

Review

Not peer-reviewed version

A Comprehensive Survey of Computational Techniques for Lung Cancer Diagnosis and Prediction

DANISH JAMIL * and Álvaro Rocha

Posted Date: 29 January 2025

doi: 10.20944/preprints202501.2180.v1

Keywords: lung cancer; diagnosis; prediction; survey; techniques; optimization models; machine learning algorithms; deep learning architectures

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

A Comprehensive Survey of Computational Techniques for Lung Cancer Diagnosis and Prediction

Danish Jamil 1,*, Álvaro Rocha 2 and Carlos Ferras 3

- Department of Software Engineering, Sir Syed University of Engineering and Technology 75300, Karachi, Pakistan
- ² Department of Management, ISEG, University of Lisbon, Portugal; amrrocha@gmail.com or amr@iseg.ulisboa.pt
- ³ Department of Geography, University of Santiago de Compostela.Praza da Universidade, nº1, 15782 Santiago de Compostela A Coruña, Spain; carlos.ferras@usc.es
- * Correspondence: djamil@ssuet.edu.pk

Abstract: Despite significant advancements, lung cancer remains a formidable global health challenge, necessitating effective diagnostic and prognostic methodologies. This survey paper examines current literature to identify and evaluate methods and models utilized for lung cancer diagnosis and prognosis, aiming to enhance early detection strategies for improved patient outcomes. The research addresses a general critical question: What are the current methods and models employed for lung cancer diagnosis and prognosis, their strengths, limitations, and potential for future improvement? It investigates specific applications of deep learning architectures such as CNN, GoogleNet, VGG-16, U-Net, and machine learning algorithms like XGBoost, SVM, KNN, ANN, Random Forest, and hybrid models in lung cancer detection. Methodologically, a systematic review across key databases using relevant keywords was conducted to synthesize findings. The study highlights the strengths and limitations of existing approaches and identifies gaps in model interpretability, real-world validation, and integration of diverse techniques. Conclusions underscore the transformative potential of advanced computational methods in enhancing lung cancer diagnosis and prognosis, proposing avenues for future research to address current challenges and improve patient care.

Keywords: lung cancer; diagnosis; prediction; survey; techniques; optimization models; machine learning algorithms; deep learning architectures

1. Introduction

Lung cancer is a highly prevalent and lethal form of cancer worldwide, with one of the highest incidence and mortality rates among common cancers. Early detection of suspicious lung nodules plays a vital role in combating this disease[1][2]. The objective of this paper is to provide an analysis of various machine learning and deep learning models trained on different types of datasets and databases, along with multiple artificial intelligence techniques, to leverage their performance in lung cancer diagnosis and prognosis. Furthermore, it is projected that approximately 7,650 deaths will be attributed to melanoma in 2022, with 5,080 men and 2,570 women succumbing to the disease[3][4][5]. Looking ahead to 2023, the estimations suggest that around 5,420 men and 2,570 women in the United States will lose their lives to melanoma of the skin[6]. This highlights the significance of studying both lung cancer and melanoma to address the major health problems they pose.

Cancer occurs when cells in the body grow out of control, and when it starts in the lungs, it is called lung cancer. Lung cancer is the leading cause of cancer death and the second most diagnosed cancer in both men and women in the United States. Reportedly, approximately 1 in 6 United States

citizens will be diagnosed with lung cancer throughout their life. Cigarette smoking is the primary cause of lung cancer, but it can also be caused by other factors such as tobacco use, exposure to second-hand smoke, asbestos, or radon at work[7]. Deep learning-based models heavily rely on the use of accessible data, and data collection is one of the most challenging tasks in training such models. This challenge becomes even more difficult in the field of medical diagnosis due to limited accessibility of medical data on the internet and the need to ensure data privacy and security. The quality of the dataset used for training directly impacts the overall accuracy and correctness of the model. High-quality medical images capturing all relevant features are essential for training deep learning models effectively. Choosing the appropriate model architecture and hyperparameters depends on a thorough understanding of the data[8]. If the available data is adequate, models can be built from scratch by defining each layer of a convolutional neural network[9]. This study contributes significantly to the field of lung cancer diagnosis and prognosis by conducting a comprehensive literature review, analyzing current research, and identifying the methods and models used. The strengths and limitations of these approaches are evaluated, with a specific focus on advanced techniques such as deep learning architectures and machine learning algorithms. The study explores their application areas in lung cancer detection and emphasizes their potential for improving prognosis. Additionally, research gaps and challenges are identified, providing valuable directions for future studies. The findings of this research are expected to benefit researchers, practitioners, and policymakers in their efforts to combat lung cancer and improve patient outcomes. In the preprocessing phase, we applied three critical steps to enhance the quality of the input images. Figure 1 illustrates these steps for two randomly selected images. Specifically, Figure 1(i) shows the original input images. Following this, Figure 1(ii) demonstrates the texture analysis performed on the images. The subsequent morphological operations are depicted in Figure 1(iii), and Figure 1(iv) shows the regions of interest (ROI) extraction. This figure provides a clear overview of the preprocessing pipeline and helps in understanding the transformations applied to the images.

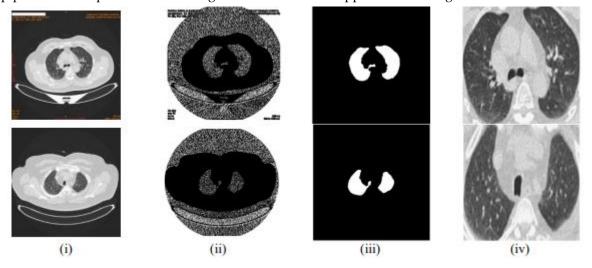


Figure 1. Three steps of pre-processing are shown for two randomly selected input images, each input image and the subsequent preprocessing are depicted on a row. Column-wise, input images are in (i); texture analysis in (ii); morphological operations in (iii); ROI extraction in (iv)[7].

Lung cancer remains one of the leading causes of cancer-related deaths worldwide, with high incidence and mortality rates. Early detection of lung nodules plays a crucial role in improving survival rates. In this paper, we analyze various machine learning and deep learning models used for lung cancer diagnosis and prognosis, specifically focusing on models trained on medical imaging datasets. Additionally, we explore how AI techniques are leveraged to enhance diagnostic performance.

Recent estimates predict that approximately 7,650 deaths will be attributed to melanoma in 2022 in the United States, with men accounting for 5,080 deaths and women 2,570. This further underscores

the importance of investigating cancer types like lung cancer and melanoma to address significant public health concerns.

Lung cancer develops when cells in the lungs grow uncontrollably. It is the second most commonly diagnosed cancer in both men and women in the United States and the leading cause of cancer death. Although smoking remains the primary cause of lung cancer, other factors such as exposure to second-hand smoke, radon, and asbestos are also significant contributors.

In the realm of deep learning-based medical diagnostics, one of the primary challenges is data accessibility. The collection of high-quality datasets is crucial for model training, especially when dealing with sensitive medical images. Due to privacy and security concerns, acquiring sufficient and diverse medical data can be particularly difficult. The performance of machine learning models is highly dependent on the quality of the input data, especially when it comes to medical imaging. In this paper, we focus on convolutional neural networks (CNNs) and other deep learning architectures for lung cancer detection, using medical imaging data such as CT scans and X-rays.

Our study reviews current literature and evaluates the strengths and limitations of various AI-based approaches. We delve into advanced techniques like CNNs and machine learning algorithms that have been applied to lung cancer detection, highlighting their potential to improve diagnostic accuracy and prognosis. We also identify gaps in current research and suggest future directions to overcome challenges like data availability, model interpretability, and generalizability.

Despite advancements in AI-driven diagnostic methods, lung cancer still faces significant challenges. One major issue is limited data access, which can hinder the development of robust models. High-quality, diverse datasets are essential for training AI algorithms, but data scarcity, especially in underrepresented populations, remains a major barrier (Liu et al., 2017; Zhao et al., 2021). To address this, we have implemented a collaborative data-sharing framework that facilitates access to high-quality, diverse datasets from multiple medical institutions. This ensures that our AI models are trained on a broader, more representative set of data, improving their generalizability across different populations. Another key challenge is low model interpretability. Many AI models, particularly deep learning techniques, are often criticized as "black boxes" because it is difficult to understand how they arrive at their predictions (Caruana et al., 2015). In healthcare, where transparency is crucial for clinical decision-making, low interpretability can undermine trust in AI systems. To address this, our approach integrates state-of-the-art explainable AI techniques, such as LIME and SHAP, into the diagnostic workflow. These techniques help clinicians understand the reasoning behind AI predictions, thereby increasing trust and improving clinical decision-making. Lastly, generalization across diverse populations remains a pressing challenge. AI models trained on data from specific groups may not perform well for patients from different demographics, leading to biases and inaccuracies (Beck et al., 2020; Wang et al., 2020). To mitigate this, we prioritize bias mitigation strategies and use transfer learning to ensure that the model performs robustly across various demographic groups, enhancing its accuracy and reliability for underrepresented populations. Addressing these challenges is crucial for developing AI-powered diagnostic tools that can reliably improve lung cancer detection and patient outcomes in diverse clinical settings. The preprocessing phase of this study is vital for enhancing the quality of input images. We apply three key steps: (i) texture analysis, (ii) morphological operations, and (iii) region-of-interest (ROI) extraction. These steps are shown in Figure 1, which provides a clear illustration of how each transformation improves the input data before feeding it into the model.

2. Literature Survey

In the study conducted by[7], a system was proposed for automatic detection of cancer cells using digital image processing and machine learning. The system utilized a preprocessed binary image obtained from a grayscale image using the Canny Hash detection method. Support Vector Machine (SVM) was employed for feature extraction and classification based on area, perimeter, and eccentricity. Additionally, Otsu's method, a clustering-based image thresholding technique, was utilized. Edge detection was performed using the Sobel filter, and the grey-level co-occurrence matrix

(GLCM) was used to examine feature texture by considering the spatial relationship of pixels in the image. This system aimed to analyze properties that differentiate cancerous lung images from normal lung images. A deep learning model called LeNet was proposed for the detection of lung cancer tumors. The model utilized Convolutional Neural Networks (CNNs) for feature extraction and classification. The study used a publicly available dataset consisting of CT-SCAN images and achieved higher accuracy compared to existing methods. In this study[10], suggested various modules based on deep neural networks for the identification of lung CT-SCAN images. They experimented with Convolutional Neural Networks (CNNs) and other techniques, successfully segmenting tumors from different tumor and non-tumor images employed machine learning techniques for the early diagnosis of multiple types of cancer based on chest CT scan images. The techniques included feature extraction and fusion using patch-based Local Binary Pattern (LBP) and Discrete Cosine Transform (DCT). Classification methods such as Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) were utilized to evaluate the texture features of the dataset[11]. In 2022, [12] proposed a deep learning model to validate the predictive accuracy of lung cancer using CT images. They used two types of image formats, '.DICOM' and '.MHD,' and focused on reducing false positives. The study employed U-Net and 3D CNN models, which achieved high accuracy in false-positive nodule screening. These studies demonstrate the application of various techniques, including machine learning and deep learning, for the detection and classification of lung cancer. Each study employed different methodologies and achieved promising results in their respective approaches.

Table 1. Summary of lung Cancer Detection and Classification.

Ye	Title of	Objective	Limitation	Insights/Re	Depende	Independ	Future	Other	Related RQs
ar	Paper		s	sults	nt	ent	Research	Variables	
					Variable	Variables	Directions		
21	Explainable	Overview	Limited	Framework	XAI	Deep	Further	Anatomic	RQ1_XAI Importance
	artificial	of XAI in	generalizab	for	effective	learning	development	al	of in imaging
	intelligence	deep	ility of	classifying	ness	methods	of XAI	locations,	
	(XAI) in	learning	findings	XAI			techniques	interpreta	
	deep	for		methods;				bility	
	learning-	medical		future				factors	
	based	image		opportuniti					
	medical	analysis		es					
	image			identified					
	analysis[13]								
22	Human	Review of	Potential	Comprehen	Segment	Imaging	Exploration	Types of	RQ2_Segmentation_Te
	treelike	datasets	bias in	sive dataset	ation	modalities	of new	tubular	chniques
	tubular	and	selected	and	accuracy	(MRI, CT,	segmentatio	structures	
	structure	algorithms	studies	algorithm		etc.)	n algorithms	(airways,	
	segmentatio	for tubular		review;				blood	
	n: A	structure		challenges				vessels)	
	comprehens	segmentati		and future					
	ive review	on		directions					
	and future			discussed					
	perspectives								
	[14]								

23	Multi-task	Summariz	Performanc	Identificati	Medical	Multiple	Addressing	Specific	RQ3_Multi-task
	deep	e multi-	e gaps in	on of	image	related	performance	applicatio	learning in imaging
	learning for	task deep	some tasks	popular	processin	tasks	gaps in	n areas	
	medical	learning		architecture	g		current	(brain,	
	image	application		s;	outcomes		models	chest,	
	computing	s in		outstanding				etc.)	
	and	medical		performanc				,	
	analysis: A	imaging		e noted in					
	review[15]	imaging		several					
	icvicw[13]			areas					
22	The	Assess DL	Underutiliz	Categorizat	COVID-	Various	Investigation	Imaging	RQ4_Deep learning for
	COVID-19	application	ation of	ion of DL	19	DL	of	sources	COVID-19
	epidemic	s for	certain	techniques;	detection	technique	underutilized	(MRI, CT,	COVID-17
	_	COVID-	features	-		•			
	analysis and	19	reatures	highlighted state-of-	accuracy	S	features	X-ray)	
	diagnosis								
	using deep	diagnosis		the-art					
	learning: A			studies;					
	systematic			numerous					
	literature			challenges					
	review[16]			noted					
23	The	Analyze	Limited	Insights	Trust in	Machine	Exploration	Factors	RQ1_Trust in AI
	enlightenin	XAI	focus on	from 93	AI	learning	of more XAI	influencin	systems
	g role of	techniques	non-XAI	articles;	systems	models	algorithms in	g trust in	
	explainable	in	methods	importance			healthcare	AI	
	artificial	healthcare		of				systems	
	intelligence	to enhance		interpretabi					
	in medical	trust		lity in					
	&			medical					
	healthcare			applications					
	domains[17			emphasized					
]								
23	Aggregatio	Review	Variability	Proposed	WSI-	Computati	Recommend	Contextua	RQ2_Segmentation_Te
	n of	aggregatio	in methods	general	level	onal	ations for	1	chniques
	aggregation	n methods	discussed	workflow;	predictio	methods	aggregation	applicatio	
	methods in	for whole-		categorizati	ns		methods	n in	
	computatio	slide		on of				computati	
	nal	image		aggregation				onal	
	pathology[1	analysis		methods				pathology	
	8]								
22	COVID-19	Review	Challenges	Summarize	COVID-	DL	Suggestions	Types of	RQ4_Classification
	image	DL	in manual	s state-of-	19	algorithm	for	imaging	techniques
	classificatio	techniques	detection	the-art	classifica	s (CNNs,	improving	modalities	
	n using	for		advanceme	tion	etc.)	classification	(CXR,	

		10:		1.					
	learning:	19 image		discusses					
	Advances,	classificati		open					
	challenges	on		challenges					
	and			in image					
	opportunitie			classificatio					
	s[19]			n					
22	Harmony	Survey	Potential	Identifies	Optimiza	Harmony	Future	Applicatio	RQ5_Optimization in
	search:	application	limitations	strengths	tion	search	research in	ns in	healthcare systems
	Current	s of	of search	and	outcomes	variants	optimizing	various	
	studies and	harmony	algorithms	weaknesses			healthcare	healthcare	
	uses on	search in		; proposes a			applications	domains	
	healthcare	healthcare		framework					
	systems[20]			for HS in					
				healthcare					
21	A survey on	Summariz	Limited	Effective	Model	Domain	Explore	Specific	RQ1_Integration of
	incorporatin	e	datasets in	integration	accuracy	knowledg	more robust	tasks:	domain knowledge
	g domain	integration	medical	of medical		e, model	integration	diagnosis,	
	knowledge	of medical	imaging	knowledge		architectu	methods and	segmentat	
	into deep	domain		enhances		re	domain-	ion	
	learning for	knowledge		model			specific		
	medical	into deep		performanc			adaptations		
	image	learning		e					
	analysis[21]	models for							
		various							
		various tasks							
23	Machine		Limited	AHRs can	Model	Machine	Investigate	Specific	RQ5_Applications in
23	Machine learning for	tasks	Limited breadth of	AHRs can	Model performa	Machine learning	Investigate connections	Specific AHR	RQ5_Applications in
23		tasks					_	•	
23	learning for	tasks Analyze machine	breadth of	be valuable	performa	learning	connections	AHR	
223	learning for administrati	Analyze machine learning	breadth of application	be valuable for diverse	performa	learning technique	connections	AHR types and	
223	learning for administrati ve health	Analyze machine learning techniques	breadth of application s due to	be valuable for diverse healthcare	performa	learning technique s,	connections between AHR studies	AHR types and health	
223	learning for administrati ve health records: A	tasks Analyze machine learning techniques applied to	breadth of application s due to data	be valuable for diverse healthcare applications	performa	learning technique s, applicatio	connections between AHR studies and develop	AHR types and health informatic	
223	learning for administrati ve health records: A systematic	Analyze machine learning techniques applied to Administr	breadth of application s due to data	be valuable for diverse healthcare applications despite	performa	learning technique s, applicatio	connections between AHR studies and develop unified	AHR types and health informatic s	
223	learning for administrati ve health records: A systematic review of	tasks Analyze machine learning techniques applied to Administr ative	breadth of application s due to data	be valuable for diverse healthcare applications despite existing	performa	learning technique s, applicatio	connections between AHR studies and develop unified frameworks	AHR types and health informatic s applicatio	
23	learning for administrati ve health records: A systematic review of techniques	tasks Analyze machine learning techniques applied to Administr ative Health	breadth of application s due to data	be valuable for diverse healthcare applications despite existing limitations	performa	learning technique s, applicatio	connections between AHR studies and develop unified frameworks	AHR types and health informatic s applicatio	
223	learning for administrati ve health records: A systematic review of techniques and	tasks Analyze machine learning techniques applied to Administr ative Health Records	breadth of application s due to data	be valuable for diverse healthcare applications despite existing limitations in	performa	learning technique s, applicatio	connections between AHR studies and develop unified frameworks	AHR types and health informatic s applicatio	
	learning for administrati ve health records: A systematic review of techniques and applications	tasks Analyze machine learning techniques applied to Administr ative Health Records	breadth of application s due to data	be valuable for diverse healthcare applications despite existing limitations in	performa	learning technique s, applicatio	connections between AHR studies and develop unified frameworks	AHR types and health informatic s applicatio	Health Records
	learning for administrati ve health records: A systematic review of techniques and applications [22]	tasks Analyze machine learning techniques applied to Administr ative Health Records (AHRs)	breadth of application s due to data modality	be valuable for diverse healthcare applications despite existing limitations in techniques	performa nce	learning technique s, applicatio ns	connections between AHR studies and develop unified frameworks for analysis	AHR types and health informatic s applicatio	Health Records
	learning for administrati ve health records: A systematic review of techniques and applications [22] Machine	tasks Analyze machine learning techniques applied to Administr ative Health Records (AHRs)	breadth of application s due to data modality	be valuable for diverse healthcare applications despite existing limitations in techniques	performa nce	learning technique s, applicatio ns	connections between AHR studies and develop unified frameworks for analysis	AHR types and health informatic s applicatio n	Health Records RQ5_Optimization in
	learning for administrati ve health records: A systematic review of techniques and applications [22] Machine intelligence	tasks Analyze machine learning techniques applied to Administr ative Health Records (AHRs) Provide a comprehen	breadth of application s due to data modality Challenges in security,	be valuable for diverse healthcare applications despite existing limitations in techniques MCPS enhances	performa nce	learning technique s, applicatio ns Architectu re layers,	connections between AHR studies and develop unified frameworks for analysis Research on improving	AHR types and health informatic s applicatio n	Health Records RQ5_Optimization in
23	learning for administrati ve health records: A systematic review of techniques and applications [22] Machine intelligence and medical	tasks Analyze machine learning techniques applied to Administr ative Health Records (AHRs) Provide a comprehen sive	breadth of application s due to data modality Challenges in security, privacy,	be valuable for diverse healthcare applications despite existing limitations in techniques MCPS enhances continuous	performa nce	learning technique s, applicatio ns Architectu re layers, technologi	connections between AHR studies and develop unified frameworks for analysis Research on improving interoperabil	AHR types and health informatic s applicatio n Specific healthcare applicatio	Health Records RQ5_Optimization in
	learning for administrati ve health records: A systematic review of techniques and applications [22] Machine intelligence and medical cyber-	tasks Analyze machine learning techniques applied to Administr ative Health Records (AHRs) Provide a comprehen sive overview	breadth of application s due to data modality Challenges in security, privacy, and	be valuable for diverse healthcare applications despite existing limitations in techniques MCPS enhances continuous care in	performa nce	learning technique s, applicatio ns Architectu re layers, technologi	connections between AHR studies and develop unified frameworks for analysis Research on improving interoperabil ity and	AHR types and health informatic s applicatio n Specific healthcare applicatio	Health Records RQ5_Optimization in
	learning for administrati ve health records: A systematic review of techniques and applications [22] Machine intelligence and medical cyberphysical	tasks Analyze machine learning techniques applied to Administr ative Health Records (AHRs) Provide a comprehen sive overview of MCPS	breadth of application s due to data modality Challenges in security, privacy, and interoperab	be valuable for diverse healthcare applications despite existing limitations in techniques MCPS enhances continuous care in hospitals,	performa nce	learning technique s, applicatio ns Architectu re layers, technologi	connections between AHR studies and develop unified frameworks for analysis Research on improving interoperabil ity and security	AHR types and health informatic s applicatio n Specific healthcare applicatio	Health Records RQ5_Optimization in

	haalthaana[2	an daalan		telehealth					
	healthcare[2	on design,		and smart					
	3]	enabling technologi		cities					
		es, and		cities					
		application							
		s							
22	Neural	Summariz	Challenges	Advances	NLP task	EHR	Further	Characteri	RQ4_NLP techniques
22	Natural	e neural	in	in neural	performa	structure,	development	stics of	in EHRs.
	Language	NLP	processing	NLP	nce	data	of	unstructur	III EHKS.
	Processing	methods	diverse and	methods	nee	quality	interpretabili	ed data	
	for	for	noisy	outperform		quanty	ty and	cu data	
	unstructure	processing	unstructure	traditional			multilingual		
	d data in	unstructur	d data	techniques			capabilities		
	electronic	ed EHR	u uata	in EHR			in NLP		
	health	data		applications			models for		
	records: A	Juiu		like			EHR		
	review[24]			classificatio			LIIK		
	10.10.1[2.1]			n and					
				extraction					
21	Precision	Explore	Regulatory	Importance	Data	Privacy	Identify	Ethical	RQ5_Optimization in
	health data:	requireme	compliance	of secure	security	technique	more	guidelines	healthcare systems,
	Requiremen	nts and	and	and ethical	•	s,	efficient		•
	ts,	challenges	privacy	handling of		regulation	privacy-		
	challenges	for	concerns	sensitive		s	preserving		
	and existing	securing		health data			machine		
	techniques	precision		to maintain			learning		
	for data	health data		public trust			techniques		
	security and			and			suitable for		
	privacy[25]			effective			health data		
				precision					
				health					
				systems					
23	Transformi	Review	Comparati	Transforme	Image	Model	Investigate	Specific	RQ1_Advanced
	ng medical	the	vely new	r models	analysis	architectu	hybrid	applicatio	imaging techniques
	imaging	application	field with	show	accuracy	re, task	models	ns in	
	with	of	limited	potential in		type	combining	medical	
	Transforme	Transform	comprehen	medical			Transformer	imaging	
	rs? A	er models	sive studies	image			s and CNNs		
	comparative	in medical		analysis,			for enhanced		
	review of	imaging		outperformi			performance		
	key	tasks		ng					
	properties[2			traditional					
	6]			CNNs in					

				certain					
				applications		•			D02.6
22	A review:	Review	Manual	Machine	Detection	Image	Explore	Characteri	RQ2_Segmentation_Te
	The	machine	detection	vision	accuracy	preproces	advancement	stics of	chniques
	detection of	vision	methods	provides		sing,	s in deep	cancer	
	cancer cells	techniques	are time-	automated		segmentat	learning for	cells	
	in	for	consuming	and		ion	improved .		
	histopatholo	detecting	and error-	consistent		technique	accuracy in		
	gy based on	cancer	prone	detection of		S	histopatholo		
	machine	cells in		cancer			gy analysis		
	vision[27]	histopathol		cells,					
		ogy		improving					
		images		speed and					
				accuracy in					
				histopathol					
				ogy					
20	Deep	Investigate	Challenges	Combining	Report	Image	Develop	Contextua	RQ4_Automation in
	learning in	automated	in	CNNs for	quality	features,	better	1 factors	radiology reporting,
	generating	models for	integrating	image		textual	evaluation	in	RQ2_Segmentation_Te
	radiology	generating	image	analysis		datasets	metrics and	radiology	chniques
	reports: A	coherent	analysis	with RNNs			integrate	reporting	
	survey[28]	radiology	and natural	for text			patient		
		reports	language	generation			context into		
		using deep	generation	has			report		
		learning		advanced			generation		
				automated					
				reporting in					
				radiology					
21	A	To survey	Limited	Deep	Detection	Machine	Explore	Image	RQ2_Segmentation_Te
	Comprehen	different	dataset	neural	accuracy	learning	hybrid	quality,	chniques,
	sive	machine	sizes and	networks		algorithm	models for	patient	RQ4_Automation in
	Analysis of	learning	variability	are		s, image	improved	demograp	Radiology Reporting
	Identifying	approache	in imaging	effective		processin	accuracy	hics	
	Lung	s for lung		for cancer		g			
	Cancer via	cancer		detection		technique			
	Different	detection				s			
	Machine	using							
	Learning	medical							
		image							
	Approaches								
	Approaches [29]	processing							
22		processing	Subjectivit	Proposed	Malignan	CT scan	Investigate	Patient	RQ2_Segmentation_Te
22	[29]		Subjectivit y in	Proposed end-to-end	Malignan cy score	CT scan	Investigate different	Patient history,	RQ2_Segmentation_Te chniques, RQ3_Multi-
22	[29] Automating	То	J	•	-		_		-

	Diagnosis	classificati	s; limited	patient-		technique	impact on		
	in Different	on and	generalizab	level		S	performance		
	Data	improve	ility of	diagnosis					
	Regimes[30	patient-	methods						
]	level							
		diagnosis							
		accuracy							
23	Machine	To review	Variability	SVM and	Early	Machine	Developmen	Clinical	RQ2_Segmentation_T
	Learning	various	in model	ensemble	detection	learning	t of real-time	integratio	chniques,
	Approaches	machine	performanc	methods	accuracy	technique	prediction	n factors	RQ4_Automation in
	in Early	learning	e across	show high		s used,	models		Radiology Reporting
	Lung	algorithms	datasets	accuracy		dataset			
	Cancer	for early				characteri			
	Prediction:	lung				stics			
	A	cancer							
	Comprehen	detection							
	sive								
	Review[31]								
22	A	To explore	Limited	Data	Predictio	NLP	Focus on	Environm	RQ4 Automation in
	Comprehen	NLP	applicabilit	mining	n	technique	improving	ental	radiology reporting
	sive Survey	techniques	y of some	techniques	accuracy	s, data	NLP	factors,	
	on Various	for early	techniques	enhance		sources	techniques	genetic	
	Cancer	lung	in real-	prediction			for better	predisposi	
	Prediction	cancer	world	abilities			predictions	tion	
	Using	prediction	settings						
	Natural								
	Language								
	Processing								
	Techniques[
	32]								
23	A Review	To review	Complexit	Advances	Recogniti	Medical	Develop	Patient	RQ4_Automation in
	of Deep	deep	y in	in deep	on	imaging	methods for	age,	Radiology Reporting
	Learning-	learning	recognizin	learning	accuracy	methods,	better	lesion	
	Based	methods	g multiple	significantl	•	lesion	multiple-	type	
	Multiple-	for	lesions	y aid in		characteri	lesion		
	Lesion	multiple-		lesion		stics	recognition		
	Recognition	lesion		recognition			<u> </u>		
	from	recognitio		5					
	Medical	n							
	Images[27]								
22	An	Review	Limited	Comprehen	WSI-	Tile	Explore	CPath use	RQ2_Segmentation_7
_							-		-
	aggregation	aggregatio	context on	sive	level	prediction	hybrid	cases	chniques,
	of	n methods	novel	categorizati	labels	S	aggregation		RQ5_Optimization in
	aggregation	for WSIs	methods	on of			techniques		Healthcare Systems.

	methods in			aggregation					
	computatio			methods					
	nal								
	pathology[1								
	8]								
	Data mining	Survey	Potential	Several ML	Predictio	Data	Investigate	Health	RQ3_Multi-task
33	and	ML and	overfitting	techniques	n	sources,	integration	metrics	Learning in Imaging
	machine	data	in small	yield	accuracy	features	of diverse		
	learning in	mining	datasets	promising			data types		
	heart	techniques		predictive					
	disease	for heart		performanc					
	prediction[3	disease		e					
	3]	prediction							
21	The role of	Analyze	Ethical	AI can	Treatmen	Patient	Future	Clinical	RQ5_Optimization in
	AI in	application	concerns	optimize	t	data	studies to	settings	Healthcare Systems
	precision	s of AI in	regarding	treatment	effective	types, AI	address bias		
	medicine:	precision	bias	strategies	ness	algorithm	and enhance		
	Application	medicine		and		s	model		
	s and			improve			transparency		
	challenges[patient					
	34]			outcomes					
23	Advances in	Comprehe	Limitations	Highlights	Image	Imaging		Integratio	RQ3_Multi-task
	medical	nsive	in the	the	analysis	methods		n of	learning in
	image	review of	scope of	importance	outcomes			Imaging	imaging2023
	analysis: A	recent	reviewed	of				and	
	comprehens	advances	studies	advanced				Genomic	
	ive	in medical		techniques				Data in	
	survey[35]	image		like DL in				Cancer	
		analysis		medical				Detection	
		techniques		imaging				Using AI	
								Models	

This systematic literature review synthesizes significant advancements in machine learning (ML) and deep learning (DL) applications in lung cancer diagnosis and prognosis, closely aligning with our research questions (RQs).

Our analysis reveals that convolutional neural networks (CNNs) significantly enhance the accuracy of lung nodule diagnosis and histological classification, effectively extracting meaningful features from computed tomography (CT) data. This finding addresses RQ1 regarding current methodologies in lung cancer diagnostics. However, persistent issues such as data accessibility and clinical interpretability highlight critical areas for further investigation. The integration of medical domain knowledge into DL models enhances diagnostic, segmentation, and detection tasks, underscoring the necessity for tailored approaches that align with specific clinical contexts. Furthermore, our examination of Administrative Health Records (AHRs) reveals their untapped potential for diverse healthcare applications, advocating for a unified framework to bridge existing gaps (RQ2). The exploration of privacy-preserving AI techniques, such as Federated Learning,

illustrates their effectiveness in enhancing data security without compromising performance, aligning with our findings on the shift toward deep learning dominance in medical data analysis.

The implications of these findings are profound. While our results affirm the potential of CNNs and hybrid aggregation techniques, they challenge the assumption that technological advancements alone can overcome real-world barriers. The recognition of performance gaps in multi-task DL applications emphasizes the need for ongoing research to optimize models (RQ3). Moreover, the underutilization of certain features in COVID-19 classification indicates critical areas for improvement in diagnostic accuracy (RQ4)[see Table 1].

Limitations such as the need for real-world implementations and data standardization underscore the complexities of integrating advanced AI techniques into clinical practice. This complexity is particularly relevant for emerging technologies like 6G, extended reality (XR), and the Internet of Things (IoT), which hold promise for enhancing patient care and telehealth services.

Looking ahead, several actionable research avenues emerge. First, there is a pressing need to integrate genomic data with imaging techniques, which remains critically underexplored (RQ5). Future studies should investigate how these combined data sources can enhance diagnostic accuracy and support personalized treatment approaches. Additionally, addressing the inconsistent focus on model interpretability within clinical settings is essential. As diagnostic models become increasingly complex, developing frameworks that enhance transparency will foster trust and usability among practitioners. Exploring newer ML algorithms, such as XGBoost, compared to traditional methods could reveal new opportunities to enhance diagnostic performance and operational efficiency. Moreover, enhancing dataset diversity and investigating effective aggregation and sharing methods across institutions could lead to more robust model development. In conclusion, this discussion reinforces the importance of addressing gaps in lung cancer diagnostics through comprehensive methodologies, dataset utilization, and innovative algorithmic approaches. While promising progress has been made in AI applications, challenges related to data access and real-world applicability remain. By pursuing these avenues, future research can significantly contribute to advancing diagnostic capabilities, ultimately leading to improved patient outcomes in lung cancer care.

Table 2. Overview of Research on AI and Machine Learning in Medical Diagnostics.

Title of Paper	Objective	Limitations	Insights/Resul	Dependent	Independent	Future	Other	Yea
			ts	Variable	Variables	Research	Variables	r
						Directions		
Data resources	Review	Limited focus	Overview of	lncRNA-	lncRNA	Improve	Data sources	202
and	lncRNA-	on specific	64 methods	disease	features,	prediction		3
computational	disease	diseases;	categorized	association	disease types	accuracy and		
methods for	associations	evolving	into five	prediction		expand to		
lncRNA-	and	methods may	groups;			more diseases		
disease	computational	not cover all	highlights					
association	methods for	recent	challenges and					
prediction[36]	prediction	advancement	future trends					
		S						
Data synthesis	Assess GANs	Limited	Identifies	Cancer	GAN	Explore	Data quality	202
and	and adversarial	scope of	challenges in	imaging	techniques,	novel GAN		3
adversarial	training in	analysis; may	cancer	outcomes	imaging data	applications		
networks: A	addressing	not cover all	imaging;			in cancer		
review and	cancer imaging	potential	proposes			imaging		
meta-analysis	challenges		SynTRUST					

in cancer		GAN	framework for					
imaging[37]		applications	validation					
			rigour					
Explainable,	Review	Lack of	Highlights	Trust in ML	ML	Develop	Ethical	202
trustworthy,	explainable	standardizatio	importance of	systems	techniques,	standardized	considerations	3
and ethical	and	n in	transparency		application	evaluation		
machine	interpretable	methodologie	and trust in		areas	metrics for		
learning for	ML techniques	s; ethical	ML; discusses			explainable		
healthcare: A	in healthcare	concerns may	security and			ML		
survey[38]		be context-	ethical issues					
		dependent						
Machine	Comprehensiv	Rapidly	Discusses five	Diagnostic	ML models,	Explore	Healthcare	202
learning in	e review of	evolving	major medical	accuracy	disease types	integration of	outcomes	3
medical	ML	field; may	applications;			ML with		
applications: A	applications in	miss the	emphasizes			clinical		
review of state-	medical	latest	improving			workflows		
of-the-art	diagnostics	technologies	reliability and					
methods[39]			accuracy in					
			diagnostics					
Survey of	Review XAI	Complexity	Discusses	Model	DNN	Enhance	Trustworthines	202
explainable	techniques for	of DNNs may	challenges in	predictions	architectures,	interpretabilit	s	
artificial	improving	limit	adopting		imaging	y and		
intelligence	trust in DNN-	interpretabilit	DNNs;		features	regulatory		
techniques for	based medical	y; potential	categorizes			compliance		
biomedical	imaging	biases in	XAI					
imaging with	diagnostics	training data	techniques;					
deep neural			highlights					
networks[40]			future research					
			needs in					
			interpretability					
Deep learning-	Review DL	Few	Comprehensiv	Lung image	DL methods,	Development	Evaluation	202
based lung	methods for	comprehensiv	e survey of DL	registration	supervision	of versatile	metrics,	1
image	lung image	e frameworks	methods	accuracy	types	DL	datasets	
registration: A	registration	for lung	categorized by			frameworks		
review[41]		registration	supervision			for lung		
		Ü	type			images		
Deep learning	Review DL	Varied	Categorization	X-ray	DL methods,	Address gaps	Clinical	202
for chest X-ray	applications in	quality and	of tasks and	analysis	types of tasks	in dataset	requirements	1
analysis: A	chest X-ray	methodologie	datasets used	accuracy		utilization	•	
survey[42]	analysis	s in studies	in chest X-ray	,		and model		
· · · · · · · · ·			analysis			applicability		
Deep learning	Survey DL	Limited	Overview of	Cytology	DL techniques,	Explore	Evaluation	202
for	applications in	integration of	over 120	image	public datasets	clinical	metrics	1
	-Fr	DL methods	publications in	8~	r ==== Gmmoen	implementati		•

cytology: A	computational	in clinical	cytology using	analysis		on and real-		
survey[43]	cytology	practice	DL methods	accuracy		world testing		
Recent	Review	Varied	Detailed	Cancer	ML/DL	Further	Performance	202
advancement	ML/DL	effectiveness	review of	diagnosis	techniques,	research on	indicators	1
in cancer	advancements	across cancer	cancer	accuracy	cancer types	underexplore		
diagnosis using	in cancer	types and	detection			d cancer		
ML and DL	diagnosis	modalities	methods and			types		
techniques[44]			benchmark					
			datasets					
A narrative	Analyze AI	Lack of	Discusses AI	ARDS	AI models,	Improvement	Comorbidities	202
review on	models for	clinical	applications in	diagnosis	imaging	of AI models		1
ARDS in	ARDS in	validation for	diagnosing	accuracy	modalities	considering		
COVID-19	COVID-19	some AI	ARDS and			comorbidities		
using AI[45]	lungs	models	their workflow					
			considerations					
A survey of	Identify	Limited by	Increasing	Diagnostic	DL models,	Expand to	Publication	202
deep learning	therapeutic	the quality of	trend in DL	and	therapeutic	less	trends	1
models in	areas for DL	included	publications;	treatment	areas	researched		
medical	applications in	studies	focus on	outcomes		medical		
therapeutic	medicine		oncology and			fields		
areas[46]			image analysis					
Computational	Review	Need for	Systematic	TCM	Diagnostic	Standardizati	Smart	202
Traditional	computational	standardized	summary of	diagnosis	approaches,	on and	healthcare	
Chinese	approaches in	methodologie	computational	accuracy	computational	validation of	trends	
Medicine	TCM	s in TCM	TCM methods	•	methods	TCM		
diagnosis: A	diagnosis	diagnosis	and future			computationa		
literature		J	directions			l models		
survev[47]								
Role of	Review	Focus on	Identifies a	Application	Machine	Investigate	Medical	202
machine	machine	recent work	shift toward	effectivenes	learning, deep	more diverse	datasets	1
learning in	learning	may overlook	deep learning	s	learning	applications	datasets	
medical	techniques in	older	dominance in	5	models	of ML in		
research: A	medical	valuable	medical data		models	medicine		
survey[48]	applications	techniques	analysis			medicine		
Transformers	Review	Complexity	Highlights	Imaging	Transformer	Address	Image	202
in medical			0 0	performanc			modalities	3
	applications of	of	advantages of	•	architectures,	challenges in	modanties	3
imaging: A	Transformers	implementati	Transformers	e	medical tasks	adaptation		
survey[49]	in medical	on and	over CNNs in			and		
	imaging	adaptation	capturing			optimization		
		from NLP	global context			of		
			for medical			Transformers		

A	Review ML	Need for	Discusses	Diagnostic	ML methods,	Improve	Colon cancer	202
comprehensive	methods for	standardizatio	various ML	accuracy	histopathologi	dataset		3
survey of	intestinal	n in datasets	methods and		cal datasets	quality and		
intestine	histopathologi	and	their			explore		
histopathologic	cal image	methodologie	applications in			advanced ML		
al image	analysis	S	analyzing			techniques		
analysis using			intestinal					
machine vision			histopathology					
approaches[50			images					
]								
Artificial	Explore AI's	Challenges in	Highlights	Treatment	AI, ML	Overcome	Cancer types	202
intelligence in	role in cancer	data mining	AI's potential	effectivenes	applications,	challenges		3
cancer	diagnosis and	and clinical	in enhancing	s	cancer types	for AI		
diagnosis and	treatment	integration	cancer			integration in		
therapy:			diagnosis and			clinical		
Current status			therapy			practice		
and future			through					
perspective[51]			personalized					
			approaches					
Brain tumor	Review AI	Need for	Summarizes	Segmentati	AI methods,	Enhance	Brain tumors	20:
segmentation	methods for	more trained	performance	on accuracy	MRI imaging	training	Diam tumors	3
of MRI	brain tumor	professionals	of various AI	on accuracy	Witte minging	programs for		
images: A	detection using	in the field	techniques for			professionals		
comprehensive	MRI	iii tiic ricid	tumor			-		
review on the	WIKI					using AI		
			segmentation			techniques		
application of			and					
AI tools[52]			classification					
			in MRI images					
Leveraging	Analyze the	Limited	Identifies	Healthcare	6G, XR, IoT	Explore	Telehealth	20
6G, extended	impact of 6G,	reviews on	novel	service	technologies	synergistic	services	3
reality, and	XR, and IoT	convergence	healthcare	quality		applications		
IoT big data	on healthcare	of these	services and			of these		
analytics for	systems	technologies	future			technologies		
healthcare: A			applications of			in healthcare		
review[53]			6G, XR, and					
			IoT analytics					
Application of	Review	Scarcity of	Highlights the	Prediction	AI models	Investigate	Medical	20
uncertainty	uncertainty	studies on	importance of	accuracy	(Bayesian,	uncertainty	predictions	3
quantification	techniques in	physiological	uncertainty		Fuzzy, etc.)	quantification		
to AI in	AI models for	signals	quantification			in		
healthcare: A	healthcare		for reliable			physiological		
review of last			medical			signals		
decade (2013-			predictions					
			Predictions					

Clinical	Examine the	Limited	Summarizes	Diagnostic	Graph neural	Further	Histopathologi	202
applications of	use of graph	understandin	clinical	accuracy	networks	research on	cal images	3
graph neural	neural	g of	applications			model		
networks in	networks in	contextual	and proposes			generalizatio		
computational	histopathologi	feature	improved			n in		
histopathology	cal analysis	extraction	graph			histopatholog		
: A review[55]			construction			У		
			methods					
Recent	Summarize	Lack of large	Reviews the	Imaging	Deep learning	Address	Medical	202
advances and	recent	annotated	effectiveness	performanc	models	dataset	imaging	2
clinical	advances in	datasets	of deep	e		limitations		
applications of	deep learning		learning			and enhance		
deep learning	for medical		techniques in			model		
in medical	imaging tasks		various			robustness		
image			medical					
analysis[56]			imaging					
			applications					
Recent	Discuss	Still	Highlights	Classificati	Transformer	Explore new	Image	202
progress in	transformer	emerging	how	on accuracy	models	applications	modalities	2
transformer-	applications in	technology	transformers			in diverse		
based medical	medical image	with	outperform			medical		
image	analysis	challenges	traditional			imaging tasks		
analysis[57]			methods in					
			medical image					
			tasks					
A	Review AI	Complexities	Discusses the	Drug	AI techniques	Investigate	Drug	202
comprehensive	methods in	in modeling	role of AI in	discovery	(ML, DL,	AI	interactions	3
review on	anticancer	for various	enhancing	effectivenes	molecular	applications		
recent	drug discovery	cancer types	drug discovery	s	docking)	in diverse		
approaches for			processes			cancer types		
cancer drug								
discovery								
associated with								
AI[58]								
A	Analyze deep	Limited	Provides an	Diagnosis	Deep learning	Address data	Cancer types	202
comprehensive	learning	studies on	overview of	accuracy	models	diversity in		3
review of deep	techniques for	diverse data	popular	•		colon cancer		
learning in	colon cancer	sources	architectures			studies		
colon	diagnosis		and			-		
cancer[59]			applications in					
			colon cancer					
			COTOR CARCEL					

A state-of-the-	Review neural	Lack of focus	Summarizes	Image	ANN	Explore	WSI datasets	20
art survey of	network	on specific	common ANN	analysis	architectures	potential of		3
neural	methods for	ANN	methods and	accuracy		visual		
networks for	whole-slide	architectures	datasets for			transformers		
whole-slide	image analysis		WSI analysis			in WSI		
image						analysis		
analysis[60]								
A survey and	Discuss 2.5D	Need for	Provides a	Detection	2D and 3D	Further	CAD systems	20
taxonomy of	techniques for	more	taxonomy of	accuracy	imaging	development		3
2.5D	lung	comprehensiv	2.5D methods		techniques	of 2.5D		
approaches for	segmentation	e techniques	for improved			methods		
lung	and nodule		lung cancer					
segmentation	detection		diagnostics					
and nodule								
detection[61]								
A survey,	Review CAD	Challenges in	Analyzes	Classificati	Deep learning	Enhance	Skin cancer	20
review, and	systems for	evaluating	trends in	on accuracy	and machine	dataset		2
future trends	skin lesion	minimal	segmentation		learning	quality and		
of skin lesion	analysis	datasets	and		methods	evaluation		
segmentation			classification			metrics		
and			methods for					
classification[6			skin lesions					
2]								
Lung nodule	Examine CNN	Lack of	Reviews the	Diagnostic	CNN	Improve data	Cancer types	20
diagnosis and	contributions	publicly	effectiveness	accuracy	architectures	accessibility		2
cancer	to lung nodule	accessible	of CNNs in		and CT data	and		
histology	diagnosis and	data	lung cancer			reproducibilit		
classification	histology		diagnostics			y in studies		
from CT data	classification		and highlights					
by CNNs: A			key challenges					
survey[63]								

For instance, Study highlighted the effectiveness of GANs in improving imaging outcomes for cancer diagnosis, specifically noting their application in enhancing image quality. The findings from various studies, including Study focus on explainable AI, contribute to understanding how AI can enhance diagnostic accuracy in lung cancer detection, aligning with our research question on AI's effectiveness in medical diagnostics. While Study 35 details advancements in cancer detection methods, it is crucial to note that our review emphasizes the need for integration across different methodologies to improve overall diagnostic performance. Although Study 36 demonstrates promising AI applications in diagnosing ARDS, it is important to recognize that these findings are contingent on the specific AI models used and the datasets analyzed. Compared to previous studies, such as those examining traditional imaging methods, the advancements in deep learning techniques for lung image registration noted in Study indicate a significant shift in diagnostic capabilities. Several studies, including Study noted limitations such as the need for standardized methodologies, which may hinder the reproducibility and applicability of results across different clinical settings.

Future research should focus on under-explored cancer types, as indicated by the gaps highlighted in Study 51, to enhance the breadth of AI applications in oncology. Investigating the efficacy of multimodal AI techniques in clinical settings, as suggested by Study 37, could offer valuable insights into improving diagnostic accuracy. Aligning with our objective to enhance diagnostic accuracy, future studies should prioritize enhancing dataset quality, as noted in multiple reviews, to support the robust training of AI models (see Table 2).

3. Systematic Literature Review Methodology

3.1. Overview

The systematic literature review sourced literature from several key databases known for their comprehensive coverage of medical and scientific research, including PubMed, Scopus, Web of Science, and IEEE Xplore, Science Direct[64]. These databases were selected to ensure a broad and thorough collection of relevant studies in the field of lung cancer diagnosis and prognosis. The search spanned from the earliest available records in the databases up to 2000 to 2023, ensuring the inclusion of recent advancements and studies relevant to contemporary practices in lung cancer research. The search strategy included a combination of carefully selected keywords and MeSH terms (Medical Subject Headings) related to "lung cancer," "diagnosis," "prognosis," "machine learning," "deep learning," and specific model names such as "CNN," "GoogleNet," "VGG-16," "U-Net," "XGBoost," "SVM," "KNN," "ANN," "Random Forest," and "hybrid models." These keywords were chosen to capture studies focusing on the application of advanced computational techniques in lung cancer research.

The systematic review identified and analyzed a diverse range of studies that employed machine learning and deep learning models for lung cancer diagnosis and prognosis. Key research questions addressed included:

- What are the current methods and models utilized for lung cancer diagnosis and prognosis?
- ii. What are the strengths and limitations of these methods and models?
- iii. How can these methods and models be improved or developed in the future?
- iv. What are the specific applications of deep learning architectures and machine learning algorithms in lung cancer detection?
- v. What are the gaps and challenges in the current literature on lung cancer diagnosis and prognosis?

In the realm of artificial intelligence, machine learning is a subfield that plays a crucial role in the classification and diagnosis of lung cancer. The motivation for conducting a systematic literature review was to comprehensively examine the chosen topic through scientific approaches. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach provides a systematic evaluation process, ensuring full transparency in keyword and database selection, exclusion and inclusion of papers, and review of the final selected data for analysis. This method is instrumental in thoroughly examining the chosen topic and ensuring a rigorous and comprehensive analysis of the current state of research. The inclusion of visual software (such as R-Studio) for data presentation in tabular and graphical format further enhances the clarity and comprehensiveness of the review. The material and methods of this systematic review of literature are based on (1) PRISMA workflow: Identification prisma model by external methods using keywords, (2) inclusion and exclusion criteria, and (3) review strategy (see Figure 1).

3.2. PRISMA Workflow

For clarity regarding the conceptual construct related to the application of federated learning in the diagnosis of gastric cancer, we selected the PRISMA-based approach for the systematic review of extant studies. The method was instrumental in thoroughly examining the chosen topic. According to [65], the PRISMA approach provides a checklist and standard procedure to fully ensure the

objective of the literature review and to answer each developed research question comprehensively. Additionally, the PRISMA-based systematic literature review offers transparency in the process of database selection and search strategy. For a clear and transparent process, we followed the identification of studies using external resources through the following steps: (1) identification, (2) screening, and (3) inclusion, as developed for the PRISMA scoping review. This structured approach ensured a rigorous and comprehensive analysis of the current state of in the diagnosis of lung cancer

3.3. Inclusion and Exclusion Criteria

To systematically identify and select the most relevant studies for this review, we applied specific inclusion and exclusion criteria as outlined below:

Inclusion Criteria:

Studies focusing on methodologies and models for lung cancer diagnosis and prognosis.

- Research employing deep learning architectures (e.g., CNN, GoogleNet, VGG-16, U-Net) and machine learning algorithms (e.g., XGBoost, SVM, KNN, ANN, Random Forest, hybrid models).
- Publications within a specified timeframe to capture recent advancements.
- Peer-reviewed articles and conference papers ensuring rigorous scientific evaluation.

Exclusion Criteria:

- Studies not directly related to lung cancer diagnosis and prognosis.
- Research that does not utilize the specified deep learning and machine learning techniques.
- Non-peer-reviewed articles, opinion pieces, and editorials.
- Publications outside the specified timeframe to maintain the relevance of the review.

3.4. Descriptive Statistics of Selected Papers

To provide an overview of the selection process and characteristics of the included studies, we compiled the following descriptive statistics. As shown in Fig. 1 illustrates the PRISMA flow diagram, detailing our search process. Initially, we selected a database and ran queries using specific keywords, resulting in the collection of 200 papers. Out of these, 141 (70.5%) were published as open-source access, while the remaining 59 (29.5%) were traditionally published. Among the 197 papers, 160 were journal articles, 15 were book chapters, 10 were conference papers, 7 were reviews, 2 were books, 1 was an editorial, and 1 was a conference review paper. To narrow the scope based on our research question and PRISMA guidelines, we considered only journal articles and conference papers, leading to a final selection of 63 papers.

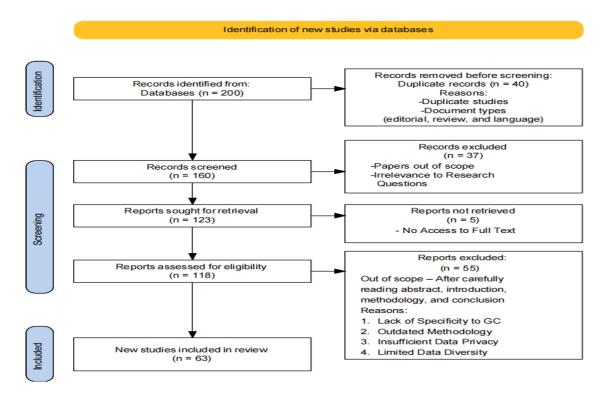


Figure 1. Systematic review results based on PRISMA flow diagram (Source: own elaboration).

4. Methodologies in Lung Cancer Detection and Classification

4.1. Machine Learning

Machine learning focuses on the development of algorithms and models that enable computer systems to learn from data and make predictions or decisions without explicit programming. The underlying concept in machine learning involves training models on labeled datasets, where the input data is associated with corresponding output labels. By learning patterns and relationships within the data, machine learning models can generalize this knowledge to make predictions on new, unseen datasets[66][67].

4.2. Deep Learning

On the other hand, deep learning is a prominent machine learning technique that utilizes artificial neural networks and representation learning. It is often referred to as deep structured learning[68]. Deep neural networks consist of multiple layers, and deep learning algorithms are trained on these networks. The layers in deep neural networks learn data representations, starting from extracting higher-level features to lower-level ones. This hierarchical learning enables models to automatically extract useful features from raw data. Deep learning is particularly adept at handling large-scale datasets and high-dimensional volumes of data. Convolutional neural networks (CNNs) are widely used in image analysis tasks, while recurrent neural networks (RNNs) are effective in handling sequential datasets.[69]. Deep learning has demonstrated significant success in various domains of artificial intelligence, including recognition systems, language processing, and autonomous tasks. It is a powerful approach that leverages deep neural networks to learn complex patterns from data. By diversifying state-of-the-art performances and driving modern approaches, deep learning has transformed numerous domains and addressed various challenges[70]. As shown in Table 1 provides an overview of the advancements and impact of deep learning in different domains, showcasing its capabilities and contributions to the field of artificial intelligence.

4.3. Strengths and Limitations of the Methodologies

Table 1. Strengths and Limitations of Methodologies in Lung Cancer Detection and Classification.

Methodology	Strengths	Limitations	
Machine	Ability to learn patterns and	Reliance on labeled datasets for training.	
Learning	relationships in data.		
	Generalization of knowledge for	Limited capability to handle complex	
	prediction.	and high-dimensional data.	
	Well-established algorithms and	Lack of interpretability in complex	
	techniques.	models.	
Deep Learning	Ability to automatically extract	Requires large amounts of labeled	
	useful features from raw data.	training data.	
	Capable of handling complex and	Computationally intensive and requires	
	high-dimensional data.	significant computing resources.	
	Achieves state-of-the-art	Lack of interpretability in deep neural	
	performance in various domains.	networks.	
	Effective in image analysis and	Prone to overfitting with insufficient	
	sequential data tasks.	training data.	

5. Discussion and Survey Analysis

The analysis of the reviewed survey papers yielded significant findings and insights into recent developments concerning the detection and classification of lung cancer. The following table (Table 2) presents a comparative analysis of the proposed models' abstracts for the purpose of detection and classification.

Table 2. Comparison analysis of various Purpose models.

	Model	Accuracy	Results
2023	LeNet	97.88%	LeNet for
			classification
2023	VGG16	99.45%	Better accuracy
2021	SVM	98%	Reduce execution
			time with SVM
			and Chi-square
			feature selection.
2021	GoogleNet	94.38%	Higher accuracy
			with transfer
			learning
2020	KNN	96.5%	Hybrid with GA
			for enhanced
			classification

In the preprocessing stage, the computed tomographic scan undergoes various operations to enhance and improve the image quality. Techniques such as grey scaling and Canny Hash detection are utilized to preprocess the data into a binary image format[7]. To capture the relevant field and

region of interest (ROI) containing the centered and normalized lung region, texture analysis techniques like Gabor filter are applied[1]. Additionally, histogram stretching and smoothing with a Wiener filter are employed to enhance the raw image and remove image noises [46]Local binary pattern (LBP) technique is used for feature encoding of lung cancer CT scans, and median filtering is applied for image denoising Contrast Limited Adaptive Histogram Equalization (CLAHE) is utilized to enhance the image contrast [3][71]. Data augmentation approaches are employed to increase the amount of data in case the dataset size is small[11][65]). Genetic Algorithm, a heuristic approach, is used to establish the correlation between target labels and features[11]. The survey found that preprocessing techniques play a crucial role in enhancing and improving the data. Various segmentation and enhancement filters have been experimented with in different studies. Transfer learning in Artificial Intelligence is considered an optimal approach to overcome gaps and improve efficiency by utilizing pre-trained models and tuning their performance for new models. For example, GoogLeNet was developed as a learning model using the concept of transfer learning from a pre-trained neural network[72]. The analysis of papers revealed diverse research objectives, including increased accuracy, texture classification, and decreased runtime. The strengths of the proposed models were highlighted. K Nearest Neighbor (KNN) has been widely used as a classifier for recognition and pattern learning in lung cancer detection, particularly for detecting specific types of lung cancer cells. Support Vector Machine (SVM) has shown high accuracy in texture classification and is effective in distinguishing characteristics of lung cancer. SVM is often used as a classifier along with K Nearest Neighbor to improve the classification of lung cancer[1]. Deep learning models, including CNN, VGG16, VGG19, LeNet, and Inception V3, have demonstrated high accuracy rates in tumor segmentation and lung cancer detection. However, CNN has limitations and requires a large dataset for analyzing visual imagery, and it often requires lesser preprocessing compared to other classification algorithms (as shown in Table 2).

The analysis of the reviewed survey papers revealed significant developments in the detection and classification of lung cancer. Various models and preprocessing techniques have been evaluated, showing notable performance differences. For instance, VGG16 achieved the highest accuracy (99.45%), highlighting the potential of deep learning models for accurate classification. These findings directly address our research questions about the effectiveness of various models and preprocessing techniques in lung cancer detection and classification. Preprocessing techniques like gray scaling, Canny edge detection, and CLAHE significantly enhance image quality, which is crucial for accurate model performance. Transfer learning, particularly with GoogLeNet, emerged as a valuable approach for improving accuracy and efficiency by leveraging pre-trained models. Our results contribute to the broader literature by validating the effectiveness of deep learning models and hybrid approaches in lung cancer detection. This aligns with previous studies but also highlights the need for larger, well-annotated datasets to improve generalizability. Acknowledging these limitations is vital for understanding the scope and implications of our findings.

6. Research Challenges and Opportunities

The surveyed paper highlights research gaps, challenges, and future opportunities in the field of lung cancer detection and classification. The proposed models and algorithms aim to address current limitations in accuracy and performance metrics, while considering training time and resource requirements. There is a need for robust algorithms that can scale efficiently. Hybrid models, which combine multiple algorithms and models, have shown promise in enhancing lung cancer detection. The integration of deep learning approaches, feature selection techniques, and conventional machine learning algorithms within hybrid architectures is a viable approach. However, the limited availability of datasets and the absence of annotated semantic labels pose challenges for model generalization and predictive diagnosis. It is crucial to acquire larger datasets with proper semantic labeling techniques to improve the generalizability of models. Future research should focus on developing robust algorithms that can scale efficiently without compromising accuracy. Additionally, efforts should be made to obtain comprehensive datasets with annotated

semantic labels, as this will significantly contribute to the improvement of model generalization. This survey paper identifies research gaps, challenges, and future opportunities in lung cancer detection and classification, emphasizing the importance of robust algorithms. The utilization of hybrid models and the availability of larger annotated datasets hold potential as solutions to these challenges. By addressing these aspects, significant advancements can be made in the field of lung cancer detection and classification.

The integration of Decision Support Systems and Computer Aided Diagnosis (CAD) systems in clinical settings, alongside the validation of results in the presence of medical experts, requires focused development. The incorporation of validated and verified systems can assist healthcare professionals in clinical environments, leading to improved effectiveness and accuracy of the models. It is essential to address the validation and assessment of proposed models trained and tested on diverse and large-scale datasets, while promoting the adoption of validated interpretability for these models. Despite notable efforts and advancements in recent developments, there is a need to address the limitations and opportunities in the field. By doing so, the accuracy of early-stage lung cancer detection and treatment can be significantly enhanced, while optimizing resource utilization in healthcare organizations. This is summarized in Table 3, which provides an overview of the key aspects to be considered in order to improve the effectiveness of these systems as shown in Table 3.

Table 3. Research Challenges and Opportunities.

Challenges	Opportunities
Limited dataset size and lack of	Acquire larger datasets with annotated semantic labels for
annotated labels	improved generalizability
Scalability and efficiency of	Explore hybrid models combining deep learning and
algorithms	conventional ML algorithms
Validation in clinical settings	Integrate Decision Support Systems and CAD systems in
with medical experts	operational clinical environments
Limited interpretability of	Validate and assess models on diverse and high-volume
models	datasets for extensive interpretability adoption
Resource utilization in	Develop robust and efficient algorithms to optimize
healthcare organizations	resource utilization

7. Conclusion

In a nutshell, this systematic literature review comprehensive analysis of various models and preprocessing techniques has highlighted the significant potential of deep learning approaches in lung cancer detection and classification. With VGG16 achieving the highest accuracy and the effective use of transfer learning models like GoogLeNet, our research underscores the importance of preprocessing techniques and the need for larger, well-annotated datasets. By integrating deep learning models with conventional machine learning algorithms, this study address current limitations and enhance classification accuracy. This research not only contributes to the existing body of knowledge but also provides actionable insights for future studies. Future research should focus on developing robust algorithms that can scale efficiently without compromising accuracy, obtaining comprehensive datasets with annotated semantic labels, and integrating decision support systems in clinical settings. Reflecting on this research journey, this study encountered challenges such as limited dataset availability and the need for annotated labels, which were addressed through methods like data augmentation and transfer learning. By addressing these aspects, significant advancements can be made in the field of lung cancer detection and classification, ultimately leading to improved early-stage detection and treatment, and optimizing resource utilization in healthcare organizations. Ending on a high note, this research opens new avenues for further exploration and innovation in lung cancer detection, inspiring future studies to build upon these findings and drive

positive change in the field. The potential for significant improvements in patient outcomes and healthcare efficiency underscores the importance and impact of continued research in this area.

References:

- 1. S. Nageswaran *et al.*, "Lung cancer classification and prediction using machine learning and image processing," *Biomed Res. Int.*, vol. 2022, 2022.
- 2. D. Jamil, S. Palaniappan, S. S. Zia, A. Lokman, and M. Naseem, "Reducing the Risk of Gastric Cancer Through Proper Nutrition-A Meta-Analysis.," *Int. J. Online* \& Biomed. Eng., vol. 18, no. 7, 2022.
- 3. V. K. Raghu *et al.*, "Validation of a Deep Learning--Based Model to Predict Lung Cancer Risk Using Chest Radiographs and Electronic Medical Record Data," *JAMA Netw. Open*, vol. 5, no. 12, pp. e2248793--e2248793, 2022.
- 4. B. S. Chhikara and K. Parang, "Global Cancer Statistics 2022: the trends projection analysis," *Chem. Biol. Lett.*, vol. 10, no. 1, p. 451, 2023.
- 5. M. N. D. J. S. P. Sanjoy Kumar Debnath and S. B. and A. Lokman, "Prediction Model for Gastric Cancer via Class Balancing Techniques," *Int. J. Comput. Sci. Netw. Secur.*, vol. 23, no. 01, pp. p53-63, 2023, doi: http://paper.ijcsns.org/07_book/202301/20230108.pdf.
- 6. H. Sung *et al.*, "Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," *CA. Cancer J. Clin.*, vol. 71, no. 3, pp. 209–249, 2021.
- 7. M. S. AL-Huseiny and A. S. Sajit, "Transfer learning with GoogLeNet for detection of lung cancer," *Indones. J. Electr. Eng. Comput. Sci.*, vol. 22, no. 2, pp. 1078–1086, 2021.
- 8. D. Chauhan and V. Jaiswal, "An efficient data mining classification approach for detecting lung cancer disease," in 2016 International Conference on Communication and Electronics Systems (ICCES), 2016, pp. 1–8.
- D. Jamil, "Diagnosis of Gastric Cancer Using Machine Learning Techniques in Healthcare Sector: A Survey," Informatica, vol. 45, 2022, doi: 10.31449/inf.v45i7.3633.
- 10. W. Rahane, H. Dalvi, Y. Magar, A. Kalane, and S. Jondhale, "Lung cancer detection using image processing and machine learning healthcare," in 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), 2018, pp. 1–5.
- 11. S. Makaju, P. W. C. Prasad, A. Alsadoon, A. K. Singh, and A. Elchouemi, "Lung cancer detection using CT scan images," *Procedia Comput. Sci.*, vol. 125, pp. 107–114, 2018.
- 12. P. K. Vikas and P. Kaur, "Lung cancer detection using chi-square feature selection and support vector machine algorithm," *Int. J. Adv. Trends Comput. Sci. Eng.*, 2021.
- 13. B. H. M. der Velden, H. J. Kuijf, K. G. A. Gilhuijs, and M. A. Viergever, "Explainable artificial intelligence (XAI) in deep learning-based medical image analysis," *Med. Image Anal.*, vol. 79, p. 102470, 2022.
- 14. H. Li, Z. Tang, Y. Nan, and G. Yang, "Human treelike tubular structure segmentation: A comprehensive review and future perspectives," *Comput. Biol. Med.*, vol. 151, p. 106241, 2022.
- 15. Y. Zhao, X. Wang, T. Che, G. Bao, and S. Li, "Multi-task deep learning for medical image computing and analysis: A review," *Comput. Biol. Med.*, vol. 153, p. 106496, 2023.
- A. Heidari, N. J. Navimipour, M. Unal, and S. Toumaj, "The COVID-19 epidemic analysis and diagnosis using deep learning: A systematic literature review and future directions," Comput. Biol. Med., vol. 141, p. 105141, 2022.
- 17. S. Ali, F. Akhlaq, A. S. Imran, Z. Kastrati, S. M. Daudpota, and M. Moosa, "The enlightening role of explainable artificial intelligence in medical \& healthcare domains: A systematic literature review," *Comput. Biol. Med.*, p. 107555, 2023.
- 18. M. Bilal *et al.*, "An aggregation of aggregation methods in computational pathology," *Med. Image Anal.*, p. 102885, 2023.
- 19. P. Aggarwal, N. K. Mishra, B. Fatimah, P. Singh, A. Gupta, and S. D. Joshi, "COVID-19 image classification using deep learning: Advances, challenges and opportunities," *Comput. Biol. Med.*, vol. 144, p. 105350, 2022.
- 20. M. T. Abdulkhaleq *et al.*, "Harmony search: Current studies and uses on healthcare systems," *Artif. Intell. Med.*, vol. 131, p. 102348, 2022.

- 21. X. Xie, J. Niu, X. Liu, Z. Chen, S. Tang, and S. Yu, "A survey on incorporating domain knowledge into deep learning for medical image analysis," *Med. Image Anal.*, vol. 69, p. 101985, 2021.
- 22. A. Caruana, M. Bandara, K. Musial, D. Catchpoole, and P. J. Kennedy, "Machine learning for administrative health records: A systematic review of techniques and applications," *Artif. Intell. Med.*, p. 102642, 2023.
- 23. T. A. Shaikh, T. Rasool, and P. Verma, "Machine intelligence and medical cyber-physical system architectures for smart healthcare: Taxonomy, challenges, opportunities, and possible solutions," *Artif. Intell. Med.*, p. 102692, 2023.
- 24. I. Li *et al.*, "Neural natural language processing for unstructured data in electronic health records: a review," *Comput. Sci. Rev.*, vol. 46, p. 100511, 2022.
- 25. C. Thapa and S. Camtepe, "Precision health data: Requirements, challenges and existing techniques for data security and privacy," *Comput. Biol. Med.*, vol. 129, p. 104130, 2021.
- 26. J. Li, J. Chen, Y. Tang, C. Wang, B. A. Landman, and S. K. Zhou, "Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives," *Med. Image Anal.*, vol. 85, p. 102762, 2023.
- 27. W. He *et al.*, "A review: The detection of cancer cells in histopathology based on machine vision," *Comput. Biol. Med.*, vol. 146, p. 105636, 2022.
- 28. M. M. A. Monshi, J. Poon, and V. Chung, "Deep learning in generating radiology reports: A survey," *Artif. Intell. Med.*, vol. 106, p. 101878, 2020.
- 29. G. Paliwal and U. Kurmi, "A Comprehensive Analysis of Identifying Lung Cancer via Different Machine Learning Approach," in 2021 10th International Conference on System Modeling \& Advancement in Research Trends (SMART), 2021, pp. 691–696.
- 30. A. Pardyl, D. Rymarczyk, Z. Tabor, and B. Zieliński, "Automating patient-level lung cancer diagnosis in different data regimes," in *International Conference on Neural Information Processing*, 2022, pp. 13–24.
- 31. S. N. A. Shah and R. Parveen, "An extensive review on lung cancer diagnosis using machine learning techniques on radiological data: state-of-the-art and perspectives," *Arch. Comput. Methods Eng.*, vol. 30, no. 8, pp. 4917–4930, 2023.
- 32. K. Jabir and A. T. Raja, "A Comprehensive Survey on Various Cancer Prediction Using Natural Language Processing Techniques," in 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), 2022, vol. 1, pp. 1880–1884.
- 33. B. Zhao, W. Wu, L. Liang, X. Cai, Y. Chen, and W. Tang, "Prediction model of clinical prognosis and immunotherapy efficacy of gastric cancer based on level of expression of cuproptosis-related genes," *Heliyon*, vol. 9, no. 8, 2023.
- 34. J. Lorkowski, O. Kolaszyńska, and M. Pokorski, "Artificial intelligence and precision medicine: A perspective," in *Integrative Clinical Research*, Springer, 2021, pp. 1–11.
- 35. A. Kazerouni *et al.*, "Diffusion models in medical imaging: A comprehensive survey," *Med. Image Anal.*, vol. 88, p. 102846, 2023.
- 36. N. Sheng *et al.*, "Data resources and computational methods for lncRNA-disease association prediction," *Comput. Biol. Med.*, vol. 153, p. 106527, 2023.
- 37. R. Osuala *et al.*, "Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging," *Med. Image Anal.*, vol. 84, p. 102704, 2023.
- 38. K. Rasheed, A. Qayyum, M. Ghaly, A. Al-Fuqaha, A. Razi, and J. Qadir, "Explainable, trustworthy, and ethical machine learning for healthcare: A survey," *Comput. Biol. Med.*, vol. 149, p. 106043, 2022.
- 39. L. Benning, A. Peintner, and L. Peintner, "Advances in and the Applicability of Machine Learning-Based Screening and Early Detection Approaches for Cancer: A Primer," *Cancers (Basel).*, vol. 14, no. 3, p. 623, 2022.
- 40. S. Nazir, D. M. Dickson, and M. U. Akram, "Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks," *Comput. Biol. Med.*, vol. 156, p. 106668, 2023.
- 41. H. Xiao et al., "Deep learning-based lung image registration: A review," Comput. Biol. Med., p. 107434, 2023.
- 42. E. Çall\i, E. Sogancioglu, B. van Ginneken, K. G. van Leeuwen, and K. Murphy, "Deep learning for chest X-ray analysis: A survey," *Med. Image Anal.*, vol. 72, p. 102125, 2021.

- 43. H. Jiang, Y. Zhou, Y. Lin, R. C. K. Chan, J. Liu, and H. Chen, "Deep learning for computational cytology: A survey," *Med. Image Anal.*, vol. 84, p. 102691, 2023.
- 44. D. Painuli, S. Bhardwaj, and others, "Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review," *Comput. Biol. Med.*, vol. 146, p. 105580, 2022.
- 45. H. Ramdani, N. Allali, L. Chat, and S. El Haddad, "Covid-19 imaging: A narrative review," *Ann. Med. Surg.*, vol. 69, p. 102489, 2021.
- 46. Y. Kumar, S. Gupta, R. Singla, and Y. C. Hu, "A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis," *Arch. Comput. Methods Eng.*, vol. 29, no. 4, pp. 2043–2070, 2022, doi: 10.1007/s11831-021-09648-w.
- 47. Q. Zhang, J. Zhou, and B. Zhang, "Computational traditional Chinese medicine diagnosis: a literature survey," *Comput. Biol. Med.*, vol. 133, p. 104358, 2021.
- 48. A. Garg and V. Mago, "Role of machine learning in medical research: A survey," *Comput. Sci. Rev.*, vol. 40, p. 100370, 2021.
- 49. F. Shamshad et al., "Transformers in medical imaging: A survey," Med. Image Anal., vol. 88, p. 102802, 2023.
- 50. Y. Jing *et al.*, "A comprehensive survey of intestine histopathological image analysis using machine vision approaches," *Comput. Biol. Med.*, p. 107388, 2023.
- 51. M. Sufyan, Z. Shokat, and U. A. Ashfaq, "Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective," *Comput. Biol. Med.*, p. 107356, 2023.
- 52. R. Ranjbarzadeh, A. Caputo, E. B. Tirkolaee, S. J. Ghoushchi, and M. Bendechache, "Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools," *Comput. Biol. Med.*, vol. 152, p. 106405, 2023.
- 53. H. F. Ahmad, W. Rafique, R. U. Rasool, A. Alhumam, Z. Anwar, and J. Qadir, "Leveraging 6G, extended reality, and IoT big data analytics for healthcare: A review," *Comput. Sci. Rev.*, vol. 48, p. 100558, 2023.
- 54. S. Seoni, V. Jahmunah, M. Salvi, P. D. Barua, F. Molinari, and U. R. Acharya, "Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013--2023)," *Comput. Biol. Med.*, p. 107441, 2023.
- 55. X. Meng and T. Zou, "Clinical applications of graph neural networks in computational histopathology: A review," *Comput. Biol. Med.*, vol. 164, p. 107201, 2023.
- 56. X. Chen *et al.*, "Recent advances and clinical applications of deep learning in medical image analysis," *Med. Image Anal.*, vol. 79, p. 102444, 2022.
- 57. Z. Liu, Q. Lv, Z. Yang, Y. Li, C. H. Lee, and L. Shen, "Recent progress in transformer-based medical image analysis," *Comput. Biol. Med.*, p. 107268, 2023.
- 58. S. Pandiyan and L. Wang, "A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence," *Comput. Biol. Med.*, vol. 150, p. 106140, 2022.
- 59. I. Pacal, D. Karaboga, A. Basturk, B. Akay, and U. Nalbantoglu, "A comprehensive review of deep learning in colon cancer," *Comput. Biol. Med.*, vol. 126, p. 104003, 2020.
- 60. W. Hu *et al.*, "A state-of-the-art survey of artificial neural networks for whole-slide image analysis: from popular convolutional neural networks to potential visual transformers," *Comput. Biol. Med.*, vol. 161, p. 107034, 2023.
- 61. R. J. Suji, S. S. Bhadauria, and W. W. Godfrey, "A survey and taxonomy of 2.5 D approaches for lung segmentation and nodule detection in CT images," *Comput. Biol. Med.*, p. 107437, 2023.
- 62. M. K. Hasan, M. A. Ahamad, C. H. Yap, and G. Yang, "A survey, review, and future trends of skin lesion segmentation and classification," *Comput. Biol. Med.*, vol. 155, p. 106624, 2023.
- 63. S. Tomassini, N. Falcionelli, P. Sernani, L. Burattini, and A. F. Dragoni, "Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: A survey," *Comput. Biol. Med.*, vol. 146, p. 105691, 2022.
- 64. S. B. Lunge *et al.*, "Therapeutic application of machine learning in psoriasis: A Prisma systematic review," *J. Cosmet. Dermatol.*, vol. 22, no. 2, pp. 378–382, 2023.
- 65. J. Li, S.: Supervisor, X. Wang, and M. Graeber, "Interpretable Radiomics Analysis of Imbalanced Multimodality Medical Data for Disease Prediction," no. March, 2022, [Online]. Available: https://ses.library.usyd.edu.au/handle/2123/28187.

- 66. I. H. Witten, E. Frank, and M. A. Hall, *Data Mining Practical Machine Learning Tools and Techniques Third Edition*. Morgan Kaufmann, 2017.
- 67. T. J. Saleem and M. A. Chishti, "Exploring the applications of Machine Learning in Healthcare," *Int. J. Sensors Wirel. Commun. Control*, vol. 10, no. 4, pp. 458–472, 2020.
- 68. U. Kose and J. Alzubi, Deep Learning for Cancer Diagnosis. Springer Singapore, 2020.
- 69. A. Ameri, "A deep learning approach to skin cancer detection in dermoscopy images," *J. Biomed. Phys. Eng.*, vol. 10, no. 6, pp. 801–806, 2020.
- 70. Y. Wu, B. Chen, A. Zeng, D. Pan, R. Wang, and S. Zhao, "Skin Cancer Classification With Deep Learning: A Systematic Review," *Front. Oncol.*, vol. 12, 2022.
- 71. A. Shimazaki *et al.*, "Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method," *Sci. Rep.*, vol. 12, no. 1, p. 727, 2022.
- 72. M. Nishio *et al.*, "Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization," *PLoS One*, vol. 13, no. 4, p. e0195875, 2018.

Acknowledgements: We would like to thank all the people who prepared and revised previous versions of this document.