

1 Article

2 **Efficient Photoelectrochemical Water Splitting**3 **Reaction using Electrodeposited Co_3Se_4 Catalyst**4 **Yelyn Sim[†], Jude John[†], Subramani Surendran[†], Byeolee Moon, and Uk Sim^{*}**5 Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186,
6 Republic of Korea7 * Correspondence: usim@jnu.ac.kr; Tel.: +82-62-530-17188 [†] These authors contributed equally to this work.

9

10

11 **Abstract**

12 Photoelectrochemical water splitting is a promising field for sustainable energy production using
13 hydrogen. Development of efficient catalysts is essential for resourceful hydrogen production. The
14 most efficient catalysts reported to date have been extremely precious rare-earth metals. One of the
15 biggest hurdles in this research area is the difficulty of developing highly efficient catalysts
16 comparable to the noble metal catalysts. Here, we report that non-noble metal dichalcogenide
17 (Co_3Se_4) catalysts made using a facile one-pot electrodeposition method, showed highly efficient
18 photoelectrochemical activity on a Si photocathode. To enhance light collection and enlarge its
19 surface area even further, we implemented surface nano-structuring on the Si surface. The nano-
20 structured Si photoelectrode has an effective area greater than that of planar silicon and a wider
21 absorption spectrum. Consequently, this approach exhibits reduced overvoltage as well as increased
22 photo-catalytic activity. Such results show the importance of controlling the optimized interface
23 between the surface structure of the photoelectrode and the electrodeposited co-catalyst on it to
24 improve catalytic activity. This should enable other electrochemical reactions in a variety of energy
25 conversion systems.

26 **Keywords:** Photoelectrochemical cell; hydrogen evolution reaction (HER); metal free catalyst; Cobalt
27 selenide catalyst

28

29 **1. Introduction**

30 Increasing energy demand and the rapid depletion of fossil fuels have made it inevitable that
31 renewable sources of alternative energy be found.¹ Despite the difficulties of finding alternative
32 sources of energy, hydrogen has emerged as an excellent source of clean energy that could serve as a
33 key technology for providing alternative energy.² The state-of-the-art high-efficiency hydrogen-
34 producing catalysts are based on noble metals like Pt.³ However, the cost and scarcity of noble metals
35 are preventing hydrogen energy from being used in a variety of applications. Moreover, depletion of
36 fossil fuels at a steady pace is contributing to the emerging energy crisis.⁴ In this situation, hydrogen
37 has become attractive as an excellent option for clean energy that could also serve as a key technology
38 in providing sustainable alternative energy.⁵ The discovery of photoelectrochemical water splitting
39 using TiO₂ by Honda and Fujishima in 1972 has completely revolutionized the area of
40 photoelectrochemical water splitting using semiconductor photoelectrodes.⁶ In this regard,
41 photoelectrochemical (PEC) water splitting to produce hydrogen is turning out to be a promising
42 strategy through which energy produced from solar irradiation could be transformed and stored in
43 the form of hydrogen.^{2,7}

44 Photoelectrodes provide the essential function of converting solar energy-to-fuel. To achieve this
45 conversion, the photoelectrode should possess a reasonable band gap for absorption of the incoming
46 incident light. This is necessary to drive the reaction for the reduction and oxidation of water. The
47 desired photoelectrode also has to provide charge transfer kinetics fast enough to minimize the
48 recombination of oppositely charged ions at the electrode/electrolyte interface.⁷ Metal oxides have
49 larger bandgaps (higher than 2 eV) which restrains their light absorption capability and thereby
50 makes them inefficient for solar energy conversion.⁸⁻¹⁰ Among the various semiconductor materials
51 that have been researched, p-type silicon (Si) stands out as a well-known photocathode owing to its
52 excellent photoelectrochemical water splitting properties.¹¹⁻¹⁴ Silicon is also an Earth-abundant
53 semiconductor material with a narrow bandgap (1.12 eV). These qualities make it an appropriate
54 material for absorbing a larger portion of the solar spectrum, and thus an ideal candidate for the
55 photovoltaic industry.¹⁵ Even with these advantages, Si is quite unstable in aqueous conditions and
56 in the absence of a catalyst, the reaction at the p-Si/electrolyte interface results in sluggish kinetics at
57 zero overpotential (i.e., 0 V vs RHE).¹⁶

58 One strategy to overcome this was to incorporate a corrosion-resistant protective layer that
59 would minimize inhibition of the photogenerated carriers and thereby improve the charge transfer.
60 Numerous studies have been carried out in the area of adding protective layers to Si photoelectrodes
61 to improve the stability of p-Si photoelectrodes in aqueous conditions.¹⁷⁻¹⁹ Platinum (Pt)²⁰ is well
62 known for its use as an electrocatalyst in PEC hydrogen production. It is however, also a precious
63 metal, the scarcity of which makes its large-scale deployment for PEC water splitting rather unlikely.

64 In response to these conditions, tremendous effort has been expended to find and develop Earth-
65 abundant non-precious catalysts for hydrogen production.

66 Recently, first-row transition-metal dichalcogenides have emerged as significant prospects for
67 use in water-splitting reactions, and been proposed as replacements for precious metals (i.e., Pt). This
68 proposal is especially compelling due to their natural-abundance and high catalytic activity. Among
69 these options, CoX_2 ($\text{X} = \text{S, Se}$) has lower overpotential with smaller Tafel slope and large exchange
70 current, and variants have shown promising development in HER reactions.²¹⁻²³ Yu et al. established
71 that higher catalytic rendition could be achieved by turning bulk CoSe_2 into an ultrathin nanosheet
72 and thereby significantly enhancing the surface-to-volume ratio due to the vacancy rich surfaces.²⁴⁻²⁵
73 Similarly Zhang et al. found that by a phase engineering process, they were able to produce more
74 edge sites on CoSe_2 catalyst. This included polymorphic phases of CoSe_2 that were obtained through
75 a temperature controlled process for calcination of amorphous CoSe_x . Their work demonstrated that
76 the grain boundaries existing between the two phases would unravel new HER active sites, thereby
77 enhancing the overall HER activity in CoSe_2 .²⁶

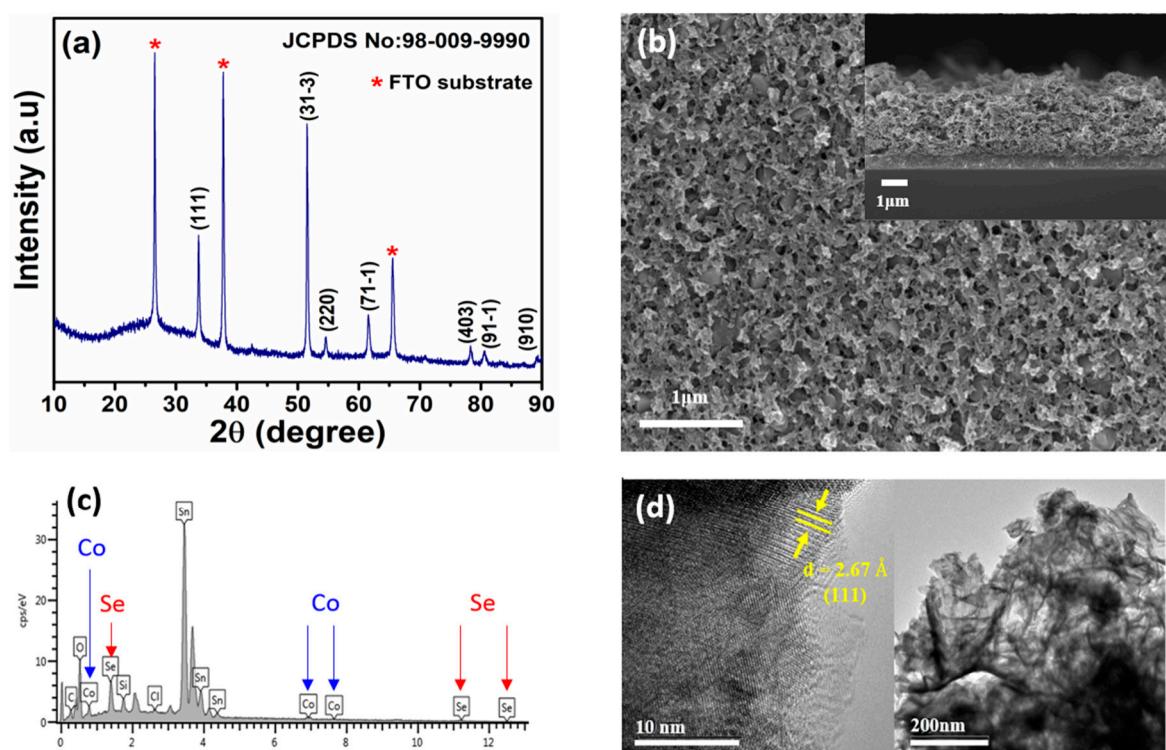
78 However, regarding actual development of HER photocathodes, relatively few catalysts have
79 been successfully integrated into these photocathodes. Moreover, many of these could not achieve
80 their full potential due to the lack of effective interfacing of these active nanosized HER catalysts with
81 the silicon photoabsorbers.²⁷⁻²⁹ In the light of these developments, we report a simple and facile
82 method for electrodeposition of Co_3Se_4 as a co-catalyst passivation-layer onto a p-Si photocathode to
83 enhance the photoelectrochemical water-splitting reaction. To provide better substrate selectivity, the
84 catalytic activity of the Co_3Se_4 co-catalyst was tested using Fluorine-doped Tin Oxide (FTO) and a
85 glassy carbon electrode as substrates. The Co_3Se_4 decorated onto the FTO substrate exhibited excellent
86 HER ($\eta_{(10)} = 215$ mV) and OER ($\eta_{(4)} = 562$ mV) catalytic activity. The resulting low Tafel value (42.5)
87 and 103 mV/dec occurred under pH 0 and pH 8 conditions, respectively. Hence, new Co_3Se_4
88 electrocatalysts with optimized working electrode selectivity and controlled deposition rate are
89 proposed as an efficient new bi-functional catalyst for water-splitting applications.

90

91 2. Materials and Methods

92 **2.1 Materials.** Sodium selenite (Na_2SeO_3), cobalt acetate ($\text{Co}(\text{CH}_3\text{COO})_2$), lithium chloride (LiCl),
93 perchloric acid (HClO_4), silver nitrate (AgNO_3), hydrochloric acid (HCl), nitric acid (HNO_3), and
94 hydrofluoric acid (HF) were purchased from Sigma Aldrich (Seoul, Rep. of Korea, 2018). All reagents
95 used in this work were of analytical grade purity and were used without further purification. As
96 (photo)electrodes, Si substrates (B-doped, p-type, 500 μm thickness, 10–15 $\Omega\cdot\text{cm}$ resistivity, (100)

97 oriented) were purchased from Namkang Inc. (Seongnam, Rep. of Korea, 2018) and FTO glass slides
98 ($1 \times 2 \text{ cm}^2$, $7 \Omega/\text{sq}$ resistivity) were purchased from Wooyang GMS (Namyangju, Rep. of Korea, 2018).
99 Si wafers were cut to dimensions of $8 \times 8 \text{ mm}^2$ and then each of these Si wafers was cleaned prior to
100 deposition with acetone, 2-propanol, and deionized water, respectively, using a bath sonicator (10
101 min each). In the chemical etching of the nanostructured Si (NSi) surface, the Si substrates were
102 dipped into a solution containing 20 mL aqueous etchant solution of AgNO_3 (0.679 g, 0.02 M) and HF
103 (5 M) under ambient conditions (25°C). Finally, Ag residue was completely removed from the
104 nanostructured silicon surface by treating with 70% nitric acid solution for two hours.

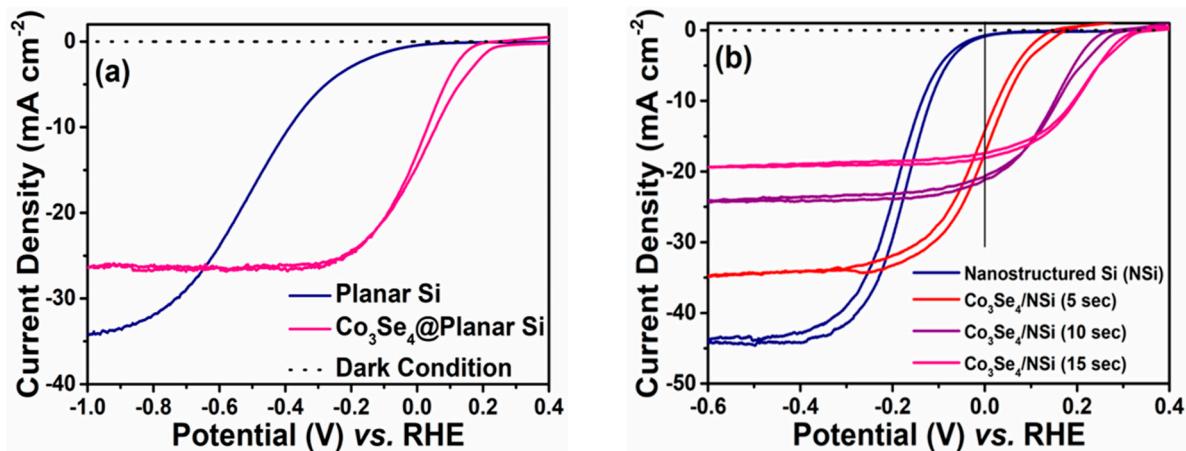

105 **2.2 Electrodeposition of Co_3Se_4 .** Prior to electrodeposition, the substrates were cleaned
106 following a standard protocol. For electrodeposition, substrates of planar silicon, nanostructured Si
107 (NSi), and FTO were used to get the best possible results from the three electrodes. An aqueous
108 solution containing 20 mM Na_2SeO_3 (0.101 g), 20 mM $\text{Co}(\text{CH}_3\text{COO})_2$ (0.146 g) and 100 mM LiCl (0.0121
109 g) were placed in a 30 mL container. The solution was kept near pH 2 by adding dilute HCl. The
110 deposition was conducted at room temperature in a single compartment glass cell using a three-
111 electrode configuration. Electrodeposition was performed with a CHI 7008E (CH Instruments, Inc.,
112 Austin, TX, USA, 2018) potentiostat. Graphite rod was used as a counter electrode and Ag/AgCl (3M
113 NaCl) was used as the reference electrode for the electrodeposition. The chronoamperometric
114 deposition was conducted at -0.8 V for varying deposition times (5, 10, or 15 s), and we determined
115 that the optimal time was 15 s. A thin film of Co_3Se_4 co-catalyst was formed on the surface of the
116 working electrodes.

117 **2.3 Photoelectrochemical measurements.** Photoelectrochemical tests were conducted using a
118 three-electrode cell. Working electrodes comprising a planar silicon photoelectrode, nanowire
119 structured silicon photoelectrode, and FTO glass were used. Graphite rods were used as counter
120 electrodes and Ag/AgCl (3M NaCl) as reference electrodes. Each reference electrode was calibrated
121 to -0.201 V (vs RHE) in a proton-rich aqueous solution of 1 M perchloric acid, and purged with a
122 high-purity saturated H_2 at 25°C . For solar irradiation, a 300 W Xenon lamp was used as the light
123 source at a light intensity of 100 mW/cm^2 (Air Mass 1.5 Global condition glass filter).

124 **3. Results and Discussion**

125 Cobalt selenide (Co_3Se_4) was deposited electrochemically onto conductive electrodes by the
126 electrodeposition method. The X-ray diffraction (XRD) pattern shown in **Figure 1** reveals highly
127 intense and crystalline peaks of prepared cobalt selenide sample. The peaks confirm the single-phase
128 formation of pure monoclinic crystal system of Co_3Se_4 , which exactly corresponds with the standard
129 JCPDS card No. 98-009-9990. The prepared Co_3Se_4 was in well agreement with the lattice parameters

130 of space group of $P21/c$ (space group number 14). Scanning electron microscopy (SEM) measurements
 131 were employed to confirm the morphology of the Co_3Se_4 film, as shown in Figure 1 (a). The
 132 nanoporous structure of the Co_3Se_4 catalyst was confirmed from the corresponding top-view and
 133 cross-sectional view SEM images. To determine the elemental composition of the film, energy
 134 dispersive spectrometry (EDS) was performed (Figure 1 (b)). To clarify this further, transmission
 135 electron microscopy (TEM) measurements of the deposited film were conducted, as shown in Figure
 136 1 (c). Information about the lattice fringe with an inter-planar spacing of 2.67 nm, revealed that the
 137 electro-deposited Co_3Se_4 film strongly corresponds to the (111) plane of the obtained XRD pattern.



138
 139 **Figure 1. Surface characterization of the cobalt selenide film:** (a) XRD pattern of Co_3Se_4 , (b) Scanning
 140 electron microscopy (SEM) images of Co_3Se_4 electrodeposited on FTO, (c) Energy dispersive
 141 spectrometry (EDS) spectrum showing the presence of cobalt and selenide elements, and (d)
 142 Transmission electron microscopy (TEM) image to identify Co_3Se_4 .

143 Photoelectrochemical measurements indicated that the electrodeposited Co_3Se_4 film on the
 144 photoelectrode acted as an effective layer for the hydrogen evolution reaction (HER). Figure 2a shows
 145 the resulting photoresponse of bare planar Si and Co_3Se_4 on planar Si. In the case of Co_3Se_4 on planar
 146 Si, the current density started to increase negatively much earlier than that of bare planar Si. This
 147 indicates that the $\text{Co}_3\text{Se}_4/\text{Si}$ system has higher onset potential, defined as the specific potential at -1
 148 mA/cm^2 . The onset potential (V_{os}) of $\text{Co}_3\text{Se}_4/\text{Si}$ ($V_{os} = 0.216 \text{ V}$ vs. RHE at $-1 \text{ mA}/\text{cm}^2$) is 303 mV higher
 149 than that of planar Si ($V_{os} = -0.087 \text{ V}$ vs. RHE at $-1 \text{ mA}/\text{cm}^2$). The potential vs current plot under dark
 150 condition shows a $1 \mu\text{A}/\text{cm}^2$ scale of current density, which indicates that the photoresponse of the

151 Co₃Se₄/Si cell operated well with and without illumination. However, when Co₃Se₄ was deposited on
 152 the Si electrode, the saturation current density decreased by approximately 23% from the initial
 153 current density (from -34.1 to -26.4 mA/cm²). This was attributed to the reduced light collection
 154 caused by deposition of the semi-transparent Co₃Se₄ film. To evaluate the photocathodic efficiency, a
 155 half solar-to-hydrogen conversion efficiency was introduced. It was defined as [(photocurrent
 156 density at the reversible potential (0 V vs. RHE), $J_{V=0}$ (mA/cm²) \times (open circuit potential, V_{oc} (V) \times Fill
 157 Factor / 100 (mW/cm²) \times 100 (%)].^{2,30} The equation is also equal to a maximum value of [J_{ph} (mA/cm²)
 158 \times (V_{redox} - V_b) (V) / (P_{light} (mW/cm²) \times 100 %)].^{2,30} Herein, J_{ph} is the photocurrent density obtained under
 159 the applied bias V_b , and V_{redox} is the redox potential for hydrogen production (0 V vs. RHE). V_{bias} is an
 160 externally applied bias potential often necessary to achieve reasonable photocurrents, and P_{light} is the
 161 intensity of the incident light under AM 1.5 G conditions. In this work, the incident light intensity
 162 was maintained at 100 mW/cm². From calculation, the half solar-to-hydrogen conversion efficiency
 163 increased to 10-times higher than for bare planar Si. Consequently, it was determined that Co₃Se₄ is
 164 a highly active film for photoelectrochemical hydrogen production in terms of photocathodic
 165 efficiency.

166

167

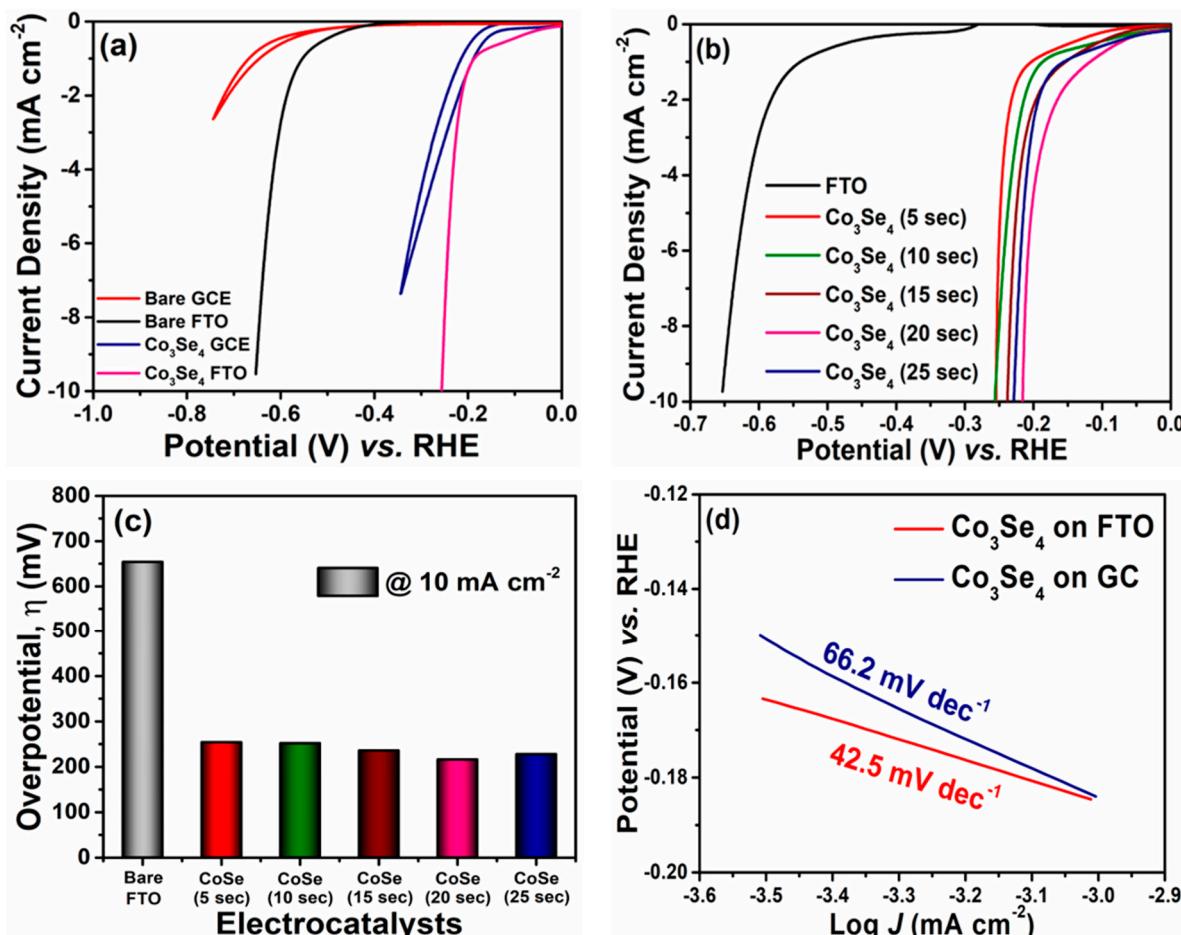
168 **Figure 2.** Cyclic voltammograms of electrodeposited cobalt selenide (Co₃Se₄) on Si photocathodes:
 169 (a) Current density-potential (J - E) curves of bare planar Si photoelectrode and Co₃Se₄ electrodeposited
 170 with Co₃Se₄ under dark condition and light condition, respectively, (b) Photoresponse current
 171 density-potential curves for bare planar Si and Co₃Se₄ deposited planar Si, (c) Photocurrent density-
 172 potential (J - E) curve according to cobalt selenide electrodeposition time.

173

Treatment of the nanostructured Si surface using a metal-catalyzed electroless etching process
 174 further increased the light-to-hydrogen conversion efficiency. Optimized nanostructuring of the Si
 175 electrode surface increased the limiting current density (the saturation current density at high
 176 negative potential) to 44.0 mA/cm². This is 1.29 times higher than that of bare planar Si (34.1 mA/cm²),
 177 as shown in Figure 2 (a) and (b). The V_{os} of the nanostructured Si (-0.007 V vs. RHE) also shifted by

178 a positive 80 mV (V_{os} of bare planar Si: -0.087 V vs. RHE). Consequently, the conversion efficiency of
179 the nanostructured Si photocathode (0.04%) increased two fold compared to that of bare planar Si
180 (0.02%). The enhanced efficiency of the nanostructured photoelectrode surface is mainly attributed
181 to increased effective surface area and reduced reflectance of incident light. To increase the
182 photocathodic activity even more, Co_3Se_4 was deposited electrochemically as a function of time,
183 maintaining the applied potential of -0.8 V vs. RHE. Figure 2 (b) shows representative photoresponse
184 results with various electrodeposition times. With increasing deposition time, the onset potential
185 shifted positively (anodically) while the limiting current density continuously decreased, induced by
186 deposition of much thicker Co_3Se_4 film. Overall, the conversion efficiency increased and conversion
187 became saturated at 15 sec of electrodeposition time. The efficiency of the Co_3Se_4 /nanostructured Si
188 with 15 s of electrodeposition was 2.71%, a value 136 times higher than that of bare planar Si and 68
189 times higher than bare nanostructured Si without co-catalyst. From these results, it was shown that
190 an optimal thickness of Co_3Se_4 co-catalyst film exists for efficient hydrogen production.

191 **Table 1 Half solar-to-hydrogen conversion efficiency of various photocathodes**


Type of Si photocathode	Efficiency (%)
Planar Si	0.02
Co_3Se_4 on planar Si	0.20
Nanostructured Si	0.04
Co_3Se_4 on nanostructured Si (5 s)	0.47
Co_3Se_4 on nanostructured Si (10 s)	1.72
Co_3Se_4 on nanostructured Si (15 s)	2.71

192
193 To evaluate the electrocatalytic properties of the material, the HER electrocatalytic activity was
194 examined using the customary three-electrode system. To understand better the electrocatalytic
195 activity with respect to the substrate, the Co_3Se_4 material was deposited on a glassy carbon electrode
196 (GCE) and on a fluorine-doped tin oxide (FTO) substrate. In Figure 2 (a), the HER polarization curves
197 of Co_3Se_4 on FTO and GC electrodes are compared, along with those of bare FTO and bare GCE. In
198 all the polarization curves, the reductive current density started to increase negatively according to
199 the cathodic potential applied, and promoted the hydrogen evolution reaction (HER). The HER
200 curves indicate that Co_3Se_4 (10) on the FTO electrode exhibited superior onset potential (-0.189 V vs.
201 RHE at -1 mA/cm²) than did Co_3Se_4 (10) deposited on GCE (-0.192 V vs RHE at -1 mA/cm²) and better
202 onset potential than did bare FTO (-0.552 V vs RHE at -1 mA/cm²) and GC (-0.644 V vs RHE at -1
203 mA/cm²) electrodes. Moreover, at a similar current density of 5 mA/cm², the Co_3Se_4 deposited on the
204 FTO conductive electrode showed enhanced electrocatalytic activity resulting in a lower
205 overpotential of 239 mV compared to Co_3Se_4 on the GC electrode (292 mV). This indicated that FTO

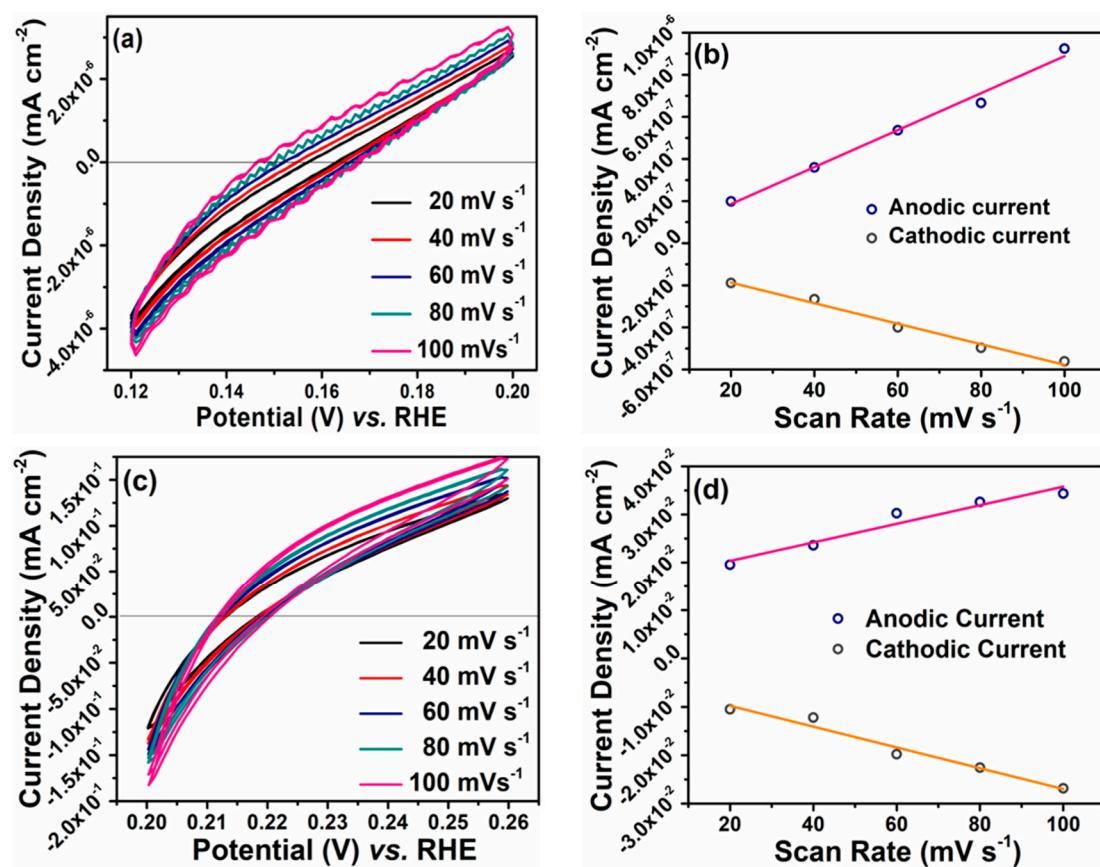
206 is a more suitable substrate and improves catalytic activity. Therefore, in-depth analyses were carried
207 out at various deposition times of the Co_3Se_4 electrocatalysts on the FTO substrate. Figure 2 (b) shows
208 that the HER activity of the Co_3Se_4 electrocatalyst varies with respect to the deposition time (5–25 s).
209 The electrocatalytic activity of the time dependent Co_3Se_4 catalysts was observed to increase
210 gradually with deposition time from 5 to 20 s, exhibiting a very low onset potential (-0.205 V to -0.119
211 V vs. RHE at -1 mA/cm 2). Subsequently, the sample deposited for 25 s abruptly declined due to an
212 increase in onset potential (-0.152 V vs. RHE at -1 mA/cm 2) compared to the sample deposited for 20
213 s. Figure 2c sorts out the overpotential demanded by prepared Co_3Se_4 electrocatalysts deposited on
214 the FTO for different times. The enhanced HER catalytic activity of the Co_3Se_4 (20 s) catalysts can be
215 attributed to better quality loading of the catalyst on the FTO substrate. However, the decrease in the
216 activity of the Co_3Se_4 (25 s) catalysts may be due to overloading of the catalysts on the FTO. This
217 clumps the electroactive sites, resulting in a poor interface between electrode and electrolyte.
218 Therefore, controlled loading of the catalysts over the substrates plays a vital role because it tends to
219 generate more electroactive sites, which facilitates superior electrocatalytic activity. Overall, the
220 Co_3Se_4 catalysts deposited on the FTO substrate for 20 s delivered superior HER electrocatalytic
221 activity by requiring only a very low overpotential of 215 mV to acquire an improved current density
222 of 10 mA/cm 2 . This overpotential (215 mV) required by the Co_3Se_4 catalysts electrodeposited on the
223 FTO substrate for 20 s seems very efficient compared to the previously reported results on metal
224 selenides.

225 To gain additional and more detailed information about the inherent properties of the
226 electrodeposited Co_3Se_4 , the current density vs potential curves of the Co_3Se_4 samples on GC and on
227 FTO were converted to Tafel plots to study the rate limiting step of the HER reaction. First, the Tafel
228 slopes shown in Figure 2d were calculated to be 66.2 and 42.5 mV/dec for Co_3Se_4 on GC and on FTO,
229 respectively. The Co_3Se_4 (20) electrocatalyst deposited on FTO yielded a consistently low Tafel value,
230 substantiating the upgraded electrocatalytic activity of the material. This provided further evidence
231 that hydrogen can be generated by a Heyrovsky reaction mechanism, by which one proton adsorbs
232 to the electrode and one hydrated proton comes from the electrolyte (and they combine) to make
233 hydrogen gas. The exchange current density of Co_3Se_4 on GC was 1.62×10^{-6} A/cm 2 and that of Co_3Se_4
234 on FTO was 4.47×10^{-8} A/cm 2 , which values were derived from the results on variation in the substrate
235 condition. In conclusion, electrodeposited Co_3Se_4 (20) showed an effective hydrogen evolution
236 mechanism with any of the conductive standard electrodes.

237

238

239 **Figure 3. Electrochemical activity with cobalt selenide (Co₃Se₄) deposition time on glassy carbon**
 240 **and FTO electrode from RDE system:** (a) Polarization curves of bare GCE, bare FTO, Co₃Se₄(10) on
 241 GCE, and Co₃Se₄(10) on FTO. (b) Polarization curves of bare FTO without any co-catalyst and FTO
 242 with cobalt selenide deposited for 5, 10, 15, 20, and 25 s. (c) HER overpotential demanded by the
 243 prepared electrocatalysts to achieve a current density of 10 mA/cm², and (d) HER Tafel slope of glassy
 244 carbon and FTO electrodeposited with cobalt selenide, as calculated from (a) and (b).


245

246 To measure the electrochemically active surface area (ECSA), the capacitance of an electrical double
 247 layer (C_{dl}) at a solid/electrolyte interface was evaluated by measuring the $J-E$ response of the bare GC
 248 and Co₃Se₄ on GC at various scan rates, as shown in Figure 3. The C_{dl} is estimated from the slope of
 249 the plot of J_C , which is the current at the potential with a net current density of 0 μ A/cm² with
 250 increasing scan rate from 20 to 100 mV/s. The capacitance is 8.78×10^{-3} μ F/cm² for bare GC and 0.19
 251 mF/cm² for Co₃Se₄ on GC, respectively. These values are much higher than that for a typical compact
 252 flat electrode reported to date (approximately 10–20 μ F/cm²).³¹ The slope is also proportional to the
 253 exchange current density, which is directly related to the catalytically active surface area.^{22, 32} The
 254 ECSA is calculated from the C_{dl} divided by the capacitance of a smooth planar surface of the catalyst
 255 (C_s). Using the general C_s value of 13–17 μ F/cm² in pH 0 solution (1M HClO₄),³³ the average ECSA of

256 Co₃Se₄ on GC and of bare GC are $(2.67 \text{ and } 8.91) \times 10^{-5} \text{ cm}^2$, which corresponds to roughness factors of
 257 $(13.67 \text{ and } 4.55) \times 10^{-4} \text{ cm}^2$, respectively. Therefore, Co₃Se₄ on GC has a large electrochemical catalytic
 258 surface area, which may also provide effective active sites for the HER.

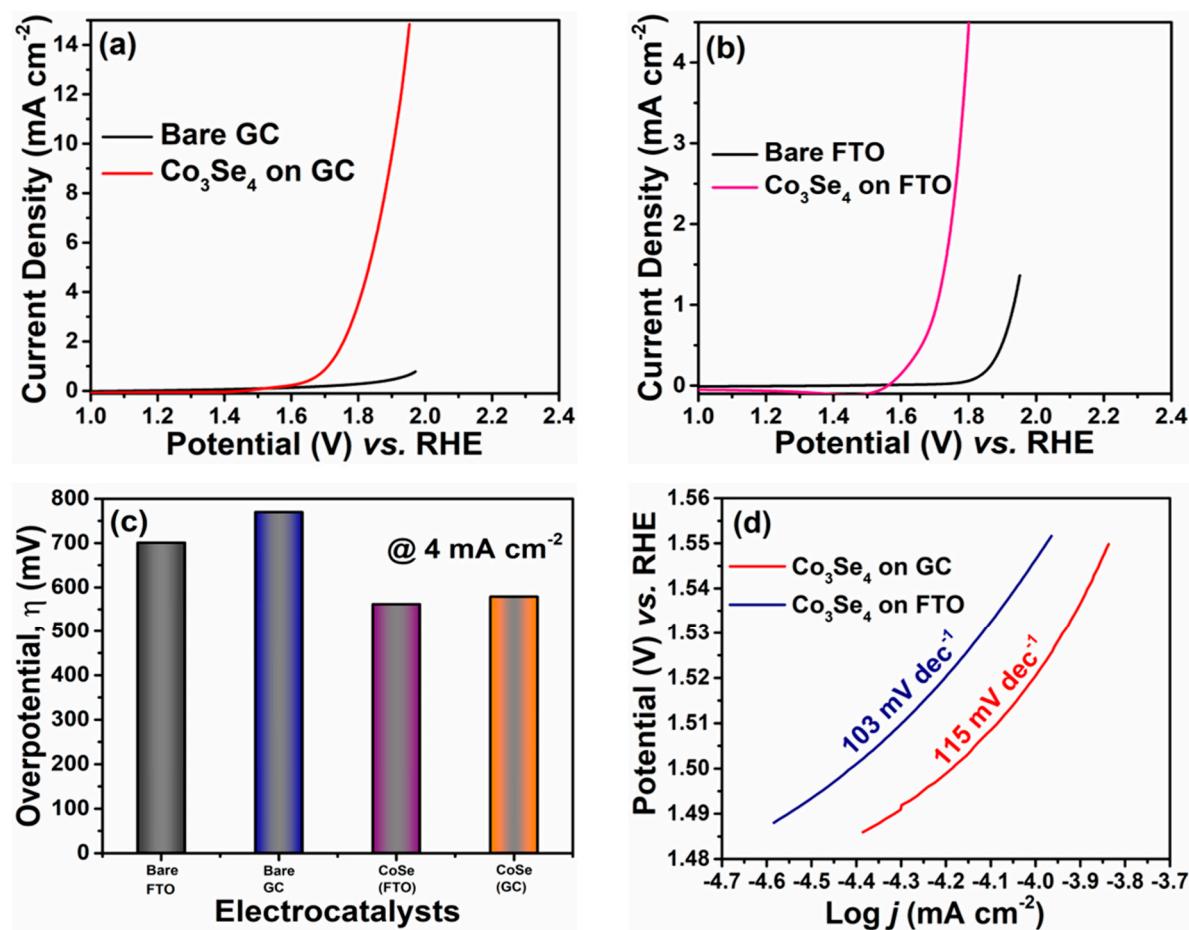
259

260

261

262

263 **Figure 4. The current vs potential result of** (a) Bare GC and (c) Co₃Se₄ on GC electrodes at different scan
 264 rates. The capacitance current (J_C) of (b) Bare GC and (d) Co₃Se₄ on GC at $J_{net} = 0 \text{ mA/cm}^2$ depending on scan
 265 rates. The slope of the J_C to scan rates plot is the capacitance of the double layer (C_{dl}). (b) The value of bare GC is
 266 $8.78 \times 10^{-3} \mu\text{F/cm}^2$ of cathodic current density and $4.88 \times 10^{-3} \mu\text{F/cm}^2$ of anodic current density. (d) For Co₃Se₄ on
 267 GC, C_{dl} is 0.19 mF/cm^2 of cathodic current density and 0.22 mF/cm^2 of anodic current density.


268

269 In addition, the electrodeposited Co₃Se₄(20) were also attempted for use as working electrodes
 270 for the water oxidation reaction. The Co₃Se₄(20) electrocatalyst was employed as the anode at pH 8
 271 condition (phosphate buffer solution). Figure 4 a and b, shows the OER polarization curves of bare
 272 GC electrode, Co₃Se₄ deposited on GC, bare FTO, and Co₃Se₄ deposited on FTO, respectively.
 273 Substantially, the Co₃Se₄ on FTO revealed superior OER activity compared to Co₃Se₄ on GC, with
 274 lower onset potential (1.55 V vs RHE at 1 mA/cm²) under pH 8 condition. The Co₃Se₄ on FTO
 275 electrocatalyst requires lower overpotential of 562 mV to attain a current density of 4 mA/cm², while
 the Co₃Se₄ on GC needed 579 mV to reach the same current density. Figure 5c differentiates the

276 required OER overpotential for the prepared electrocatalysts to achieve a current density of 4
 277 mA/cm².

278 To recognize the rate determining step, a Tafel slope was calculated by fitting the plot to a Tafel
 279 equation ($\eta = b \log j + a$), where j represents the current density and b is the Tafel slope. Figure 5d
 280 shows the OER Tafel plot of Co₃Se₄ electrocatalyst on FTO and GC electrodes. A minimum Tafel slope
 281 of 103 mV/dec was obtained by the Co₃Se₄ electrocatalyst on FTO substrate, which implies that the
 282 rate-determining step in the electrochemical system is a single electron transfer step. Hence, the
 283 Co₃Se₄ catalyst electrodeposited on the FTO substrate delivered upgraded OER electrocatalytic
 284 activity. Therefore, the Co₃Se₄ electrocatalysts prepared by controlled deposition over the FTO and
 285 GC electrodes, act as efficient bi-functional catalysts for both hydrogen and oxygen evolution
 286 reactions.

287

288

289 Figure 5. OER polarization curves of Co₃Se₄. (a) Co₃Se₄ deposited on GC and bare GC, and (b) Co₃Se₄
 290 deposited on FTO and bare FTO. (c) OER overpotential demanded by the prepared electrocatalysts
 291 to achieve a current density of 4 mA/cm². (d) OER Tafel slopes of Co₃Se₄ deposited on FTO and GC
 292 electrodes.

293

294 **4. Conclusions**

295 In conclusion, we employed electrodeposited-cobalt selenide (Co_3Se_4) co-catalyst on a silicon
296 photoelectrode system for the water splitting reaction. The SEM image confirms the uniform
297 distribution of the Co_3Se_4 film over the electrode material. The controlled loading of Co_3Se_4 over the
298 substrates was effectively optimized by varying the deposition time. The prepared Co_3Se_4 electrodes
299 were successfully investigated and found to be efficient electrocatalysts for both hydrogen and
300 oxygen evolution reactions. For the hydrogen evolution reaction, the Co_3Se_4 catalyst electrodeposited
301 on FTO substrate for 20 s requires very low overpotential of 215 mV to provide an improved current
302 density of 10 mA/cm^2 , compared to the other prepared electrocatalysts. Moreover, this electrocatalyst
303 yielded a very low Tafel slope value of 42.5 mV/dec. The same electrocatalyst was subjected to the
304 oxygen evolution reaction, which required a lower overpotential of 562 mV with a reduced Tafel
305 value of 103 mV/dec. From these enhanced HER and OER catalytic activity results, we believe that
306 Co_3Se_4 prepared by this easy, one-pot electrodeposition method, seems to be the most promising
307 candidate for commercialization as a low cost efficient electrocatalyst for water splitting.

308

309 **Author Contributions:** Conceptualization, U.S.; Methodology, U.S.; Validation, U.S.; Formal
310 Analysis, Y.S. and S.S.; Investigation, S.S. and U.S.; Resources, U.S.; Data Curation, B.M. and S.S.;
311 Writing-Original Draft Preparation, Y.S., J.J. and S.S.; Writing-Review & Editing, U.S., J.J., S.S. and
312 Y.S.; Visualization, B.M. and Y.S.; Supervision, U.S.; Project Administration, U.S. ‡ These authors
313 contributed equally to this work.

314

315 **Acknowledgments:** This research was supported by the National Research Foundation of Korea
316 (NRF) and funded by the Ministry of Science, ICT & Future, Republic of Korea (2018R1C1B6001267
317 and 2018R1A5A1025224).

318

319 **Conflicts of Interest:** The authors declare no conflict of interest.

320

321

322

323 **References**

324 1. Barber, J., Photosynthetic energy conversion: natural and artificial. *Chemical Society*
325 *Reviews* **2009**, *38* (1), 185-196.

326 2. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.;
327 Lewis, N. S., Solar Water Splitting Cells. *Chemical Reviews* **2010**, *110* (11), 6446-6473.

328 3. Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting.
329 *Chemical Society Reviews* **2015**, *44* (15), 5148-5180.

330 4. Züttel, A.; Remhof, A.; Borgschulte, A.; Friedrichs, O., Hydrogen: the future energy
331 carrier. *Philosophical Transactions of the Royal Society A: Mathematical,*
332 *Physical and Engineering Sciences* **2010**, *368* (1923), 3329-3342.

333 5. Turner, J. A., Sustainable Hydrogen Production. *Science* **2004**, *305* (5686), 972-974.

334 6. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor
335 Electrode. *Nature* **1972**, *238* (5358), 37-38.

336 7. McKone, J. R.; Lewis, N. S.; Gray, H. B., Will Solar-Driven Water-Splitting Devices
337 See the Light of Day? *Chemistry of Materials* **2014**, *26* (1), 407-414.

338 8. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S., Increasing Solar Absorption for Photocatalysis
339 with Black Hydrogenated Titanium Dioxide Nanocrystals. *Science* **2011**.

340 9. Warren, S. C.; Voitchovsky, K.; Dotan, H.; Leroy, C. M.; Cornuz, M.; Stellacci, F.;
341 Hébert, C.; Rothschild, A.; Grätzel, M., Identifying champion nanostructures for solar water-
342 splitting. *Nature Materials* **2013**, *12*, 842.

343 10. Liao, L.; Zhang, Q.; Su, Z.; Zhao, Z.; Wang, Y.; Li, Y.; Lu, X.; Wei, D.; Feng, G.; Yu,
344 Q.; Cai, X.; Zhao, J.; Ren, Z.; Fang, H.; Robles-Hernandez, F.; Baldelli, S.; Bao, J., Efficient
345 solar water-splitting using a nanocrystalline CoO photocatalyst. *Nature Nanotechnology*
346 **2013**, *9*, 69.

347 11. Lee, M. H.; Takei, K.; Zhang, J.; Kapadia, R.; Zheng, M.; Chen, Y.-Z.; Nah, J.;
348 Matthews, T. S.; Chueh, Y.-L.; Ager, J. W.; Javey, A., p-Type InP Nanopillar Photocathodes
349 for Efficient Solar-Driven Hydrogen Production. *Angewandte Chemie International Edition*
350 **2012**, *51* (43), 10760-10764.

351 12. Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H., High-
352 Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water
353 Oxidation. *Science* **2013**, *342* (6160), 836-840.

354 13. Kye, J.; Shin, M.; Lim, B.; Jang, J.-W.; Oh, I.; Hwang, S., Platinum Monolayer
355 Electrocatalyst on Gold Nanostructures on Silicon for Photoelectrochemical Hydrogen
356 Evolution. *ACS Nano* **2013**, *7* (7), 6017-6023.

357 14. Sun, K.; Pang, X.; Shen, S.; Qian, X.; Cheung, J. S.; Wang, D., Metal Oxide Composite
358 Enabled Nanotextured Si Photoanode for Efficient Solar Driven Water Oxidation. *Nano*
359 *Letters* **2013**, *13* (5), 2064-2072.

360 15. Powell, D. M.; Winkler, M. T.; Choi, H. J.; Simmons, C. B.; Needleman, D. B.;
361 Buonassisi, T., Crystalline silicon photovoltaics: a cost analysis framework for determining
362 technology pathways to reach baseload electricity costs. *Energy & Environmental Science*
363 **2012**, *5* (3), 5874-5883.

364 16. Oh, I.; Kye, J.; Hwang, S., Enhanced Photoelectrochemical Hydrogen Production from
365 Silicon Nanowire Array Photocathode. *Nano Letters* **2011**, *12* (1), 298-302.

366 17. Wang, X.; Peng, K.-Q.; Pan, X.-J.; Chen, X.; Yang, Y.; Li, L.; Meng, X.-M.; Zhang, W.-
367 J.; Lee, S.-T., High-Performance Silicon Nanowire Array Photoelectrochemical Solar Cells
368 through Surface Passivation and Modification. *Angewandte Chemie International Edition*
369 **2011**, *50* (42), 9861-9865.

370 18. Strandwitz, N. C.; Comstock, D. J.; Grimm, R. L.; Nichols-Nielander, A. C.; Elam, J.;
371 Lewis, N. S., Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin
372 Films of Manganese Oxide Grown by Atomic Layer Deposition. *The Journal of Physical*
373 *Chemistry C* **2013**, *117* (10), 4931-4936.

374 19. Lana-Villarreal, T.; Straboni, A.; Pichon, L.; Alonso-Vante, N., Photoelectrochemical
375 characterization of p-type silicon electrodes covered with tunnelling nitride dielectric films.
376 *Thin Solid Films* **2007**, *515* (18), 7376-7381.

377 20. Peng, K.-Q.; Wang, X.; Wu, X.-L.; Lee, S.-T., Platinum Nanoparticle Decorated Silicon
378 Nanowires for Efficient Solar Energy Conversion. *Nano Letters* **2009**, *9* (11), 3704-3709.

379 21. Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S., Earth-Abundant Metal
380 Pyrites (FeS₂, CoS₂, NiS₂, and Their Alloys) for Highly Efficient Hydrogen Evolution and
381 Polysulfide Reduction Electrocatalysis. *The Journal of Physical Chemistry C* **2014**, *118* (37),
382 21347-21356.

383 22. Kong, D.; Wang, H.; Lu, Z.; Cui, Y., CoSe₂ Nanoparticles Grown on Carbon Fiber
384 Paper: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. *Journal of*
385 *the American Chemical Society* **2014**, *136* (13), 4897-4900.

386 23. Zhang, H.; Li, Y.; Zhang, G.; Xu, T.; Wan, P.; Sun, X., A metallic CoS₂ nanopyramid
387 array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution.
388 *Journal of Materials Chemistry A* **2015**, *3* (12), 6306-6310.

389 24. Gao, M.-R.; Liang, J.-X.; Zheng, Y.-R.; Xu, Y.-F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S.-H.,
390 An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical
391 hydrogen generation. *Nature Communications* **2015**, *6*, 5982.

392 25. Zheng, Y.-R.; Gao, M.-R.; Gao, Q.; Li, H.-H.; Xu, J.; Wu, Z.-Y.; Yu, S.-H., An Efficient
393 CeO₂/CoSe₂ Nanobelt Composite for Electrochemical Water Oxidation. *Small* **2015**, *11* (2),
394 182-188.

395 26. Zhang, H.; Yang, B.; Wu, X.; Li, Z.; Lei, L.; Zhang, X., Polymorphic CoSe₂ with Mixed
396 Orthorhombic and Cubic Phases for Highly Efficient Hydrogen Evolution Reaction. *ACS*
397 *Applied Materials & Interfaces* **2015**, *7* (3), 1772-1779.

398 27. Huang, Z.; Chen, Z.; Chen, Z.; Lv, C.; Meng, H.; Zhang, C., Ni₁₂P₅ Nanoparticles as
399 an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis. *ACS*
400 *Nano* **2014**, *8* (8), 8121-8129.

401 28. Bao, X.-Q.; Fatima Cerqueira, M.; Alpuim, P.; Liu, L., Silicon nanowire arrays coupled
402 with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen
403 evolution. *Chemical Communications* **2015**, *51* (53), 10742-10745.

404 29. Masud, J.; Swesi, A. T.; Liyanage, W. P. R.; Nath, M., Cobalt Selenide Nanostructures:
405 An Efficient Bifunctional Catalyst with High Current Density at Low Coverage. *ACS Applied*
406 *Materials & Interfaces* **2016**, *8* (27), 17292-17302.

407 30. Allen J. Bard, L. R. F., *Electrochemical Methods: Fundamentals and Applications*. *John*
408 *Wiley & Sons, Inc.* **2001**, 864.

409 31. Randin, J. P.; Yeager, E., Differential Capacitance Study of Stress-Annealed Pyrolytic
410 Graphite Electrodes. *Journal of The Electrochemical Society* **1971**, *118* (5), 711-714.

411 32. Trasatti, S.; Petrii, O. A., Real surface area measurements in electrochemistry. *Journal*
412 *of Electroanalytical Chemistry* **1992**, *327* (1-2), 353-376.

413 33. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking Heterogeneous
414 Electrocatalysts for the Oxygen Evolution Reaction. *Journal of the American Chemical
415 Society* **2013**, *135* (45), 16977-16987.