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1. Introduction

The objective of this article is to present a systemic-structural approach [1] – or simply, a “structural
approach” – for the concurrent teaching of the basic notions of 1) propositional calculus and 2) set
theory at an introductory level. The term “systemic” refers to the presentation of isomorphisms existing
between the “parallel disciplines” considered (in this case, propositional calculus and set theory). For
this purpose, from these disciplines the pairs of corresponding operations will be discussed in section
2, and then, the pairs of corresponding laws, or theorems, in section 3.

This instructional method is based mainly on the structure of the subject matter presented, and
not on the diverse possible ways of communicating it, such as presential or virtual classes, using
different amounts of audiovisual resources, or having a majority of lectures or discussion groups. The
basic hypothesis of this instructional approach is the following: The structure itself is what facilitates
learning. For this reason, the term “structural” is used for the approach considered.

It is supposed that those reading this article teach in high school or college and are already familiar
with the notions of logic and mathematics to be considered here. For this reason, they will not be
covered too formally or exhaustively; a simple review of some of their main characteristics will be
provided instead. In the remainder of this section, brief consideration will be given to some of these
notions which are important for this article.

A proposition – or statement – is a linguistic expression to which a truth value may be assigned:
According to classical bivalent logic, each proposition is either true or false. Thus, for example,
“Caballito is a neighborhood of the Argentine capital, Buenos Aires” can be considered a proposition.
That does not occur with “What is your name?” or “Sit down!”.

In this article, when considering a sole proposition, it will be called “q”. When considering more
than one proposition, the denominations q1, q2, q3, . . . will be used. The negation of a proposition will
be symbolized by a horizontal bar above that proposition. Thus the negation of the proposition q – that
is, not q – will be symbolized as q. Of course, any negated proposition, such as q, is also a proposition.

In set theory, the universal set U is the set to which all the elements that can belong to a set
– according to the topic covered – belong. If within the framework of that U only one other set is
considered – that is, a set to which some of the elements in that U belong – that sole set will be
denominated C. If more than one set of that type is considered, those sets will be denominated C1, C2,
C3, . . ..

The operator of complementation of a set will be symbolized by the symbol placed above the
denomination of the set whose complement is sought. Thus, the complement of C is symbolized as C.
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All of the elements belonging to the universal set U considered that do not to belong to C belong to the
set C. The complement sets of C1, C2, C3, . . . will be symbolized as C1, C2, C3, . . . respectively.

Given that all the elements which can be considered when covering a particular topic belong
to the universal set U symbolized as U, no element will belong to its complement, which will be

symbolized as U. For this reason, U will be called the empty set and will be symbolized as ∅; that is, U
= ∅.

In this article it will be admitted that whenever an operation involving sets is carried out, the
corresponding universal set U considered will be known.

For an introduction to topics of logic and set theory, one may consult [2]. For a more detailed
treatment of topics of logic, [3] and [4] may be consulted. For a more advanced coverage of set theory,
one may consult, for example [5].

2. Pairs of Operations Corresponding to 1) Propositional Calculus and 2) Set Theory

The presence of a zero – 0 – in the truth table of a proposition is equivalent to the truth value
“false” of that proposition. The presence of a zero – 0 – in the membership table of a set C (or rather, C1,
C2, C3, . . .) means that an element belonging to the universal set U considered does not belong to that
set C (that is, to C1, C2, C3, . . .).

The presence of a one – 1 – in the truth table of a proposition is equivalent to the truth value “true”
of that proposition. The presence of a one – 1 – in the membership table of a set C (or rather, C1, C2, C3,
. . .) means that an element belonging to the universal set U considered does belong to that set C (that
is, to C1, C2, C3, . . .).

Figure 1 presents a) the truth table of the negation q (not q) of the proposition q and b) the
membership table of the complement C of a set C.

q q

0 1
1 0

(a) truth table for q

C C

0 1
1 0

(b) membership table for C

Figure 1. a) truth table for q and b) membership table for C

The first row of the truth table represented in Figure 1a is 0, 1. The first digit – 0 – in that numerical
sequence in column q means that it is accepted that q is false. The second digit – 1 – in that numerical
sequence means that it is accepted that q is true. In other words, if the proposition q is false, then its
negation (the proposition q) is true.

The second row of the truth table represented in Figure 1a is 1, 0. The first digit – 1 – in that
numerical sequence in column q means that it is accepted that q is true. The second digit – 0 – in that
numerical sequence means that it is accepted that q is false. In other words, if the proposition q is true,
then its negation (q) is false.

The first row of the membership table in Figure 1b is 0, 1. The first digit – 0 – in that numerical
sequence in column C means that a certain element belonging to the universal set U considered does
not belong to the set C. The second digit – 1 – in that numerical sequence means that the element does
belong to the complement set C of C. In other words, if any element belonging to the universal set U
considered does not belong to a set C, then it does belong to the complement set C of that set.

The second row of the membership table in Figure 1b is 1, 0. The first digit – 1 – in that numerical
sequence in column C means that a certain element belonging to the universal set U considered does
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belong to the set C. The second digit – 0 – in that numerical sequence means that the element does not
belong to the complement set C of C. In other words, if any element belonging to the universal set U
considered belongs to the set C, then it does not belong to the complement set C of that set.

The symbol corresponding to the operator of the conjunction of two propositions q1 and q2 will
be ∧. The symbol corresponding to the operator of the intersection of two sets C1 and C2 will be
symbolized as ∩.

Figure 2 presents a) the truth table for the conjunction q1 ∧ q2 (q1 and q2) and b) the membership
table for the intersection set (C1 ∩ C2) of C1 and C2.

q1 q2 q1 ∧ q2

0 0 0
0 1 0
1 0 0
1 1 1

(a) truth table for the conjunction of q1 and q2 – q1 ∧ q2

C1 C2 C1 ∩ C2

0 0 0
0 1 0
1 0 0
1 1 1

(b) membership table for the set that is an intersection of C1 and C2 – C1 ∩ C2

Figure 2. a) truth table for q1 ∧ q2 and b) membership table for C1 ∩ C2

As seen in Figure 2a, only in the fourth row of the above truth table (where the numerical sequence
1, 1, 1 appears) is there a 1 in the column corresponding to q1 ∧ q2. In other words, only if q1 is true
as indicated by the first 1 in that numerical sequence, and q2 is also true as indicated by the second 1
in that numerical sequence, is q1 ∧ q2 also true, as indicated by the third 1 in the numerical sequence
considered. In the other three possible cases, considered in the first, second and third rows of the truth
table in Figure 2, there is a 0 in the column corresponding to q1 ∧ q2, indicating that the proposition is
false.

As seen in Figure 2b, only in the fourth row of the membership table (where the numerical
sequence 1, 1, 1 appears) is there a 1 in the column corresponding to C1 ∩ C2. In other words, only if
any element belonging to the U considered belongs to C1, as indicated by the first 1 in that numerical
sequence, and also belongs to C2, as indicated by the second 1 in that numerical sequence, does that
element belong to C1 ∩ C2 (the intersection set of C1 and C2).

If q1 is made to correspond to C1, q2 to C2, the operator of conjunction ∧ in propositional calculus
to the operator of intersection ∩ in set theory (and as a result the correspondence between q1 ∧ q2

and C1 ∩ C2 is established), the isomorphism existing between the truth table in Figure 2a and the
membership table in 2b can be observed. In effect, for every 0 in the first table there is a corresponding
0 in the second table, and for every 1 in the first table there is a corresponding 1 in the second table.

The symbol of the inclusive disjunction (inclusive or) of the two propositions q1 and q2 will
be ∨. The symbol of the exclusive disjunction (exclusive or) of two propositions q1 and q2 will be
∨̇. The symbol corresponding to the inclusive union of two sets C1 and C2 will be ∪. The symbol
corresponding to the exclusive union of two sets C1 and C2 will be ∪̇.

Figure 3 presents a) the truth tables corresponding to the inclusive disjunction of q1 and q2 (q1 ∨ q2)
and to the exclusive disjunction of q1 and q2 (q1∨̇ q2), along with b) the membership tables for the
inclusive union set of C1 and C2 (C1 ∪ C2) and of the exclusive union set of C1 and C2 (C1∪̇C2).
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q1 q2 q1 ∨ q2 q1∨̇ q2

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 0

(a) truth table for the inclusive disjunction of q1 and q2 (q1 ∨ q2) and the
truth table for the exclusive disjunction of q1 and q2 (q1∨̇ q2)

C1 C2 C1 ∪ C2 C1∪̇C2

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 0

(b) membership table for the inclusive union of the sets C1 and C2 (C1 ∪ C2) and
the membership table for the exclusive union of the sets C1 and C2 (C1∪̇C2)

Figure 3. a) truth tables for q1 ∨ q2 and of q1∨̇ q2, and b) membership tables for the sets C1 ∪ C2 and
C1∪̇C2

If q1 is made to correspond to C1, q2 to C2, the operator ∨ in propositional calculus to the operator
∪ in set theory, and the operator ∨̇ in propositional calculus to the operator ∪̇ in set theory, note may
be taken of 1) the isomorphism between the truth table corresponding to q1 ∨ q2 and the membership
table for C1 ∪ C2 (given that for every 0 in this truth table, there is a 0 in the membership table), and 2)
the isomorphism between the truth table for q1∨̇ q2 and the membership table for C1∪̇C2, for the same
reason mentioned in the above isomorphism.

Note that in the column corresponding to q1 ∨ q2 there is a sole 0 indicating that the inclusive
disjunction is false only when both q1 and q2 are false, as shown by the zeros in the first row both in
the q1 column and in the q2 column. Likewise, note that in the column corresponding to C1 ∪ C2 there
is a sole 0 indicating that any element belonging to the universal set U considered does not belong to
C1 ∪ C2, only when that element belongs neither to C1 nor to C2, as shown by the zeros present in the
first row both in the C1 column and in the C2 column.

Note that in the truth table for the proposition q1∨̇q2 this proposition is true if only one of the two
propositions q1 and q2 is true. Likewise, in the membership table corresponding to C1∪̇C2 it can be
seen that only the elements belonging to the universal set U considered that belong only to one of the
two sets C1 and C2 belong to that set (C1∪̇C2).

The operator of material implication in propositional calculus is symbolized as→. The proposition
q1 → q2 (that is, q1 materially implies q2) can be read as “If q1, then q2”. The proposition q2 → q1 (that
is, q2 materially implies q1) can be read as “If q2, then q1”. In the proposition q1 → q2, q1 is known
as the antecedent of that proposition and q2 is its consequent. In the proposition q2 → q1, q2 is the
antecedent of that proposition and q1 is its consequent.

Given two sets C1 and C2, the use of the operator of membership implication−→| makes it possible
to generate the sets C1 −→| C2 and C2 −→| C1.

Figure 4 presents 1) the truth table for the proposition q1 → q2 and the truth table for the
proposition q2 → q1, and 2) the membership table for the set C1 −→| C2 and the membership table for
the set C2 −→| C1.
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q1 q2 q1 → q2 q2 → q1

0 0 1 1
0 1 1 0
1 0 0 1
1 1 1 1

(a) truth table for the proposition q1 → q2 and truth table for
the proposition q2 → q1

C1 C2 C1 −→| C2 C2 −→| C1

0 0 1 1
0 1 1 0
1 0 0 1
1 1 1 1

(b) membership table for the set C1 −→| C2 and membership table
for the set C2 −→| C1

Figure 4. a) Truth tables for the propositions q1 → q2 and q2 → q1, and membership tables for the sets
C1 −→| C2 and C2 −→| C1.

Note that the proposition q1 → q2 is false only when q1 is true and q2 is false. Likewise, any
element belonging to the universal set U considered does not belong to the set C1 −→| C2 only if that
element belongs to the set C1 but not to the set C2.

Note also that the proposition q2 → q1 is false only when q2 is true and q1 is false. Likewise, any
element belonging to the universal set U considered does not belong to the set C2 −→| C1 only if that
element belongs to the set C2 but not to the set C1.

The truth table for q1 → q2 is isomorphic to the membership table for C1 −→| C2. (Both tables are
the same from a purely numerical viewpoint.) This also occurs with the truth table for q2 → q1 and the
membership table for C2 −→| C1.

The operator of logical equivalence (or of material bi-implication) in propositional calculus will
be symbolized as←→. The operator of membership bi-implication in set theory will be symbolized
as ←→| . Figure 5 presents a) the truth table for the proposition q1 ←→ q2 (that is, “q1 is logically
equivalent to q2”) and b) the membership table for the set C1 ←→| C2.

q1 q2 q1 ←→ q2

0 0 1
0 1 0
1 0 0
1 1 1

(a) truth table for the proposition q1 ←→ q2

C1 C2 C1 ←→| C2

0 0 1
0 1 0
1 0 0
1 1 1

(b) membership table for the set C1 ←→| C2

Figure 5. a) truth table for the proposition q1 ←→ q2 and b) membership table for the set C1 ←→| C2

In the truth table for q1 ←→ q2 it is seen that the proposition is true in only two of the four
possible cases: the cases in which q1 and q2 have the same truth value (that is, if both propositions are
false or if both propositions are true). These cases are considered in rows 1 and 4 of the truth table.
In the membership table for C1 ←→| C2 it is seen that any element belonging to the universal set U
considered belongs to the set C1 ←→| C2 only in two of the four possible cases: if that element belongs
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neither to the set C1 nor to the set C2, or if that element belongs both to the set C1 and to the set C2.
These cases are considered in rows 1 and 4 of the membership table.

The Sheffer stroke operator – or NAND, the negation of the conjunction of two propositions q1

and q2 – will be symbolized as ↑. The Sheffer stroke operator in set theory will be symbolized as 7→.
Figure 6 represents a) the truth table for the proposition q1 ↑ q2, and b) the membership table for the
set C1 7→ C2.

q1 q2 q1 ↑ q2

0 0 1
0 1 1
1 0 1
1 1 0

(a) truth table for the proposition q1 ↑ q2

C1 C2 C1 7→ C2

0 0 1
0 1 1
1 0 1
1 1 0

(b) membership table for the set C1 7→ C2

Figure 6. a) truth table for the proposition q1 ↑ q2; and b) membership table for the set C1 7→ C2

In the truth table for the proposition q1 ↑ q2 it is seen that in only one of four possible cases is the
proposition false: that in which both q1 and q2 are true. In the membership table for C1 7→ C2 it is seen
that in only one of four possible cases, does any element whatsoever belonging to the universal set U
considered not belong to the set C1 7→ C2: that in which that element belongs both to C1 and to C2.

If the proposition q1 is made to correspond to the set C1, the proposition q2 is made to correspond
to the set C2, the operator ↑ in propositional calculus to the operator 7→ in set theory – and therefore,
q1 ↑ q2 to C1 7→ C2 – it can be seen that the truth table for q1 ↑ q2 is isomorphic to the membership table
for C1 7→ C2. (Note that both tables are the same from a purely numerical viewpoint.)

The operator Peirce’s arrow – or NOR, the negation of the inclusive disjunction of two propositions
q1 and q2 – will be symbolized as ↓ . The operator Peirce’s arrow in set theory will be symbolized as

7→

.
Figure 7 presents a) the truth table for the proposition q1 ↓ q2 and b) the membership table for the set
C1

7→

C2.

q1 q2 q1 ↓ q2

0 0 1
0 1 0
1 0 0
1 1 0

(a) truth table for the proposition q1 ↓ q2

C1 C2 C1

7→ C2

0 0 1
0 1 0
1 0 0
1 1 0

(b) membership table for the set C1

7→ C2

Figure 7. a) truth table for the proposition q1 ↓ q2 and b) membership table for the set C1

7→ C2

In the truth table for the proposition q1 ↓ q2 it is seen that in only one of four possible cases is the
proposition true: that in which both q1 and q2 are false. In the membership table for C1

7→

C2 it is seen

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 August 2024                   doi:10.20944/preprints202408.0700.v2

https://doi.org/10.20944/preprints202408.0700.v2


7 of 11

that in only one of four possible cases does any element whatsoever belonging to the universal set U
belong to the set C1

7→

C2: that in which that element belongs neither to the set C1 nor to the set C2.
If the proposition q1 is made to correspond to the set C1, the proposition q2 to correspond to the

set C2, the operator ↓ in propositional calculus to the operator

7→

in set theory – and therefore, q1 ↓ q2 to
C1

7→

C2 – it can be seen that the truth table for q1 ↓ q2 is isomorphic to the membership table C1

7→

C2.
(Note that both tables are the same from a purely numerical viewpoint.)

3. Each Law – or Tautology – of Propositional Calculus Is Isomorphic to an Expression
Corresponding to a Set Equal to the Universal Set Considered

Any proposition resulting from operations between n propositions, for n = 1, 2, 3, . . ., which is
true because of its logical form, regardless of the truth value of each of those n propositions, is known
as a law (or tautology) in propositional calculus.

In this section reference will be made to several laws (or tautologies) of propositional calculus.
For each a specification will be given, according to section 2 above, of the corresponding set which is
isomorphic to that law. A representation will be provided of 1) the truth table for that law and 2) the
membership table for that set.

In each truth table it will be possible to note in the corresponding column that, regardless of
the truth values of n propositions considered to construct it, the proposition that qualifies as a law
is true. In each membership table it will be possible to note how, regardless of whether any element
of the universal set U considered belongs or not to one of the n sets considered to construct the set
corresponding to that law – which is isomorphic to it – that element belongs to this latter set. Therefore,
that set is equal to the universal set U considered.

First of all consider in Figure 8 the “law of the excluded middle”: q ∨ q. In this case n = 1.
The set corresponding to the law q ∨ q – or which is isomorphic to it – is the following: C ∪ C.

q q q ∨ q

0 1 1
1 0 1

(a) truth table for the law q1 ∨ q

C C C ∪ C

0 1 1
1 0 1

(b) membership table for the set C ∪ C; (C ∪ C) = U

Figure 8. a) truth table for the law q ∨ q and b) membership table for the set C ∪ C

Consider in Figure 9 one of the De Morgan’s laws in propositional calculus: (q1 ∧ q2) ←→
(q1 ∧ q2). In this case n = 2.

The set corresponding to the law (q1 ∧ q2) ←→ (q1 ∧ q2) – or which is isomorphic to it – is the

following: (C1 ∩ C2)←→| (C1 ∪ C2).
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q1 q2 q1 ∧ q2 (q1 ∧ q2) q1 q2 q1 ∨ q2 (q1 ∧ q2)←→ (q1 ∨ q2)

0 0 0 1 1 1 1 1
0 1 0 1 1 0 1 1
1 0 0 1 0 1 1 1
1 1 1 0 0 0 0 1

(a) truth table for the law (q1 ∧ q2)←→ (q1 ∨ q2)

C1 C2 C1 ∩ C2 (C1 ∩ C2) C1 C2 C1 ∪ C2 (C1 ∩ C2)←→| (C1 ∪ C2)

0 0 0 1 1 1 1 1
0 1 0 1 1 0 1 1
1 0 0 1 0 1 1 1
1 1 1 0 0 0 0 1

(b) membership table for the set (C1 ∩ C2) ←→| (C1 ∪ C2); ((C1 ∩
C2)←→| (C1 ∪ C2)) = U

Figure 9. a) truth table for the law (q1 ∧ q2) ←→ (q1 ∨ q2) and b) membership table for the set

(C1 ∩ C2)←→| (C1 ∪ C2)

Consider in Figure 10 another De Morgan’s law in propositional calculus: (q1 ∨ q2)←→ (q1 ∧ q2).
In this case n = 2.

The set corresponding to the law (q1 ∨ q2) ←→ (q1 ∧ q2) – or which is isomorphic to it – is the

following: (C1 ∪ C2)←→| (C1 ∩ C2).

q1 q2 q1 ∨ q2 (q1 ∨ q2) q1 q2 q1 ∧ q2 (q1 ∨ q2)←→ (q1 ∧ q2)

0 0 0 1 1 1 1 1
0 1 1 0 1 0 0 1
1 0 1 0 0 1 0 1
1 1 1 0 0 0 0 1

(a) truth table for the law (q1 ∨ q2)←→ (q1 ∧ q2)

C1 C2 C1 ∪ C2 (C1 ∪ C2) C1 C2 C1 ∩ C2 (C1 ∪ C2)←→| (C1 ∩ C2)

0 0 0 1 1 1 1 1
0 1 1 0 1 0 0 1
1 0 1 0 0 1 0 1
1 1 1 0 0 0 0 1

(b) membership table for the set (C1 ∪ C2)←→| (C1 ∩ C2); ((C1 ∪ C2)←→|
(C1 ∩ C2)) = U

Figure 10. a) truth table for the law (q1 ∨ q2) ←→ (q1 ∧ q2) and b) membership table for the set

(C1 ∪ C2)←→| (C1 ∩ C2)

Consider in Figure 11 the law of propositional calculus “modus ponendo ponens”: ((q1 →
q2) ∧ q1)→ q2. In this case n = 2.

The set corresponding to the law ((q1 → q2) ∧ q1) → q2 – or which is isomorphic to it – is the
following: ((C1 −→| C2) ∩ C1) −→| C2.
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q1 q2 q1 → q2 (q1 → q2) ∧ q1 ((q1 → q2) ∧ q1)→ q2

0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

(a) truth table for the law ((q1 → q2) ∧ q1)→ q2

C1 C2 C1 −→| C2 (C1 −→| C2) ∩ C1 ((C1 −→| C2) ∩ C1) −→| C2

0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

(b) membership table for the set ((C1 −→| C2) ∩ C2) −→| C1;
(((C1 −→| C2) ∩ C1) −→| C2) = U

Figure 11. a) truth table for the law ((q1 → q2) ∧ q1) → q2 and b) membership table for the set
((C1 −→| C2) ∩ C1) −→| C2

Consider in Figure 12 the law of propositional calculus “modus tollendo tollens”: ((q1 → q2) ∧
q2)→ q1. In this case n = 2.

The set corresponding to the law ((q1 → q2) ∧ q2) → q1 – or which is isomorphic to it – is the

following: ((C1 −→| C2) ∩ C2) −→| C1.

q1 q2 q1 → q2 q1 q2 (q1 → q2) ∧ q2 ((q1 → q2) ∧ q2)→ q1

0 0 1 1 1 1 1
0 1 1 1 0 0 1
1 0 0 0 1 0 1
1 1 1 0 0 0 1

(a) truth table for the law ((q1 → q2) ∧ q2)→ q1

C1 C2 C1 → C2 C1 C2 (C1 −→| C2) ∩ C2 ((C1 −→| C2) ∩ C2) −→| C1

0 0 1 1 1 1 1
0 1 1 1 0 0 1
1 0 0 0 1 0 1
1 1 1 0 0 0 1

(b) membership table for the set ((C1 −→| C2) ∩ C2) −→| C1; (((C1 −→|
C2) ∩ C2) −→| C1) = U

Figure 12. a) truth table for the law ((q1 → q2) ∧ q2) → q1, and b) membership table for the set

((C1 −→| C2) ∩ C2) −→| C1

Consider in Figure 13 the law (q1∨̇q2) ←→ (q1 ←→ q2) in propositional calculus. In this case
n = 2.

The set corresponding to the law (q1∨̇q2)←→ (q1 ←→ q2) – or which is isomorphic to it – is the

following: (C1∪̇C2)←→| (C1 ←→| C2).
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q1 q2 q1∨̇ q2 q1 ←→ q2 (q1 ←→ q2) (q1∨̇ q2)←→ (q1 ←→ q2)

0 0 0 1 0 1
0 1 1 0 1 1
1 0 1 0 1 1
1 1 0 1 0 1

(a) truth table for the law (q1∨̇q2)←→ (q1 ←→ q2)

C1 C2 C1∪̇C2 C1 ←→| C2 (C1 ←→| C2) (C1∪̇C2)←→| (C1 ←→| C2)

0 0 0 1 0 1
0 1 1 0 1 1
1 0 1 0 1 1
1 1 0 1 0 1

(b) membership table for the set (C1∪̇C2) ←→| (C1 ←→| C2);

((C1∪̇C2)←→| (C1 ←→| C2)) = U

Figure 13. a) truth table for the law (q1∨̇ q2) ←→ (q1 ←→ q2) and b) membership table for the set

(C1∪̇C2)←→| (C1 ←→| C2)

Consider in Figure 14 the law of transitivity of material implication in propositional calculus:
((q1 → q2) ∧ (q2 → q3))→ (q1 → q3). In this case n = 3.

The set corresponding to the law ((q1 → q2) ∧ (q2 → q3))→ (q1 → q3) – or which is isomorphic
to it – is the following: ((C1 −→| C2) ∩ C2 −→| C3)) −→| (C1 −→| C3).

q1 q2 q3 q1 → q2 q2 → q3 (q1 → q2) ∧ (q2 → q3)

0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 1 1

q1 → q3 ((q1 → q2) ∧ (q2 → q3))→ (q1 → q3)

1 1
1 1
1 1
1 1
0 1
1 1
0 1
1 1

(a) truth table for the law ((q1 → q2)∧ (q2 →
q3))→ (q1 → q3)

Figure 14. Cont.
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C1 C2 C3 C1 −→| C2 C2 −→| C3 (C1 −→| C2) ∩ (C2 −→| C3)

0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 1 1

C1 −→| C3 ((C1 −→| C2) ∩ (C2 −→| C3)) −→| (C1 −→| C3)

1 1
1 1
1 1
1 1
0 1
1 1
0 1
1 1

(b) membership table for the set ((C1 −→| C2)∩ (C2 −→|
C3)) −→| (C1 −→| C3); (((C1 −→| C2) ∩ (C2 −→|
C3)) −→| (C1 −→| C3)) = U

Figure 14. a) truth table for the law ((q1 → q2) ∧ (q2 → q3))→ (q1 → q3) and b) membership table for
the set ((C1 −→| C2) ∩ (C2 −→| C3)) −→| (C1 −→| C3)

4. Discussion and Perspectives

The importance given in the instructional approach proposed here to the structure of the subject
matter presented, explains and justifies why reference is made to a contribution of the general systems
theory of Ludwig von Bertalanffy [1], regarding the detection and use of isomorphisms between the
laws and regularities of diverse areas of knowledge.

In a future article on this topic, a broader and more detailed characterization of this approach
will be provided. In addition, in this and other papers clear examples of its usage will be given. This
has been done here by pointing out certain correspondences between propositional calculus – the
most basic level of logic – and set theory. In these articles, emphasis will be given to correspondences
existing between propositional calculus, predicate calculus, set theory, Boole’s algebra, and syllogistics,
a historically and instructionally important discipline of logic.
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