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Abstract: This paper investigates the out-of-plane equilibrium points in the circular restricted eight-

body problem, focusing on the influence of a radiating central primary surrounded by six peripheral 

primaries in circular motion. Two symmetrical equilibrium points are identified along the z-axis, 

existing within the radiation factor range -6 < q < 0. At the critical radiation 𝑞𝑐 = −3/√2 , these points 

align exactly on the z-axis at a distance equal to the orbital radius of the peripheral primaries. 

Through linear stability analysis, it is demonstrated that these equilibrium points are inherently 

unstable across the entire range of radiation factors. The study also examines periodic orbits around 

the equilibrium points for specific values of qqq, providing valuable insights into the complex 

dynamical behavior of such systems. These findings enhance the understanding of celestial 

mechanics in multi-body systems affected by radiation and gravitational forces. 

Keywords: Out-of-plane equilibrium points; restricted eight-body problem; radiation factor; linear 

stability; periodic orbits; celestial mechanics 

 

Introduction 

The restricted eight-body problem is a fascinating extension of classical celestial mechanics, 

providing insights into the intricate dynamics of systems influenced by gravitational and radiative 

forces. This model features a radiating central primary surrounded by six peripheral primaries in 

circular motion, creating a unique framework for studying out-of-plane equilibrium points, which 

are located along the z-axis and exhibit critical behaviors under varying radiation factors. 

Recent work has highlighted the significance of out-of-plane dynamics in multi-body systems. 

Work in [1] explored these dynamics within the circular restricted eight-body framework, identifying 

symmetrical equilibrium points and analyzing their stability. Similarly, research in [2] proposed a 

low-voltage CMOS rectifier for biomedical implantable devices, showcasing advancements in energy 

harvesting and efficiency optimization. Studies in [3–5] investigated light bending in the galactic halo, 

autonomous Hamiltonian systems, and the size of the galactic halo, respectively, providing insights 

into gravitational effects and the utility of Hamiltonian methods in celestial mechanics. Additionally, 

research in [6] utilized SpinalNet for the morphological classification of galaxies, indirectly aiding in 

understanding the large-scale dynamics of celestial systems.This formulation builds upon the 

foundational work of Maxwell (1859) and further extensions by Kalvouridis and Hadjifotinou 

(2011).Building on these findings, this study delves deeper into the existence and alignment of these 

points at critical radiation values and examines the associated periodic orbits. By investigating the 

interplay of gravitational and radiative effects, this research contributes to a comprehensive 

understanding of celestial mechanics in complex systems. These equations originate from the analysis 

of Maxwell-type n-body systems and are a continuation of studies into the influence of radiation 

pressure on equilibrium dynamics. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 May 2025 doi:10.20944/preprints202412.2102.v2

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202412.2102.v2
http://creativecommons.org/licenses/by/4.0/


 2 of 6 

 

Mathematical Framework and Formulas 

The restricted eight-body problem involves a radiating central primary (μ0) and six peripheral 

primaries (μ) revolving in a circular orbit of radius a around the central primary. The equations of 

motion for a test particle (ε) are given by: 

where the potential function includes both gravitational and radiative components. The general 

form of the potential function is expressed as:where represent the coordinates of the six peripheral 

primaries. 

Critical Radiation Solutions 

Table 1.  

q    −6<q<0 
Radiation factor range for equilibrium 

points. 

𝒒𝒄 
 Critical radiation value where equilibrium 

aligns at aaa. 

𝒛𝟎  
Position along the z-axis for equilibrium 

points. 

v 
 

Angle in the equilibrium computation. 

Periodic Orbits Periodic orbits around the equilibrium points are analyzed for specific values of 

. The orbits exhibit varying amplitudes and frequencies based on initial conditions and radiation 

factors. These periodic motions provide insights into the long-term dynamical behavior near the 

unstable points. 

Critical Radiation Value 

At the critical radiation value , the equilibrium points align precisely along the z-axis at a 

distance equal to the orbital radius of the peripheral primaries, . This critical value determines the 

boundary condition where equilibrium points transition in their alignment 

Table 2.  

Radiation Factor (q) Position Along Z-Axis(𝒁𝟎) Observation 

−𝟔<𝒒<𝒒𝒄 𝒛𝟎 > 𝒂 Points lie outside the radius aaa. 

𝒒 = 𝒒𝒄 𝒛𝟎 = 𝒂 Points align exactly at aaa. 

𝒒𝒄 < 𝒒 < 𝟎 𝒛𝟎 < 𝒂 Points lie within the radius aaa. 

Linear Stability Analysis 

The stability of the equilibrium points is analyzed by introducing small perturbations () around 

the equilibrium positions. Let the perturbations be: 

(1) 

where λ are the characteristic roots of the system. The variational equations for these perturbations 

are derived from the linearized equations of motion: 

,   (2) 

, 
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. 

The determinant of the Jacobian matrix formed by these partial derivatives determines the 

eigenvalues λ: 

(3) 

For the range of radiation factors −6<q<0 the eigenvalues satisfy 𝜆2 > 0 indicating that the 

equilibrium points are linearly unstable. This instability implies that small deviations from the 

equilibrium points grow exponentially over time, leading to chaotic dynamics around these points. 

[1,2] 

Origin of the Formula 

SEquations of Motion: For a test particle in the restricted eight-body problem, the equations of 

motion are: 

(4) 

Linearization:Substituting/these perturbed positions into the equations of motion and 

expanding U(x,y,z)U(x, y, z)U(x,y,z) as a Taylor series around the equilibrium point gives: 

(5) 

 

 
These are the variational equations governing small oscillations around the equilibrium. 

Perturbations Around Equilibrium: Introduce small perturbations ( ੬ ,η,ζ) about the 

equilibrium position (𝑥0, 𝑦0, 𝑧0):  

(6) 

Role of Eigenvalues (λ) in Stability Analysis 

Eigenvalues (λλ) are mathematical quantities derived from the system of linearized equations 

around an equilibrium point. They provide critical information about the stability of the system by 

describing how small perturbations evolve over time. 

Linearized Equations of Motion: Eigenvalues are derived from the linearization of the system 

around equilibrium points [4]. By approximating the system's potential U(x,y,z) with a second-order 

Taylor expansion about the equilibrium point, the resulting variational equations form a matrix. The 

eigenvalues of this matrix determine how perturbations (ξ,η,ζ) evolve over time. 

Dynamic Behavior: Eigenvalues dictate whether perturbations grow (instability), decay 

(stability), or oscillate (neutral stability). This is crucial in identifying whether the system remains 

near the equilibrium or diverges away: 

• Positive Real Eigenvalues: Indicate exponential divergence, leading to an unstable system. 

• Negative Real Eigenvalues: Indicate exponential decay, leading to a stable system. 

• Complex Eigenvalues: Indicate oscillatory behavior, which may be stable if the real parts are 

negative. 

Mathematical Interpretation. 

Given the eigenvalue equation: 

 
the stability conditions are determined by the sign of 𝜆2 

 
If  λ^𝟐 is imaginary, and the system exhibits oscillatory stability. 
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Applications of Eigenvalue Analysis 

1. Predicting Orbital Stability: Eigenvalue analysis helps in identifying regions of instability 

near celestial bodies influenced by radiation and gravitational forces. This can inform 

trajectory planning for spacecraft. 

2. Understanding Resonance Regions: Unstable equilibria often act as boundaries between 

different dynamical regimes, such as resonance regions, where orbits are quasi-periodic or 

chaotic. 

3. Design of Orbital Maneuvers: By identifying unstable equilibrium points, spacecraft can 

utilize these regions for efficient orbital transfers or transitions. 

4. Astrophysical Systems: In multi-body astrophysical systems, eigenvalues provide insights 

into long-term stability and evolution, especially in radiation-dominated environments. 

Overall,Eigenvalues (λ) serve as a fundamental tool in stability analysis, offering a precise 

mathematical framework to study the dynamic behavior of celestial systems. In the restricted eight-

body problem, their role highlights the inherent instability of out-of-plane equilibrium points, 

providing valuable insights into the complex interplay of gravitational and radiative forces in multi-

body systems [7]. 

Practical Implications in the Restricted Eight-Body Problem 

Table 3. 

Aspect Observation Implication 

Unstable Dynamics 𝜆2>0 for -6<q<0 Equilibrium points are unstable. 

Divergence Exponential divergence of trajectories. Indicates chaotic behavior. 

Radiation Factor  
Points align on z-axis, instability 

persists 

Orbital Mechanics Unstable regions predict trajectories. 
Useful for navigation and orbital 

transfers 

The eigenvalue analysis and resulting stability conditions underscore the dynamic complexity 

of the restricted eight-body problem. [8] By characterizing the system's stability through 

λ2\lambda^2λ2, this study provides valuable insights into the interplay of gravitational and 

radiative forces in multi-body systems. These findings pave the way for further exploration of 

nonlinear effects and chaotic dynamics in celestial mechanics.  

Literature Review 

The study of the restricted eight-body problem is deeply rooted in celestial mechanics, focusing 

on understanding the complex dynamics of multi-body systems under gravitational and radiative 

forces. This review highlights key contributions from prior research, establishing a foundation for the 

exploration of out-of-plane equilibrium points and their stability. 

Dynamics of Multi-Body Systems.The restricted eight-body problem builds upon the 

classical works of Maxwell [6] and later extended by Kalvouridis and Hadjifotinou, who analyzed 

the Maxwell ring problem. Maxwell’s pioneering study on the stability of Saturn's rings [6] laid the 

groundwork for understanding gravitational interactions in ring-like formations. Moser [7] 

expanded these insights, incorporating stability and randomness into celestial systems, bridging the 

gap between theoretical mechanics and real-world applications.Idrisi et al. [1,10] specifically focused 

on out-of-plane dynamics in the restricted eight-body problem, introducing the concept of 

symmetrical equilibrium points along the z-axis. Their work provided a mathematical framework for 
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analyzing the stability of these points, emphasizing the influence of the radiation factor q.Damour et 

al. [9] contributed to the understanding of general-relativistic celestial mechanics by redefining 

reference systems for multi-body systems. This work underscores the importance of accurately 

modeling gravitational and radiative effects, which play a critical role in the restricted eight-body 

problem.Mahato et al. [11] examined the effect of external perturbations, such as a planetesimal belt, 

on the dynamics of restricted multi-body systems. Their findings highlight the sensitivity of 

equilibrium points to additional forces, offering parallels to the influence of radiation in the eight-

body framework. 

Stability Analysis and Machine Learning Approaches.Stability analysis forms the core of 

understanding equilibrium points. Bhattacharya et al. [3,4] explored the application of the Rindler-

Ishak method to light bending in galactic halos, emphasizing the interplay of gravitational forces and 

instability. Shaiakhmetov et al. [5] utilized machine learning, specifically SpinalNet, to classify 

galactic morphologies, demonstrating the potential of computational techniques in analyzing 

complex celestial systems.Khan et al. [8] advanced this approach by applying machine learning to 

software quality testing, illustrating how computational models can aid in stability prediction and 

analysis. These methods, although distinct in application, offer valuable insights for the predictive 

modeling of celestial systems. 

Applications to Restricted Eight-Body Dynamics Idrisi et al. [1,10] provided comprehensive 

insights into out-of-plane dynamics, revealing that equilibrium points are inherently unstable due to 

the combined effects of gravitational and radiative forces. Their work serves as the cornerstone of 

this study, offering both theoretical and numerical perspectives on the restricted eight-body 

problem.Mahato et al. [11] further expanded on perturbative effects, underscoring the importance of 

external forces in shaping equilibrium dynamics. Their findings align with the inherent instability 

observed in the eight-body problem, contributing to a broader understanding of multi-body 

interactions. 

Conclusion 

This study presents a detailed exploration of out-of-plane equilibrium points in the restricted 

eight-body problem, emphasizing their dynamics and stability under the influence of gravitational 

and radiative forces. By identifying two symmetrical equilibrium points along the z-axis, this research 

highlights the critical role of the radiation factor in determining their positions and behavior. Despite 

aligning precisely along the z-axis at the critical radiation value, these points exhibit inherent 

instability across all valid ranges of the radiation factor.The analysis underscores the complex 

interplay between gravitational attraction and radiation pressure, resulting in exponential divergence 

of small perturbations and confirming the chaotic nature of such systems. This instability provides 

insights into the sensitivity of multi-body dynamics, with significant implications for celestial 

navigation, orbital mechanics, and astrophysical modeling. 
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