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Abstract. In this paper, we introduce a general family of Lagrange-based Apostol-
type Hermite polynomials thereby unifying the Lagrange-based Apostol Hermite-
Bernoulli and the Lagrange-based Apostol Hermite-Genocchi polynomials. We also
define Lagrange-based Apostol Hermite-Euler polynomials via the generating func-
tion. In terms of these generalizations, we find new and useful relations between the
unified family and the Apostol Hermite-Euler polynomials. We also derive their ex-
plicit representations and list some basic properties of each of them. Some implicit
summation formulae and general symmetry identities are derived by using different
analytical means and applying generating functions.
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1. Introduction

The Lagrange polynomials in several variables, which are known as the Chan-
Chyan-Srivastava polynomials [3] are defined by means of the following generating
function:

r∏
j=1

(1− xjt)
−αj =

∞∑
n=0

g(α1....αr)
n (x1, ....., xr)t

n (1.1)

(αj ∈ C(j = 1, ..., r); | t |< min{| x1 |−1, ..., | xr |−1})
and are given explicitly by

g(α1,α2....αr)
n (x1, x2, ...., xr) =

n∑
kr−1=0

...

k3∑
k2

k2∑
(α1)k1(α2)k2−k1 ...(αr−1)kr−1−kr−2(αr)n−kr−1

·x
k1
1

k1!

xk2−k1
2

(k2 − k1)!
...

x
kr−1−kr−2

r−1

(kr−1 − kr−2)!

xn−kr−1
r

(n− kr − 1)!
, (1.2)

where and in what follows (λ)n denotes the Pochhamer symbol (or the shifted facto-
rial) defined by

(λ)0 := 1 and (λ)n = λ(λ)....(λ+ n− 1)(n ∈ N := {1, 2, 3, ...}).

Luo and Srivastava [10, 11, 12] introduced the generalized Apostol-Bernoulli

polynomials B
(α)
n (x) of order α, Luo [7] investigated the generalized Apostol-Euler

polynomials E
(α)
n (x) of order α and the generalized Apostol-Genocchi polynomials

G
(α)
n (x) of order α (see also [6, 8, 9]).

The generalized Apostol-Bernoulli polynomials B
(α)
n (x;λ) of order α ∈ C, the

generalized Apostol-Euler polynomials E
(α)
n (x;λ) of order α ∈ C, the generalized
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Apostol-Genocchi polynomials G
(α)
n (x;λ) of order α ∈ C are defined respectively by

the following generating functions:(
t

λet − 1

)α

ext =
∞∑

n=0

B(α)
n (x;λ)

tn

n!
, (| t |<| lnλ |< 2π; 1α = 1) (1.3)

(
2

λet − 1

)α

ext =
∞∑

n=0

E(α)
n (x;λ)

tn

n!
, (| t |<| lnλ |< π; 1α = 1) (1.4)

and (
2t

λet − 1

)α

ext =

∞∑
n=0

G(α)
n (x;λ)

tn

n!
, (| t |<| lnλ |< π; 1α = 1). (1.5)

It is easy to see that

B(α)
n (x) = B(α)

n (x; 1), E(α)
n (x) = E(α)

n (x; 1) and G(α)
n (x) = G(α)

n (x; 1).

Recently, Srivastava et al. [16] introduce and investigate the following class of

Lagrange-based Apostol type polynomials T
(α1,···,αr;α)
n.λ,k (x1 · · · xr;x) as follows:

Definition 1.1. The Lagrange-based Apostol type polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · ·

xr;x) are defined by means of the following generating function:

r∏
j=1

(1− xjt)
−αj

(
2kt

λet + (−1)k+1

)α

ext =
∞∑

n=0

T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x)t

n, (1.6)

(λ ∈ C;αj ∈ C(j = 1, · · ·, r)).
In the particular cases when k = 0 and k = 1, we define the Lagrange-based

Apostol-Bernoulli polynomialsB
(α1,···,αr;α)
n,λ (x1···xr;x) and the Lagrange-based Apostol-

Genocchi polynomials G
(α1,···,αr;α)
n,λ (x1 · · · xr;x) as follows.

Definition 1.2. The Lagrange-based Apostol-Bernoulli polynomials B
(α1,···,αr;α)
n,λ (x1 ·

· · xr;x) given by

B
(α1,···,αr;α)
n,λ (x1 · · · xr;x) = T

(α1,···,αr;α)
n,λ,0 (x1 · · · xr;x)

are defined by means of the following generating function
r∏

j=1

(1− xjt)
−αj

(
t

λet − 1

)α

ext =

∞∑
n=0

B
(α1,···,αr;α)
n,λ (x1 · · · xr;x)t

n, (1.7)

(λ ∈ C;αj ∈ C(j = 1, · · ·, r)).

Definition 1.3. The Lagrange-based Apostol-Genocchi polynomials G
(α1,···,αr;α)
n,λ (x1 ·

· · xr;x) given by

G
(α1,···,αr;α)
n,λ (x1 · · · xr;x) = T

(α1,···,αr;α)
n,λ,1 (x1 · · · xr;x)

are defined by means of the following generating function
r∏

j=1

(1− xjt)
−αj

(
2t

λet + 1

)α

ext =

∞∑
n=0

G
(α1,···,αr;α)
n,λ (x1 · · · xr;x)t

n, (1.8)

(λ ∈ C;αj ∈ C(j = 1, · · ·, r)).
Furthermore, we define the Lagrange-based Apostol-Euler polynomials as fol-

lows.
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Definition 1.4. The Lagrange-based Apostol-Euler polynomials E
(α1,···,αr;α)
n,λ (x1 · · ·

xr;x) are defined by means of the following generating function:

r∏
j=1

(1− xjt)
−αj

(
2

λet + 1

)α

ext =

∞∑
n=0

E
(α1,···,αr;α)
n,λ (x1 · · · xr;x)t

n, (1.9)

(λ ∈ C;αj ∈ C(j = 1, · · ·, r)).
The 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) Hn(x, y) [2,

4] are defined as

ext+yt2 =
∞∑

n=0

Hn(x, y)
tn

n!
, (1.10)

are solutions of the heat equation

∂

∂y
Hn(x, y) =

∂2

∂x2
Hn(x, y), (1.11)

Hn(x, 0) = xn.

The higher order Hermite polynomials, sometimes called the Kampe de Feriet poly-

nomials of order m or the Gould Hopper polynomials (GHP) H
(m)
n (x, y) defined by

the generating function [1]

ext+ytm =
∞∑

n=0

H(m)
n (x, y)

tn

n!
(1.12)

are solutions of the generalized heat equation [4]

∂

∂y
f(x, y) =

∂m

∂xm
f(x, y) (1.13)

f(x, 0) = xn. (1.14)

Also we note that

H(2)
n (x, y) = Hn(x, y), (1.15)

Hn(2x,−1) = Hn(x), (1.16)

where Hn(x) are the classical Hermite polynomials [1].

The Lagrange-based generalizations which we have introduced above, enable
us to obtain new and useful relations between the Apostol-Bernoulli polynomials,
Apostol-Euler polynomials and the Apostol-Genocchi polynomials. In this paper, we
first study several elementary properties of the generalized Lagrange-based Apostol

type Hermite polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y). Some implicit summation for-

mulae and general symmetry identities are derived by using different analytical means
and applying generating functions.

2. Definitions and Basic Properties of the Generalized Lagrange-Based

Apostol-Type Polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y)

In this section, we introduce Lagrange-based Apostol type Hermite polynomi-
als and give the explicit representations and list basic properties of the generalized

Lagrange-based Apostol-type Hermite polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y).
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Definition 2.1. The Lagrange-based Apostol type Hermite polynomials T
(α1,···,αr;α)
n,λ,k (x1·

· · xr;x, y) are defined by means of the following generating function:
r∏

j=1

(1−xjt)
−αj

(
2kt

λet + (−1)k+1

)α

ext+yt2 =

∞∑
n=0

T
(α1,···,αr;α)
n,λ,k (x1 · · ·xr;x, y)t

n, (2.1)

(λ ∈ C;αj ∈ C(j = 1, · · ·, r)).
In the particular cases, when k = 0 and k = 1, we define the Lagrange-based

Apostol Hermite-Bernoulli polynomials HB
(α1,···,αr;α)
n,λ (x1···xr;x, y) and the Lagrange-

based Apostol Hermite-Genocchi polynomials HG
(α1,···,αr;α)
n,λ (x1 · · ·xr;x, y) as follows.

Definition 2.2. The Lagrange-based Apostol Hermite-Bernoulli polynomials HB
(α1,···,αr;α)
n,λ (x1·

· · xr;x, y) are defined by means of the following generating function:
r∏

j=1

(1− xjt)
−αj

(
t

λet − 1

)α

ext+yt2 =
∞∑

n=0

HB
(α1,···,αr;α)
n,λ (x1 · · · xr;x, y)t

n, (2.2)

(λ ∈ C;αj ∈ C(j = 1, · · ·, r)).
Definition 2.3. The Lagrange-based Apostol Hermite-Genocchi polynomials HG

(α1,···,αr;α)
n,λ (x1·

· · xr;x, y) are defined by means of the following generating function:
r∏

j=1

(1− xjt)
−αj

(
2t

λet + 1

)α

ext+yt2 =

∞∑
n=0

HG
(α1,···,αr;α)
n,λ (x1 · · · xr;x, y)t

n, (2.3)

(λ ∈ C;αj ∈ C(j = 1, · · ·, r)).
Furthermore, we define the Lagrange-based Apostol Hermite-Euler polynomials

as follows.

Definition 2.4. The Lagrange-based Apostol Hermite-Euler polynomials HE
(α1,···,αr;α)
n,λ (x1·

· · xr;x, y) are defined by means of the following generating function:
r∏

j=1

(1− xjt)
−αj

(
2

λet + 1

)α

ext+yt2 =
∞∑

n=0

HE
(α1,···,αr;α)
n,λ (x1 · · · xr;x, y)t

n, (2.4)

(λ ∈ C;αj ∈ C(j = 1, · · ·, r)).
Theorem 2.1. Each of the following relationships holds true:

HB
(α1,···,αr;α)
n,λ (0, · · ·, 0;x, y) = HB

(α)
n

n!
(x, y;λ). (2.5)

HE
(α1,···,αr;α)
n,λ (0, · · ·, 0;x, y) = HE

(α)
n

n!
(x, y;λ). (2.6)

HG
(α1,···,αr;α)
n,λ (0, · · ·, 0;x, y) = HG

(α)
n

n!
(x, y;λ). (2.7)

HB
(α1,···,αr;α)
n,λ (x1, · · ·, xr;x, 0) =

n∑
l=0

B
(α1,···,αr;α)
n−l (x;λ)g

(α1,···,αr;α)
l (x1, · · ·, xr)

(n− l)!
. (2.8)

HE
(α1,···,αr;α)
n,λ (x1, · · ·, xr;x, 0) =

n∑
l=0

E
(α1,···,αr;α)
n−l (x;λ)g

(α1,···,αr;α)
l (x1, · · ·, xr)

(n− l)!
. (2.9)

HG
(α1,···,αr;α)
n,λ (x1, · · ·, xr;x, 0) =

n∑
l=0

G
(α1,···,αr;α)
n−l (x;λ)g

(α1,···,αr;α)
l (x1, · · ·, xr)

(n− l)!
.

(2.10)
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HB
(α1,···,αr;1)
n,λ (0, · · ·, 0; 0, 0) = Bn(λ). (2.11)

HE
(α1,···,αr;1)
n,λ (0, · · ·, 0; 0, 0) = En(λ). (2.12)

HG
(α1,···,αr;1)
n,λ (0, · · ·, 0; 0, 0) = Gn(λ). (2.13)

HB
(α1,···,αr;0)
n,λ (x1, · · ·, xr; 0, 0) = HE

(α1,···,αr;0)
n,λ (x1, · · ·, xr; 0, 0). (2.14)

and

= HG
(α1,···,αr;0)
n,λ (x1, · · ·, xr; 0, 0) = g(α1,···,αr)

n (x1, · · ·, xr). (2.15)

Theorem 2.2. The Lagrange-based Apostol Hermite Bernoulli polynomials, the
Lagrange-based Apostol Hermite Euler polynomials and the Lagrange-based Apostol
Hermite Genocchi polynomials are explicitly given by

HB
(α1,···,αr;α)
n,λ (x1, · · ·, xr;x, y) =

n∑
l=0

HB
(α)
n−l(x, y;λ)g

(α1,···,αr)
l (x1, · · ·, xr)

(n− l)!
. (2.16)

HE
(α1,···,αr;α)
n,λ (x1, · · ·, xr;x, y) =

n∑
l=0

HE
(α)
n−l(x, y;λ)g

(α1,···,αr)
l (x1, · · ·, xr)

(n− l)!
. (2.17)

and

HG
(α1,···,αr;α)
n,λ (x1, · · ·, xr;x, y) =

n∑
l=0

HG
(α)
n−l(x, y;λ)g

(α1,···,αr)
l (x1, · · ·, xr)

(n− l)!
. (2.18)

respectively.
Proof. It is fairly straightforward to observe from (1.1) and (2.2)

HB
(α1,···,αr;α)
n,λ (x1, · · ·, xr;x, y) =

[(
t

λet − 1

)α

ext+yt2
] r∏

j=1

(1− xjt)
−αj


=

( ∞∑
n=0

HB(α)
n (x, y;λ)

tn

n!

)( ∞∑
l=0

g
(α1,···,αr)
l tl

)

=
∞∑

n=0

(
n∑

l=0

HB
(α)
n−l(x, y;λ)g

(α1,···,αr)
l (x1, · · ·, xr)

(n− l)!

)
tn.

Comparing the coefficient of tn in both sided, we get the result (2.16). The explicit

representations of HE
(α1,···,αr;α)
n,λ (x1, · · ·, xr;x, y) and HG

(α1,···,αr;α)
n,λ (x1, · · ·, xr;x, y)

follow in a similar manner from the generating function (1.1) in conjunction with
(2.3) and (2.4) respectively.

Theorem 2.3. The following identities hold true for the Lagrange-based Apostol
type Hermite-Bernoulli polynomials, the Lagrange-based Apostol type Hermite-Euler
polynomials and the Lagrange-based Apostol type Hermite-Genocchi polynomials

T
(α1+β1,···,αr+βr;α+β)
n,λ,k (x1 · · · xr;x+ z, y + u)

=
n∑

l=0

T
(α1,···,αr;α)
l,λ,k (x1 · · · xr;x, y)T

(β1,···,βr;β)
n−l,λ,k (x1 · · · xr; z, u). (2.19)

HB
(α1+β1,···,αr+βr;α+β)
n,λ (x1 · · · xr;x+ z, y + u)

=
n∑

l=0

HB
(α1,···,αr;α)
l,λ (x1 · · · xr;x, y)HB

(β1,···,βr;β)
n−l,λ (x1 · · · xr; z, u). (2.20)

HE
(α1+β1,···,αr+βr;α+β)
n,λ (x1 · · · xr;x+ z, y + u)
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=
n∑

l=0

HE
(α1,···,αr;α)
l,λ (x1 · · · xr;x, y)HE

(β1,···,βr;β)
n−l,λ (x1 · · · xr; z, u). (2.21)

and

HG
(α1+β1,···,αr+βr;α+β)
n,λ (x1 · · · xr;x+ z, y + u)

=

n∑
l=0

HG
(α1,···,αr;α)
l,λ (x1 · · · xr;x, y)HG

(β1,···,βr;β)
n−l,λ (x1 · · · xr; z, u). (2.22)

3. Summation formulae for generalized Lagrange-based Apostol-type Her-
mite polynomials

First, we prove the following result involving generalized Lagrange-based Apostol-
type Hermite polynomials by using series rearrangement techniques. We now begin
with the following theorem.

Theorem 3.1. The following implicit summation formulae for Lagrange-based Apos-

tol type Hermite polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y) holds true:

T
(α1,···,αr;α)
n,λ,k (x1 · · ·xr;x, y) =

n∑
m=0

T
(α1,···,αr;α)
m,λ,k (x1 · · ·xr;x− z)tmHn−m(z, y)

1

(n−m)!
.

(3.1)
Proof. By the exploiting generating function (2.1) and using the (1.10)

r∏
j=1

(1− xjt)
−αj

(
2kt

λet + (−1)k+1

)α

e(x−z)tezt+yt2

=

∞∑
m=0

T
(α1,···,αr;α)
m,λ,k (x1 · · · xr;x− z)tm

∞∑
n=0

Hn(z, y)
tn

n!
.

Now replacing n by n−m and comparing the coefficients of tn, we get the result
(3.1).

Theorem 3.2. The following implicit summation formulae for Lagrange-based Apos-

tol type Hermite polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y) holds true:

T
(α1,···,αr;α)
n,λ,k (x1···xr;x+u, y+w) =

n∑
m=0

T
(α1,···,αr;α)
m,λ,k (x1···xr;x−z)tmHn−m(u,w)

1

(n−m)!
.

(3.2)
Proof. Applying the definition (2.1), we have

r∏
j=1

(1−xjt)
−αj

(
2kt

λet + (−1)k+1

)α

e(x+u)t+(y+w)t2 =

∞∑
n=0

T
(α1,···,αr;α)
n,λ,k (x1···xr;x+u, y+w)tn

=

∞∑
m=0

T
(α1,···,αr;α)
m,λ,k (x1 · · · xr;x, y)t

m
∞∑

n=0

Hn(u,w)
tn

n!
.

Replacing n by n − m in the r.h.s and comparing the coefficient of tn, we get
the result (3.2).

Theorem 3.3. The following implicit summation formulae for Lagrange-based Apos-

tol type Hermite polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y) holds true:
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T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y) =

n−2j∑
m=0

[n2 ]∑
j=0

T
(α1,···,αr;α)
m,λ,k xn−m−2jyj

1

(n−m− 2j)!
. (3.3)

Proof. Using the definition (2.1), we have

∞∑
n=0

T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y)t

n =

r∏
j=1

(1− xjt)
−αj

(
2kt

λet + (−1)k+1

)α

ext+yt2

=

∞∑
m=0

T
(α1,···,αr;α)
m,λ,k tn

∞∑
n=0

xn t
n

n!

∞∑
j=0

yj
t2j

j!

=
∞∑

n=0

n∑
m=0

T
(α1,···,αr;α)
m,λ,k xn−m tn

(n−m)!

∞∑
j=0

yj
t2j

j!
.

Replacing n by n− 2j in above equation, we get

=
∞∑

n=0

n−2j∑
m=0

[n2 ]∑
j=0

T
(α1,···,αr;α)
m,λ,k xn−m−2jyj

tn

(n−m− 2j)!
.

Comparing the coefficient of tn, we get the result (3.3).

Theorem 3.4. The following implicit summation formulae for Lagrange-based Apos-

tol type Hermite polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y) holds true:

T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x+ 1, y) =

n∑
m=0

T
(α1,···,αr;α)
m,λ,k (x1 · · · xr;x, y)t

m 1

(n−m)!
. (3.4)

Proof. By the definition of generalized Lagrange-based Apostol type polynomials,
we have

∞∑
n=0

T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x+ 1, y)tn −

∞∑
n=0

T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y)t

n

=
r∏

j=1

(1− xjt)
−αj

(
2kt

λet + (−1)k+1

)α

ext+yt2(et − 1)

=
∞∑

m=0

T
(α1,···,αr;α)
m,λ,k (x1 · · · xr;x, y)t

m
∞∑

n=0

tn

n!
−

∞∑
n=0

T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y)t

n.

Replacing n by n−m, we have

=

∞∑
n=0

n∑
m=0

T
(α1,···,αr;α)
m,λ,k (x1 · · · xr;x, y)t

m tn

(n−m)!
−

∞∑
n=0

T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y)t

n.

Equating their coefficients of tn leads to formula (3.4).

4. General symmetry identities

In this section, we establish general symmetry identities for the generalized Lagrange-

based Apostol type Hermite polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x, y) and generalized

Lagrange-based Apostol type polynomials T
(α1,···,αr;α)
n,λ,k (x1 · · · xr;x) by applying the

generating functions (2.1) and (1.6). Such type of works, introduced here by the ap-
proach given in the recent works of Khan [5] and Pathan and Khan [13, 14, 15].
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Theorem 4.1. Let a, b > 0 and a ̸= b. Then for x, y ∈ R and n ≥ 0, the following
identity holds true:

n∑
m=0

an−mbmT
(α1,···,αr;α)
n−m,λ,k (x1 · · · xr; bx, b

2y)T
(α1,···,αr;α)
m,λ,k (x1 · · · xr; ax, a

2y)

=
n∑

m=0

bn−mamT
(α1,···,αr;α)
n−m,λ,k (x1 · · · xr; ax, a

2y)T
(α1,···,αr;α)
m,λ,k (x1 · · · xr; bx, b

2y). (4.1)

Proof. Start with

G(t) =

r∏
j=1

(1− xjabt)
−αj

(
22kabt

(λeat + (−1)k+1)(λebt + (−1)k+1)

)α

eabxt+a2b2yt2 . (4.2)

Then the expression for G(t) is symmetric in a and b and we can expand G(t)
into series in two ways to obtain:

G(t) =
∞∑

n=0

T
(α1,···,αr;α)
n,λ,k (x1 · · ·xr; bx, b

2y)(at)n
∞∑

m=0

T
(α1,···,αr;α)
m,λ,k (x1 · · ·xr; ax, a

2y)(bt)m

=
∞∑

n=0

n∑
m=0

an−mbmT
(α1,···,αr;α)
n−m,λ,k (x1···xr; bx, b

2y)T
(α1,···,αr;α)
m,λ,k (x1···xr; ax, a

2y)tn. (4.3)

On the similar lines we can show that

G(t) =
∞∑

n=0

T
(α1,···,αr;α)
n,λ,k (x1 · · ·xr; ax, a

2y)(at)n
∞∑

m=0

T
(α1,···,αr;α)
m,λ,k (x1 · · ·xr; bx, b

2y)(bt)m

=
∞∑

n=0

n∑
m=0

bn−mamT
(α1,···,αr;α)
n−m,λ,k (x1···xr; ax, a

2y)T
(α1,···,αr;α)
m,λ,k (x1···xr; bx, b

2y)tn. (4.4)

By comparing the coefficients of tn on the right hand sides of the last two equa-
tions, we arrive the desired result.

Remark 4.1. For α = 1, the above result reduces to
n∑

m=0

an−mbmT
(α1,···,αr)
n−m,λ,k (x1 · · · xr; bx, b

2y)T
(α1,···,αr)
m,λ,k (x1 · · · xr; ax, a

2y)

=
n∑

m=0

bn−mamT
(α1,···,αr)
n−m,λ,k (x1 · · · xr; ax, a

2y)T
(α1,···,αr)
m,λ,k (x1 · · · xr; bx, b

2y). (4.5)

Remark 4.2. By setting b = 1 in Theorem 4.1, we immediately get the following
result

n∑
m=0

an−mT
(α1,···,αr;α)
n−m,λ,k (x1 · · · xr;x, y)T

(α1,···,αr;α)
m,λ,k (x1 · · · xr; ax, a

2y)

=

n∑
m=0

amT
(α1,···,αr;α)
n−m,λ,k (x1 · · · xr; ax, a

2y)T
(α1,···,αr;α)
m,λ,k (x1 · · · xr;x, y). (4.6)

Theorem 4.2. Let a, b, c > 0 and a ̸= b. Then for x, y ∈ R and n ≥ 0, the following
identity holds true:

n∑
m=0

a−1∑
i=0

b−1∑
j=0

(−λ)i+jan−mbmT
(α1,··· ,αr,α)
n,λ,k

(
bx+

b

a
i+ j, b2z

)
T

(α1,··· ,αr,α)
m,λ,k (ay)
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=
n∑

m=0

b−1∑
i=0

a−1∑
j=0

(−λ)i+jambn−mT
(α1,··· ,αr,α)
n,λ,k

(
ax+

a

b
i+ j, a2z

)
T

(α1,··· ,αr,α)
m,λ,k (by).

(4.7)
Proof. Let

H(t) =
r∏

j=1

(1−xjabt)
−αj

(
22kabt2

(λeat + (−1)k+1)(λebt + (−1)k+1)

)α
1 + λ(−1)a+1eabt

(λeat + 1)(λebt + 1)
eab(x+y)t+a2b2zt2 .

g(t) =

r∏
j=1

(1− xjat)
−αj

(
2kat

(λeat + (−1)k+1)

)α

eabxt+a2b2zt2
(
1− λ(e−bt)a

λebt + 1

)

×
r∏

j=1

(1− xjbt)
−αj

(
2kbt

(λebt + (−1)k+1)

)α

eabyt
(
1− λ(e−at)b

λeat + 1

)

=
r∏

j=1

(1− xjat)
−αj

(
2kat

(λeat + (−1)k+1)

)α

eabxt+a2b2zt2
a−1∑
i=0

(−λ)i(ebti)

×
r∏

j=1

(1− xjbt)
−αj

(
2kbt

(λebt + (−1)k+1)

)α

eabyt
b−1∑
j=0

(−λ)j(eatj)

=
r∏

j=1

(1− xjat)
−αj

(
2kat

(λeat + (−1)k+1)

)α

ea
2b2zt2

a−1∑
i=0

b−1∑
j=0

(−λ)i+je(bx+
b
a i+j)at

×
∞∑

m=0

T
(α1,··· ,αr,α)
m,λ,k (ay)(bt)m.

=

∞∑
n=0

a−1∑
i=0

b−1∑
j=0

(−λ)i+jT
(α1,··· ,αr,α)
n,λ,k

(
bx+

b

a
i+ j, b2z

)
(at)n

∞∑
m=0

T
(α1,··· ,αr,α)
m,λ,k (ay)(bt)m

=
∞∑

n=0

n∑
m=0

a−1∑
i=0

b−1∑
j=0

(−λ)i+jan−mbmT
(α1,··· ,αr,α)
n,λ,k

(
bx+

b

a
i+ j, b2z

)
T

(α1,··· ,αr,α)
m,λ,k (ay)tn.

(4.8)
Since (−1)a+1 = (−1)b+1, the expression for

H(t) =
r∏

j=1

(1−xjabt)
−αj

(
22kabt2

(λeat + (−1)k+1)(λebt + (−1)k+1)

)α
1 + λ(−1)a+1eabt

(λeat + 1)(λebt + 1)
eab(x+y)t+a2b2zt2 .

is symmetric in a and b. Therefore, by symmetry we obtain the following power series
expansion for H(t)

=
∞∑

n=0

n∑
m=0

b−1∑
i=0

a−1∑
j=0

(−λ)i+jambn−mT
(α1,··· ,αr,α)
n,λ,k

(
ax+

a

b
i+ j, a2z

)
T

(α1,··· ,αr,α)
m,λ,k (by)tn.

(4.9)
By comparing the coefficients of tn on the right hand sides of the last two equations,we
arrive at the desired result.
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