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Abstract: This two-parts paper is dedicated to the development of a pre-rationalization approach that
provides favorable constructive properties for the low-tech construction of doubly curved structures. In
part I, we provide methods for generating geometric constructs (patches) with two essential properties:
One family of coordinate curves are planar (PU-property), while the other generating singly curved
strips (develpable V-strips). The geometric constructs are done on three levels of geometric properties, of
being: conjugate, orthogonal-conjugate (principal), and orthogonal-conjugate with negative constant
Gaussian curvature (principal Tchebyshef nCGC). The main contribution of part I, is the articulation of
a space of design variants within the pre-rationalization of the three levels, by introducing transforms
leaving the geometric properties invariant, namely, Projective, Möbius, and Bäcklund transforms.

Keywords: planar coordinate curves; developable strips; conjugate - principal - asymptotic networks;
projective - Möbius - Bäcklund transformations; fabrication-aware design; architectural geometry

1. Introduction
It is known that solutions for the construction methods of doubly curved gridshells can benefit

a lot from the application of (discrete) differential geometry of curves and surfaces. In particular,
extensive research in the relatively recent field of architectural geometry (cf. [1]) has brought to attention
the important link between certain geometric properties and fabrication advantages. In this work,
we focus on the following two geometric properties: PU-property and develpable V-strip. It is already
brought to attention, cf. [2,3], that these two properties are significant.

As they provide important fabrication and structural advantages to gridshells construction.
While in the mentioned works, the approach was more post-rationalization-based, in this paper,
the approach is more pre-rationalization-based, using (smooth) surface typically parameterized by
patches with coordinates (u, v). The PU-property requires all u-curves to be planar, while V-strip
developability demands that the ruled strip formed by any two neighboring v-curves to be developable.
The PU-property offers a reduction of falsework during construction, by using the planar u-curves as
supporting structure, cf. [4–6].
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This subject will be discussed in detail in part II of the paper. On the other hand, the developable
V-strips enable cladding of the structure with laths that are simply bent with no torsion, cf. [7,8].
Furthermore, we observe that the three geometric levels in which the patches (having PU-property
and developable V-strips) are defined, provide extra fabrication advantges as well. More precisely,
conjugate patches give rise to planar panelling of the structure, since they are a smooth analog of
PQ-meshes. Next, principal patches give rise to standard right-angled nodes and produce developable
strips (generated by the surface normal along the network curves), allowing the carriers to be also made
from simply bent laths with no torsion, cf. [9,10]. Finally, principal Tchebyshef nCGC patches come
with corresponding asymptotic Tchebyshef nCGC patches, obtained by a simple reparameterizations,
such that the two networks have matching intersection points. Hence, allowing for adding secondary
bracing structures made by equal-length diagonals, cf. [11].

This subject will also be discussed in detail in part II of the paper. After defining the geometric
constructs (patches with PU-property and developable V-strips) on the three levels, we provide
associated transforms preserving these properties. The goal is to create a space of variants of design
possibilities all having the fabrication advantages provided by the geometric properties.





Level 1: Conjugate





PU-property

Developable V-strip
↭ Projective

Level 2: Principal





PU-property

Developable V-strip
↭ Möbius

Level 3: Principal nCGC





PU-property

quasi-developable V-strip
↭ Bäcklund

Starting on level 1 (conjugate), all the defined geometric constructs are invariant under projective
transforms. Next, on level 2 (principal), the defined geometric constructs are invariant under Möbius
transforms (provided the u-curves are circular). Finally, on level 3 (principal nCGC) the defined geo-
metric constructs (having PU-property and quasi-developable V-strips) are invariant under Bäcklund
transforms. Illustrations are shown in Figure (1).

Figure 1. Translating geometric properties to fabrication advantages.
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2. Geometry
In this section, we define the geometric constructs.

2.1. PU-Patches and Developable V-Strips

Let ⟨·, ·⟩ be the standard Euclidean scalar product on R3 with | · | its norm and × the cross product.
In this paper, a curve is given by a smooth map α(t) and a surface by a smooth patch X(u, v), both
maps with values in R3. The derivatives of α denoted by α′, α′′, α′′′ give rise to the curvature and
torsion of the curve, denoted by κ, τ. While the partial derivatives of X denoted by Xu, Xv with its
surface normal N, give rise to the fundamental coefficients E, F, G, e, f , g and the Gaussian and Mean
curvatures of the surface, denoted by K,H, (for detailed formulas, cf. [12]). Recall that a patch is called
conjugate if it satisfies f = 0 everywhere. Next, by a PU-patch, we mean one for which all its u-curves
are planar, i.e. having τ = 0 everywhere and by a V-strip we mean the ruled surface constructed by
the joins of two neighboring v-curves:

V = (1 − t)X(uo, v) + tX(uo + ε, v) (1)

for some fixed uo, ε. In particular, if these strips satisfy having K = 0 everywhere, then they are said to
be developable. Clearly, the notions of a PV-patch and developable U-strip is analogous, hence will
be omitted. Since we are interested in conjugate PU-patches with developable V-strips (because of
their fabrication advantages, cf. Figure (1)), it is then useful to have simple conditions to characterize
them. Now, applying the formula for torsion on u-curves of a patch X and the formula for Gaussian
curvature on V-strips, we are able to formulate the following characterization. A patch X has:





PU-property if ⟨Xu × Xuu, Xuuu⟩ = 0

Developable V-strips if ⟨A× B,C⟩ = 0
(2)

for C = X(uo + ε, v)− X(uo, v), A = Xv(uo + ε, v) and B = Xv(uo, v) for any uo fixed and ε ∈ R. Recall
that, if X is conjugate, its V-strips are "quasi-developable", (K ≈ 0), since, a developable strip is the
smooth analog of a sequence of PQ-mesh faces, cf. [9,13–15].

Figure 2. Developability of V-strips condition.

2.2. Geometric Constructs on Three Levels

We construct PU-patches with developable V-strips.
• Level 1 - Conjugate: The archetypal patch in this level, is the Translation-type obtained by trans-

lating a planar generatrix curve α(u) along a (spatial) directrix curve β(v), that is:

X = (r(u), 0, h(u)) + β(v) , α = (r, h). (3)

If the u-curves of a PU-patch are circular, then it is called a CU-patch, as seen in Figure (3). Note that,
the Translation-type (3) is conjugate, satisfying Conditions (2), hence, is PU with developable V-strips.
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Figure 3. Translation-type (level 1).

• Level 2 - Principal: The second level of geometric constraint on our conjugate PU-patch X with
developable V-strips, is requiring it to be orthogonal. This turns X into a principal patch, meaning, its
coordinate u, v-curves are curvature lines. This property adds further fabrication advantages, since
any lath based on a strip obtained by sweeping the surface normal N along any coordinate curve is
developable, cf. Introduction 1. The archetypal patch in this level, is the Revolution-type obtained by
revolving a planar curve β(v) about an axis, that is:

X = (r(v) cos u, r(v) sin u, h(v)) , β = (r, h). (4)

This is clearly a CU-patch, as seen in Figure (4). The second patch example in this level, is obtained as
the envelope of spheres, known as Dupin cyclide. Geometrically, this involves two quadratic curves
D1, D2 called the focal directrices, on which the locus of centers of a family of spheres lie, cf. [16]. Now,
when D1 is an ellipse and D2 is a hyperbola, we obtain an ellipto-hyperbolic cyclide, while, when
D1, D2 are parabolas then we have a parabolic cyclide, as seen in Figure (5). The Cyclide-type is:




b sin u(a−d cos v)
a−c cos u cos v

b sin v(c cos u−d)
a−c cos u cos v

d(a cos u cos v−c)−b2 cos u
a−c cos u cos v


 or




au(v2+b)
u2+v2+1

av(1+u2−b)
u2+v2+1

av2+ 1
2 ab(1−u2−v2)

u2+v2+1


 (5)

with 0 < b ≤ a , c2 = a2 − b2 (for the first patch) and a ̸= 0 (for the second patch). Finally,
it is directly verified that any patch X of Revolution-type (4) or Cyclide-type (5) has F = 0, f = 0
everywhere and satisfies Conditions (2). Hence, it is a principal PU-patch with developable V-strips.

Figure 4. Revolution-type (level 2).

Figure 5. Parabolic Cyclide-type (level 2).
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The next patch on Level 2, is the Monge-type given by the union of (2 by 2) parallel curves (i.e.
having the same normal planes at corresponding points) and their orthogonal trajectories. In more
accurate terms, it is given by a family of planar generatrix curves α(u) drawn in the rectified normal
planes along a spatial directrix curve β(v). The rectification means rotating the normal and binormal
vectors (n, b) - generating the normal plane - of the directrix curve β, about its tangent by, the torsion
angle θ (integral of the torsion τ), yielding (nθ , bθ). More precisely:

X = β(v) + P(u)nθ + Q(u)bθ , α = (P, Q). (6)

Note that by construction the v-curves are parallel curves, hence all the V-strips are developable.

Figure 6. Monge-type (level 2).

The following patch on level 2, is Joachimsthal-type, it is given by a family of circular curves that
are orthogonal trajectories to spherical curves, whose spheres’ centers lie on a straight line L. More
precisely, it is given by the parameterization:

X =




u + r(u) cos φ

r(u) sin φ cos v
−r(u) sin φ sin v


 , φ = 2 arctan

(
V(v)e

∫ du
r(u)

)
. (7)

Note that, the vectors Xu along any v-curve, generate a cone whose vertex o lies on the straight line
L. Moreover, the v-curve is the intersection of the surface with a sphere centered at the point o, and
cutting the surface orthogonally, as seen in Figure (7). We observe that any patch X of Monge-type (4)
or Joachimsthal-type (5) is a principal PU-patch, cf. [17]. Moreover, if X is any Monge-type or any
Joachimsthal-type (with r(u) = u) then, the Condition (2)(2) is satisfied, turning the patch X into a
principal PU-patch with developable V-strips.

Figure 7. Joachimsthal-type (level 2).

The final example we present in level 2, is what we will call the Pencil-type. In this construction
the desired PU-patch X is obtained from its spherical image N (i.e. surface normal), where the map
N parameterizes a system of orthogonal circular arcs on the unit sphere. The circular arcs are in fact
the intersections of two pencils of planes with the sphere, hence the name “pencil-type”. We observe
that the spherical patch N arising in this way is conformal, with conformal factor 1/λ2, that is, its
fundamental coefficients satisfy F = 0, E = G = 1/λ2 and the patch X (from N) is given by the
formula:

X =
U + V

λ
N +

(
λU̇ − λu(U + V)

)
Nu +

(
λV̇ − λv(U + V)

)
Nv (8)
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where the U, V are functions u alone, resp. v alone. Note that, any patch X of Pencil-type (8) is
principal with both its u, v-curves planar, in other words, it is a PU-patch and a PV-patch. Notice, if
U(u) = 0 then u, v-curves are circular, as seen in Figure (8) and Condition (2)(2) is satisfied, hence X
has developable V-strips. For a discrete construction of this, cf. [4,5].

Figure 8. Pencil-type (level 2).

• Level 3 - Principal nCGC: The third level of geometric constraints is to require our PU-patches
to be principal with nCGC K = −1/ρ2, with ρ > 0. The construction is based on principal Tchebyshef
patches of radius ρ and angle θ (half the angle between asymptotic directions). The fundamental
coefficients satisfy F = 0, E = ρ2 cos2 θ, G = ρ2 sin2 θ and f = 0, e = −g = ρ sin θ cos θ with
θ satisfying the Sine-Gordon Equation: θuu − θvv = sin θ cos θ. Moreover, a principal Tchebyshef
patch X(u, v) has the property of being associated to an asymptotic Tchebyshef patch Y(x, y) by the
reparameterization Y(x, y) = X(x + y, x − y). We will consider the four types: Pseudosphere-type (PS),
Dini-type, Kuen-type, and Breather-type, obtained by Equation (11) (cf. [18]) yielding:

ρ




cos vsech(u + w)

sin vsech(u + w)

u − tanh(u + w)


 , ρ




cos v cos σ
cosh(w+u sech σ−v tan σ)

sin v cos σ
cosh(w+u sech σ−v tan σ)

u − cos σ tanh(w + u sech σ − v tan σ)




ρ




2 cosh u (cos v+(v+w) sin v)
(v+w)2+cosh2 u

2 cosh u (sin v−(v+w) cos v)
(v+w)2+cosh2 u

u − sinh(2u)
(v+w)2+cosh2 u


 , ρ




2d cosh(cu)(d cos v cos(dv)+sin v sin(dv))
cd2 cosh2(cu)+c3 sin2(dv)

2d cosh(cu)(d sin v cos(dv)−cos v sin(dv))
cd2 cosh2(cu)+c3 sin2(dv)

u − d2 sinh(2cu)
cd2 cosh2(cu)+c3 sin2(dv)


.

Each of the types above, is a principal patch that satisfies Condition (2)(1) making it a PU-patch, and,
as a conjugate patch, it has quasi-developable V-strips.

Figure 7: Joachimsthal-type (level 2)

The final example we present in level 2, is what we
will call the Pencil-type. In this construction the de-
sired PU-patch X is obtained from its spherical im-
age N (i.e. surface normal), where the map N pa-
rameterizes a system of orthogonal circular arcs on
the unit sphere. The circular arcs are in fact the in-
tersections of two pencils of planes with the sphere,
hence the name “pencil-type”. We observe that the
spherical patch N arising in this way is conformal,
with conformal factor 1/λ2, that is, its fundamental
coefficients satisfy F = 0, E = G = 1/λ2 and the
patch X (from N ) is given by the formula:

X =
U + V

λ
N +

(
λU̇ − λu(U + V )

)
Nu +

(
λV̇ − λv(U + V )

)
Nv (8)

where the U, V are functions u alone, resp. v alone.
Note that, any patch X of Pencil-type (8) is princi-
pal with both its u, v-curves planar, in other words,
it is a PU-patch and a PV-patch. Notice, if U(u) = 0
then u, v-curves are circular, as seen in Figure (8)
and Condition (2)(2) is satisfied, hence X has devel-
opable V-strips. For a discrete construction of this,
cf. Mesnil et al. (2018) and Tellier et al. (2019).

Figure 8: Pencil-type (level 2)

• Level 3 - Principal nCGC: The third level of geo-
metric constraints is to require our PU-patches to
be principal with nCGC K = −1/ρ2, with ρ > 0.
The construction is based on principal Tchebyshef
patches of radius ρ and angle θ (half the angle be-
tween asymptotic directions). The fundamental coef-
ficients satisfy F = 0, E = ρ2 cos2 θ, G = ρ2 sin2 θ
and f = 0, e = −g = ρ sin θ cos θ with θ satisfying
the Sine-Gordon Equation: θuu − θvv = sin θ cos θ.
Moreover, a principal Tchebyshef patch X(u, v) has
the property of being associated to an asymptotic
Tchebyshef patch Y (x, y) by the reparameterization
Y (x, y) = X(x + y, x − y). We will consider
the four types: Pseudosphere-type (PS), Dini-type,
Kuen-type, and Breather-type, obtained by Equa-
tion (11) (cf. (Rogers and Schief, 2002)) yielding:

ρ



cos vsech(u+ w)
sin vsech(u+ w)
u− tanh(u+ w)


 , ρ




cos v cosσ
cosh(w+u sech σ−v tanσ)

sin v cosσ
cosh(w+u sech σ−v tanσ)

u− cosσ tanh(w + u sech σ − v tanσ)




ρ




2 coshu (cos v+(v+w) sin v)

(v+w)2+cosh2 u
2 coshu (sin v−(v+w) cos v)

(v+w)2+cosh2 u

u− sinh(2u)

(v+w)2+cosh2 u


 , ρ




2d cosh(cu)(d cos v cos(dv)+sin v sin(dv))

cd2 cosh2(cu)+c3 sin2(dv)
2d cosh(cu)(d sin v cos(dv)−cos v sin(dv))

cd2 cosh2(cu)+c3 sin2(dv)

u− d2 sinh(2cu)

cd2 cosh2(cu)+c3 sin2(dv)


 .

Each of the types above, is a principal patch that sat-
isfies Condition (2)(1) making it a PU-patch, and, as
a conjugate patch, it has quasi-developable V-strips.

(a) PS-type (b) Dini-type

(c) Kuen-type (d) Breather-type

Figure 9: Four nCGC-types (level 3).

5

Figure 9. Four nCGC-types (level 3).
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2.3. Geometric Transforms on Three Levels

We construct geometric transforms preserving the geometric properties of the patches constructed
above on the three levels. More precisely, we have the corresponding scheme:

Projective transform ↭ Conjugate PU-patch

Möbius transform ↭ Principal CU-patch

Bäcklund transform ↭ Principal nCGC patch.

• Level 1 - Projective transform: This is a bijective mapping of the projective space RP3 (seen
as the lines through the origin in R4), applied as multiplication by a regular (4 × 4)-matrix [aij] on
elements (x, y, z, w) of R4. Upon seeing R3 as the affine subspace {w = 1}, the projective transform of
any patch X = (x, y, z), as seen in Figure (10), is given by:

X∗ =




a11x+a12y+a13z+a14
a41x+a42y+a43z+a44

a21x+a22y+a23z+a24
a41x+a42y+a43z+a44

a31x+a32y+a33z+a34
a41x+a42y+a43z+a44




(9)

Observe that, if the initial patch X is a conjugate PU-patch, then its projective transform X∗ will
also be a conjugate PU-patch. This follows from the fact that, a projective transform preserves linear
subspaces and conjugate patches, cf. [17,19]. Moreover, if the initial patch X is of a Translation-type (3),
then its projective transform X∗ will satisfy Condition (2)(2), hence the developability of V-strips will
be preserved as well.

Figure 10. Projective transform (level 1).

• Level 2 - Möbius transform: This is a bijective mapping of the 3-sphere S3 (seen as the compact-
ification of R3), cf. [20]. By restricting to R3 ⊂ S3, a Möbius transform can be given by compositions of
translations, homotheties (uniform scaling), linear-orthogonal maps (Euclidean motion) and inversions.
In more accurate terms, a Möbius transform X∗ of a patch X = (x, y, z), as seen in Figure (11), can thus
be expressed by the formula:





X∗ = o + λA
(

X−o
|X−o|k

)

for λ ∈ R, o ∈ R3, k ∈ {0, 2}, A ∈ O(3,R).
(10)

Note that, if the initial patch X is a principal CU-patch, then its Möbius transform X∗ will also be a
principal CU-patch. This follows from the fact that, a Möbius transform preserves circles and principal
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patches, cf. [17,19]. Furthermore, if we let in addition the initial patch X to have developable V-strips
and also be any of the above defined types (geometric constructs): Revolution-type (4), Cyclide-type (5),
Monge-type (6) (with α(u) circular), Joachimsthal-type (7) (with r(u) = u), or Pencil-type (8) (with
U(u) = 0). It then follows that, its Möbius transform X∗ will have developable V-strips as well. To
see this, recall that developability is preserved by translation, homothety and linear-orthogonal maps.
Thus, to conclude, we only need to verify that the inversion X∗ = X/|X|2 satisfy Condition (2)(2) in
the stated types, which is indeed true.

Figure 11. Möbius transform (level 2).

• Level 3 - Bäcklund transform: This is a bijective mapping B between two surfaces of the same
nCGC K = −1/ρ2 for some ρ > 0. Such that each line joining corresponding points p, p∗ is tangent
to both surfaces, and has constant length ρ cos σ∗, while the normals N, N∗ to both surfaces have a
constant angle (π/2 − σ∗), as seen in Figure (12).

Figure 12. Bäcklund transfrom (Geometric view).

More analytically, a Bäcklund transform X∗ of X (a principal nCGC Tchebyshef patch of angle θ)
is:

X∗ = X +

(
cos σ∗ cos θ∗

cos θ

)
Xu +

(
cos σ∗ sin θ∗

sin θ

)
Xv

where





θ∗u + θv = sin θ∗ cos θ+sin σ∗ cos θ∗ sin θ
cos σ∗

θ∗v + θu = − cos θ∗ sin θ−sin σ∗ sin θ∗ cos θ
cos σ∗ .

(11)

Starting with a degenerate patch X = (0, 0, ρu) (with θ = 0), applying Bäcklund transform with generic
inclination σ∗ yields the Dini-type, while applying it with σ∗ = 0 yields PS-type and upon second
application with σ∗ = 0 yields Kuen-type (for more details cf. [18]).
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Figure 13. Dini-type to Breather-type (level 3).

2.4. Extra Possibilities

We can also mix levels of transforms and properties to increase the design options by extra
possibilities.

• Extra possibilities - Projective transform: Applying a projective transform to a principal CU-
patch, yields a conjugate PU-patch. If in addition the initial patch has developable V-strips and is:
Revolution-type (4), Cyclide-type (5), Joachimsthal-type (7) (with r(u) = u), Pencil-type (8) (with
U(u) = 0), its projective transform also has developable V-strips.

• Extra possibilities - Möbius transform: Applying a Möbius transform to a principal nCGC
Tchebyshef PU-patch, yields a principal patch with spherical u-curves. In fact, a Möbius transform
of a conjugate CU-patch is just a CU-patch, while a Möbius transform of a principal PU-patch of
Monge-type (6) or Pencil-type (8), is just a principal patch.

• Extra possibilities - Bäcklund transform: Observe that using the parameter w appearing in the
expressions of the Kuen-type, as a coordinate, yields a 3-dimensional patch χ(u, v, w), parameterizing
a triply orthogonal system of surfaces (TOS) called Ribaucour TOS (R-TOS). Note that, patches
B = χ(u, v, wo) are principal nCGC Tchebyshef PU-patches, while the patches R = χ(uo, v, w) and G =

χ(u, vo, w) are principal with w-curves circular, for any fixed uo, vo, wo. Up to renaming parameters,
the principal patches R, G will be considered CU-patches with developable V-strips (which we will
call R-TOS-Type). The same goes for their Möbius transforms, as seen in Figure (14).

Figure 14. Möbius transform of R-TOS CU-patch.
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3. Morphology
In this section, we will focus on the application of the geometric constructions in design morphol-

ogy. This implies showing how these geometric constructs and their transforms can be readily utilized
within pre-rationalized design approach. These are formulated through explicit parametrizations with
multiple parameters, that can thus be used for different designs by changing their respective input
values. It is clear that, an infinite number of variants of a given geometric construct and its transform
(all sharing the same geometric properties and fabrication advantages) can be generated by varying
these parameters. For sake of clarity, we also provide an overview of the different combinations of
transforms and geometric constructs in Figures (15) and (16). This can be seen as a visual summary of
the geometric results of Section 2.

Figure 15. Transforms corresponding levels.

Figure 16. Transforms non-corresponding levels.

This parametric approach allows us to define a broad search space of design variants (all having
the desired geometric properties), that will be referred to as the Space of Variants. Establishing this
space is a crucial step in "translating" geometry into architectural design morphology.

The morphological exploration of the space of variants revolves around two primary Degrees
of Design Freedom (DF) (this concept was introduced by some of the authors in [21–23]). The DF can
subdivided into: 




(DF-1) Choice of geometric construct and its parameters

(DF-2) Choice of geometric transform and its parameters.

It is evident that DF-1, which involves selecting the geometric construct (i.e. patch-type), determines
the starting level (i.e. level 1, 2 or 3). However, DF-2 allows us to either remain at the same level or
transition to another level. For instance, choosing the geometric construct to be of Revolution-type,
places us on level 2 (principal). Next, applying a Möbius transform will keep us on level 2, while
applying a projective transform will moves us down to level 1 (conjugate), as illustrated in Figure (16).
It is clear that, the choices in DF-1 and DF-2 are influenced by the fabrication method and materials
specific to each project. This relationship underscores how each level is associated with distinct
fabrication advantages, as discussed in the Introduction 1 in Figure (1).

3.0.1. Encoding the DF information

To track the variants, each one can be assigned an “ID-code” reflecting the “path” it took in the
space of variants, i.e. its DF-1 and DF-2 information. The DF-1 part includes the patch-type (typ)
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and patch-parameters (abc000) and the DF-2 part includes the transform-type (TYP) and transform-
parameters (ABC000). Finally, the three colors indicate the three levels of the geometric constructs, as
shown in Figure (17). This method can be useful to navigate the space of variants during morphological
exploration.

Figure 17. Possible-paths diagram with ID-codes.

3.1. Space of Variants - Construction

In the previous paragraph, we discussed the possible combinations in the space of variants,
presenting their possible DF-1 and DF-2 choices or “paths”. To illustrate their parametric design
capabilities, let us now provide concrete examples of how the DF-1 and DF-2 choices are implemented
using explicit parameterizations of the geometric constructs (belonging to the three levels). It is clear
that choosing different functions in the constructions in Section 2 will result in different paramteri-
zations. We choose the following ones to simply make clear the ideas and showcase the parameteric
approach. We now choose the following three explicit parameterizations:

• Level 1: We will choose the geometric construct X to be of Translation-type generated from the
specific planar curve α and the spatial curve β, given by:





α =
(

au, buk
)

β =
(

c sin( f v), dv, evl
)

.

The input patch-parameters a, b, c, d, e, f , k, l generate DF-1 and the patch X defined by Equation (3),
takes on the explicit parameterization form:

X =
(

au + c sin( f v), dv, buk + evl
)

(12)

• Level 2: We will choose the geometric construct X to be of Pencil-type, generated from a specific
conformal patch N on the unit sphere S2 with the conformal factor 1/λ2, and the function U, V, given
explicitly by the formulas:





N =
( √

1−o2 sin v
o cos v+cosh u ,−

√
1−o2 sinh u

o cos v+cosh u , cos v+o cosh u
o cos v+cosh u

)

λ = cosh u+o cos v√
1−o2

U = 0 , V = a + bvk.

The parameters o, a, b, k are input patch-parameters that make DF-1, and the patch X by Equation (8)
takes on the explicit parameterization form:

X =




bkovk + cosh(u)(bkvk cos(v) + v(a + bvk) sin(v))
v(o cos(v) + cosh(u))

− o(v(a + bvk) cos(v)− bkvk sin(v)) sinh(u)
v(o cos(v) + cosh(u))√

1 − o2 cosh(u)(v(a + bvk) cos(v)− bkvk sin(v))
(v(o cos(v) + cosh(u))




. (13)
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• Level 3: We will choose the geometric construct X to be of Dini-type, generated as a Bäcklund
transform (11)(1) of the vertical line X0, with respective angle functions θ0, θ satisfying the Bäcklund-
Darboux Equations (11)(2), and given by:





X0 = (0, 0, ru) , θ0 = 0

θ = 2 arctan
(
eu sec s−v tan s+w)

The parameters r, s, w are its input patch-parameters making DF-1 and the patch X defined by Equa-
tion (11) takes on the explicit parameterization form:

X =




r cos(v) cos(s)
cosh(w + usech(s)− v tan(s))

r sin(v) cos(s)
cosh(w + usech(s)− v tan(s))

ru − r cos(s) tanh(w + usech(s)− v tan(s))




. (14)

Now that we have our explicit geometric constructs (from each level), we are ready to augment
DF-1 with DF-2, that is, applying geometric transforms to these patches. As mentioned above, for
the exploration within DF-2, we use projective, Möbius and Bäcklund transforms. Recall that the
projective transform is defined by Equation (9) with input parameters aij’s. In particular, by changing
their values, we can obtain different projective transforms (of the initial patch) and hence a design
exploration in DF-2. Next, in our presented example, we will define a Möbius transform given by a
composition of inversion, then translation by a vector o = (o1, o2, o3), followed by second inversion.
This is because inversions have the most significant impact on the shape, thus are more important for
design exploration. In this presented Möbius transform example, the parameters o1, o2, o3 determine
the inversion, and each set of input values will yield a different Möbius transform (of the initial patch)
and hence a design exploration in DF-2. Finally, the Df-2 on level 3 is established by the application of
the Bäcklund transforms. Note that, this is a special case, as the parameterizations of the geometric
constructs (principal nCGC Tchebyshef patches) are themselves Bäcklund transforms. Consequently,
parameters can be interpreted as generating DF-1 or DF-2. For example, the parameterization of the
Kuen-type involves parameters ρ, w. From one side, these are patch-parameters (i.e. DF-1) while from
another side, they are transform-parameters (i.e. DF-2) because Kuen-type is a Bäcklund transform of
the PS-type.

3.2. Space of Variants - Exploration

We first explore the space of variants through DF-1.
• Varying patch-parameters (tra): For the Translation-type patch X given by Expression (12),

where we have patch-parameters a, b, c, d, e, f , k, l. We fix all parameters and we vary the parameter l
and then parameter f , as seen in Figure (18).
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Figure 18. Varying the patch-parameters l and f .

• Varying patch-parameters (pen*): For the Pencil-type patch X given by Expression (13), where
we have patch-parameters o, a, b, k. We again fix all parameters and we vary the parameter o and then
parameter k, as seen in Figure (19).

Figure 19. Varying the patch-parameters o and k.

• Varying patch-parameters (din): For the Dini-type patch X given by Expression (14), where we
have patch-parameters r, s, w. Once again to demonstrate the morphological effect more clearly, we fix
all parameters and we vary the parameter s and then parameter w, as seen in Figure (20).

Figure 20. Varying the patch-parameters s and w.
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Observe that, on level 1 (conjugate), we start by a Translation-type patch (tra) having PU-property
and developable V-strips and so do all of its variations, as seen in Figure (18). Here, we have the
fabrication advantage of having planar carrier beams (from the u-curves) and cladding by developable
strips (from V-strips). Next, on level 2 (principal), we start by a Pencil-type patch (pen*) having
PU-property and developable V-strips and so do, all of its variations. Here, the carrier beams (in
both directions) can be made from laths based on developable strips (generated by surface normals),
with orthogonal connection nodes, as seen in Figure (19). Finally, on level 3 (principal Tchebyshef
nCGC), we start by a Dini-type patch (din) having PU-property and quasi-developable V-strips and
so do, all of its variations. Besides, the developablility of the laths making the carrier beams (from
u, v-curves), we have here the fabrication advantage of having a bracing substructure beams based
on asymptotic curves. Thus, can be made from straight laths, that in particular, have equal-length
diagonals intersecting the main structure (by principal curves), as seen in Figure (20). Let us now
explore the space of variants through DF-2.

• Varying transfrom-parameters (PRJ): We will now apply a projective transform to the Translation-
type patch X, yielding the transformed patch X∗ given by Expression (9), where we have transform-
parameters a11, a12, .... We fix all the parameters and vary the parameter a43 (denoted by d3) and then
parameter a42 (denoted by d2), as seen in Figure (21).

Figure 21. Varying the transform-parameters d3, d2.

• Varying transfrom-parameters (MOB): We now apply a Möbius transform to the Pencil-type
patch X, yielding the transformed patch X∗ given by Expression (10). In here, the transform-parameters
are the coordinates o1, o2, o3. We vary the parameters o1 (denoted by A), then o2 (denoted by B) and
finally o3 (denoted by C), as seen in Figure (22).

Figure 22. Varying transform-parameters A, B, C.
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• Varying transfrom-parameters (BAC): Finally, we will apply a Bäcklund transform (with com-
plex inclination) to the Dini-type patch X, yielding the transformed patch X∗ Breather-type patch. In
here, the transform-parameters are ρ, d, c (with c2 = 1 − d2). As before, we fix all parameters, and we
vary the parameter d (denoted by D), as seen in Figure (23).

Figure 23. Varying the transform-parameter D.

To end this section, we would like to point out some remarks, regarding the 3D-modeling of
the mathematical surfaces. Observe that, the explicit analytic expressions obtained by the geometric
processes described in DF-1 and DF-2 are evaluated at discrete number of points (in the domain)
yielding discrete number of points that are exactly on the surface. Next, interpolations (based on
NURBS) of these points create approximations of the mathematical surface. Clearly, the higher the
number of evaluation points, the better the NURBS approximations (of the mathematical surfaces) are,
and hence the more accurate the desired geometric properties are. Once the final shape (NURBS) is
fixed, standard architectural 3D-modeling processes are then applied to model the fabrication elements.
Namely, the nodes, beams and panels, in particular giving them thicknesses (usually from normals
of the NURBS surface). Now, issues regarding accuracy of the geometric properties (e.g. planarity,
developability) of these elements may arise, if we have an insufficient number of evaluation points.
This error tolerance is naturally adjusted to each project, by using more evaluation points.

4. Case-Study: Dini-Type Patch
Let us end this part I of the paper, by focusing on a specific patch-type from level 3, namely the

Dini-type patch. This will be used as the geometric basis for the realized structure in part II. We saw
above that, it satisfies the PU-property and V-strip quasi-developability. Let us now discuss some of its
other important geometric properties.

• Corresponding Principal-asymptotic networks: We recall that, as a principal Tchebyshef nCGC
patch, our Dini-type patch X(u, v) given by the Expression (14), comes with a corresponding “diagonal”
asymptotic Tchebyshef nCGC patch given by Y(x, y) = X(x + y, x − y), that is:




r cos(x − y) cos(s)
cosh(w + (x + y)sech(s)− (x − y) tan(s))

r sin(x − y) cos(s)
cosh(w + (x + y)sech(s)− (x − y) tan(s))

r(x + y)− r cos(s) tanh(w + (x + y)sech(s)− (x − y) tan(s))




.

The fundamental coefficients satisfy the conditions: F = ρ2 cos ω, E = G = ρ2 and f = ∓ρ sin ω,
e = g = 0 where the angle ω (equals 2θ) satisfying the Sine-Gordon equation ωxy = sin ω. In more
concrete terms, the principal Dini-type patch X(u, v) and the asymptotic Dini-type patch Y(x, y)
naturally give rise to networks of principal and asymptotic curves respectively. Next, we select a
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discrete number of (u, v)-curves and (x, y)-curves, each equally spaced (along the two variables) in
their respective domains. It will then follow, that the induced principal and asymptotic networks will
correspond, in the sense that their intersection points will perfectly match with each other, as seen in
Figure (24).

Figure 24. Corresponding principal-asymptotic nets.

• Floral appearance: Another important (aesthetic) feature of the Dini-type patch, which was in
fact a main motivation for its selection to be used as the geometric basis for the realized structure
explained in part II, is its "floral" appearance, as seen in Figure (25). Since this project was part of a
plant-themed exposition Plant Fever, the floral character provided by the Dini-type patch made it very
suitable for such an application. More on this, in part II of the paper.

Figure 25. Bring out the floral appearance.

• Projective and Möbius transforms: To finish, let us illustrate the application of projective and
Möbius transforms to the Dini-type patch, as seen in Figure (16). Since the Dini-type patch is a principal
(i.e. orthogonal-conjugate) nCGC PU-patch, its projective transform will be a conjugate PU-patch,
however it will no longer be orthogonal nor nCGC. On the other hand, its Möbius transform will
remain principal but will no longer be nCGC nor satisfy the PU-property, as seen in Figure (26).

Figure 26. Projective and Möbius transforms of Dini.
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5. Conclusions
To conclude part I of the paper, we would like to make some summarizing remarks, regarding

our (research) method and its application potential in the field of doubly curved gridshells. To
begin, we recall that this (two-part) paper investigates a mathematical approach to the design of
doubly curved structures (gridshells), from conception to construction, which is referred to as the
pre-rationalization approach. The prefix "pre" indicates that the choice of geometric properties, or
“rationalization” is determined beforehand, and then morphological exploration of the design options
is done through (parameters variations and) transformations, that leave these geometric properties
invariant. For this particular paper, we focused on ensuring that the geometric constructs (i.e. patch-
types) possess two fundamental basic properties, namely the PU-property and V-strips developability,
each with fabrication advantages shown above. Moreover, the geometric constructs that satisfy these
two properties were constructed on three levels of additional geometric constraints, namely being
conjugate, principal, and principal (Tchebyshef) nCGC. On one side, these additional geometric
constraints facilitated the mathematical construction of the patches in question, and on the other
side, these extra properties provided other fabrication advantages that were explained above, cf.
Introduction 1. These geometric constructs and their transforms can be used as efficient geometric
bases for the design and construction of gridshells, that is low-tech and with less false-work. To
illustrate this, a geometric construct (Dini-type patch) will be the basis for a realized structure that
will be elaborated in part II of the paper. Perhaps, it is worth mentioning that, even though the Dini-
type patch has only quasi-developable V-strips, it is still a justifiable choice. This is because, on one
hand, in practice, the error of quasi-developability is completely within the architectural application
tolerance, and on the other hand, being from level 3, it provided us the principal-asymptotic networks
correspondence, which is a greater fabrication benefit. In closing, we hope that the methods presented,
were clear for designers (and non-mathematical readers) to readily use and that they stimulate further
research in mathematical application in gridshells design.
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