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Abstract. In this paper, we introduce a general family of Lagrange-based Apostol-
type Hermite polynomials thereby unifying the Lagrange-based Apostol Hermite-
Bernoulli and the Lagrange-based Apostol Hermite-Genocchi polynomials. We also
define Lagrange-based Apostol Hermite-Euler polynomials via the generating func-
tion. In terms of these generalizations, we find new and useful relations between the
unified family and the Apostol Hermite-Euler polynomials. We also derive their ex-
plicit representations and list some basic properties of each of them. Some implicit
summation formulae and general symmetry identities are derived by using different
analytical means and applying generating functions.
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1. Introduction

The Lagrange polynomials in several variables, which are known as the Chan-
Chyan-Srivastava polynomials [3] are defined by means of the following generating

function:
-

[T =27 = gl @y, o )t (1.1)
n=0

j=1
(; €C(J=1,.,r);| t |[<min{| zy |71, 0| 2 [71))

and are given explicitly by

n k)g k‘g
g’gal,az.‘..ar)(xh L2y eeeey xr) = Z Z Z(al)k‘l (a2)k2*k1 "'(arfl)krflfkr72 (ar)n*krfl
kr_1—0 k2
xllﬁ x§2—k1 xf:—ll_kT—Q gn—kr—1

Toal by — k)l U — b )l (n— e — 1)1 (12)

where and in what follows (\),, denotes the Pochhamer symbol (or the shifted facto-
rial) defined by
No :=1and Ny =AN).... A +n—-1)(neN:={1,2,3,..}).

Luo and Srivastava [10, 11, 12] introduced the generalized Apostol-Bernoulli
polynomials BSLQ)(.’E) of order «, Luo [7] investigated the generalized Apostol-Euler
polynomials Ey(la)(x) of order o and the generalized Apostol-Genocchi polynomials
G%O‘)(ac) of order « (see also [6, 8, 9]).

The generalized Apostol-Bernoulli polynomials Bﬁf‘)(x; A) of order « € C, the
generalized Apostol-Euler polynomials Er(la)(:zr; A) of order @ € C, the generalized
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Apostol-Genocchi polynomials G;“(x; A) of order o € C are defined respectively by
the following generating functions:

t “ xT - (e} tn o
2 @ > "
(H) e”=ZOE£a><x;A>E, (| t]</ X ]< w1 =1) (1.4)

and

<>\6t2_1) ZG(Q) (; >‘ ; (Tt l<In X [< ;1% = 1). (1.5)

It is easy to see that
B (2) = BY (x;1), B (x) = B (2;1) and G (z) = G (w3 1).

Recently, Srivastava et al. [16] introduce and investigate the following class of
Lagrange-based Apostol type polynomials Téfx;”,;”’a";a)(xl oz x) as follows:
Definition 1.1. The Lagrange-based Apostol type polynomials Té?’/\i};"’a“a)(a}l
xr;x) are defined by means of the following generating function:
Z o 2kt (a RPN n
[10 =07 (W> = Z T @y ap ), (L6)
j=1

AeCajeC(j=1,---1)).

In the particular cases when kK = 0 and k = 1, we define the Lagrange-based

Apostol-Bernoulli polynomials B, (0‘1’ iaria) (21--x,; x) and the Lagrange-based Apostol-

(al, : 0‘7‘704)(

Genocchi polynomials G, x1 - xp;x) as follows.

Qe

Definition 1.2. The Lagrange-based Apostol-Bernoulli polynomials Bff; )(3:1~
-~ x,;x) given by

Bia){’..-,ar;a) ($1 T(al’ Lo

capir) = T (@ )

are defined by means of the following generating function

r

t o\ SR (1o
[T -z (Aet—l) et =3 B (g )t (1.7)

j=1 n=0
AeCia; €C(j=1,---17)).
Definition 1.3. The Lagrange-based Apostol-Genocchi polynomials Gilai""’a”a)(xl
-~ x,;x) given by

G (g ) = T (@ )

n7

are defined by means of the following generating function

" — o 2 Otl O Qe n

j=1
AeCajeC(j=1,---1)).

Furthermore, we define the Lagrange-based Apostol-Euler polynomials as fol-
lows.
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Definition 1.4. The Lagrange-based Apostol-Euler polynomials Eff‘/{
x,;x) are defined by means of the following generating function:

€Ty

r

- 2 “ x - A, O n
[T — a5t (W) et =3B Ny - mpy 2)t", (1.9)
n=0

j=1
AeCia; €C(j=1,---7)).

The 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) H,(x,y) [2,
4] are defined as

Tt — i)Hn(x,y)f;, (1.10)
are solutions of the heat equation
9 2
a—yHn(;my) = @Hn(x,y), (1.11)
H,(z,0) = 2™

The higher order Hermite polynomials, sometimes called the Kampe de Feriet poly-
nomials of order m or the Gould Hopper polynomials (GHP) H,(Lm)(:r7 y) defined by
the generating function [1]

o0
T m m t"
ertHyt™ _ ZHT(L )(gc’y)m (1.12)
n=0
are solutions of the generalized heat equation [4]
0 om
o = am 1.1
ayf(rmy) S () (1.13)
f(z,0) = 2™ (1.14)
Also we note that
HP (x,y) = Hy(z,y), (1.15)

where H,,(z) are the classical Hermite polynomials [1].

The Lagrange-based generalizations which we have introduced above, enable
us to obtain new and useful relations between the Apostol-Bernoulli polynomials,
Apostol-Euler polynomials and the Apostol-Genocchi polynomials. In this paper, we
first study several elementary properties of the generalized Lagrange-based Apostol
type Hermite polynomials Tﬁ/\ly’é”’a“a) (z1 - - xp;x,y). Some implicit summation for-
mulae and general symmetry identities are derived by using different analytical means
and applying generating functions.

2. Definitions and Basic Properties of the Generalized Lagrange-Based
(@1, ara)

Apostol-Type Polynomials T\ (12 2,y)

In this section, we introduce Lagrange-based Apostol type Hermite polynomi-
als and give the explicit representations and list basic properties of the generalized

(a1,,ar;a)

Lagrange-based Apostol-type Hermite polynomials T’ nAk (1 x5, y).
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Definition 2.1. The Lagrange-based Apostol type Hermite polynomials Téa/\l ’,;"a“a) (21
-~ xp;x,y) are defined by means of the following generating function:

r . 2kt o - 2 e 10 n
[[a-at) (Aet+(_1)1f+1) e = N A (gt (21)
j=1 n=0

AeCia;eC(j=1,---,1)).
In the particular cases, when k& = 0 and & = 1, we define the Lagrange-based

O

Apostol Hermite-Bernoulli polynomials HB(al’ )(acl -xp; x,y) and the Lagrange-

based Apostol Hermite-Genocchi polynomials HG;a)l\"“’a“a)(zl <~z x,y) as follows.

(0117 . ar;a)(

Definition 2.2. The Lagrange-based Apostol Hermite-Bernoulli polynomials g B,
- x,;xz,y) are defined by means of the following generating function:

Xq-

r

—y 3 T 2 0o n
10 -t () oo = Sy o, (23

j=1

(A€Cia; €C(=1,---1)).
Definition 2.3. The Lagrange-based Apostol Hermite-Genocchi polynomials G,y (e, arse)
- x,;x,y) are defined by means of the following generating function:

- 2t \“ :
[T =ty <Aet+1> ettt = Z GO @y )T, (2.3)
j=1

AeCia;eC(j=1,---,1)).
Furthermore, we define the Lagrange-based Apostol Hermite-Euler polynomials
as follows.

Definition 2.4. The Lagrange-based Apostol Hermite-Euler polynomials HET(S"”’O"';Q) (z1
-~ x,;x,y) are defined by means of the following generating function:

T
o 2 T ,»» No 250 n
H(l_xjt) ’ ()\et—l—1> e Z E )( "xr;m7y)t ) (2'4)

j=1

AeCia; €C(j=1,---1)).
Theorem 2.1. Each of the following relationships holds true:

(@)
Q1O HB”

u B\ (0, 02,y) = @y ). (2.5)
HE( Voo )(0,,O,x,y)=HTT(x,y,)\) (26)
HGR 0, 0 y) = T,y A), (2.7)

. n B(oq’-u,a?«;oz) CE, )\ (041, ar;a) T , '7:57“
HBv(’S)T,“.’aha)(xlv T g :L‘,O) - Z = ( )gl_ | ( - ) (2'8)

— (n=1)

(a1, 0um50x) - E(Oili o) (xv A)gl(al) 7ar;a)(m1’ o '71:7“)

pE, T (@, 2 ,0) = = (n—1)! - (29)

n Gg):ll’m’aﬁa)(m; )\)gl(ozl,...,ozr;a) (ml, .. ',-Tr>
(n— 1) '

HG 0417 ar;a)(xlv"'vxr;xvo):

=0
(2.10)
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HB(a1,~,ar;1)(0’..,70;070) :Bn(/\) ( )
HES;,--»,Q,,.;D(O’, ++,0;0,0) = E, (). (2.12)
#G3 (0, ,0:0,0) = Gu(N). (2.13)
HB(al,‘ ar;o)(xl,-u,xr;0,0) :HET(S){"”’QT;O)(xla'"“TT;O’O)' ( )
and
= HGgle)l\’m’ar;O)(xly oy Ty 0 O) = g(al OLT)(J"17 o 'ax’r')' (215)

Theorem 2.2. The Lagrange-based Apostol Hermite Bernoulli polynomials, the
Lagrange-based Apostol Hermite Euler polynomials and the Lagrange-based Apostol
Hermite Genocchi polynomials are explicitly given by

- HB( )($ ya)‘)g(al )(xlv"'vx’r‘)

HB(O“1 B (g, y) = 2 n-t R (2.16)
(rmansa) g B (g gl ()
vl (371,"',$T5x,y):z 1! (2.17)
and -
HG(UZ1 OO (2 1, y) li% = )\)(gvi(a—l’.l.).’!ar)@l,. ) (2.18)
respectively. )

Proof. It is fairly straightforward to observe from (1.1) and (2.2)

(a1, ,ap;a) . _ ¢ : wt+yt? - —aj
HBn(?C)\ “ a(xlv"'axrvxvy)* |:<>\et—1> € +yt] H(l*ll?jt)

j=1
(E:HBM)xy’ ,)(E:%““”““>
) (ar,sar)
_ ot (T,Y; Mg (1, mae) \ o,
Z (; (n—1)! )t '

Comparing the coefﬁcient of t" in both sided, we get the result (2.16). The explicit
representations of HET(L‘?‘/{"”’O‘“Q) (z1, - Tr;x,y) and HGS;\""’O‘“O‘)(xl,- T T Y)
follow in a similar manner from the generating function (1.1) in conjunction with

(2.3) and (2.4) respectively.

Theorem 2.3. The following identities hold true for the Lagrange-based Apostol
type Hermite-Bernoulli polynomials, the Lagrange-based Apostol type Hermite-Euler
polynomials and the Lagrange-based Apostol type Hermite-Genocchi polynomials

Tfla/\l:’gl’ et Beet B a2y + )

n
_ 27}€¢;1I;~~',ar,v;a)($l ey x7y)T’r(l[ill:.).\;’kﬁ7.;ﬂ)(x1 a2 ). (2.19)

HB(a1+Bl7 : aar+,37‘7a+:3)(

Y e a Tt 2y +u)

n

HBI(XIM’M;&)(xl RN x,y)HB;ﬁ_ll’;;\'”BT;ﬂ)(xl Xz, (2.20)
=0

HEﬁo"/{w““’arw”aer(x1 R )
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n
_ HEl(f;\l,..-,ama)(xl .. f'«“r§3«“,y)HE,(lel’";\"ﬁ“ﬁ)(:E1 T z,u). (2_21)
=0
and
HG,ELOj;\+ﬂ1’.“’aT+BT;a+B)(xl T T+ 2,y + )
— Z HGl(St\l,'-.,Otr;a)( ST, y)HG(/Bh ‘)\»57&5) (xl T Z,U). (222)

3. Summation formulae for generalized Lagrange-based Apostol-type Her-
mite polynomials

First, we prove the following result involving generalized Lagrange-based Apostol-
type Hermite polynomials by using series rearrangement techniques. We now begin
with the following theorem.

Theorem 3.1. The following implicit summation formulae for Lagrange-based Apos-
tol type Hermite polynomials Tfla; ’,;"O‘“O‘)(xl -z x,y) holds true:

TA ) @i y) Z Lol ™ @ i@ = ™ o (2 ) oy

Proof. By the exploiting generating function (2.1) and using the (1.10)

th 2
| I 1 aj r—2z)t zt+yt
( B jt) . ()\et B ( 1) 1) 6( : ©

j=1

ZT(al,wama) e -xfz)tmiH (= )ﬁ
ok T n(%Y n'
n=0

Now replacmg n by n —m and comparing the coefficients of t", we get the result
(3.1).

Theorem 3.2. The following implicit summation formulae for Lagrange-based Apos-
tol type Hermite polynomials Té?;”,;"’a“a)(xl -+ xp;r,y) holds true:

Q0 1, Qi) 1
Té ko )( X1 T U, y+w) = Z Tr(n Nk xl---mT;x—z)thn_m(u,w)m
(3.2)
Proof. Applying the definition (2.1), we have
ﬁ(l—x~t)—af ¢ e@twittw)® iT(O‘l""’a“a) (z1-2p; T4u, y+w)t"
m e e .
S S .
= YT @ aa )™y Ha(ww)
= n=0

Replacing n by n — m in the r.h.s and comparing the coefficient of ", we get
the result (3.2).

Theorem 3.3. The following implicit summation formulae for Lagrange-based Apos-

tol type Hermite polynomials T(al’ ' a”a)(ml -+ Zp;x,y) holds true:
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T apiay) = Y D TRy s (33)
Ak WZOJ - Ak (n—m —2j)!

Proof. Using the definition (2.1), we have

r

- s n o 2kt C b
Z Ty(li:;\l;k Net ,a)(ml BRI xvy)t — H(]_ — xjt) J <)\et_i_<_1)k;+1> e t+yt
n=0

j=1
. t" — ;1%
- Sl Sl Sy
n=0 ] 0
oo 25
(0‘17'7@7‘;04) n—m t jt
= Z Z mAk r — 2 v
n=0m=0 (n m)'j:O J

Replacing n by n — 25 in above equation, we get

—23
i Z (al, . ,ar;a)wn—mf2j j*
m)\k Yy — 2_])'
n=

(n—m

m\:

Comparing the oeﬂiment of t", we get the result (3.3).

Theorem 3.4. The following implicit summation formulae for Lagrange-based Apos-
tol type Hermite polynomials TT(L)O‘/\I:,;"’Q“O‘)(xl -+ -z, y) holds true:

TT(L?‘;7};"’QT;Q)($1 cexrmz+ ly) = Z T&f;’wé-,ar?“) (w1 - 2oz, y)t™ (3.4)

ot
(n—m)!"

Proof. By the definition of generalized Lagrange-based Apostol type polynomials,
we have
o0 o0

Z TT(L(,};&;.A,aT;a)(xl coexpr 4 Lyt — Z Té?/\l,’,;”’ar;a)(x1 cxy Yt
n=0 n=0

. 2k¢ “ 2
B —a, wttyt® (ot
= H(l — )" ()\et " (_1)k+1> emH (et — 1)

DI L W L P

Replacmg n by n —m, we have

oo

. tn s
Y T g s S T s

_ |
n=0 m=0 (n m) n=0

Equating their coefficients of ¢" leads to formula (3.4).
4. General symmetry identities

In this section, we establish general symmetry identities for the generalized Lagrange-
based Apostol type Hermite polynomials Tf;”,;”’a“o‘)(xl - xp; 2, y) and generalized
Lagrange-based Apostol type polynomials Té?/\l7};"’ar;a)(m1 -+ - x,;x) by applying the
generating functions (2.1) and (1.6). Such type of works, introduced here by the ap-
proach given in the recent works of Khan [5] and Pathan and Khan [13, 14, 15].
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Theorem 4.1. Let a,b > 0 and a # b. Then for z,y € R and n > 0, the following
identity holds true:

n
n—mpmp(ay, - ,ar;0) . 2 (a1, ar;) . 2
E a A m)\kr (1 zp; bz, b y)TmA,Ig PN @y s xpy az, afy)
0

m=
n
Z b T G (@ s aw, aPy) Ty (b, by). (4)

Proof. Start with

r ( 22k bt abzt+a2b2yt2. (42)

G(t) = 1—xj;abt)=%

0= L= e e ) ¢
Then the expression for G(¢) is symmetric in a and b and we can expand G(t)

into series in two ways to obtain:

G(t) =3 T (@i b, by) (o) Y Tk (s aw, a?y) ()™

n=0 m=0

= Z Z anmymlen ’C;C’“’a)(xl-uxrgbx,b2y)T$§\”'};’a”a)( T1--x0; ax, a’y)t". (4.3)

n—m,\
n=0m=0

On the similar lines we can show that

[e'e) oo
G() = Y TR - wrsaz,a?y)(at) Y Tyl (e ba, by) (00)™
n=0 m=0

n
=33 T (g am, a?y) T (o b, B (4.4)

n=0m=0

By comparing the coefficients of " on the right hand sides of the last two equa-
tions, we arrive the desired result.

Remark 4.1. For a = 1, the above result reduces to

n
Z a~ mmeéal,r;L )\D]t;)( T b.’I;, be)TT(an;\”'];»ar) ($1 S P9 ax,aQy)

m=0
n

= Z prm mTT(Lo“y;L'/\’O,‘;)(xl ST a:z:,a2y)T7(n(f;’,',;’ar)(:1:1 coexprba, bPy). (4.5)

m=0
Remark 4.2. By setting b = 1 in Theorem 4.1, we immediately get the following
result
n
a0 (g, ) TN (@ ez, a2y)
m=0
n
= > T @ g az, Py T @ ay). (46)
m=0

Theorem 4.2. Let a,b,c >0 and a # b. Then for x,y € R and n > 0, the following
identity holds true:

a—1b—1

Z Z z+]anfmmer(La)\1,k NPy <b(L’ + 2 +j,b2,z> Tysza;\,k aama)(ay)
A a Y

=01i=0 j=0
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n b—1la—1 ) a
ZZ Z+jambnfmTT(L7Oé)\1,,];“ ReTNe)] <ax + 37’ +j,a22) Tfnoj;:k ,Otr,Oé)(by).
m=0 =0 j=0
(4.7)
Proof. Let
H(t)= ﬁ(l—x-abt)_af 2% abt? S 1+ A(=1)2H et ab(z+y)t+a’b’zt?
L2 A (e 1 (—1)FF) (APt + (1)) ) (Reat + 1)(Aebt 1 1)
r 2k at ¢ 2,2 2 (1 — )\(e—bt)a
= 1 —z.at)~ abzt+a”b”zt A
o(0) = 101 =500 (o) © M
2k bt “ byt (1= Aemat)?
abyt
. H —asbt)” <()\ebt + (—1)’“‘1)) ¢ ( Aeat 1
Qkat ¢ 212 42 ot . .
— (1 _ .T‘at)_aj ( ) eabmt+a bzt (_A)z(ebtz)
jl;[l J (Aeat + (—1)k+1) ZZ:;

T kat e b—1 . ]
% H(l _ .ijt)_aj (()\ebt n (_1)k+1)> eabyt (_)\)J (eatj)
=1 =0

B ﬁ(l  rat)- ( ok ot )a a2b? 242 az:l bzf z+je(bz+§i+j)at
= u J ()\eat + (_1)k+1 ==
S0 T () ()"
0o a—1b-1 " 00
=3NSy (bx + Sz + 34, b%) (at)™ 3" T (ay) (o)™
n=0 i=0 j=0 m=0

Q1,0 O, Q b O, O
=3 Y Y A arme >(bx+z+y,b2 )T T ay.

(4.8)

Since (—1)**! = (—1)"*!, the expression for
- j 22Fabt? S 1+ A(=1)rF e ab(z+y)t+a’b®zt?
(Ae? + (—=1)k+1)(Xebt + (—1)k+1) | (Ae? + 1)(Xebt +1) '

H(t)= H(l—xjabt)_aﬂ

j=1
is symmetric in @ and b. Therefore, by symmetry we obtain the following power series
expansion for H(t)

oo n b—la-—1

= 30 S S S A (a2 T

n=0m=0 i=0 j=0
(4.9)

By comparing the coefficients of t" on the right hand sides of the last two equations,we
arrive at the desired result.
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