
Article

Not peer-reviewed version

Statistical Gravity, ADM Splitting, and AQ

[Riccardo Fantoni](#) *

Posted Date: 18 February 2025

doi: [10.20944/preprints202502.1388.v1](https://doi.org/10.20944/preprints202502.1388.v1)

Keywords: General Relativity; Einstein-Hilbert action; ADM splitting; Affine Quantization; Statistical Physics; Path Integral; Monte Carlo

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Statistical Gravity, ADM Splitting, and AQ

Riccardo Fantoni

Università di Trieste, Dipartimento di Fisica, strada Costiera 11, 34151 Grignano (Trieste), Italy;
riccardo.fantoni@scuola.istruzione.it

Abstract: I propose a possible way to render numerically accessible the path integral Monte Carlo computations required in the Statistical Gravity theory described in a recent publication [Riccardo Fantoni, *Quantum Reports*, **6**, 706 (2024)]. This requires the use of the Arnowitt, Deser, and Misner (ADM) splitting and of the Affine Quantization (AQ) method.

Keywords: General Relativity; Einstein-Hilbert action; ADM splitting; Affine Quantization; Statistical Physics; Path Integral; Monte Carlo

I. Introduction

The idea to realize a quantum theory of gravity has a long history [1,2]. Recently we proposed a theory for *Statistical Gravity* [3], the FEBB. Leaving aside the feasible experimental confirmations for it, it is yet important to prove that it gives rise to quantities (observables thermal averages) that are mathematically well defined and can therefore be computed (at least numerically). We are thinking, for example, at the problems that one may encounter in computing a *constrained* quantum field theory [4–10], even the simplest one as the scalar (relativistic euclidean). In these cases we could experience how important it was to use the method of *Affine Quantization* (AQ) (as opposed to the canonical quantization) in order to render the particular theory *non trivial*. But even before worrying about the renormalizability of the particular quantum field theory it makes sense to worry about the soundness of the place it occupies in the underlying Hilbert space.

With this in mind, in this short paper, following the idea already put forward in Ref. [7] for a construction of a well defined Quantum Gravity, we propose to use the method of AQ also to construct a well defined Statistical Gravity.

In these complex tensorial quantum field theories, even the determination of the relevant *semi-classical action* can become a formidable task due to the intertwining of the tensorial calculus and the commutation calculus. Here we will not carry out any of this necessary complex calculus explicitly but will just lay down the problem showing that it is a well defined one.

II. Einstein's Field Equations from a Variational Principle

Sempre caro mi fu quest'ermo colle,
e questa siepe, che da tanta parte
dell'ultimo orizzonte il guardo esclude.

Giacomo Leopardi
L' Infinito

The Einstein-Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the $(- + + +)$ metric signature, the action is given as [11,12]

$$S = \int \left(\frac{1}{2\kappa} R + \mathcal{L}_F \right) \sqrt{-g} d^4x. \quad (2.1)$$

where $g \equiv \det(g_{\mu\nu})$ is the determinant of the metric tensor matrix, $\sqrt{-g}$ is the scalar density, $x \equiv (ct, \mathbf{x})$ is an event with $t \equiv x^0/c$ time and $\mathbf{x} \equiv (x^1, x^2, x^3)$ a point in space, $\sqrt{-g} d^4x$ is the invariant “volume”

element, R is the Ricci scalar, $\kappa = 8\pi Gc^{-4}$ is the Einstein gravitational constant (G is the gravitational constant and c is the speed of light in vacuum), and $\sqrt{-g} \mathcal{L}_F$ is a Lagrangian density of “interaction” containing the contribution from matter, electromagnetic, or other gauge bosons fields to the action. If it converges, the integral is taken over the whole spacetime. If it does not converge, S is no longer well-defined, but a modified definition where one integrates over arbitrarily large, relatively compact domains, still yields the Einstein equation as the Euler-Lagrange equation of the Einstein-Hilbert action. The action was proposed [11] by David Hilbert in 1915 as part of his application of the variational principle $\delta S = 0$ to a combination of gravity and matter, electromagnetism, or other gauge bosons fields. Note that in the variation of the Ricci scalar one needs to assume that the Gibbons–Hawking–York boundary term [13] gives no contribution to the variation of the action, which is justified at events not in the closure of the boundary, when the variation of the metric vanishes in a neighbourhood of the boundary or when there is no boundary.

The equations of motion coming from the stationary-action principle are then like so (see second section of Ref. [3])

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}, \quad (2.2)$$

which are the Einstein field equations, where

$$T_{\mu\nu} = \frac{-2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_F)}{\delta g^{\mu\nu}} = -2 \frac{\delta\mathcal{L}_F}{\delta g^{\mu\nu}} + g_{\mu\nu}\mathcal{L}_F, \quad (2.3)$$

is the stress-energy tensor and $\kappa = 8\pi G/c^4$ has been chosen such that the non-relativistic limit yields the usual form of Newton’s gravity law.

III. ADM 3+1 Foliation of Spacetime

Ma sedendo e mirando, interminati
spazi di là da quella, e sovrumani
silensi, e profondissima quiete
io nel pensier mi fingo, ove per poco
il cor non si spaura.

Giacomo Leopardi
L’ Infinito

Arnowitt, Deser and Misner (ADM) proposed in 1962 the following 3+1 foliation of spacetime [14]

$$ds^2 = -N^2 dt^2 + g_{ij}(dx^i + N^i dt)(dx^j + N^j dt), \quad (3.1)$$

where now Latin indexes run over the three spatial components 1, 2, 3. They called N the *lapse* and N_i the *shift*. To split the time component from the 3 spatial components they chose the following

$$\|g_{\mu\nu}\| = \begin{pmatrix} -(N^2 - N^i N_i) & N_i \\ N_i & g_{ij} \end{pmatrix}, \quad (3.2)$$

$$\|g^{\mu\nu}\| = \begin{pmatrix} -1/N^2 & N^i/N^2 \\ N^i/N^2 & g^{ij} - N^i N^j / N^2 \end{pmatrix}, \quad (3.3)$$

which are inverse by sight. Note also that $\sqrt{-4g} = N\sqrt{3g}$ where ${}^3g = \det\{g_{ij}\}$ and ${}^4g = \det\{g_{\mu\nu}\}$ and we indicate with a presuperscript 4 the full four dimensional tensor and with a presuperscript 3 the spatial 3×3 tensor, when strictly necessary to avoid confusion. Therefore we will raise (or lower) Greek indexes with the full metric tensor $g^{\mu\nu}$ and Latin indexes with the spatial metric tensor g^{ij} which also satisfies $g_{ik}g^{kj} = \delta_i^j$.

ADM showed that if one chooses as generalized coordinate g_{ij} and conjugated momentum

$$\pi^{ij} \equiv \sqrt{-4g}(\Gamma_p^0{}_q - g_{pq}\Gamma_r^0{}_s g^{rs})g^{ip}g^{jq}, \quad (3.4)$$

then the spacetime metric Lagrangian

$$\mathcal{L} \equiv \sqrt{-4g}^4 R = -g_{ij}\pi^{ij,0} - NR^0 - N_i R^i - 2\left(\pi^{ij}N_j - \frac{1}{2}\pi N^i + N^{ij}\sqrt{^3g}\right)_i, \quad (3.5)$$

where we denote with a semicolon ($;$) the usual covariant derivative in the full spacetime and with a bar ($\bar{}$) a spatial covariant derivative, and

$$R^0 \equiv -\sqrt{^3g}\left[^3R + \frac{1}{^3g}\left(\frac{1}{2}\pi^2 - \pi^{ij}\pi_{ij}\right)\right], \quad (3.6)$$

$$R^i \equiv -2\pi^{ij}|_j, \quad (3.7)$$

$$\pi \equiv \pi_i^i. \quad (3.8)$$

Eq. (3.6) is the Hamiltonian constraint whereas Eq. (3.7) the momentum constraint. In fact, since the last term in Eq. (3.5) only contributes a “surface” term to the metric action $S \propto \int \mathcal{L} d^4x$, if spacetime extends to infinity it can be taken as giving a negligible contribution.

Upon taking variations with respect to the lapse and shift provides the constraint equation $R^0 = 0$ and $R^i = 0$ and then the lapse and shift themselves can be freely specified, reflecting the fact that coordinates systems can be freely specified in both space and time.

Since g_{ij} is a strictly positive definite tensor, in our recent paper [7] we proposed to use affine variables in place of the canonical variables g_{ij} and π^{ij} in order to cure such *unholonomous* constraint. We then introduce a “dilation” conjugate variable $\pi_j^i = g_{kj}\pi^{ik}$. This classical *momentric* (a name that is the combination of momentum and metric and was invented by John Klauder) tensor and the spatial metric tensor become the new basic canonical affine variables. By doing so and recalling that $g^{ij}|_k = 0$ we reach to the following classical Lagrangian

$$\mathcal{L} = -g_{ij}\pi^{ij,0} - NR^0 - N_i R^i, \quad (3.9)$$

$$R^i = -2g^{ik}\pi_k^j|_j, \quad (3.10)$$

$$R^0 = \frac{1}{\sqrt{^3g}}\left[\pi_j^i\pi_i^j - \frac{1}{2}\pi^2\right] - \sqrt{^3g}^3R. \quad (3.11)$$

where we dropped the gradient term in the Lagrangian since it gives no contribution to the classical action

$$S = \int_0 \int_{\Omega} \{-g_{ij}\pi^{ij,0} - NR^0 - N_i R^i\} d(ct) d^3\mathbf{x}. \quad (3.12)$$

where Ω is the region of space and time starts from the beginning at $t = 0$.

In Affine Quantization (AQ) we promote the two canonical affine variables g_{ij} and π_j^i to operators \hat{g}_{ij} and $\hat{\pi}_j^i$ and write the corresponding affine semiclassical (including just the terms up to order \hbar in the $\hbar \rightarrow 0$ limit) Lagrangian \mathcal{L}' using the commutation relations between the spatial metric operator and the momentric operator (these are given, for example, in Ref. [7] and derived again in the Appendix A).

IV. Path Integral Formulation of Statistical Gravity

E come il vento
odo stormir tra queste piante, io quello
infinito silenzio a questa voce
vo comparando: e mi sovven l'eterno,
e le morte stagioni, e la presente
e viva, e il suon di lei.

Giacomo Leopardi
L' Infinito

Then the action for Einstein's theory of general relativity is one for a particular field theory where the field is the metric tensor $g_{\mu\nu}(x)$ a symmetric tensor with 10 independent components, each of which is a smooth function of 4 variables. We will indicate all these components with the notation $\{g\}(x)$. We will also work in euclidean time $x^0 \equiv ct \rightarrow ict$ so that the metric signature becomes $(+ + + +)$.

The thermal average of an observable $\mathcal{O}[\{g\}(x)]$ will then be given by the following expression [3]

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{O}[\{g\}(x)] \exp(-vS') \mathcal{D}^{10}\{g\}(x)}{\int \exp(-vS) \mathcal{D}^{10}\{g\}(x)}, \quad (4.1)$$

so that $\langle 1 \rangle = 1$. Here S' is the affine action

$$S' = \int_0^\beta \int_{\Omega} \left\{ \frac{1}{2\kappa} \mathcal{L}' + \mathcal{L}_F N \sqrt{^3g} \right\} d(ct) d^3\mathbf{x}, \quad (4.2)$$

$1/v$ is a positive constant of dimension of energy times length, $ct \in [0, \beta]$ where $\beta = 1/\tilde{k}_B \tilde{T}$, \tilde{k}_B is a Boltzmann constant of dimensions of one divided by length and by degree Kelvin, and \tilde{T} an effective temperature in degree Kelvin (which can be made a field [3], $\tilde{T}(\mathbf{x})$). Since the thermal average involves taking a trace we must have $g_{\mu\nu}(ct + \beta, \mathbf{x}) = g_{\mu\nu}(ct, \mathbf{x})$. We will also require periodic spatial boundary conditions on the finite volume $\Omega \subset \mathbb{R}^3$ which is the closest thing to a formal thermodynamic limit. As usual we will use $\mathcal{D}^{10}\{g\}(x) \equiv \prod_x d^{10}\{g\}(x)$ and the functional integrals will be calculated on a lattice using the path integral Monte Carlo (PIMC) method [15]. Moreover we will choose $d^{10}\{g\}(x) \equiv \prod_{\mu \leq \nu} dg^{\mu\nu}(x)$ where the 10-dimensional space of the 10 independent components of the symmetric metric tensor is assumed to be flat.

The determination of \mathcal{L}' looks like a formidable task that needs to take care of the commutation relations among the spatial metric and the momentric operators but it seems to be necessary to overcome the numerical singularities that may arise from the *geometrical unholonomous constraint* of having a strictly positive definite spatial metric. Here we are thinking of the possible loss of ergodicity in the PIMC as its paths wander through and explore the accessible region delimited by the sharp constraints which can be variously intricate. We see AQ as a way to smooth out the geometrical constraints so to recover ergodicity and be able to sample the whole relevant region efficiently.

V. Conclusions

Così tra questa
immensità s'annega il pensier mio:
e il naufragar m'è dolce in questo mare.

Giacomo Leopardi
L' Infinito

In this short paper we present a plausible representation (realization) of the FEBB defined in Ref. [3]. This requires the use of the ADM 3+1 splitting and the AQ procedure. We just lay down the

representation but without finding its explicit form which would require a rather formidable calculus where one needs to deal with commutation relations among tensorial objects. We believe that a Monte Carlo algorithm may lose ergodicity in the presence of sharp constraints which AQ can otherwise smooth out.

Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments: I thank Luciano Rezzolla for discussions on the ADM splitting and for sharing his lecture notes and suggesting chapter 7 of his book “Relativistic Hydrodynamics”.

Conflicts of Interest: The author has no conflicts to disclose.

Appendix A. Commutators Between the Spatial Metric and the Momentric

We start from the Poisson brackets (at fixed time) between the two canonical variables g_{ij} and π^{ij} :

$$\{g_{ij}(x), g_{kl}(x')\} = 0, \quad (A1)$$

$$\begin{aligned} \{g_{ij}(x), \pi^{kl}(x')\} &= \frac{\delta g_{ij}(x)}{\delta g_{mn}(x'')} \frac{\delta \pi^{kl}(x')}{\delta \pi^{mn}(x'')} \\ &= \frac{1}{2} \delta^3(x - x'') \delta^3(x' - x'') \delta_m^k \delta_n^l [\delta_i^m \delta_j^n + \delta_j^m \delta_i^n] \\ &= \frac{1}{2} \delta^3(\mathbf{x} - \mathbf{x}') [\delta_i^k \delta_j^l + \delta_i^l \delta_j^k], \end{aligned} \quad (A2)$$

$$\{\pi^{ij}(x), \pi^{kl}(x')\} = 0, \quad (A3)$$

where in the second equation we used the symmetry of the metric tensor to write $g_{ij} = [g_{ij} + g_{ji}]/2$ and δ^3 is a three dimensional Dirac delta function.

We then find the Poisson brackets between the two canonical affine variables g_{ij} and $\pi_i^j = g_{ik} \pi^{kj}$:

$$\begin{aligned} \{g_{ij}(x), \pi_k^l(x')\} &= \{g_{ij}(x), g_{kn}(x') \pi^{nl}(x')\} \\ &= g_{kn}(x') \{g_{ij}(x), \pi^{nl}(x')\} \\ &= \frac{1}{2} \delta^3(\mathbf{x} - \mathbf{x}') [\delta_j^l g_{ki}(x) + \delta_i^l g_{kj}(x)], \end{aligned} \quad (A4)$$

$$\begin{aligned} \{\pi_i^j(x), \pi_k^l(x')\} &= \{g_{in}(x) \pi^{nj}(x), g_{km}(x') \pi^{ml}(x')\} \\ &= g_{km} \pi^{nj} \{g_{in}(x), \pi^{ml}(x')\} - g_{in} \pi^{ml} \{g_{km}(x'), \pi^{nj}(x)\} \\ &= \frac{1}{2} \delta^3(\mathbf{x} - \mathbf{x}') [\delta_i^l \pi_k^j(x) - \delta_k^l \pi_i^j(x)]. \end{aligned} \quad (A5)$$

And in the end we pass to operator commutators, promoted from the Poisson brackets $\{\dots, \dots\} \rightarrow [\dots, \dots]/(i\hbar)$. After being smeared with suitable test functions, the result is that both the metric and the momentric tensors can be made self-adjoint operators (for example choosing for the momentric $(\hat{g}_{ik} \hat{\pi}^{jk} + \hat{\pi}^{jk} \hat{g}_{ik})/2$), and the metric operators will satisfy the required positivity requirements.

References

1. C. W. Misner, Feynman Quantization of General Relativity, *Rev. Mod. Phys.* **29**, 497 (1957).
2. J. R. Klauder, A Straight Forward Path to a Path Integration of Einstein’s Gravity, *Annals of Physics* **447**, 169148 (2022).
3. R. Fantoni, Statistical Gravity through Affine Quantization, *Quantum Rep.* **6**, 706 (2024).
4. R. Fantoni and J. R. Klauder, Monte Carlo evaluation of the continuum limit of the two-point function of the Euclidean free real scalar field subject to affine quantization, *J. Stat. Phys.* **184**, 28 (2021).
5. R. Fantoni and J. R. Klauder, Scaled Affine Quantization of φ_4^4 in the Low Temperature Limit, *Eur. Phys. J. C* **82**, 843 (2022).

6. R. Fantoni and J. R. Klauder, Scaled Affine Quantization of Ultralocal φ_2^4 a comparative Path Integral Monte Carlo study with scaled Canonical Quantization, *Phys. Rev. D* **106**, 114508 (2022).
7. J. R. Klauder and R. Fantoni, The Magnificent Realm of Affine Quantization: valid results for particles, fields, and gravity, *Axioms* **12**, 911 (2023).
8. R. Fantoni, Static screening in a degenerate electron plasma, *The Physics Educator* **6**, 2420004 (2024).
9. R. Fantoni, Continuum limit of the Green function in scaled affine φ_4^4 quantum Euclidean covariant relativistic field theory, *Quantum Rep.* **6**, 134 (2024).
10. J. R. Klauder and R. Fantoni, The Secret to Fixing Incorrect Canonical Quantizations, *Academia Quantum* **1**, 10.20935/AcadQuant7349 (2024).
11. D. Hilbert, Die Grundlagen der Physik, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse **3**, 395 (1915).
12. R. P. Feynman, *Feynman Lectures on Gravitation* (Addison-Wesley, 1995) p. 136 Eq. (10.1.2).
13. https://en.wikipedia.org/wiki/Gibbons-Hawking-York_boundary_term (accessed on February 18, 2025).
14. R. Arnowitt, S. Deser, and C. Misner, The Dynamics of General Relativity, In: Witten, L., Ed., *Gravitation: An Introduction to Current Research*, Wiley & Sons, New York, 227 (1962), arXiv: gr-qc/0405109.
15. D. M. Ceperley, Path integrals in the theory of condensed helium, *Rev. Mod. Phys.* **67**, 279 (1995)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.