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Article

Trans-eQTLs Can Be Used to Identify Tissue-Specific
Gene Regulatory Networks

Majid Nikpay

Omics and Biomedical Analysis Core Facility, University of Ottawa Heart Institute, Ottawa, K1Y 4W7, Canada;
mnikpay@ottawaheart.ca

Abstract: Previous high throughput screening studies indicated trans-eQTLs tend to be tissue specific. In
this study, I probed if this feature can be used to identify tissue-specific gene regulatory networks. eQTL
data (P<5e-8) for 16,259 genes were identified and their summary association statistics were obtained from
the eQTLGene database. Next, eQTLs that display both cis and trans regulatory effects were selected and
the association between their corresponding genes were examined using Mendelian randomization. A
total of 169 genes that exerted trans-regulatory impacts on 692 genes were identified. 90% of the genes
(N=749) aggregated into a gene regulatory network significantly enriched in hemo-immune processes.
The robustness of finding was confirmed through simulation. The identified network displayed the scale-
free topology. This provided the reason to examine the association of the network’s hub genes with the
phenome. The outcome of analyses revealed GSDMB and ORMDL3 impact several disorders of immune
origin and ALDH?2 overexpression contributes to obesity. This study reports trans-eQTLs can be used to
identify tissue-specific gene regulatory networks and describes a workflow to achieve this purpose. The
network identified in this study showed scale-free topology indicating the hub genes of a GRN could be
targeted to prevent disease outcomes.

Keywords: trans-eQTLs; tissue specificity; gene regulatory network; Mendelian randomization;
scale-free network

Introduction

The combination of active genes and the interactions between them within a cell generates a gene
regulatory network (GRN) that enables a cell to specialize in fulfilling its function. Therefore, an improved
understanding of GRNs paves the way to use such information not only as a means to understand the
principles of gene regulation but also as a tool to drive cell fate for purposes such as cellular engineering,
or to prevent disease outcomes (Badia-i-Mompel et al., 2023). There are several approaches to infer GRNs
from omics data (Badia-i-Mompel et al., 2023, McCalla et al., 2023, Mercatelli et al., 2020). These approaches
rely on a combination of biological and statistical information to identify pairs of related genes for the
construction of GRNs. Approaches such as co-expression network analysis aim to build a network by
identifying genes whose expression profiles are correlated. While these approaches systematically examine
the genome and as such are hypothesize-free, the retrieved network is undirected due to the symmetrical
nature of correlations. Other methods try to resolve this issue by incorporating biological information.
Notably, they use data from CHIP-seq and cis-regulatory elements to identify transcription factors that
bind to target genes and as such turn the undirected network into a network that its edges indicate
causality. The gene regulatory network obtained from such approaches does not cover the interactions
among gene products, (i.e. interaction at the level of pathway/biological processes). Furthermore, they
assign transcription factors to their target genes based on genomic proximity which could introduce bias
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in the presence of distal regulatory effects (Badia-i-Mompel et al., 2023, McCalla et al., 2023, Mercatelli et
al.,, 2020). Another factor that limits the practicability of current approaches is that they require access to
individual level data which is not always feasible for reasons such as participants privacy or logistical
considerations. In this study, I describe a method based on eQTLs that can address the issues described
above.

An eQTL or an expression quantitative trait locus is a site on DNA that variation in its sequence
impacts the expression of a gene. If an eQTL is located near the gene it acts upon, it is referred to as a cis-
eQTL; however, if it is located distant from its gene of origin, sometimes on a different chromosome, it is
referred to as a trans-eQTL. Over the past decades, high throughput studies have been developed to map
the eQTLs. Results from these studies which basically summarize the magnitudes and the natures of
associations between genomic variants (eQTLs) and genes then are considered collectively to investigate
the genetics of transcriptome. An insight from these studies is the evidence that trans-eQTLs tend to be
tissue specific (Consortium, 2020, Price et al., 2011, Nica and Dermitzakis, 2013). A new development in
this field is the advent of statistical methods that can leverage publicly available GWAS summary statistics
including eQTLs to investigate the nature of relation between two biological entities (e.g. two genes)
(Pasaniuc and Price, 2017, Zhu et al., 2016). A prominent method in this regard is Mendelian randomization
(MR) that can not only test the association between two genes, but also differentiate between causation,
correlation, and reverse causation (Davey Smith and Hemani, 2014, Zhu et al., 2018); moreover, because
MR uses a set of independent SNPs for association testing, the results are immune to the bias that may be
introduced by the environmental (non-genetic) factors. Building upon these notions, in this study, I devised
a workflow that can complement the previous approaches for constructing tissue-specific GRNs.

Materials and Methods
eQTL Data

Previously, eQTLGen consortium has investigated the genetic architecture of blood gene expression
by incorporating eQTL data from 37 datasets, compromising a total of 31,684 blood samples. (Vosa et al.,
2021) After processing eQTL data (P<5e-8) from this database, I found trans-eQTLs for 3,628 genes, and cis-
eQTLs (P<5e-8) for 15,786 genes (a total of 16,259 genes).

To understand the distribution of eQTLs and account for the linkage disequilibrium (LD) between
them for downstream analyses. I generated a list of independent (r><0.05) eQTLs per gene using the clump
algorithm implemented in PLINK (v.1.9) (Chang et al., 2015). In summary, the algorithm takes a list of
eQTLs and their P-values, conducts LD pruning, and returns a list of eQTLs in linkage equilibrium and
prioritized by P-values. The clump algorithm requires access to a genotype panel to compute LD values.
For this purpose, I used a subset of genotype data from the 1000 genomes (phase 3), compromising 503
individuals of European ancestry.

Following the LD pruning, the phenotypic variance (V},, proportion of variation in a gene expression)
attributed to an eQTL was calculated, as previously described (Park et al., 2010) using the equation:

V, = 2p(1—p)B? 1)

Where p is the frequency of effect allele and f is its regression coefficient derived from the association
model. eQTLGen consortium reported Z-scores instead of regression coefficients. As such, a conversion
was made using the equation (Zhu et al., 2016):
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A
B =
V2p(1=p)(n +22)

)

To understand the distribution of eQTLs with regard to genes, the ANNOVAR software (version June 2020)
(Wang et al., 2010) was used to annotate eQTLs.

Finding Genes That Mediate Trans Effects

I used the procedure outlined in Figure 1 to identify gene(s) through which a trans-eQTL exerts its
impact. Initially, trans-eQTLs that mapped to the HLA region (coordinates: chr6:28,477,797-33,448,354,
based on GRCh37) were removed. This is due to the complex linkage disequilibrium structure of the HLA
region and the bias it may introduce in the results. Then trans-eQTLs and cis-eQTLs were matched to find
eQTLs that show both cis and trans regulatory effects. Next, I used the GSMR software (version 1.1.1) (Zhu
et al., 2018) to examine the association between the gene linked to the cis-effect (source gene) and the gene
linked to the trans-effect (target gene) using Mendelian randomization. For gene pairs that show significant
association (P<5e-8), I then swapped the place of the source gene and the target gene and re-examined the
association to exclude the possibility of reverse causation. Mendelian randomization is a statistical method
that can investigate the relation between two biological entities by assessing the nature of their associations
to the same set of reference SNPs. To prevent bias, SNPs that are chosen for MR analysis must pass a
number of criteria. First, they must not be in linkage equilibrium, therefore I excluded SNPs that the LD
among them exceeds 12<0.05 (based on genotype data available from the 1000 genomes on subjects of
European ancestry). Second, they must be significantly associated with the exposure (source gene). For this
purpose, SNPs that were associated with the source gene at GWAS significance level (P<5e-8) were selected.
Third, they must not show a pleiotropic effect (i.e., source gene < SNP — target gene). Such SNPs were
excluded from the instrument using the HEIDI test (P<0.01) implemented in the GSMR software.
Eliminating SNPs that show pleiotropic effect consequently rules out the possibility of correlation or the
scenario that two genes coexpress because they are under the regulatory impact of a confounder.

Following MR analysis, gene pairs that showed significant evidence of association (P<5e-8) were
selected and plotted using the Cytoscape software (version 3.10.1 ) (Shannon et al., 2003) in order to find if
they form a network. DAVID functional tool (version 2023q4) (Huang et al., 2009b, Huang et al., 2009a) was
used to identify biological processes that are overrepresented among the identified genes.
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Figure 1. eQTL-based analytical pipeline that was used to identify and characterize gene-regulatory
networks in blood. Initially, eQTLs that mapped to the HLA region were excluded due to the complex LD
structure of this region and a possible impact it may have on the results. Then, eQTLs (P<5e-8) that display
both trans and cis effects were selected. Next, Mendelian randomization (MR) was used to examine if change
in the expression of the source gene (associated with the cis effect) impacts (P<5e-8) the expression of the
target gene (associated with the trans effect). Reverse MR was also conducted by swapping the places of the
source and the target gene in the equation to rule out the possibility of bi-directional association. The source-
target gene pairs obtained from this step, then were plotted to view the nature of relation between them.
Functional analysis was also performed to search for enrichment of biological processes among the
identified genes.

Results
General Characteristics of Trans-eQTLs

In the eQTLGen consortium, the authors reported trans-eQTLs (P<5e-8) for 3,628 genes. After taking
the linkage disequilibrium among SNPs into account and conducting the clumping analysis, a total of 9,882
independent trans-eQTLs were identified (Table S1). On average, a trans-eQTL explained 0.4% of variation
in the expression of a gene which was lower than the value I computed for a cis- eQTL (1%). By annotating
the trans-eQTLs, I noted the majority are located in genic regions (73%, N=7,207). This suggests the likely
mechanism through which a trans-eQTL acts is by changing the expression of a gene which in turn impacts
the expression of the target gene.

A number of trans-eQTLs had large impacts on expression of genes (Table S1). For example,
rs1427407-T within BCL11A gene on chromosome 2, explained 12% of variation in expression of the gamma
globin gene (HBG1); furthermore, rs9399137-C within the intergenic region of HBS1L-MYB on chromosome
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6 explained 14% of variation in expression of HBG1. These findings are in line with previously published
results indicating trans acting loci on chromosomes 6 and 2 impact the expression of HBGI. (Lettre et al.,
2008)

ARHGEF3 locus is reported to impact platelet activation. Here, I found rs1354034-T within this gene
contributes to this effect by impacting the expression levels of several genes involved in cellular adhesion
including ITGB3, PPBP, PARVB, ITGA2B, SH3BGRL2, MMRN1, and CALD1. Additional examples of trans-
eQTLs with large impact are available from Table S1.

While majority of genes were associated with a few number of trans-eQTLs, I noted a number of genes
are associated with numerous loci, indicating they have a polygenic mode of inheritance. For example, HBM
(hemoglobin subunit mu), CLECIB (calcium-dependent lectin domain family 1 member B), MYL9 (myosin
light chain 9), and ABCC3 (ATP binding cassette subfamily C member 3), were under the regulatory impact
of more than 20 independent trans-eQTLs (P<5e-8) spread across the genome (Figure S1).

Identifying the Source Genes

I used the analytical pipeline described in Figure 1 to identify source gene(s) through which a trans-
eQTL acts. Initially, I searched for eQTLs (P<5e-8) that display both trans and cis effects. Next, Mendelian
randomization was used to examine if change in the expression of the source gene impacts the expression
of the target gene. Reverse MR was also conducted by swapping the places of the source and the target
gene in the equation to rule out the possibility of bi-directional association.

Following this procedure, I identified a total of 169 genes that exerted the trans-regulatory impact
(P<5e-8) on 692 genes (Table S2). The source-target gene pairs obtained from this step, then were plotted
to view the nature of relation between them. Figure 2 provides an overview of the interactions between the
identified gene pairs. 90% of genes (N=749) aggregated into a network. The outcome of gene ontology
enrichment analysis highlighted overrepresentation of hemo-immune processes among genes of the
network (Table 1). To examine the validity of the results, a simulation step was also undertaken by
generating 1000 random genesets that had similar size to the network (N=749 genes). I then searched for
biological processes that are significantly associated with each geneset using gprofiler2 (Kolberg et al., 2023)
that allows systematic search for enriched GO-biological processes through its R package (version 0.2.2).
The outcome of the analyses was mainly null and revealed a few unrelated biological processes (Table S3).

As depicted in Figure 2, the main network displayed a scale-free topology. Distribution of the nodes
by the frequency of their edges also indicated a power law distribution (Figure S2). 88% of the nodes had
in average 1.5 edges while a group of 10 nodes (SCGB1C1, ORMDL3, GSDMB, ITGA4, GPR84, FIGNL1,
ALDH?2, SMOX, CERKL, and NFKB1) had more than 30 edges (accounted for 22% of interactions in the
network). In a scale-free network, targeting the hub nodes are key in regulating the function of the network.
As such, I investigated the association of the identified hub genes with the phenome. The analysis revealed
ORMDL3, and GSDMB on chromosome band 17q21 are associated with several diseases of immune origin.
Both genes appeared to be co-expressed as their underpinning eQTLs display correlated effect sizes (Figure
$3). Mendelian randomization then revealed higher expression of these genes contribute to higher risks of
allergic disease, asthma, atrial fibrillation but lower risks of primary biliary cholangitis, inflammatory
bowel disease, rheumatoid arthritis and lower levels of HDL (Table 2). Furthermore, I noted an association
between ALDH2 and obesity related traits. The outcome of Mendelian randomization revealed higher
expression of ALDH? contributes to higher risk of obesity (Table S4).
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Figure 2. Overview of gene-pairs identified in this study and the nature of associations among them.
Mendelian randomization revealed a total of 169 genes that exerted trans-regulatory impacts on 692 genes.
Majority of gene pairs aggregated into a network with the scale free topology. An edge with an arrow end
indicates as the expression of the source gene increases, the expression of the target gene increases as well;
whereas, an edge with a T end indicates an inverse association. Summary association statistics detailing the
nature of association between gene pairs are provided in Table S2.

Table 1. Biological processes that are overrepresented in genes of the main network.

GO Term Description Fold Enrichment P Corrected P*

Cellular response to

0071222 4.5 3.1e-11 1.1e-7
lipopolysaccharide

0006955 Immune response 25 1.3e-7 4.6e-4

0006954 Inflammatory response 2.5 8.9e-7 0.003

0007155 Cell adhesion 2.2 2.0e-6 0.007

0070527 Platelet aggregation 6.5 5.7e-6 0.02

0098609 Cell-cell adhesion 3.2 1.2e-5 0.04

0019722 Calcium-mediated signaling 4.5 1.3e-5 0.05

" P-value corrected for multiple testing.
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Table 2. Higher expression of GSDMB and ORMDL3 impact several diseases of polygenic nature.

Trait information GSDMB expression ORMDL3 expression
Name PMID B SE P B SE P
Asthma 32296059 | 0.11  0.01 3.1e-71 | 013 0.01 1.4e-67
Allergic disease 29083406 | 0.07 0.01 2.7e-29 | 0.07 0.01 1.6e-27
Atrial fibrillation 30061737 | 0.04 0.01 13e-10 [ 0.05 0.01 8.9e-11
Type 1 diabetes 25751624 | -0.13  0.02  6.2e-10 [ -0.15 0.02  5.6e-10

Rheumatoid arthritis 24390342 | -0.09 0.02 1.1e-8 | -0.11 0.02 1.2e-8

Primary biliary 26394269 | 023 004 19e-10 | -028 0.04 1.2e-11

cirrhosis

HDL cholesterol 32203549 | -0.02 0.002 1.0e-33 | -0.03 0.002 1.5e-36

Ulcerative colitis 26192919 | -0.13 0.01 5.7e-21 | -0.15 0.02 1.0e-20

Crohn's disease 26192919 | -0.12 0.01 82e-20 | -0.14 0.02 1.1e-19
Discussion

Gene regulatory network (GRN) enables a cell to specialize in carrying out its function. There are
various cell types in the body and identification of their GRNs are important for various biological purposes
including to better diagnose and treat diseases. There are currently several approaches that can investigate
such networks by analyzing the raw data available at individual levels. This hinders the possibility of
collaboration among researchers in order to combine their data, to map gene-regulatory networks with
higher statistical power. Furthermore, as indicated in the introduction, the existing methods make a
number of assumptions for generating GRNs; however, such assumptions could introduce bias in presence
of alternative scenarios. The method proposed in this study provides several benefits. First, it can scan the
genome systematically (hypothesis-free) and identify genes whose transcripts are related. Second, it uses
SNPs (eQTLs) to test the association between two gene transcripts as such, it is undisturbed by the impact
of confounding environmental factors, because the distribution of alleles at conception is a random process
(Mendel’s law of segregation). Third, it can determine if the association between a source and a target gene
indicates causation, correlation or reverse-causation because it uses Mendelian randomization for
association testing. As a result, the generated network is directed. Fourth, it uses eQTL summary
association statistics that are publicly available as such, it provides a convenient path for researchers who
wish to share their data or combine findings from several studies to identify GRNs with higher statistical
power.

By applying the devised workflow to eQTL data for blood, I detected gene pairs that aggregated into
a gene-regulatory network. Examining the function of the network revealed it is associated with hemo-
immune processes which is expected considering the examined eQTL data are from blood. The topology
of the network resembles the properties of a scale free network (Barabasi and Albert, 1999). A core of 10
genes (1.3% of nodes) accounted for 22% of the interactions and the distribution of interactions per gene
followed a power law distribution (Figure S2). If this happens to be the case in other cell types then this
provides a convenient path for therapeutic interventions, because a scale free network is manageable by
targeting its hub genes.
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On average a trans-eQTL explained 0.4% of variation in expression of a gene which is in line with
previous findings (Consortium, 2020, Nica and Dermitzakis, 2013). Therefore, studies that aim to identify
GRNs using trans-eQTLs, should obtain their eQTL data from studies with large sample sizes. For a well-
powered analysis (statistical power>80%), the eQTL data (with P<5e-8) should come from a study with a
sample size > 11,000 individuals.

eQTL studies tend to report significant findings only, however, to fairly examine the association
between two genes, access to full GWAS summary statistics data is required. This is important considering
there are genes under the influence of numerous loci (Figure S1). Although, in the past publishing the full
GWAS summary statistics was not feasible due to computational limits. Such a practice should not be a
concern at present.

By examining the association of the network’s hub genes with the phenome. I found GSDMB and
ORMDL3 impact several diseases of immune origin. Higher expression of these genes contributed to higher
risks of allergic disease, asthma, atrial fibrillation but lower risks of primary biliary cholangitis,
inflammatory bowel disease, rheumatoid arthritis and lower levels of HDL. This finding indicates
therapeutic approaches that aim to change the expression of these genes, should find an optimal threshold
that balances the antagonistic peliotropic effect of these genes. Otherwise, side effects are expected.

ORMDL3 is localized to the endoplasmic reticulum and regulates downstream pathways including
sphingolipids, metalloproteases, remodeling genes, and chemokines. GSDMB encodes gasdermin B, a
member of gasdermin domain containing proteins which are involved in different processes associated
with cellular state, such as cell cycle control, differentiation, and apoptosis (Das et al., 2017). The analyses
revealed higher expression of these genes have concordant effects on several disorders of immune origin.
Therefore, they may act through the same molecular pathway to impact diseases of immune origin. In this
regard, inflammation is notable because ORMDL3 is involved in the development of the unfolded protein
response, which triggers an inflammatory response including the formation of gasdermin pores on cellular
wall and pyroptosis.

I also found an association between ALDH?2 and the risk of obesity. Higher expression of ALDH?2
contributed to higher risk of obesity. Several mechanisms have been suggested in this regard including the
impact of ALDH2 on alcohol use behavior and subsequent changes on energy intake, appetite control,
systemic inflammation, hormone levels, etc., as well as, the impact of ALDH? on oxidizing the endogenous
acetaldehyde during the oxidative stress (Hu, 2019).

In summary, this study describes a workflow to identify tissue-specific gene-regulatory networks. The
proposed workflow complements previous approaches as it uses genetic information (i.e. eQTL summary
statistics) to infer causal interactions and generates a directed gene regulatory network through a
hypothesis-free genome-wide scan; furthermore, because the introduced workflow relies on eQTL data, it
provides a convenient path for researchers who wish to combine data from several studies to identify GRNs
with higher statistical power. The network identified in this study showed the scale-free topology. If further
researches prove this is the inherent property of tissue/cell specific networks, then in each network,
targeting the hub genes could prevent disease outcomes.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org.
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