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Abstract: Forensic hospitals throughout the country house individuals with severe mental illness 

and history of  criminal violations.  Insomnia  affects  67.4% of hospitalized patients with  chronic 

neuropsychiatric  disorders,  indicating  that  these  conditions  may  hijack  human  somnogenic 

pathways. Conversely, somnolence is a common adverse effect of many antipsychotic drugs, further 

highlighting  a  common  etiopathogenesis.  The  role  of  dysfunctional  mitochondria  in 

psychopathology  is  well‐established,  however,  the  association  of  these  organelles  with  sleep 

physiology is novel. Indeed, reducing neuronal oxidative stress by importing mitochondria from 

astrocytes,  may  be  the  purpose  of  human  slumber.  This  model  may  explain  mitochondrial 

dysfunction during anesthesia as well as in the rare genetic disease, fatal familial insomnia. In this 

narrative  review, we  focus  on  the  salience  network  of  the  brain,  a  common  denominator  for 

insomnia,  neuropsychiatric  and  neurodegenerative  disorders.  We  also  discuss  mitochondria‐

protecting strategies, including membrane lipid replacement, natural and synthetic phenazine and 

phenothiazine derivatives. 
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Introduction 

One of  the most common  sleep disorders  in  the United States, primary  insomnia,  is usually 

defined as  long  sleep  latency, difficulty  staying asleep, prolonged nighttime wakefulness, and/or 

early morning  awakening  [1].  In  prison,  approximately  60%  of  inmates  experience  insomnia,  a 

prevalence 6‐10 times higher than in the population at large [2]. Moreover, insomnia is present in 

67.4% of hospitalized patients with severe mental illness, suggesting that the pathways of sleep and 

neuropathology are highly intertwined [3]. 

Forensic psychiatric hospitals admit patients with  schizophrenia  (SCZ) or  schizophrenia‐like 

disorders  (SLDs)  and  criminal  violations.  Insomnia  is  common  in  this population  and  failure  to 

address this condition may increase healthcare expenditure due to medical complications, including 

metabolic, cardiovascular, and neurodegenerative disorders. The salience network (SN), comprised 

of insular cortex (IC), anterior cingulate cortex (ACC) and several subcortical nodes, has recently been 

implicated  in  the etiopathogenesis of  insomnia, SCZ, and neurodegenerative disorders  [4–9]. Von 

Economo neurons (VENS), a special class of large, spindle‐shaped cells found only in humans and 

superior  mammals,  are  believed  to  drive  empathy,  social  awareness,  fairness,  and  alertness, 

connecting sleep with the higher brain functions [10,11]. VENS reside in the SN and play a key role 

in switching the attentional focus from interoception to exteroception as required by each situation. 

At the molecular level, incarceration, insomnia, and severe mental illness have been associated 

with  premature  cellular  senescence,  a  phenotype  marked  by  increased  intracellular  iron  and 

mitochondrial depletion [11–18]. Premature cellular senescence may be triggered by activating the 

master regulator of cellular aging, aryl hydrocarbon receptor (AhR), residing in both the cytosol and 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 February 2024                   doi:10.20944/preprints202402.1560.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.



  2 

 

mitochondria [19–21]. Senescent cells upregulate intracellular iron which in the proximity of cytosolic 

fats, increases the risk of lipid peroxidation and neuronal demise by ferroptosis [22–24].    Ferroptosis 

is a programmed, cell death induced by iron in the context of antioxidant failure marked by depletion 

of  glutathione  peroxidase‐4  (GPX‐4)  [25,26].    GPX‐4  is  a  mitochondrial  enzyme  which  averts 

ferroptosis by repairing the oxidized phospholipids and cholesterol in mitochondrial and neuronal 

membranes [27].   

Antipsychotic drugs are known for causing somnolence, indicating a likely interference with the 

human sleep pathways. For example, phenothiazines,  induce sleep by antagonizing histamine H1 

and alpha1 adrenergic receptors [28]. Clozapine, an AhR‐activating ligand, may induce somnolence 

by altering the expression of circadian clock genes, some of which are controlled by the AhR [29,30].   

Aside from clozapine, oxidized cell membrane lipids also bind AhR, possibly interfering with sleep 

physiology.   

The phenothiazine class of antipsychotic drugs are potent inhibitors of cholesterol metabolism 

as they lower 7‐dehydrocholesterol reductase (7DHC), upregulating 7‐dehydrocholesterol (7DHC), 

a lipid which gets incorporated into the plasma and mitochondrial membranes, strengthening the 

lipid bilayer  [31]. For  example,  trifluoperazine was  shown  to protect mitochondria by  inhibiting 

membrane permeability and pore formation [32]. Moreover, phenothiazines intercalate themselves 

into  the  lipid  bilayer  of  plasma  and  mitochondrial  membranes,  inhibiting  peroxidation,  thus, 

protecting the neurons from ferroptosis [33–35]. Interestingly, chlorpromazine was found effective 

against prion diseases, emphasizing a likely beneficial role in fatal familial insomnia (FFI) [36].   

Dysfunctional mitochondria  and  impaired  oxidative  phosphorylation  (OXPHOS),  increases 

glycolysis and  lactic acid  levels, a metabolic pattern  characteristic of SCZ or SLDs  [37].    Indeed, 

increased  lactate,  considered  a marker  of  sleep  deprivation,  likely  activates mitochondrial AhR 

(mitoAhR), disrupting the organelle [38–40]. This is significant as lactate and neuro‐metabolism likely 

comprise another sleep pathway hijacked by mental illness. 

To compensate for dysfunctional mitochondria, neurons import these organelles from glial cells, 

especially the astrocyte [41,42]. In large cells, such as VENS, mitochondria are more vulnerable to 

damage  and  autophagic  elimination  as  they  undergo more wear  and  tear  during  their  journey 

through the long axons of these neurons [43]. Due to their small number (around 193, 000) and their 

large  sizes, VENS are more  susceptible  to plasma membrane oxidative  stress, which may  trigger 

significant pathology even after a limited neuronal loss, a pathology encountered in frontotemporal 

dementia behavioral variant (bvFTD). 

Since mitochondria are crucial for neuronal function, preserving the integrity of these organelles 

via membrane  lipid  replacement  (MLR)  and  other  natural  strategies,  is  of  utmost  importance. 

Microbial phenazines and the novel antioxidant phenothiazine derivatives, offer new opportunities 

to  combat  insomnia,  psychosis,  and  neurodegeneration  at  the  level  of  cell  and  mitochondrial 

membranes. 

SN in sleep and neuropathology 

The SN is comprised of anterior cingulate cortex (ACC) and anterior insular cortex (AIC) which 

along with subcortical nodes in the hypothalamus, thalamus, striatum, and midbrain process salient 

stimuli [44,45]. SN functions as a switch between exteroception and interoception or central executive 

network (CEN) and default mode network (DMN), depending on stimulus relevance [46]. Switching 

from  CEN  to  DMN  and  vice  versa  is  impaired  in  severe  mental  illness,  insomnia,  and 

neurodegenerative disorders [47]. Several antipsychotic drugs are known to lower the assignment of 

salience  to  objects  and  events,  restoring  the  SN  function,  likely  ameliorating  both  the  psychotic 

symptoms and insomnia [48]. 

The SN harbors VENs, which are large, corkscrew neurons located in layer V of the IC and ACC. 

These non‐telencephalic cells are believed to drive the prosocial cognition, empathy, and emotional 

intelligence. As parts of the SN, VENS respond to endogenous or exogenous stimuli in the order of 

priority. VENS are selectively eliminated in bvFTD, a disorder marked by criminal violations, lack of 

empathy, poor insight, and sleep impairment [49–53]. 
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Under physiological circumstances, sleep is driven by the ventrolateral preoptic nucleus (VLPO) 

of the anterior hypothalamus which releases inhibitory neurotransmitters, including, γ‐aminobutyric 

acid  (GABA),  and  galanin  [54]. The  opposing  system,  orexin  (hypocretin) neurons  in  the  lateral 

hypothalamus, inhibit VLPO [55–57].    In addition, orexin/hypocretin neurons induce wakefulness 

by blocking the melanin concentrating hormone (MCH), a somnogen released by the hypothalamus 

and zona incerta [58,59].   Orexin and DA, the key players of saliency, have been implicated in the 

neuropsychiatric  disorders  associated  with  sleep  disturbances,  including  narcolepsy,  attention‐

deficit/hyperactivity  disorder  (ADHD),  and  Parkinson’s  disease  (PD)  [60]. Histamine  is  another 

wakefulness‐promoting neurotransmitter implicated in SCZ and SLDs and a novel target for treating 

the negative and cognitive symptoms [61]. 

To better comprehend the pathogenesis of  insomnia, it is necessary to study the pathways of 

wakefulness, a brain state driving self‐awareness and probably consciousness [62]. Early studies on 

this  subject  have  focused  on  the  locus  coeruleus, midbrain  tegmentum,  pons,  and  parabrachial 

nucleus, as neurons in these regions are active during wakefulness [63,64]. In the early 1900s, while 

studying  encephalitis  lethargica,  Constantin  von  Economo  found  that  lesions  in  the  posterior 

hypothalamus were  associated with  sleep,  hypothesizing  that  this  area  contained  the  “center  of 

wakefulness” [65–67].   

FFI, a rare autosomal dominant disease, is marked by hypometabolism and neuronal loss in the 

thalamus and cingulate cortex, linking this condition to the SN [68]. Indeed, dysfunctional salience 

perception  in  FFI  is  reflected  in  sleep  disturbances,  psychiatric  disorders,  and  autonomic 

dysregulation,  pathologies  previously  linked  to AIC  and ACC  [69–72].  The  role  of  SN  in  sleep 

physiology and pathology  is  further highlighted by  the  fact  that anesthetics, especially propofol, 

lower  salience  processing,  inducing  sleep  [68–78].   Moreover,  recent  studies  on  sleep  deprived 

human volunteers and patients with primary  insomnia demonstrated altered connectivity  in AIC, 

further linking SN to sleep and wakefulness [79,80]. Furthermore, several preclinical studies are in 

line with the findings in humans, implicating the SN in slumber homeostasis [74,81]. 

Aside  from  insomnia  and  neuropsychiatric  pathology,  the  SN  connectivity  is  disrupted  in 

neurodegenerative disorders,  including Alzheimer’s disease  (AD), Parkinson’s disease  (PD),  and 

bvFTD,  suggesting  that  insomnia  and  neuropathology  are  highly  intertwined  [82–86].  Indeed, 

dysfunctional AIC and ACC connectivity may account for  the criminal violations  in patients with 

bvFTD in which breaking the law may often be the initial dementia symptom [87,88].       

bvFTD as a secondary psychopathy 

The  second  most  common  neurodegenerative  disorder  after  AD,  bvFTD,  is  marked  by 

inappropriate emotional responses and disinhibited behaviors, often leading to criminal violations 

[52,89]. In forensic institutions, individuals with first incarceration after the age 55 may suffer from 

bvFTD, an entity difficult to diagnose as memory may remain intact for longer periods of time. As a 

result, bvFTD is often missed or misdiagnosed as antisocial personality disorder (APD), SCZ, or SLDs 

[90]. 

Over the past two decades, the number of senior first offenders has grown in parallel with the 

prevalence of young‐onset dementia (YOD)(emergence of symptoms before age 65), a subgroup of 

neurodegenerative disorders, which may include bvFTD [91,92]. Indeed, recent studies have revealed 

that  the prevalence of bvFTD has  increased  from 15/100, 000  in 2013  to 119 per 100, 000  in 2021, 

mirroring the growing number of forensic detainees with this diagnosis [92,93].   

Compared to AD in which 12% of patients exhibit criminal behavior, bvFTD is associated with 

a crime rate of 54%, suggesting an acquired psychopathy [94]. Frontotemporal  lobar degeneration 

(FTLD), the pathology driving bvFTD, is believed to selectively eliminate the “honesty cells”, VENS, 

predisposing to impulsivity and criminal violations [50,51]. Indeed, due to their large size, VENs may 

be particularly vulnerable to oxidative stress and mitochondrial depletion [95]. The latter is likely due 

to autophagy of damaged organelles  traveling  through  the  long VENS axons.  Indeed,  lysosomal 

aggregates, hallmarks of hyperactive autophagy, were demonstrated in VENS derived from patients 

with  bvFTD  and  SCZ,  suggesting  excessive mitophagy  [95–97].    Depletion  of  VENS  has  been 
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associated with lack of empathy, aggressive behavior, and criminal violations documented in bvFTD 

and  severe  mental  illness  [51,52].  For  example,  homicide  or  attempted  homicide  have  been 

documented in bvFTD, indicating that criminal behavior and murder can sometimes be the earliest 

manifestation of  this disorder  [98,99]. Since VENS are only present  in  large mammals,  including 

humans, great apes, macaques, cetaceans, and elephants, but not in rodents, these cells are difficult 

to study in vivo [10]. VENS are larger than pyramidal neurons and drive interoceptive awareness, 

the ability to detect and process internal cues, such as heartbeat, respiration and the overall visceral 

state  [100,101].    VENS are  components of  the SN,  a  large neuronal  assembly which  responds  to 

intrinsic or extrinsic stimuli, shifting attention from CEN to DMN and vice versa [102,103].   

Recent  transcriptomic  studies  found  that VENS  express monoaminergic  proteins,  including 

vesicular monoamine transporter 2 (VMAT2) and adrenergic receptor α‐1A (ADRA1A), suggesting 

involvement  in autonomic  functions,  including  the circadian  rhythm  [104–106].  Indeed,  impaired 

monoaminergic signaling has been documented  in  insomnia, bvFTD, SCZ, and SLDs,  implicating 

VENS in these pathologies [107–111]. 

Sleep and glial cells 

Astrocytes,  the most numerous brain cells communicate with each other via calcium waves, 

attaining synchronization with neurons which supports  the slow‐wave sleep  [112,113]. Moreover, 

astrocytes  release  somnogenic  molecules,  including  adenosine,  lactate,  glutamate,  GABA,  and 

interleukin‐1 (IL‐1), which influence the status of neuronal cells, predisposing to sleep [114]. 

Astrocytes are central to the neurovascular unit (NVU) and bridge the gap between the neuron 

and brain microvessels,  regulating  the  flow of  interstitial  fluid  through  the aquaporin 4  (AQP‐4) 

receptors  [115](Figure 1). The volume of  the brain  interstitial  fluid  (ISF)  fluctuates  in a  circadian 

manner as  it  flows  through  the glymphatic  system, a mechanism  for clearing misfolded proteins 

during  sleep  [116].  The  glymphatic  system  can  also  carry  extracellular  vesicles  containing 

mitochondria from astrocytes to neurons [117]. Astrocytes support the neurons by generating GPX‐

4 to avert neuronal death by ferroptosis. GPX‐4 functions to repair oxidized lipids and oxysterols, 

including  7‐ketocholesterol  (7KCl),  toxins  that  disrupt  plasma  and  mitochondrial  membranes, 

triggering neuronal death [118]. As mitochondria play a key role in sleep homeostasis, insomnia may 

be the result of plasma or mitochondrial membrane oxidation [119]. Indeed, it has been suggested 

that sleep is necessary for abrogating neuronal oxidative stress [120]. 

Intracellular  iron  is  stored  in  ferritin  and  released  for  intracellular needs via  ferritinophagy 

(ferritin autophagy) in lysosomes. Several antipsychotic drugs, including haloperidol, accumulate in 

lysosomes disrupting ferritinophagy, which in return lowers intracellular iron, averting ferroptosis 

[121,122]  (Figure  2).  This may  highlight  a DA‐independent,  antipsychotic  action  of  haloperidol, 

suggesting that dopaminergic blockade is not the only psychosis‐deterring mechanism of this drug. 

Indeed,  ferroptosis of hippocampal neurons, documented  in AD and severe mental  illness,  is  the 

likely cause of cognitive impairment and negative symptoms in these conditions [123,124]. Prolonged 

insomnia was demonstrated to damage the astrocyte which in return may trigger neuronal demise 

[125]. Moreover,  chronic  sleep  loss was demonstrated  to  activate  both  astrocytes  and microglia, 

turning these cells into neurotoxic phenotypes capable of eliminating healthy neurons and synapses 

[126–128].   
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Figure  1.  Astrocytes  contact  cerebral  microvessels  with  their  end‐feet  processes,  delineating  a 

pathway for the flow of extracellular fluid, known as the glymphatic system. The volume of interstitial 

fluid (ISF) in the brain parenchyma varies with the brain work. During high intensity work, AQP‐4 

water receptors are upregulated in the end‐feet, pumping the ISF into astrocytes. This results in low 

ISF  (hypovolemia).  During  sleep  (low  intensity  brain  work),  less  ISF  enters  the  astrocyte.  The 

circulation of ISF clears the molecular debris (including beta amyloid) from the extracellular space. 

Mitochondria and aryl hydrocarbon receptor   

Recent  studies  have  implicated  mitochondria  in  the  pathophysiology  of  sleep  and 

neurodegenerative disorders, while  the role of  these organelles in severe mental  illness, including 

SCZ  and  SLDs,  has  been  previously  established  [129,130].    Lipid  peroxidation  of mitochondrial 

membrane and iron upregulation can trigger ferroptosis and organelle demise [131–134].    Indeed, 

lipid peroxides and oxysterols, such as 7KCl, are mitoAhR  ligands, contributing  to mitochondrial 

dysfunction  and  autophagic  elimination  [135].  AhR  is  a  xenobiotic  sensor  which  regulates 

cytochrome p450 and binds  the environmental  toxin, dioxin  (2,3,7,8‐tetrachlorodibenzo‐p‐dioxin). 

Other AhR ligands, include somnogens, such as phenazines, melatonin, and tryptophan derivatives, 

which participate in the physiology of sleep, wakefulness, and the circadian rhythm [136–138].    In 

addition,  reactive oxygen  species  (ROS),  known  to  induce  sleep  via  a  redox‐sensitive potassium 

channel, are AhR ligands, bringing this transcription factor in the arena of slumber, mental illness, 

and  neurodegeneration  [131,139].  Indeed,  microbial  phenazines,  including  pyocyanin  and  1‐

hydroxyphenazine,  activate  AhR,  influencing  the  transcription  of many  genes,  including  those 

involved in sleep regulation [140,141]. 
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The importance of mitochondria in sleep physiology is further substantiated by the organelle 

involvement in FFI as well as in general anesthesia [142,143]. Indeed, general anesthetics are known 

to  inhibit  N‐methyl‐d‐aspartate  (NMDA)  and  α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic 

acid  (AMPA)  glutamate  receptors,  while  stimulating  GABA.  NMDA  and  AMPA  upregulate 

intracellular  and mitochondrial  calcium,  inducing  cell  and  organelle  demise  [144].  Interestingly, 

elevated mitochondrial calcium, a characteristic of prion diseases, may link these organelles to FFI 

[145,146]. Indeed, the prion peptide causes calcium inflow via L‐type calcium channels, triggering 

neuronal damage and apoptosis [147].    In contrast, the typical antipsychotic, chlorpromazine, not 

only induces sleep, but also exerts anti‐prion properties, probably by promoting autophagy of the 

misfolded protein [148–150]. 

Mitochondrial  trafficking  from  astrocytes  to neurons,  supports neuronal bioenergetic needs, 

especially  in  large  pyramidal  cells  or VENs. Mitochondria  can  be  imported  via  cell‐cell  fusion, 

tunneling  nanotubes  (cytoskeletal  protrusions  reaching  to  other  cells)  as well  as  transported  by 

extracellular  vesicles  [151,152]  (Figure  2).  Moreover,  astrocytes  generate  GPX‐4  from  cysteine 

obtained via  the cystine/glutamate antiporter system  (Xc−) or by  transmethylation of methionine. 

Glutathione is generated from cysteine and glutathione disulfide (GSSC) [153] (Figure 2).   

Mitochondrial  trafficking  as  well  as  autophagy  (mitophagy)  occur  during  sleep,  probably 

explaining the reason most living beings require rest [154]. Interestingly, serotonin (5‐HT) promotes 

mitochondrial  transport  in hippocampal neurons, suggesting  that antidepressant drugs, serotonin 

reuptake inhibitors (SSRIs), may “exert their action by supplying healthy mitochondria to stressed 

neurons [155]. This may imply that ROS accumulation during wakefulness may induce slumber to 

repair  oxidized  lipids  and  import  mitochondria  from  glial  cells  [120,131,139].  In  addition, 

accumulation of  intracellular microtubule‐associated protein  tau  (MAPT)  in VENS  likely  impairs 

mitochondrial transport, contributing to bvFTD pathogenesis [156]. 
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Figure 2. Astrocytes support  the postmitotic,  long‐lived, neurons by helping  them avert death by 

ferroptosis and loss of mitochondria. The former is accomplished by exporting GPX‐4 to neurons (to 

repair  oxidized  lipids), while  the  latter  by  exporting healthy mitochondria  to neuronal  cells  (via 

tunneling  nanotubules,  extracellular  vesicles,  or  cell‐cell  fusion).  Astrocytes  import  cystine  via 

cystine/glutamate antiporter (Xc‐). Cystine is reduced to cysteine and generates glutathione and GPX‐

4 (which is transferred to neurons). Cysteine can also be derived from methionine, while glutathione 

can be generated from cysteine and glutathione disulfide (GSSC). In neurons, iron is stored in ferritin 

and when needed, ferritin undergoes ferritinophagy (autophagy)  in  lysosomes, releasing free iron. 

Iron  ingresses  the neuron via  transferrin  receptor  1  (TRF‐1), while  the  excess  intracellular  iron  is 

eliminated via ferroportin. 

Four cases of bvFTD from our hospital and the community 

Case #1 The teacher who shot her neighbor 

Ms. KS  (initials  changed),  a  Caucasian  female,  age  68,  divorced,  retired  elementary  school 

teacher, lived alone prior to her admission to Patton State Hospital. Ms. KS did not have a psychiatric 

history until the age of 56 when she purchased a gun and shot her neighbor  in  the shoulder. She 

stated that she attacked the man because he was spying on her and intruded into her house during 

the  night.  She  was  convicted  of  attempted  murder  and  sent  to  prison,  where  her  condition 

deteriorated,  prompting  transfer  to  our  forensic  institution.  KS  was  diagnosed  with  SCZ  and 

admitted as a forensic detainee. 

During  her  hospital  stay,  KS  was  treated  with  various  antipsychotic  drugs  with minimal 

symptomatic  relief.  She  was  unaware  that  she  did  anything  wrong  and  her  poor  insight  and 

impulsivity were documented during her six years of hospital stay.    Because of poor  insight, KS 

never met criteria for the conditional release program (CONREP). 

In  2014, KS  became more  forgetful,  required  assistance with most  activities  of  daily  living 

(ADLs), and exhibited a change in her dietary preferences. For example, she asked for ice cream daily, 

although earlier  in her  life  she detested  ice  cream.  In  time, KS became more apathetic and often 

refused to get out of bed.      The internal medicine consultant performed a dementia workup, but the 

laboratory studies came back normal, except for mild anemia, and a vitamin D level of 29.3 nmol/L.   

KS scored 25/30 on Mini Mental Status Exam (MMSE) and when a Montreal Cognitive Assessment 

(MoCA)  was  administered,  the  score  was  23/30,  consistent  with  executive  dysfunction.   

Neuropsychology consult was called, and after a battery of tests, bvFTD was diagnosed. 

With this information, the treatment team petitioned the Court, arguing that KS did not benefit 

from hospitalization in a forensic institution as she was not expected to recover. The  judge agreed 

with the treating clinicians and ordered placement in a facility specialized in dementia. 

Due to the numerous clinical and legal ramifications (discussed below), this case was featured 

in the mass media at the time: 

https://www.reuters.com/article/us‐crime‐dementia‐idUSKBN0KE1Q020150105/ 

https://www.foxnews.com/health/breaking‐the‐law‐may‐be‐a‐sign‐of‐dementia 

https://clbb.mgh.harvard.edu/when‐frontotemporal‐dementia‐leads‐to‐crime‐prosecution‐or‐

protection/ 

Case #2 The attorney with a sweet tooth 

An outpatient we treated in 2013, was a 72 years old, retired attorney, arrested because he stole 

chocolate  from  a  grocery  store while  casually  conversing with  the  owner. When  confronted,  he 

replied: “what’s the problem, I have a sweet tooth”.   According to the family, the patient came across 

as careless and indifferent of his children and the spouse, being either apathetic or angry and irritable. 

For example, when he learned that his son‐in‐law died unexpectedly, he responded by saying “let’s 

go out to eat”. His eating habits had changed dramatically, according to his wife, consuming mostly 

sweets which previously he had avoided.   When told to eat more nutritious food, he often became 

angry. 

Case #3 The psychiatrist turned a drug dealer 
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Dr. Joel Stanley Dreyer was a well‐respected psychiatrist who practiced in Riverside, California. 

In 1990s, Dr. Dreyer was diagnosed with bvFTD but continued to practice psychiatry, and in 2010 

was convicted for prescribing, selling, and distributing large amounts of addictive painkillers. As a 

result of careless prescribing, one person died of an overdose and Dr. Dreyer was convicted and 

served ten years in prison despite having been diagnosed with bvFTD prior to his crime. This case 

emphasizes that some jurisdictions do not recognize bvFTD as an attenuating circumstance. The court 

ruling was based on the testimony of the prison psychiatrist who did not challenge the diagnosis of 

bvFTD but stated that since not all individuals with this disorder engage in criminal behavior, “direct 

causality” between Dr. Dreyer’s crime and bvFTD could not be established.   A detailed history of 

this case can be found at the link below: 

https://story.californiasunday.com/joel‐dreyer‐criminal‐psychiatrist/. 

Case #4 The Buick murderer   

On July 16, 2003, Mr. GRW, an 83 years old man crashed his Buick LeSabre in an open‐air market 

in Santa Monica, California, killing 10 and injuring 63 individuals. Despite the catastrophic event he 

caused, GRW did not express remorse, showed indifference, callousness, and lack of empathy. In the 

court, he appeared apathetic, angry, and unapologetic, stating that he was sorry the dead and injured 

could not “enjoy the value of their purchases”.   No psychiatric evaluation was ordered because there 

was  no  previous  history,  however,  criminal  behavior may  often  represent  the  first  symptom  of 

bvFTD. Despite never being diagnosed with a neurodegenerative disorder, people who knew GRW 

noticed  a  drastic  personality  change  in  the  years  prior  to  this  event,  indicative  of  bvFTD. His 

neighbors, friends, and his pastor, described GRW as caring, pleasant, and friendly individual. He 

had  been married  for  over  60  years, was  compassionate,  involved  in  peoples’  lives,  and  after 

retirement,  volunteered  with  various  civic  organizations.  Although  GRW  was  never  officially 

diagnosed  with  bvFTD,  this  case  illustrates  the  difficulty  clinicians  encounter  because  this 

neurodegenerative disorder affects  the executive  function,  leaving memory  intact  for many years. 

Indeed, shortly before his crime, GRW was able to pass his DMV license renewal test, suggesting that 

his memory was unaffected. Since in California drivers who are 70 or older must renew their driverʹs 

license in person, GRW did not raise a dementia red flag with the DMV worker. 

Discussion 

Since bvFTD comprises 2.7% of all dementias and in early stages, patients retain their cognitive 

abilities, this condition is often misdiagnosed as SCZ, depression, or bipolar disorder, and frequently 

admitted  to psychiatric  institutions.    Patients with bvFTD respond poorly  to antipsychotic drugs, 

are often labeled “treatment resistant”, and prescribed additional psychotropics [157]. Moreover, as 

criminal  behavior  is  frequently  the  initial manifestation  of  bvFTD,  clinicians  rarely  suspect  this 

condition when examining an incarcerated individual. However, there are several characteristics of 

this disorder which should prompt  the clinician  to  think of a neurodegenerative condition. These 

include absence of psychiatric history at a younger age, first legal violation after the age of 55, poor 

insight despite a previously successful life, sudden change in eating habits, altered sleep pattern, lack 

of empathy, and engaging in criminal acts despite the presence of witnesses. 

Mitochondria‐protective treatments 

The key role of mitochondria in sleep disorders, SCZ, SLDs, and neurodegeneration, highlights 

the  importance  of  mitoprotective  approaches  to  resuscitate,  replace,  or  increase  the  import  of 

mitochondria  from  glial  cells.  For  example,  treatment  with  SSRIs  during  the  early  stages  of 

dementias, may delay  the  onset  of  cognitive decline. Along  this  line,  a  recent  study  found  that 

treatment  with  SSRIs  slowed  the  conversion  of mild  cognitive  impairment  to  frank  dementia, 

suggesting that prophylactic treatment with these agents may be beneficial [158]. In addition, natural 

anti‐ferroptosis drugs and iron chelators, such as halogenated phenazines, may improve the course 

of neurodegenerative disorders, suggesting novel therapeutic strategies [159,160].  

Membrane Lipid Replacement (MLR)   
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MLR refers to the oral supplementation with natural, cell membrane glycerophospholipids and 

kaempferol (3,4′,5,7‐tetrahydroxyflavone), a natural flavonoid found in tea, broccoli, cabbage, kale, 

beans, endive, leek, tomato, strawberries, and grapes [161]. Kaempferol is a glycogen synthase kinase‐

3β  (GSK‐3β)  inhibitor which prevents  sleep deprivation‐induced cognitive decline  [162,163]. Like 

lithium  and  several  antipsychotic  drugs,  kaempferol  blocks  GSK‐3β,  an  enzyme  previously 

implicated in SCZ and circadian rhythm disorders, suggesting that this natural compound may exert 

antipsychotic properties without the adverse effects of conventional therapeutics [164–167]. 

The aim of MLR + kaempferol is gradual replacement of damaged phospholipids and oxysterols 

from  neuronal  and/or  mitochondrial  membranes  with  natural  glycerophospholipids  and  a 

polyphenol. Indeed, oxidized membrane lipids have been implicated in SCZ, SLDs, insomnia, and 

neurodegeneration, while MLR and kaempferol offer a dual mechanism of action: 1) elimination of 

lipid peroxides and 2) GSK‐3β  inhibition  [168]. Replacing oxidized plasma and/or mitochondrial 

membrane  fats  with  healthy  natural  lipids,  averts  deformation  of  neuronal  membrane  and 

misalignment of neuroreceptors. Conversely, oxidized membrane  lipids  and  ferroptosis  alter  the 

biophysical properties of membranes, disrupting neuronal functions [169]. 

Phenazines and phenothiazine derivatives 

Phenazines are nitrogen‐containing heterocyclic compounds produced by various marine and 

terrestrial microorganisms which  participate  in microbial  clearance,  iron  signaling,  and  biofilm 

formation [170]. Phenazines can be natural (bacteria‐derived) or synthetic.   

Natural phenazines, such as iodinin (1.6‐dihydroxy‐N5, N10‐dioxide phenazine) and myxin, are 

antibiotics which have been known for several decades [171]. The newer, terpenoid, glycosylated and 

fused phenazines, are derived from various Streptomyces species and exert antibiotic and anticancer 

effects.  For  example,  geranylphenazinediol  is  an  inhibitor  of  human  acetylcholinesterase  with 

potential benefit  in neurodegenerative disorders without  the adverse effects of  the manufactured 

drugs [172]. Other natural phenazines, including baraphenazines, leucanicidin and endophenasides, 

exert antimicrobial, anticancer activity, and very likely possess antipsychotic properties [173–175]. 

Synthetic  phenazine  derivatives  consist  of  over  6,000  compounds,  exerting  antimicrobial, 

antiparasitic, neuroprotective, anti‐inflammatory, and anticancer activities [176–178]. To the best of 

our  knowledge,  natural  or  synthetic  phenazines  have  not  been  tested  for  SCZ,  insomnia,  or 

neurodegeneration.  Pontemazines A  and  B  are  neuroprotective  phenazine  derivatives which  in 

animal studies have rescued hippocampal neurons from glutamate cytotoxicity, highlighting their 

pro‐cognitive  properties  which  could  benefit  patients  with  negative  symptoms  of  SCZ  or 

neurodegenerative disorders [176].   

Synthetic  phenazines  exert  antioxidant  and  radical‐scavenging  properties,  inhibit  lipid 

peroxidation, suggesting beneficial effects in severe insomnia, mental illness and neurodegeneration 

[179,180](Figure  3).  Moreover,  halogenated  phenazines  act  as  iron  chelators,  likely  preventing 

neuronal  ferroptosis  [181]. We believe  that Pontemazines and halogenated phenazines  should be 

assessed for antipsychotic/anti‐neurodegenerative properties.   
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Figure  3.  The  lipid  bilayer  of  neuronal membrane  is  easily  oxidated when  intracellular  iron  is 

upregulated. Oxysterols,  including  7‐Ketocholesterol  (a  toxic  oxide),  and  oxidated phospholipids 

alter  the  biophysical  properties  of  cell  membranes,  disrupting  neurotransmission.  In  addition, 

oxidized  lipids  activate  AhR,  triggering  premature  neuronal  senescence.    Phenazines, 

Phenothiazines, and their derivatives, intercalate themselves into the lipid bilayer, repairing the lipids 

in cellular and/or mitochondrial membranes. 

From  the  biochemical  standpoint,  phenazines  are  almost  identical  to  phenothiazine 

antipsychotics  and  likely  possess  similar  properties  (Figure  4).  Phenothiazines  are  typical 

antipsychotic drugs utilized primarily for SCZ and SLDs which block dopaminergic transmission at 

the  level  of  postsynaptic  neuron.  Several  phenothiazines  influence  other  receptors,  including 

adrenergic,  histaminergic,  and  cholinergic,  exerting  various  clinical  effects  as  well  as  adverse 

reactions. Aside from psychotic disorders, phenothiazines are also used for the treatment of migraine 

headaches, hiccups, nausea, vomiting, and cancer [182]. Like phenazines, phenothiazines intercalate 

themselves into the lipid bilayer of plasma and mitochondrial membranes, disrupting the curvature 

and  receptor  alignment on neuronal/mitochondrial  surfaces  [183](Figure  3).  In  contrast, oxidized 

lipids, including 7‐ketocholesterol (7KCl), form looped structures, generating membrane curvatures 

and pores, that may trigger cell death [184].   

 
 

Figure 4. Phenazine vs. Phenothiazine: similarities and differences. 

Antioxidant  phenothiazine  and  their  derivatives  have  recently  been  developed  for  cancer, 

cardiovascular disease (CVD), Mycobacterium leprae and other antibiotic‐resistant microbes [185,186]. 
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Phenothiazine derivatives exert anti‐peroxidation properties and protect against lipid pathology 

and  ferroptosis,  suggesting  efficacy  as  antipsychotic  drugs  [187].  In  addition,  antioxidant 

phenothiazines are likely beneficial for insomnia and neurodegenerative disorders, suggesting that 

these compounds should be tested for neuropsychiatric pathology [186].     

Propenylphenothiazine is a potent antioxidant with electron‐donor capability that could prevent 

gray matter loss, a hallmark of SCZ and SLDs [188,189]. Electron‐donating psychotropic drugs have 

been  known  to  preserve  the  brain  volume,  suggesting  that  propenylphenothiazine  may  treat 

psychosis, without reducing  the gray matter volume.    The majority of conventional antipsychotic 

drugs  are  electron‐acceptors  which  often  lower  the  brain  volume  as  documented  by  many 

neuroimaging  studies  [190–193].    An  even  newer  category  of  tetracyclic  and  pentacyclic 

phenothiazines with antioxidant properties have recently been developed, suggesting likely efficacy 

for cognitive impairment and negative SCZ symptoms [194]. Moreover, the N10‐carbonyl‐substituted 

phenothiazines were demonstrated to inhibit lipid peroxidation, suggesting superior antipsychotic 

efficacy [187]. 

Mitochondrial transfer and transplantation 

The early studies on mitochondrial  transplantation,  from  the 1980s, utilized co‐incubation of 

various cell types with naked mitochondria, hoping that cells would internalize the organelles from 

the  extracellular  environment  [195]. Later, HeLa  cells  and mesenchymal  stem  cells were used  as 

mitochondrial sources and found that successful organelle uptake occurred in a short time interval 

of  1‐2  hours  [196–198]. At  present, mitochondrial  transplantation  into  cardiomyocytes  has  been 

accomplished successfully and confirmed by mitochondrial DNA  (mtDNA) detected  in host cells 

[199,200]. 

Mitochondrial  transplantation  and  neuronal  rescue  from  ferroptosis  have  been  performed 

successfully in both animals and humans, suggesting a novel strategy for neurometabolic disorders 

[201]. To our knowledge, mitochondrial transplantation has not been attempted in sleep disorders, 

while in mental illness, it has been tried in animal models only [132]. Trafficking mitochondria from 

astrocytes and microglia  to neurons can  take place spontaneously after brain  injuries, reflecting a 

likely  compensatory  mechanism  to  preserve  neuronal  viability  [202].  In  addition,  it  has  been 

established  that  SSRIs,  GJA1‐20K,  and  CD38  signaling  can  facilitate  mitochondrial  transfer, 

emphasizing  potential  strategies  for  insomnia,  severe  mental  illness,  and  neurodegeneration 

[203,204]. 

Conclusions 

Forensic institutions throughout the country house individuals with severe mental illness and 

often comorbid insomnia, suggesting overlapping pathogeneses. Loss of neurons due to impaired 

sleep along with SCZ or SLDs‐related gray matter depletion, may trigger the premature development 

of dementias and other medical complications. These comorbidities increase healthcare expenditures 

and shorten patients’ lifespan, therefore, identifying and treating these conditions early is essential.     

YOD, a category of neurodegenerative disorders which include bvFTD, has been on the rise over 

the past  few decades  as  evidenced  by  the  increased  number  of  first  offenders  younger  than  65. 

Selective  loss  of  VENS  in  bvFTD  is  likely  due  to  the  large  size  of  these  cells,  predisposing  to 

peroxidation of plasma membrane lipids and mitochondrial loss by autophagy.   

At the molecular level, AhR is the equivalent of cerebral VENS, as this protein responds to both 

endogenous and exogenous ligands, including the lipid peroxides and other insomnia and psychosis‐

related molecules. 

Novel AhR ligands, phenazine and phenothiazine derivatives, as well as mitochondrial transfer 

or  transplantation  are  potential  new  strategies  for  treating  psychosis,  insomnia,  and 

neurodegeneration without additional loss of brain volume. 
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