

1 *Review*

2 Mitigating Challenges of Open Government Data

3 **Nim Dvir** ^{1*}

4 ¹ University at Albany State University of New York; ndvir@albany.edu

5 * Correspondence: ndvir@albany.edu; Tel.: +1-646-244-2338

6 **Abstract:** The Release of government dataset for public use can potentially strengthen the
7 relationship between the government and its constituents. However, research shows that there are
8 several challenges for open data effectiveness. This paper reviews current determinants and issues
9 associated with the open government data (OGD) procedures. The review concentrates on two ends
10 of the spectrum: First, from the perspective of the preparation by the government, focusing on the
11 organization of traditional governmental datasets and how the recording of the data is
12 administered. Second, from the perspective of the users, focusing on the way in which the data is
13 released to the general public and on human-computer interaction (HCI) issues between end-user
14 and data-consumption interfaces. Following a thorough analysis of these two opposing challenges,
15 the paper proposes approaches to mitigate them. This review and subsequent recommendations
16 contribute and expand current understanding of open government data effectiveness and can lead
17 to public policy changes, development of new procedures and strategies, and ultimately
18 improvements at both ends of the federal open data endeavor.

19 **Keywords:** Open access initiative; Challenges of data sharing; Data management; open government
20 data; human-computer interaction; Documentation; Human Factors; Standardization; information
21 policy

23 1. Introduction

24 According to the memorandum of “Open Data Policy-Managing Information as an Asset” [1],
25 open data refers “to publicly available data structured in a way that enables the data to be fully
26 discoverable and usable by end users.” This document suggests that by default, government data
27 should be public, accessible, described, reusable, complete, timely, and managed post-release. Open
28 data is increasingly becoming a popular initiative for governments around the world due to its
29 potential to create public and commercial benefits for the economy, for the society, and for the
30 government itself. It has also been promoted by the US initiative, expressed in President Obama’s
31 memorandum on his first day in office to have a transparent, participatory, and collaborative
32 government [1–3]. It has also been followed by global open data initiatives to unleash an innovation
33 potential for economic development [4]. Most democratic societies recognize the right to access, use,
34 and reuse information produced by the state [5] – except in cases that data openness and disclosure
35 can conflict with another social value such as individual privacy or national security [6]. In fact,
36 considering the structure and settings of modern societies, some researchers have suggested that
37 having access to public information is no longer a privilege but a human right [7].

38 However, there are several challenges to have an effective open government data (OGD)
39 program in place [8]. One category of challenges is associated with the storage retrieval of the
40 information. While the storage elements is associated with the governmental agency which hosts the
41 data, retrieval challenges are mostly a challenge of the whole open data ecosystem. The barriers in
42 this stage are stemming from lack of knowledge about the stored data – e.g., whether if it exists or
43 not, where to find specific datasets and more related datasets, and also having access to enough
44 information about the data that allows a reasonable understanding of the data [9]. Thus, the roots of
45 at least some of these challenges are in fact in the information storage stage.

46 Another set of barriers are those associated with the limited span of human attention and thus
47 is associated to the Human-Computer Interaction (HCI) factors of open data applications that are

48 developed for the citizens, utilizing open data. Improvements in the design and accessibility of OGD
49 datasets has opened the door of using open data to new and less skilled users. However, people still
50 might need help in making sense of published data.

51 Being aware of how potential users seek and utilize OGD are now becoming priorities for a
52 successful open data plan [10]. We have identified some key factors in HCI regarding OGD
53 applications' effectiveness, that can, in fact, be impactful on the effectiveness of the open data
54 programs.

55

56 **2. Background: The significance of open data**

57 Open data suggests that federal information be available to the public as the constituents of the
58 government. Although opening public information is not a new concept, it has been recently
59 revitalized through the open data movement. This revitalization responds to both technical and social
60 trends. Recent technological advancements have created the opportunity of sharing data in open and
61 re-usable formats [11]. Nowadays, humans are generating massive amounts of data at an increasing
62 rate. This is because new technologies have reduced the cost of information storage significantly, and
63 digitization has made us capable of recording things that were not recorded historically.
64 Traditionally, data stakeholders had been among the original data owners, data producers, data
65 transformers and interim users, and direct or indirect¹ end-users of the data. Procedures governing
66 data storage and retrieval are designed to meet the requirements of these primary stakeholders [12]
67 and to satisfy their desired service levels.

68 Given the growing interest of the public in taking advantage of OGD in recent years, a growing
69 number of governments around the world have started open data plans and have joined global open
70 data causes² [13].

71 Opening data creates public and commercial benefits directly via one or more of the categories
72 below [14]:

73 Transparency, and consequently accountability of government agencies and public officials;
74 Releasing social and commercial value, by creating an environment in which the needs of end-
75 users can be identified and addressed in a crowdsourced manner; and

76 The participatory government, which fosters the soul of democracy by giving people a voice and
77 a mechanism to take their part in public decision-making processes.

78 However, generating benefits from open data initiatives is not a one-way street. As the society
79 and the government communicate, the benefits can also leverage the government as well [15]. In
80 recent years an 'ecosystem' perspective has emerged that takes into account this feedback from the
81 society back to the government in response to opening data [15]. In this ecosystem perspective, the
82 benefits generated in the society also affect the government's open data capacity, and reinforces open
83 data initiatives for more value creation through opening data, as a delayed and secondary effect [16-
84 18]. As a result, once the benefits of opening data are realized by the society, the government will be
85 pushed by the ecosystem to open more data, and this reinforcing mechanism can cause growth and
86 reinforce itself until it reaches a system barrier. The downside though is that the same structure can
87 also cause a reinforcing decline. Thus, it is important to know exactly how to set the ground for open
88 data ecosystem so it would go through the desired – growth – direction.

89 As public-sector organizations are moving toward opening their data, open data is becoming
90 more of a 'core expectation' in the society, for more and more constituents, and the government is
91 pushed even more to increase the capacity and the effectiveness of its open data programs. And of
92 course, any improvement in the effectiveness of OGD programs will affect the reinforcing loop of the
93 ecosystem.

¹ Indirect users are those who use an outcome of some processed data by computer or human intermediaries

² For instance, the Open Government Partnership which started by 8 countries in 2011, and now must 75 as early 2017. (See <http://www.opengovpartnership.org>)

94 **3. Identifying the challenges**

95 The concept of open data is based on the secondary use of federal data that adds a new layer of
96 users to the stakeholders of governmental datasets – the datasets which are built through traditional
97 or even legacy governmental processes – by making those datasets available to the public. This new
98 layer of stakeholders is comprised of some governmental agencies, some open data application
99 developers, and corporate or individual end-users. The chain of benefits corresponding to the flow
100 of data in this ecosystem starts from the datasets already residing in governmental databases, feeds
101 into the applications developed by governmental or non-governmental developers, and transforms
102 into benefits when the end-users use the applications in the society.

103 However, this secondary use of the stored data will impose a new set of requirements that is not
104 necessarily met by the data architecture and status quo of the datasets, as they had been designed to
105 meet their residing agency's original requirements – based on the needs of their primary set of
106 stakeholders, before 'open data applications' were considered at all. In other words, since the dataset
107 is originally designed for its primary purpose, it is not a 'fit for purpose' (does not have "warranty")
108 nor 'fit for use' (it also does not have "utility") for this secondary type usage. Even worse, in some
109 instances, opening this data to the public might create misinterpretation in the absence of proper
110 metadata. Moreover, this data might also lack information and instructions that are required for non-
111 expert users of data – the users that are not familiar with the context and procedures in which the
112 data has been governed and interpreted by.

113 *3.1 Information Organization*

114 Concerning the aforementioned new stakeholders of public information, several studies have
115 pointed out that a mismatch between new requirements (associated with new stakeholders) with the
116 existing information architecture, information organization procedures, and information tools, is a
117 major impediment for the effectiveness of open data programs [19–22]. Some of the most important
118 challenges related with OGD are (but not limited to) the difficulty of finding the needed information,
119 processing the information especially if it is not in a machine-readable format, and maintaining a
120 legitimate license for reusing the information.

121 Bizer et al. [23] have suggested the following categories for studying these and similar
122 challenges:

123 *3.1.1 Data discoverability issues*

124 These challenges refer to the difficulty in finding useful data promptly for various reasons:

- 125 1. It is not easy for new stakeholders to locate the datasets they are looking for without
126 understanding the data structures and the activities/responsibilities that lead to generation
127 and storage of the data;
- 128 2. There is not a uniform data categorization. Thus different sources use different and
129 sometimes conflicting categories; and
- 130 3. Some tools offered by some of the hosting agencies only support very basic search and seek
131 functions. Also, the Principle of Least Effort (the fact that people prefer easy-to-use, accessible
132 sources to sources of information) is also recognized as one of the most solid problems in
133 seeking information [22].

134 *3.1.2 Data identifiability issues*

135 The lack of metadata (data description) and consequently the difficulty in identifying and
136 linking corresponding and related datasets, stemming from a) The semantic ambiguity; and b) the
137 difficulty in understanding the data, its granularity, and the spatial and temporal datasets. However,
138 the use of the tools created by the Web 2.0 and semantic web opens more opportunities for moving
139 toward a socially-constructed organization of knowledge [24].

140 Although there is some software available as open data infrastructure that aimed to deal with
141 some of the challenges and complexities of OGD, they have not been effective so far [25], mostly

142 because of the shortcomings above. These challenges call for some considerations regarding data
143 architecture and data governance procedures at the data recording stage, in which the whole life cycle
144 of the data from within the organization through the opened datasets for public use has been
145 considered. These architectures should not only respond to the immediate organizational needs of
146 the corresponding government agencies which host the data, but they should also make data sharing
147 – which in many instances includes merging data from different organizations – doable with a lower
148 burden of overheads, more effective, and less challenging. Following this agenda and also enabling
149 extraction of more information out of the stored government data [26] can lead to better results (i.e.,
150 lower cost and higher achievements) from OGD programs, and facilitate linking of open datasets.

151 Conradie [9] has found that the way in which data is collected/generated, stored, and used (by
152 a governmental department) are all critical for open data success. However, many of the local
153 governments lack structures for leveraging their data release initiatives. Janssen [19] found that there
154 are several barriers to the success of open data regarding data architecture and data organization,
155 such as metadata explaining the meaning of data, metadata on quality of data, incompatibility of the
156 formats in which the data is stored, no index or other means to ensure easy search, and absence or
157 lack of metadata standards. They found that lack of standards at the dataset level is a major barrier
158 to the ultimate secondary use of the open governmental datasets. In another related study,
159 Zuiderwijk et al. [21] have also found that usability, understandability, quality, linking and
160 combining, and metadata are among top impediments to successful open data implementations.

161 Hester [27] also suggests that “the reusability of datasets is improved by community adoption
162 of comprehensive metadata standards.” More specifically, he has suggested a set of specific steps
163 toward increasing the effectiveness of open data programs, including “the development of metadata
164 standards as soon as possible” for storing metadata, data architectures, and organization, data quality
165 measures, etc.

166 Although scholars have suggested development of a comprehensive standard in the government
167 layer regarding data governance procedures, in fact coming up with such a standard in practice is
168 not an easy task, since all bodies that are a part of OGD initiative (virtually all governmental agencies)
169 are a stakeholder of this new standard [9] and should fully comply with it to let it be effective. Thus,
170 even when the governments decide to come up with such a standard, there are still myriads of
171 challenges to deal with to make the governmental bodies follow it, and it takes a long time for
172 governmental new datasets to comply under this comprehensive standard fully. Upgrading older
173 datasets under these set of standards is also another category of challenges that require even more
174 efforts and resources. More study is needed to find out how these challenges and their corresponding
175 risks can be addressed effectively.

176 3.2 Human-Computer Interaction

177 The other set of challenges refer to issues relating to the users, and the way they interact with
178 the data through the technological system. to Information systems development and growth are
179 based on in-depth understanding of Human-Computer Interaction (HCI), which entails that closer
180 attention is paid to the motivations and behaviors of diverse users. In addition to current literature,
181 we will look at two large scales studies that studied OGD: The first is by Rainie et al. [28] in
182 collaboration with Pew Research Center, which is based on a national survey (N=2,796 American
183 adults) to look at how people seek information, in particular, OGD, to address common problems
184 related to government agencies and programs. The second is by Verhulst et al. [29], who have studied
185 19 large open data projects from around the world. These research projects uncovered major
186 challenges confronting open data initiatives and various factors that illicit cognitive, psychological
187 and behavioral responses. We recognized congruence between information organization and HCI in
188 key areas: Information seeking behavior - user readiness and “the digital divide”; attitudes and
189 perceptions - Familiarity, Perceived Risks and Usefulness; and ease-of-use - Information Access Cost,
190 Visual Information Processing, and Complexity. We also suggest solutions to mitigate noticeable
191 issues to lead to adoption and acceptance.

192 3.2.1 Information Seeking Behavior

193 On the other hand, not all impediments are going to be resolved even if all the capacities are
194 correctly developed in the information storage and publication phase at the hosting agency. For better
195 results, we should also consider the way in which humans communicate, and thus have standards in
196 place for open data applications as well. This can come as part of the supporting activities done either
197 by the government or by the infomediaries to sustain an effective open data ecosystem [11].

198 According to Rainie et al. [28] and Verhulst et al. [29], the most common problems people try to
199 address using OGD were: health concerns; education (making a decision about school enrollment,
200 financing school, or upgrading work skills); Taxes and finance; Employment (changing a job or
201 starting a business); and getting information about major programs such as social security, Medicare,
202 and Medicaid. According to Rainie et al. [28], the major finding on information seeking behavior in
203 the US is that the Internet is the dominant source for information seeking: 58% Americans turn to the
204 Internet, more than any other source of information and support.

205 3.2.2. The Digital Divide

206 A major HCI issue is user readiness and the digital divide: 36% of American adults are
207 considered “low-access population,” i.e., they have limited access to the internet [28]; 23% of
208 Americans do not have any internet access, and 13% of Americans only have slow and less-reliable
209 dial-up connections. This group has different issues and different search habits and strategies when
210 they are looking to find informational resources. They are also less successful in getting the material
211 they need to address their problems, in comparison to those with high-access to the internet. This
212 phenomenon also exists in other parts of the world. Perhaps, unsurprisingly, countries or regions
213 with overall lower technical human capacity often posed inhospitable environments for open data
214 projects. (The lack of technical capacity could be indicated by several variables: low internet
215 penetration rates, overall poor technical literacy, and a noticeable digital divide.)

216 3.2.3 Data Presentation Complexities

217 Relating again to the issue of the usefulness of dataset, we can apply the same logic to the open
218 data applications. For instance, sometimes a website utilizes open data to give some services to the
219 citizens. 76% of consumers say the most important factor in a website's design is “the website makes
220 it easy for me to find what I want” [30]. A major HCI issue of OGD is the cost of information access,
221 visual information processing, and complexity for the users. The concept of “processing fluency”
222 states that the brain prefers to think about things that are easy to think about [31]. This fluency affects
223 judgment, choice, and processing style [32].

224 The average American is exposed to as many as 5,000 marketing messages per day and has an
225 attention span of fewer than 8 seconds. Working memory and control of attention are inseparable
226 [33]. According to George Miller, working memory (the part of your brain that temporarily stores
227 and processes information in the course of a few seconds) is considered to have limited capacity.
228 Processing the information is too demanding & the working memory disengages and moves on [34].
229 Hick's law, or the Hick-Hyman Law - describes the time it takes for a person to decide because of
230 the possible choices s/he has: increasing the number of choices will increase the decision
231 time logarithmically. Hick-Hyman law is known as the information access cost. When the user's
232 attention is diverted from one location to another to access necessary information, there is a cost
233 associated to that for the time and effort.

234 The presentation and framing of open data information have been shown to have a great impact
235 on end-user behavior [35,36]. “Simple” is scientifically easier to process. Less “visually
236 complex” websites are considered more beautiful partly because low complexity websites do not
237 require the eyes and brain to physically work as hard to decode, store and process the information.
238 In a joint online study by Harvard, the University of Maryland, and the University of Colorado,
239 researchers found that users make lasting judgments about a website's appeal after viewing a
240 website for only 500ms [37]. The study also found strong mathematical correlations between

241 complexity and aesthetically pleasing – the more visually complex a website was, the lower it's visual
242 appeal. This is also because low complexity websites do not require the eyes and brain to physically
243 work as hard to decode, store and process the information.

244 3.2.4 Familiarity, Perceived Risks, and Usefulness

245 Cognitive fluency stems from another area of behavior known as The Mere Exposure Effect,
246 which states that the more you're exposed to a stimulus, the more you prefer it [38]. Stanford
247 Persuasive Technology Lab's web credibility project [39] defines the well-established fluency—
248 familiarity link, familiarity enables easy mental processing, it feels fluent. So, people often equate the
249 feeling of fluency with familiarity. Therefore, users tend to avoid unfamiliar environments and
250 perceive them as having low-usability.

251 Another issue is perceived risks: for all its potential, open data does pose certain risks, notably
252 to privacy and security; Concerns about privacy and security afflicted many of the OGD projects
253 around the world [29]. A major challenge arises from the trade-offs between the potential of open
254 data and the risks posed by privacy and security violations. When an initiative fails to take steps to
255 mitigate this tension, it risks not only harming its prospects, but more broadly they harm the
256 reputation of open data in general. For example, In Brazil, over 100 legal actions were brought against
257 the Open Budget Transparency Portal when it inadvertently published the salaries of public servants.
258 The clearest example of open data leading to privacy concerns can be found in the case of Eightmaps,
259 which used public campaign finance disclosure laws to publish various identifiable information and
260 home addresses for donors to California's Proposition 8, leading to instances of intimidation and
261 harassment [40].

262

263 4. Discussion

264 This review is the starting point towards mitigating the unique challenges brought by
265 governmental open data initiatives. By recognizing and analyzing the obstacles on both ends of the
266 open data process, their implications can be analyzed to suggest recommendations and highlight
267 future research directions. Specifically, review of current research suggests a few possible solutions
268 mitigate the issues previously discussed:

269 **Assistance in the Form of Libraries or Professionals** – A possible solution is implementing a system
270 of assistance in the form of libraries or professionals. 13% of the “Low-Access Population” said they
271 went to the public library for problem-solving help (access to computers, particularly the internet,
272 was a key reason they go to the library for help). Also, 53% of the general population said
273 they turned to professionals and consult government agencies, librarians, and the internet
274 (searchers usually end up satisfied). Also, technical readiness can also be indicated by the existence
275 of a group of individuals or entities that are technically sophisticated, and that believe in the
276 transformative potential of technology, particularly of open data. Verhulst et al. [41] have noted
277 that such “data champions” or “technological evangelists” play a critical role in ensuring the
278 success of projects.

279 **Various Forms Of OGD** – The majority of the American public believe government documents
280 should be delivered in all shapes and sizes [28]. While the majority of the public prefer access to
281 government documents on the internet, significant numbers still would prefer to get printed
282 government publications by mail or from government offices and libraries.

283 **Responsiveness** – Open data could be significantly more impactful if it remains agile and
284 responsive—adapting, for instance, to user feedback or early indications of success and failure.
285 Therefore, the release of open data would be complemented with responsiveness to act upon
286 insights generated.

287 **Resource Allocation** – open data projects can often be launched cheaply. Therefore, many of the open
288 data projects suffer from lack of monetary investment in their design and infrastructure, as well

289 some level of uncertainty about their long-term sustainability. Indonesia's Kawal Pemilu, for
290 example, was assembled with a mere \$54. U.K.'s Ordnance Survey, meanwhile, is required to be
291 self-financing, forcing the agency to rely heavily on private sector customers paying to access the
292 more sophisticated data products not included in OS Open Data. Greater investment is necessary
293 for users' trust and adoption. The lack of readiness or capacity at both the supply and demand side
294 of open data hampers its impact. Open data does pose a certain set of risks, notably to privacy and
295 security. These risks are inherent to any open data project – by its very nature, greater transparency
296 exists in tension with privacy and security. A greater, more nuanced understanding of these risks
297 will be necessary to address and mitigate them.

298 5.5. Conclusions

299 This section is not mandatory but can be added to the manuscript if the discussion is unusually
300 long or complex.

301 There are several challenges for an effective open data program. These challenges are in different
302 stages of the data lifecycle ranging from the recording of the data down the chain to the way in which
303 the data is released publicly to the secondary users in the society. Addressing these issues is
304 specifically important because an effective open data can unleash massive economic and societal
305 value and move in this direction is more becoming a 'core' expectation demanded by constituents of
306 governments. Every small improvement in the open data program effectiveness can turn into big
307 results considering the closed-system feedback loop that connects all open data actors through the
308 open data ecosystem. In fact, many of the challenges can be mitigated if the secondary use of data is
309 considered in redesigning knowledge organization system in the data sources, and the way in which
310 the data can – or must – be released to the public.

311 References

- 312 1. Barack Obama Transparency and Open Government. *whitehouse.gov* 2009.
- 313 2. Chernoff, M. What "open data" means—and what it doesn't 2010.
- 314 3. Open Knowledge Foundation Welcome to Open Government Data. *Open Gov. Data* 2011.
- 315 4. President Barack Obama Executive Order -- Making Open and Machine Readable the New
316 Default for Government Information Available online: [http://www.whitehouse.gov/the-press-
318 government-](http://www.whitehouse.gov/the-press-
317 office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-
318 government-).
- 319 5. Access to Information Laws: Overview and Statutory Goals Available online:
320 <http://www.right2info.org/access-to-information-laws/access-to-information-laws>.
- 321 6. Galvin, T. Rights in conflict: public policy in an information age. In *New worlds in information
322 and documentation: proceedings of the forty-sixth FID Conference and Congress held in Madrid, Spain,
323 22-29- October, 1992*; Alvarez-Ossorio, J. R., Goedegebuure, B. G., International Federation for
324 Information and Documentation, Eds.; Elsevier: Amsterdam; New York, 1994; pp. 59–66 ISBN
325 978-0-444-81891-1.
- 326 7. Mathiesen, K. Access to Information as a Human Right. *SSRN Electron. J.* 2008,
327 doi:10.2139/ssrn.1264666.
- 328 8. M. Najafabadi, M.; Luna-Reyes, L. Open Government Data Ecosystems: A Closed-Loop
329 Perspective. In *Hawaii International Conference on System Sciences (HICSS)*; Hawaii, 2017.
- 330 9. Conradie, P.; Choenni, S. On the barriers for local government releasing open data. *Gov. Inf. Q.*
331 2014, 31, S10–S17, doi:10.1016/j.giq.2014.01.003.
- 332 10. Kolko, J. *Harvard Business Review*. September 1, 2015..

333 11. Najafabadi, M.; Luna-Reyes, L. F. Open Government Data Ecosystems: A Closed-Loop
334 Perspective. In *Proceedings of the 50th Hawaii International Conference on System Sciences*; IEEE
335 Computer Society: Waikoloa Village, HI, 2017; pp. 2711–2720.

336 12. Bryson, J. M. What to do when Stakeholders matter: **Stakeholder Identification and Analysis**
337 **Techniques**. *Public Manag. Rev.* **2004**, *6*, 21–53, doi:10.1080/14719030410001675722.

338 13. Sayogo, D. S.; Pardo, T. A. Exploring the Motive for Data Publication in Open Data Initiative:
339 Linking Intention to Action. In; IEEE, 2012; pp. 2623–2632.

340 14. Attard, J.; Orlandi, F.; Scerri, S.; Auer, S. A systematic review of open government data
341 initiatives. *Gov. Inf. Q.* **2015**, *32*, 399–418, doi:10.1016/j.giq.2015.07.006.

342 15. Harrison, T. M.; Pardo, T. A.; Cook, M. Creating Open Government Ecosystems: A Research
343 and Development Agenda. *Future Internet* **2012**, *4*, 900–928, doi:10.3390/fi4040900.

344 16. Zuiderwijk, A.; Janssen, M.; Davis, C. Innovation with open data: Essential elements of open
345 data ecosystems. *Inf. Polity* **2014**, 17–33, doi:10.3233/IP-140329.

346 17. Dawes, S. S.; Vidiasova, L.; Parkhimovich, O. Planning and designing open government data
347 programs: An ecosystem approach. *Gov. Inf. Q.* **2016**, doi:10.1016/j.giq.2016.01.003.

348 18. Heimstädt, M.; Saunderson, F.; Heath, T. From Toddler to Teen: Growth of an Open Data
349 Ecosystem - A Longitudinal Analysis of Open Data Developments in the UK. *EJournal*
350 *EDemocracy Open Gov.* **2014**, *6*, 123–135.

351 19. Janssen, M.; Charalabidis, Y.; Zuiderwijk, A. Benefits, Adoption Barriers and Myths of Open
352 Data and Open Government. *Inf. Syst. Manag.* **2012**, *29*, 258–268,
353 doi:10.1080/10580530.2012.716740.

354 20. Luna-Reyes, L. F.; Pardo, T. A.; Sayogo, D. S.; Tayi, G. K.; Andersen, D. F.; Zhang, J.; Hrdinova,
355 J. Beyond Open Government: Ontologies and Data Architectures to Support Ethical
356 Consumption. In; ACM: Albany, NY, 2012.

357 21. Zuiderwijk, A.; Janssen, M.; Choenni, S.; Meijer, R.; Alibaks, R. S. Socio-technical Impediments
358 of Open Data. *Electron. J. E-Gov.* **2012**, *10*, 156–172.

359 22. Zuiderwijk, A.; Janssen, M.; van den Braak, S.; Charalabidis, Y. Linking open data: challenges
360 and solutions. In; ACM Press, 2012; p. 304.

361 23. Bizer, C.; Heath, T.; Berners-Lee, T. Linked Data - The Story So Far. *Int. J. Semantic Web Inf. Syst.*
362 **2009**, *5*, 1–22, doi:10.4018/jswis.2009081901.

363 24. Abbas, J. Social Knowledge-Organizing Behaviors and Socially-Constructed Structures for
364 Organizing Knowledge: Research and Discussion (Chapter 6). In *Structures for organizing*
365 *knowledge: exploring taxonomies, ontologies, and other schemas*; Neal-Schuman Publishers: New
366 York, 2010 ISBN 978-1-55570-699-9.

367 25. Zuiderwijk, A.; Janssen, M.; Parnia, A. The complementarity of open data infrastructures: an
368 analysis of functionalities. In; ACM Press, 2013; p. 166.

369 26. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. DBpedia: A Nucleus for a
370 Web of Open Data. In *The Semantic Web*; Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-
371 I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
372 P., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; Vol. 4825, pp. 722–735 ISBN 978-
373 3-540-76297-3.

374 27. Hester, J. R. Closing the data gap: Creating an open data environment. *Radiat. Phys. Chem.* **2014**,
375 *95*, 59–61, doi:10.1016/j.radphyschem.2013.03.039.

376 28. Rainie, L.; Estabrook, L.; Witt, E. *Information Searches That Solve Problems*; Pew Research Center:
377 Internet, Science & Tech, 2007;

378 29. Verhulst, S.; Young, A. *Open Data Impact: When Demand and Supply Meet - Key Findings of the*
379 *Open Data Impact Case Studies*; GovLab, 2016;

380 30. Loewenstein, G. The psychology of curiosity: A review and reinterpretation. *Psychol. Bull.* **1994**,
381 116, 75.

382 31. Walker, T. Why "Simple" Websites Are Scientifically Better. *ConversionXL* 2015.

383 32. Song, H.; Schwarz, N. If it's easy to read, it's easy to do, pretty, good, and true. *Psychologist* **2010**,
384 23, 108–111.

385 33. Lohr, S. Humanizing Technology: A History of Human-Computer Interaction. *N. Y. Times* 2015.

386 34. Miller, G. A. The magical number seven, plus or minus two: some limits on our capacity for
387 processing information. *Psychol. Rev.* **1956**, 63, 81.

388 35. *Theories of information behavior*; Fisher, K. E., Erdelez, S., McKechnie, L., Eds.; ASIST monograph
389 series; Published for the American Society for Information Science and Technology by
390 Information Today: Medford, N.J, 2005; ISBN 978-1-57387-230-0.

391 36. Robins, D.; Holmes, J. Aesthetics and credibility in web site design. *Inf. Process. Manag.* **2008**, 44,
392 386–399, doi:10.1016/j.ipm.2007.02.003.

393 37. Tuch, A. N.; Presslaber, E. E.; StöCklin, M.; Opwis, K.; Bargas-Avila, J. A. The role of visual
394 complexity and prototypicality regarding first impression of websites: Working towards
395 understanding aesthetic judgments. *Int. J. Hum.-Comput. Stud.* **2012**, 70, 794–811,
396 doi:10.1016/j.ijhcs.2012.06.003.

397 38. Roller, C. How Cognitive Fluency Affects Decision Making. *UXmatters* 2011.

398 39. Brian J. Fogg The Web Credibility Project: Guidelines - Stanford University Available online:
399 <http://credibility.stanford.edu/guidelines/index.html#acm99> (accessed on Dec 16, 2015).

400 40. Zuiderveen Borgesius, F. J.; Van Eechoud, M.; Gray, J. Open Data, Privacy, and Fair Information
401 Principles: Towards a Balancing Framework. *Berkeley Technol. Law J. Forthcom.* **2015**.

402 41. Stefaan Verhulst Open Data's Impact - The Govlab Available online: <http://odimpact.org/key->
403 findings.html (accessed on Apr 1, 2016).

404