experimental findings in greater detail. Finally, we conclude 
the paper in Section 6. 

2. Literature Review 

In this section we provide an overview of key network traffic classification methods. Due to the 
prevalence of encryption, feature extraction has increasingly focused on time-based characteristics, 
packet lengths, unencrypted layer header values, and TLS handshake information [5]. These features 
can be divided into three levels: “packet”, “flow”, and bag of Flow (BoF). 

Over the past two decades, a multitude of traffic classification methods have been developed 
and deployed [17]. Historically, port-based approaches were dominant. However, the contemporary 
use of dynamic ports by many applications has significantly diminished the accuracy of this method. 
Studies by Moore and Papajianaki [18] and Madhukar and Williamson [19], indicate that port-based 
classification now accurately classifies only 30% to 70% of Internet traffic. Consequently, more 
sophisticated traffic classification techniques are necessary to address the complexities of modern 
network traffic.  

Behavior-based approaches offer an alternative perspective by classifying traffic based on host 
(endpoint) behavior. Empirical studies have demonstrated that inter-host interactions exhibit distinct 
communication patterns across different applications. These patterns can be discerned by analyzing 
factors such as the number of communicating hosts, port usage, transport layer protocols, and the IP 
addresses of communicating hosts. This methodology has shown promising classification accuracy. 
For instance, Van Ede et al. [5] proposed a semi-supervised approach for mobile app fingerprinting 
based on endpoint temporal correlations while Li et al. [10] proposed a method based on graph 
propagation for traffic pattern detection. 
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With the advancement of machine learning, it has become a central approach in encrypted 
network traffic classification. Machine learning-based methods can be broadly classified into three 
categories: statistical feature-based, temporal feature-based, and deep learning-based. Statistical 
feature-based methods involve extracting statistical features from traffic objects, such as packet 
counts, average packet lengths, and average packet arrival times per flow. These features are then 
used to train machine learning models for classification, as demonstrated in [20,21].  

Temporal feature-based methods utilize features, such as packet length sequences or packet 
arrival interval sequences, as input for classifiers. Time series models, including Hidden Markov 
Models [22–25] and Recurrent Neural Networks[24,25], are commonly employed to learn temporal 
features for traffic classification. 

Deep-Learning based take raw traffic data as input and combine feature extraction, learning, 
and classification seamlessly, such as the method presented in [6,26]. 

However, these traditional approaches may struggle to detect novel, unseen applications that 
emerge in real-world scenarios. Consequently, recent investigations have increasingly addressed the 
challenge of identifying unknown or out-of-distribution (OOD) data. For instance, [1,13] employed 
methodologies combining Convolutional Neural Networks (CNNs) and Maximum SoftMax 
Probability (MSP) to detect OOD samples. Additionally, S. Cruz et al. [27] investigated the detection 
of unknown attacks and traffic using an open-set approach, utilizing a Weighted Support Vector 
Machine (W-SVM) model, and Y. Zhang et al. [28]proposed a novel open-set detection method, 
leveraging Extreme Value Theory (EVT) and an Open-CNN architecture, to estimate the probability 
of unknown attacks. 

These studies collectively highlight the growing importance of open-set recognition (OSR) in 
enhancing intrusion detection capabilities. By enabling the identification of novel applications and 
unknown attacks, OSR offers a promising approach to improve the security of networked systems, 
particularly in dynamic and evolving environments 

3. Materials and Methods 

3.1. Dataset 

To evaluate our proposed methods, we use in-house ITC-Net-Blend-60 dataset [29]. This dataset 
comprises encrypted mobile traffic labeled per app. It was gathered from 60 popular Android 
applications in five different network scenarios. These scenarios were consistent across all the apps 
but varied in terms of the Internet service provider (ISP), geographic location, device, app version, 
and individual users. Detailed specifications of the dataset and each scenario are provided in Table 
1. As indicated in FlowPrint [5] browsers behave like a platform for accessing web content rather than 
a dedicated application. Consequently, similar to the FlowPrint, we have entirely eliminated this 
category of applications from the dataset. 

Table 1. ITC-Net-blend-60 dataset specifications. 

Scenario ID 
No. 

Apps 
No. Bi-
Flows1 

User 
Device 

Location2 ISP3 
Vendor Model Android version 

A 59 108,370 U1 Xiaomi Note10 Pro 11 L1, L2 N1, N2 

B 60 72,279 U2 Samsung A50 11 L1, L3 N1, N3 

C 59 141,957 U3 Samsung 
A31 11 L4 N2, N4 

Tab A7 Lite 11 L4 N2, N4 

D 59 106,652 U4 Samsung J7 Prime 2 9 L1, L2, L5 N1, N2, N5 

E 52 47,044 U5 Samsung 
J7 6.0.1 L6 N2, N6 

A12 11 L6 N2, N6 
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1 The threshold of flows is set to one second. 2 L1 = ITC Lab; L2 = District 5, Tehran; L3 = District 11, Tehran; L4 
=Qom; L5 = Karaj; L6 = District 8, Tehran. 3 N1 = University of Tehran; N2 = TCI; N3 =AsiaTech; N4 =NTC; N5 = 
Shatel; N6 = MCI. 

3.2. Experimental Setup 

To ensure a comprehensive evaluation of the proposed approach, we examining its performance 
under two network conditions: an invariant network environment and a variant network 
environment. The following sections provide detailed descriptions of each environment, 
demonstrating the thoroughness of our approach. 

3.2.1. Invariant Network Environment 

To simulate the invariant network environment, we combined scenarios A to E into a single 
dataset. We then used the cross-validation method to split this dataset into training, validation, and 
test sets. The sets were divided into the following ratios: 80% for training, 10% for validation, and 
10% for testing, based on the number of samples in each class.  

3.2.2. Variant Network Environment 

To evaluate model robustness and simulate a variant network environment, we used a cross-
dataset validation method. For the validation set, we selected scenario E that was kept separate and 
not used in the rest of the evaluation process. This approach was taken to eliminate any bias during 
the optimization step. Although this may result in optimal parameters being tailored to this specific 
scenario, our findings in the subsequent sections demonstrate that these parameters also generalize 
effectively to other scenarios. In each experiment, we randomly selected three scenarios for training 
and the remaining one for testing. This process was repeated across all four possible training and 
testing set combinations, and the average model performance was reported. 

3.3. Model Architecture 

Open-set classifiers comprise two components: a closed-set classifier and an unknown class 
detector, and a positive correlation exists between closed-set accuracy and open-set performance. 
Specifically, studies in [30] demonstrate a high Pearson Product-Moment correlation, 𝜌 = 0.95 , 
between accuracy and AUROC, indicating a near-linear relationship. While a strong closed-set 
classifier is crucial, it alone may be insufficient for effective open-set recognition. Given that closed-
set classifiers are well-established in the traffic identification field. Nevertheless, the detection of 
unknown traffic patterns remains largely unexplored. In this research, we select a strong classifier 
from existing works and focus on developing a novel method to recognize unknown traffic patterns. 
The proposed Framework for network traffic classification with unknown detector is illustrated in 
Figure 1. 

 
Figure 1. Framework for network traffic classification with unknown detector. 
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3.3.1. Closed-Set Classifier 

Given the vast range of existing closed-set classifiers, we selected a representative classifier for 
each of the three primary traffic classification approaches. This selection yielded the following 
classifiers: Flowprint [5] or behavior-based classification, App Scanner [20] for machine learning-
based classification, and DT-ensemble [21]) for deep learning-based classification. We then assessed 
their performance in variable and fixed network environments to identify the most effective model.  

As shown in Figure 1, the FlowPrint classifier exhibits greater robustness and experiences less 
performance degradation than the other three classifiers. This advantage is due to the distinct features 
used by FlowPrint compared to the other classifiers. Specifically, FlowPrint utilizes IP addresses, port 
numbers, and certificates as its features. 

In comparison, the other two classifiers use statistical features such as packet length and packet 
arrival time interval in the flow. In a short time, statistical features may be affected by various 
network conditions, like latency and network congestion. Another key distinction is that FlowPrint 
employs the Bag of Flows (BoF) as its traffic object in decision-making. Although this led to a longer 
timeline, it helps the classifier make decisions based on more information and thus predict the label 
of the samples more accurately. 

Given FlowPrint’s robust performance across both stable and variable environments, we 
selected it as the closed-set classifier. Notably, FlowPrint incorporates an unknown data detection 
method, similar to the Maximum Softmax Probability (MSP) approach in OOD detection. This 
method classifies traffic as unknown when the maximum similarity between a test sample’s 
fingerprint and the fingerprints of training applications falls below a predefined threshold. In 
subsequent sections, we will refine this approach to enhance unknown traffic detection in both stable 
and dynamic network environments. 

3.3.2. Unknown Detector  

Drawing inspiration from the methods presented in active learning, we propose our method to 
detect unknown traffic. Active learning is a technique wherein machine learning algorithms 
strategically select the most informative training data rather than relying on passive data acquisition. 
This approach is particularly advantageous when data labeling is expensive or time-intensive [31]. In 
active learning, the focus is on identifying low-confidence data to enhance model training. 
Conversely, in out-of-distribution or unknown data detection, we aim to identify the same low-
confidence data but with the objective of preventing the model from making predictions on these 
instances. Building on the concept of ‘uncertainty sampling’ in active learning, we propose two novel 
methods as follows to detect unknown traffic. 
• Probability Anomaly Recognition (PAR): The PAR method, inspired by the Best versus Second 

Best (BvSB) approach in active learning, utilizes the disparity between the highest and second-
highest classification probabilities to make decisions. When the disparity is small, it indicates 
uncertainty in the model’s prediction, with the highest probability being only slightly greater 
than the second-highest. This reduced disparity suggests that the sample is more likely to be 
unknown, as the model struggles to confidently distinguish between classes. The operation 
function of this detector is shown in equation (1) that ŷ1 and ŷ2 represent the classes with the 
highest and second highest estimated probabilities according to the θ model. 

𝐿𝑎𝑏𝑒𝑙 = ൝ 𝐾𝑛𝑜𝑤𝑛 𝑖𝑓 𝑃ఏሺ𝑦ොଵ|𝑥ሻ − 𝑃ఏሺ𝑦ොଶ|𝑥ሻ >  𝑡ℎ;  𝑈𝑛𝑘𝑛𝑜𝑤𝑛 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;  (1)

• Entropy-Based Uniformity Analysis (EnUniA): The EnUniA method, inspired by entropy-
based techniques in active learning, calculates the classification probabilities for all classes. 
Higher entropy values indicate a uniform distribution over the classes, suggesting that the 
model is uncertain about the correct classification. This uniformity in probability distribution is 
a strong indicator of the likelihood that the sample is unknown. Entropy values range from zero 
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(indicating a clear, confident classification) to the logarithm of the number of classes (indicating 
maximum uncertainty). The operation function of this detector is shown in equation (2). 

𝐿𝑎𝑏𝑒𝑙 = ൞ 𝐾𝑛𝑜𝑤𝑛 𝑖𝑓  − ෍ 𝑃ఏሺ𝑦ො௜|𝑥ሻ௜ log 𝑃ఏ ሺ𝑦ො௜|𝑥ሻ < 𝑡ℎ;  𝑈𝑛𝑘𝑛𝑜𝑤𝑛 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;  (2)

To compute these two metrics in the FlowPrint method, we first determine the similarity 
between each sample and all fingerprints obtained during the training phase. Since each application 
may have multiple fingerprints, we consider the maximum similarity value for each class. 
Subsequently, we apply the proposed methods to perform the final evaluation. 

3.4. Optimal Threshold Determination 

In the real world, a decision-making model requires a threshold for operation. However, 
determining the optimal threshold presents a challenge due to inherent trade-offs. Typically, 
threshold values are empirically derived and depend on specific use cases [32]. Furthermore, 
theoretical analysis demands the determining optimal thresholds to evaluate models beyond the 
scope of ROC/AUC metrics. 

In this study, we employed the validation dataset to ascertain the optimal threshold. The 
validation set excludes samples from unknown classes to prevent potential bias toward treating a 
specific application as an unknown class during the threshold optimization process. We defined the 
optimal threshold as the point where the F1 score is maximized.  

Specifically for each network condition, we partitioned the validation set into two equal halves 
for training and testing and evaluated FlowPrint’s ability to classify known applications using our 
two proposed methods. The results are presented in Table 2.  

It is important to note that since FlowPrint is based on the temporal correlation of destination 
features, we did not shuffle the data during the partitioning process. 

Table 2. Summary of optimal threshold values found for each method and condition. 

Method Condition Optimal value F1-score (%) 

MSP 
Invariant Environment 0.089 81.41 
Variant Environment 0.143 91.54 

PAR 
Invariant Environment 0.005 82.25 
Variant Environment 0.001 92.53 

EnUniA 
Invariant Environment 5.601 81.37 
Variant Environment 5.580 91.51 

4. Simulation Results 

To comprehensively evaluate and compare our method against the baseline, we conducted a 
series of experiments, performing each under both variant and invariant network conditions, as 
outlined in section 3.2.   

4.1. Expriment of Appearing New Applications (Unknown Classs) 

An overall evaluation, independent of optimal threshold considerations, was conducted using 
the ROC-AUC metric. As illustrated in Figure 2, our proposed methods achieved superior 
performance over the baseline in both invariant and variant network environments. 
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Figure 2. Robustness comparison of the Appscanner, FlowPrint, and DT-Ensemble models in the absence of 
unknown traffic. 

In Figure 3 is illustrated the distribution of known and unknown samples from the FlowPrint 
classifier. As depicted, PAR and EnUniA concentrate unknown data within a specific region, 
facilitating identification via appropriate threshold selection. 

  
(a) (b) 

Figure 3. Comparison of ROC curves and AUC values for unknown traffic detection under (a) invariant and (b) 
variant network conditions. . 

To enable a direct performance comparison with the authors’ approach, our proposed methods 
were evaluated using the obtained thresholds. The results, presented in Table 3, detail FlowPrint’s 
accuracy with various detectors in invariant and variant network environments. For concise analysis, 
each table entry reports the performance on the unknown class and the macro-average across all 50 
classes (49 known, 1 unknown). 
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Table 3. FlowPrint performance with different unknown traffic detectors under invariant and variant network 
environments. 

Results of the Method and threshold proposed by 
the FlowPrint authors for an invariant network 

environment  
  

Results of the Method and threshold proposed by 
the FlowPrint authors for a variant network 

environment  

 Precision Recall 
F1-

Score 
Unknown 

Traffic 
0.59 0.21 0.29 

Macro average  0.85 0.87 0.84  

 

 Precision Recall 
F1-

Score 
Unknown 

Traffic 
0.44 0.23 0.30 

Macro average  0.84 0.84 0.81  

Results of the PAR method using the optimal 
threshold in an invariant network environment.   

Results of the PAR method using the optimal 
threshold in a variant network environment.  

 Precision Recall 
F1-

Score 
Unknown 

Traffic 
0.46 0.62 0.52 

Macro average  0.89 0.87 0.86  

 

 Precision Recall 
F1-

Score 
Unknown 

Traffic 
0.46 0.67 0.54 

Macro average  0.87 0.84 0.83  

Results of the EnUniA method using the optimal 
threshold in an invariant network environment.   

Results of the EnUniA method using the optimal 
threshold in a variant network environment.  

 Precision Recall 
F1-

Score 
Unknown 

Traffic 
0.82 0.49 0.60 

Macro average  0.87 0.88 0.85  

 

 Precision Recall 
F1-

Score 
Unknown 

Traffic 
0.76 0.80 0.59 

Macro average  0.85 0.85 0.83  

As demonstrated, our proposed methods are more efficient in both invariant and variant 
environments, improving unknown data detection by up to 50% and overall recognition accuracy by 
up to 2%. To address potential concerns regarding threshold optimization, we calculated the optimal 
threshold for the conventional method using the approach described in Section 3.4. As shown in 
Table 4, these thresholds yielded lower performance in both environments compared to the authors’ 
proposed thresholds. Consequently, they were excluded from the comparative analysis. 

Table 4. FlowPrint unknown traffic detection performance at optimal thresholds derived from: (a) invariant 
network environment, (b) variant network environment. 

 Precision Recall F1-Score 

Unknown Traffic 0.51 0.05 0.08 

Macro average 0.83 0.84 0.81 
 

 Precision Recall F1-Score 

Unknown Traffic 0.19 0.11 0.13 

Macro average 0.84 0.87 0.83  

(b) (a) 

4.2. Simulation of Long-Term Performance 

Destination features (IP address, port) and TLS certificates can change over time due to server 
replication/migration or certificate renewals. To assess the proposed model’s long-term performance, 
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we simulated these feature changes and measured their impact. Given that application IP addresses 
change on average once every three months, we modeled this using a Poisson random variable with 
rate = 1/3. For 49 known applications in the training dataset, assuming independence, the combined 
rate follows a Poisson random variable with rate = 49/3. We assumed the same change rate for TLS 
certificates, resulting in a second Poisson random variable with rate = 49/3. We conducted 500 
simulations over a 36-month period. Based on Monte Carlo methodology, with a variance error of 0.1 
and a 95% confidence level, the minimum simulation count required is 384; we opted for 500 
simulations. During each simulation, we trained the model on the training data and randomly 
modified IP addresses and TLS certificates in the testing data according to the two Poisson random 
variables. Given the domain-based nature of TLS certificates, this random selection provides a 
suitable approximation of the model’s performance. 

Simulation results in both network environments are depicted Figure 4. The two proposed 
methods demonstrated superior performance compared to the authors’ baseline.  

   
(a) (b) (d) 

 

 

 
(d) (e) (f) 

Figure 4. Distribution diagrams comparing known and unknown data in invariant (a-c) and variant (d-f) 
network environments, using Baseline (a, d), PAR (b, e), and EnUnia (c, f). 

 

(a) 
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(b) 

Figure 5. Results of long-term performance simulation under (a) invariant network environment, and (b) variant 
network environment. 

5. Discussion 

Our proposed unknown traffic detection methods, PAR and EnUniA, outperform the Baseline. 
This superiority is attributed to the inherent tendency of classifiers to identify similarities between 
entirely novel data and trained classes, a consequence of traffic homogeneity. The assumption that a 
model can assign unknown data to a single class with negligible probability is, therefore, unrealistic. 
Leveraging this observation and drawing inspiration from active learning sampling techniques, we 
developed PAR and EnUniA. These methods exhibit a significant advantage over Baseline for 
classifiers utilizing traffic objects larger than flows, while performing comparably for those using 
sub-flow objects. This distinction arises from the binary nature of flows: they are either homogeneous 
or heterogeneous. When analyzing multi-flow objects, such as bag flows, homogeneous flows 
demonstrate similarity with known classes, enhancing the performance of PAR and EnUniA. 
However, with sub-flow objects, only homogeneous sub-flows benefit from our proposed methods. 

Overall, PAR and EnUniA demonstrate superior performance compared to Baseline. 
Furthermore, their minimal computational overhead and straightforward post-processing make 
them broadly applicable across various classifier types. 

6. Conclusions 

Network traffic identification and classification are essential for network management and 
security, supporting applications such as capacity planning and anomaly detection. However, 
dynamic real-world networks present challenges due to changing traffic feature distributions. This 
study addresses the need for robust classifiers and the detection of potentially hazardous unknown 
traffic. Inspired by active learning and exploiting application traffic homogeneity, we present a robust 
open-set recognition (OSR) classifier, utilizing FlowPrint, a state-of-the-art method for closed-set 
classifier and PAR and EnUniA methods for unknown traffic detection. Compared to the base 
classifier, our methods demonstrate superior performance. In particular, EnUniA improves 
FlowPrint’s unknown traffic detection in variant environments by approximately 30% (76% 
precision, 50% recall, and 59% F1-score) and enhances overall classifier performance by 2%. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
ETI Encrypted Traffic Intelligence 
NTC Network Traffic Classification 
ML Machine Learning 
DL Deep Learning 
OSR Open-set Recognition 
OOD Out-of-Distribution 
IoT Internet of Things 
MSP Maximum SoftMax Probability 
PAR Proximity Ambiguity Resolver 
EnUnia Entropy-based Uncertainty Analyzer 
AUC Area Under the Curve 
ROC Receiver Operating Characteristic 
BoF Bag of Flow 
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