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1. Introduction

Gaussian Mixture Models (GMMs) are powerful, parametric, and flexible models in the

probabilistic realm. GMMs tackle two important problems. The first is known as the "inverse

problem," in which f−1 (x) and x are not unique one-to-one mappings [1]. The second issue is

the uncertainty problem of both the data (aleatoric) and the model (epistemic)[2–4]. When we consider

the two problems together, it is easy to see that if we deal with multimodal problems, classic model

assumptions start falling apart. Traditionally, we attempt to discover the relationship between input x

and output y, which is denoted as y = f (x) + ǫ with error ǫ. In a probabilistic sense, the above model

assumption is equivalent to y ∼ Normal ( f (x) , σ). In terms of inverse and uncertainty problems, we

purpose that the model assumption is y ∼ UnkownDistribution (θ (x)). Under this condition, when y

is no longer following any distribution in a known form, GMM becomes a viable option for model

data. If y ∼ UnkownDistribution (θ (x)) ≈ GMM ( f (x)) could be satisfied, then we could use GMM

as a general model regardless of whatever distribution y is following. The question remaining for

us to answer is whether GMMs can approximate arbitrary densities. Some studies show that all

normal mixture densities are dense in the set of all density functions under the L1 metric[5–7]. A

model that can fit an arbitrary distribution density is relatively similar, as it requires the model to

imitate all possible shapes of distribution density. In this work, taking ideas from Fourier expansion,

we assume that any distribution density can be approximately seen as a combination with a set

of finite Gaussian distributions. To put it another way, a set of Gaussian distribution bases with

constant means and variances can be used to approximate any density by using data to determine

the amplitudes (coefficients) of the Gaussian components. In summary, we have X as input data,

Y ∼ UnknownDistributiony = Gy as output data, and

GMM ( f (x)) + ǫ ≈ Gy,

here f (x) is the function that requires learning. To learn f (x), which maps input x into GMM

parameters, we can use any modeling technique.

We need to go through two stages of learning when utilizing GMM for modeling. Finding the

right GMM parameters to approximate the target distribution Gy is the first step. Second, we may

discover how model f (x) maps to θ . In this essay, we mostly talk about the first stage of learning.

The best way to train a GMM to simulate the desired distribution. Fitting a GMM from the observed

data related to two problems: 1) how many mixture components are needed; 2) how to estimate the

parameters of the mixture components.

For the first problem, some techniques are introduced[5]. For the second problem, as early as

1977, the Expectation Maximization (EM) algorithm[8] was well developed and capable of fitting

GMMs based on minimizing the negative log-likelihood (NLL). While the EM algorithm remains one

of the most popular choices for learning GMMs, other methods have also been developed for learning

GMMs[9–11]. The EM algorithm has a few drawbacks. Srebro [12] asked an open question that

questioned the existence of local maxima between an arbitrary distribution and a GMM. That paper

also addressed the possibility that the KL-divergence between an arbitrary distribution and mixture
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models may have non-global local minima. Especially in cases where the target distribution has more

than k components but we fit it with a GMM with fewer than k components. Améndola at al.[13] has

shown that the likelihood function for GMMs is transcendental. Jin et al.[14] resolved the problem that

Srebro discovered and proved that with random initialization, the EM algorithm will converge to a bad

critical point with high probability. The maximum likelihood function is transcendental and will cause

arbitrarily many critical points. Intuitively speaking, when handling any distribution with multimodal

analysis, if the size of the GMM components is less than the peaks that the target distribution contains,

it will lead to an undesirable estimation.

Additionally, a single Gaussian component is limited in capturing these types of features and

is unable to produce a good prediction if the target distribution’s peak appears as a flat top, similar

to a roof, rather than a bell shape. The likelihood function could have poor local maxima and be

arbitrarily worse than any global optimum. The Wasserstein distance is a topic of interest in several

studies. Wasserstein distances are presented to replace the NLL function, which minimizes either the

Kullback-Leibler divergence or the NLL function[11,15,16]. These methods avoid the downside of

using NLL, but the calculation and formulation of the learning process are relatively complex.

Instead of following the EM algorithm, we take a different path. The main concept of our work is

to take the idea of Fourier expansion and apply it to density decomposition. Similarly, like Fourier

expansion, our model needs a set of base components, and their location is predetermined. Instead of

using a couple of components, we use a relatively large number of components to construct this base.

The benefit of this approach is that these bases represent how much detail our models can capture

without going into a calculation process to decide how many GMM components are needed. Another

benefit of this idea is that, on a predetermined basis, the learning parameters become relatively simple.

To achieve the best approximation, we simply need to learn a suitable collection of π, which are the

probability coefficients of normal components. A simple algorithm without heavy formulation is

designed to achieve this task. More detailed explanations, formulations, and proofs are provided in the

next section. It is important to note that, similar to cousin expansion, there will be information loss for

the target sequence if base frequencies are insufficient. Similar information losses are experienced by

this method due to insufficient Gaussian components. We provide a measurement of the information

loss. In our experiments, our technique delivered a good estimation result.

GMMs have been used across computer vision and pattern classification among many others

[17–20]. Additionally, GMMs can also be used to learn embedded space in neural networks [11].

Similarly, as Kolouri et al., we apply our algorithm to learn embedded space in neural networks in

two classic neural network applications of handwritten digits generation using autoencoders[21,22]

and style transfer[23]. This helps us turn latent variables into a Gaussian Mixture distribution, which

allows us to perform sampling to create variation. More detail is provided in Section 4.

Section 2 introduces Fourier expansion-inspired Gaussian mixture models, shows this method

is capable of approximating arbitrary densities, discusses the convergency, defines a suitable metric,

and details some of its properties. Section 3 provides our methodology for fitting a GMM through

data, introduces two learning algorithms, and shows learning accuracy through experiments. Section

4 presents two neural network applications. The final section provides a summary and conclusions.

2. Decompose Arbitrary Density by GMM

The principle of density decomposition using GMM is demonstrated in this section, along with

learning algorithms, and it is shown that it is possible to do so with bounded approximation error. In

order to quantify the approximation error between the target density and the GMM, a metric called

density information loss is proposed. Let’s start with the fundamental premise and notation:

• Observed a dataset X, which is following a unknown distribution with density f (x);
• Assuming there is a GMM that matches the distribution of X : f (x) ≈ g (x) + ǫ;
• The density of GMM: g (x) = ∑n πiφi (x);
• As general definition of GMM, ∑n π̃i = 1 and φi (x) ∼ N (µi, σi).
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We mostly examine one-dimensional examples in this study. Instead of multivariate Gaussian

distributions, the GMM uses mixed Gaussian distributions.

2.1. General concept of GMM decomposition

The idea behind GMM decomposition is a Fourier series in probability that, assuming arbitrary

density, can be approximately decomposed by infinite mixtures of Gaussian distributions. As

mentioned earlier, a lot of studies prove that the likelihood of GMM has many critical points. There

are far too many sets of π, µ and σ that could produce the same likelihood result on a given dataset.

Learning three sets of parameters, π, µ, σ could increase the complexity of the learning process. Not to

mention that these parameters interact with each other. Changing one of them could lead to new sets

of optimal solutions for others. If we consider that GMM can decompose any density like the Fourier

series into a periodic sequence, we can predetermine the base Gaussian distributions (component

distributions).

In practice, µ can be set to be evenly spread out though the dataset space. The parameter σ can be

treated as a hyper-parameter that adjusts overall GMM density smoothness. This means that µ, σ of

the component distribution are non-parametric and do not need to be optimised. The parameter π

is the only remaining problem for us to solve. Our goal shifted from finding the best set of π, µ, σ to

finding the best set of π on a given dataset. With this idea, our GMM set-up becomes:

• g (x) = ∑n πiφi (x) is the density of GMM;
• ∑n πi = 1, φi (x) ∼ N (µi, σ), n is the numbers of normal distributions;

• r = max(X)−min(X)
n is the interval for locating µi;

• µi = min (X) + i × r are means for Gaussian components;
• σ = t × r is variance for all Gaussian components;
• t is a real number hyper-parameter, usually 1 ≤ t ≤ 5.

2.2. Approximate arbitrary density by GMM

In this subsection, we show that, under certain conditions, if the component size of a mixture

Gaussian model goes to infinity, the error of approximating an arbitrary density can go toward zero.

Through the idea of Monte Carlo, we could assume that the accuracy of a fine frequency distribution

estimation of the target probability mass through a dataset is good enough in general. A frequency

distribution could also be seen as a mixture distribution with uniform distribution components.

Elaborate from this: if we swap each uniform distribution into a Gaussian unit and push this toward

infinite, we could have a correct probability mass approximation of any target distribution. Because

we do not have access to the true density, the dataset is all we have, an accurate probability mass is

generally good enough in practice. Let ωi = {x ∈ (µi − r, µi + r]}, we have:




∫
ω0

g (x) dx

.

.

.∫
ωn

g (x) dx



=




Pg {ω0}

.

.

.

Pg {ωn}



≈




Pf {ω0}

.

.

.

Pf {ωn}



=




∫
ω0

f (x) dx

.

.

.∫
ωn

f (x) dx




.

where Pg is the density function for GMM and Pf is the target density function. Expand the density of

GMM g (x) results




∫
ω0

φ0 (x) dx . . .
∫

ω0
φn (x) dx

...
...

...
...∫

ωn
φ0 (x) dx . . .

∫
ωn

φn (x) dx







π0
...

πn


 =




Pg {ω0}
...

Pg {ωn}


 .

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2023                   doi:10.20944/preprints202302.0275.v2

https://doi.org/10.20944/preprints202302.0275.v2


4 of 20

It is not hard to notice that, if
∫

ωi
φi (x) dx ≈ 1 which means that each Gaussian component is

very dense in their region, GMM become a discrete distribution that can be precisely 1:1 clone the

estimation probability mass. It becomes:




1 . . .0
...

...
...

...

0 . . .1







π0
...

πn


 ≈




Pg {ω0}
...

Pg {ωn}


 ≈




Pf {ω0}
...

Pf {ωn}




These straightforward conclusions imply that, in this configuration, a GMM with a significant

size component will perform as well as a frequency distribution. The same result might also be

obtained by switching the mixing component from a regular Gaussian distribution to a truncated

normal distribution or uniform distribution. One good thing about this configuration is that it might

move discrete probability mass estimation to continuous density. Allow us to approach regression

problems in a classification-based manner. We do suffer loss of information at some points in the

density, but generally, in practice, a approximation of probability mass is what we are looking for. For

example, let’s say we are trying to figure out the distribution of people’s height. Instead of looking

for a precise density estimation of people’s height, f {height = 1.801m}, P {1.80m ≤ height ≤ 1.81m}

is what we targeting. Therefore, if we accept a discrete frequency distribution as one of our general

approximation models, there is no reason that the GMM cannot be used to approximate an arbitrary

density because it is capable of performing as good as frequency distribution estimation.

2.3. Density information loss

Even though GMM can approximate arbitrary densities similarly to frequency distribution,

density information within ω remains a problem that needs to be discussed. In another word, even if

we learn a model that probability mass is equal to target density Pg {ω} = Pf {ω}, the differentiation

is not equal
dPg{ω}

dx 6=
dPf {ω}

dx . We could apply KL-divergence or Wasserstain distance to measure the

difference between two densities. But in our setup, we introduce a simple metric to measure regional

density information loss (DIL). If DIL is small enough under some conditions, then we may be able to

conclude that GMM can be a generalized model to decompose arbitrary density.

First of all, assume we have already learned a GMM which achieves that probability mass is

correctly mapped to the target distribution. We split the data space into n regions denoted as ωi the

same as Section 2.2. Assume we have




Pg {ω0}
...

Pg {ωn}


 ≈




Pf {ω0}
...

Pf {ωn}




Then, the total density information loss is sum of absolute error is given by

DIL =
n

∑
i=1

∫

ωi

| f (x)− g (x) |dx.

Since the integration is not easy to calculate, here we divide ωi further into m smaller regions to

estimate DIL:

m

∑
k=1

dk = ωi,

DIL ≈
n

∑
i=1

m

∑
j=1

∫

dij

| f (x)− g (x) |dx ≈
n

∑
i=1

m

∑
j=1

|Pf

{
dij

}
− Pg

{
dij

}
|.
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Denote that

L (ωi) =
m

∑
j=1

|Pf

{
dij

}
− Pg

{
dij

}
|. (1)

Here L (ωi) is the discrete approximation of density information loss within region ωi. If L (ωi) is

universally bounded in some conditions for all ω, the overall DIL is bounded. For any xij from ωi, if

|Pf

{
xij ± d

}
− Pg

{
xij ± d

}
| ≤ τi ≤ τ,

we have

DIL ≤ n ∗ m ∗ τ.

In fact, L (ωi) is bound within a comfortable condition. In Figure 1, the plot demonstrates the density

of target distribution(blue) and GMM(red) in a small region ωi. The probability Pf {ωi} is equal

to Pg {ωi}. Evenly split ωi into 4 smaller areas and each area has length d. When we look at this

geometrical relationship between target distribution f (x) and GMM g (x), we discover that for each

small region d, |Pf

{
dj

}
− Pg

{
dj

}
| is bounded. Intuitively, the blue area which is shown in Figure 1 will

always be larger than the orange area. Because we have learned a GMM that Pf {ωi} = Pg {ωi} and

our GMM model is constructed by evenly spreading out Gaussian components, at each ωi generally

will share similar geometrical structure as Figure 1.

Figure 1. Example of fitted GMM and target density in region ωi.

In brief, giving some conditions, the blue area subtracts the orange area in Figure 1 is guarantee

larger than |Pf

{
dij

}
− Pg

{
dij

}
|. We will provide the proof below.

Given condition:

• Condition 1: Pf {ωi} = Pg {ωi}
• Condition 2: ωi is small enough, target density is approximately monotone and linear within

change wiωi ∈ (wi, vi]
• Condition 3: GMM density within ωi double cross the target density. Two cross points are named

a, b and b > a.

Set the spilt length d ≤ min {a − wi, vi − b}. Given condition that GMM density double cross the

target density. Since g (x) ≥ f (x), for all x ∈
[
µi −

d
2 , µi +

d
2

]
, and

∫ µi+
d
2

µi−
d
2

g (x) dx ≥
∫ µi+

d
2

µi−
d
2

f (x) dx,
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we have

Pg

{
µi ±

d

2

}
≥ Pf

{
dij

}
≥ Pg

{
dij

}
,

and

|Pf

{
dij

}
− Pg

{
dij

}
| ≤ Pg

{
µi ±

d

2

}
− Pf

{
dij

}
, (2)

By condition 2, if target density is monotonically decreasing, i.e. g (x) ≤ f (x), for all x ∈[
µi +

r
2 − d, µi +

r
2

]
and

∫ µi+
r
2

µi+
r
2−d

g (x) dx ≤
∫ µi+

r
2

µi+
r
2−d

f (x) dx.

Therefore,

Pg

{
µi +

r

2
− d < x ≤ µi +

r

2

}
≤ Pf

{
dij

}
≤ Pg

{
dij

}
.

With Eq.(2), we have:

|Pf

{
dij

}
− Pg

{
dij

}
| ≤ Pg

{
µi ±

d

2

}
− Pg

{
µi +

r

2
− d < x ≤ µi +

r

2

}
(3)

Similarly, if target density is monotonically increasing:

|Pf

{
dij

}
− Pg

{
dij

}
| ≤ Pg

{
µi ±

d

2

}
− Pg

(
µi −

r

2
≤ x ≤ µi −

r

2
+ d

)
(4)

The benefit of these two properties of Eq.(3) and Eq.(4) is that even though we do not know what

the target density is, this system still guarantees the difference between GMM and target density,

which is bounded by Eq.(3) or Eq.(4). As long as we are able to find a good approximation that satisfies

condition 1, we will be able to reach an approximation that is not worse than a fully discrete frequency

distribution, while keeping the density continuous. This will lead us to a simple algorithm to optimise

GMM which shown in the next subsection.

Conditions 1-3 also provide another practical benefit. As long as these 3 conditions are satisfied, σ

of each Gaussian component becomes a universal smoothness parameter which controls the kurtosis

of each normal component. A larger σ produces an overall smoother density. σ can be treated as

a hyper-parameter which does not affect the learning process. GMM in Figure 1 uses σ = 1 ∗ r. If

we tune sigma larger, we will have the result shown in Figure 2, which is σ = 3 ∗ r. The differences

between target density and GMM are clearly smaller compared to 1 and 2. It also implies that if peaks

of target density are not overly sharp(condituion 2), by stretching GMM components, resulting a better

estimation of target density.
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Figure 2. Example of GMM and target density in region ωi with larger σ.

Here we can conclude that as long as the size of component distributions are large enough and

satisfy given conditions 1-3, GMM can well approximate arbitrary distributions. The loss of density

information between target density and GMM is controlled by Eq.(3) or Eq.(4).

2.4. Learning Algorithm

Most of the learning algorithms apply gradients iteratively to update target parameters until

reaching an optimum position. There are no differences from ours. The key of the learning process is

to find the right gradient for each parameter. In our model set up, this has become relatively simple.

Begin with defining the loss function for the learning process.

Loss (X) = ∑ |Pf

{
xj ± d

}
− Pg

{
xj ± d

}
| (5)

We want to find a set of parameters π which:

π = argmin {Loss (X)} . (6)

The Eq.(5) comes from Eq.(1). Because we do not have any access to the overall density information

to calculate DIL, we change the region input dj to the data points. From inequality in Eq.(3) and Eq.(4),

instead of finding the precise gradient at each xj, we apply Eq.(3) or Eq.(4) in Eq.(5):

Loss
(
xj

)
≤ ˜Loss

(
xj

)
= Pg

(
µi −

d

2
≤ x ≤ µi +

d

2

)
− Pg

(
µi −

r

2
≤ x ≤ µi −

r

2
+ d

)

or

Loss
(

xj

)
≤ ˜Loss

(
xj

)
= Pg

(
µi −

d

2
≤ x ≤ µi +

d

2

)
− Pg

(
µi +

r

2
− d ≤ x ≤ µi +

r

2

)
,

where µi is the closest µ to xj. Then,

˜dL
(
kmid

i , kside
i

)

dπ
=




d ˜Loss(xj)
dπ0

...

d ˜Loss(xj)
dπn



=




P̃f0

(
kmid

i

)
− P̃f0

(
kside

i

)

...

P̃fn

(
kmid

i

)
− P̃fn

(
kside

i

)


 (7)

where P̃gi
(ki) =

∫
ki

φi (x) dx, φi is the density of ith component distribution, kmid
i ∈ (µi − d, µi + d],

and kside
i ∈ (µi + r, µi + r − d] or kside

i ∈ (µi − r, µi − r + d].
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π+1 = π +
˜dL

(
kmid

i , kside
i

)

dπ
(8)

Eq.(7), the result is intuitively interpretative. For Gaussian distribution components where means

are further away from data point xj, gradient
d ˜Loss(xj)

dπi
will be smaller and vice versa. For every data

point, we perform Eq.(8) to update parameters.

Algorithm 1:

1 Initialization

2 1.Define n Gaussian distributions and evenly spread µ across Max (X) , Min (X);

3 2.Calculate r, r = Max(X)−Min(X)
n

4 3.Define hyper parameter σ respect to r, e.g., σ = 1r, σ = 3r,

5 4.Define hyper parameter d respect to σ, e.g., d = σ/4, d = σ/6,

6 5.Initialize π1 = π2... = πn = 1/n

7 foreach xj do

8 Find µi which closest to xj;

9 Define kmid
i = (µi − d, µi + d];no

10 kside+
i = (µi + r − d, µi + r];

11 kside−
i = (xj − r, xj − r + d];

12 Compute d̃L
(

kmid
i , kside+

i

)
, d̃L

(
kmid

i , kside−
i

)
by Eq(11);

13 d̃L=
d̃L(kmid

i ,kside+
i )+d̃L(kmid

i ,kside−
i )

2 ;

14 Update π+1 = π + d̃L by;

15 end

16 Finally, re-normalize π to satisfy ∑ πi = 1

Algorithm 2:

1 Initialization

2 1.Define n Gaussian distributions and evenly spread µ across Max (X) , Min (X);

3 2.Calculate r, r = Max(X)−Min(X)
n

4 3.Define hyper parameter σ respect to r, e.g., σ = 1r, σ = 3r,

5 4.Define hyper parameter d respect to σ, e.g., d = σ/4, d = σ/6,

6 5.Initialize π1 = π2... = πn = 1/n

7 6.Define kmid
i and kside

i

8 7.Approximate d̃Li ≈ P̃fi

(
kmid

i

)
− P̃fi

(
kside

i

)
.

9 foreach xj do

10 Find µi which closest to xj;

11 Update π+1
i = πi + d̃Li ;

12 for all m which m 6= i, π+1
m = πm − d̃Li

n ;

13 end

14 Finally, re-normalize πs to satisfy ∑ πi = 1

Based on Eq.(7), Here we developed two simple algorithms for learning GMM. Algorithm 1

computes the gradient following Eq.(7). Algorithm 2 is a simplified version where we only update the

πi which is the coefficient of φi that has µi closest to xj. Algorithms’ performance comparison is shown

in the next section. It is worth mentioning that π is initialized uniformly. After learning the whole

dataset, the final step is re-normalization to ensure ∑ πi = 1.
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3. Numerical Experiments

In this section, we demonstrate the correctness of our technique by approximating various

probability densities. Two neural network applications are shown which incorporate GMM into neural

network while applying our learning algorithm to learn feasible GMM. Eq.(9) provides a metric for

measuring the accuracy of density estimation. It is an estimate for the DIL that is presented in Section

2.

L =|Ptraget {x ≤ µ1 − d} − Pgmm {x ≤ µ1 − d} |

+
n

∑
i=1

|Ptraget {µi ± d} − Pgmm {µi ± d} |

+ |Ptraget {x > µn + d} − Pgmm {x > µn + d} |

(9)

Measuring our estimation accuracy by Eq.(9) has a few advantages. It is firstly easy to calculate.

Second, even without the target density in its current form, we can still calculate the loss using discrete

statistical estimation. Its minimum and maximum values, which are [0, 2], are also obvious. The

evidence is provided below:

L ≤ |Ptraget {x ≤ µ1 − d} − 0|+
n

∑
i=1

|Ptraget {µi ± d} − 0|

+ |Ptraget {x > µn + d} − 0|+ |0 − Pgmm {x ≤ µ1 − d} |

+
n

∑
i=1

|0 − Pgmm {µi ± d} |+ |0 − Pgmm {x > µn + d} |

That means 0 ≤ L ≤ 2.

3.1. Random density approximation

In this subsection, we test the algorithm performance by learning randomly generated mixture

distributions. Considering the conditions given by Section 2.4, mixture distributions with smooth

forms are best for GMM to work with generally. In order to further investigate model efficacy, We also

test our model with distributions that mix with non-smooth distributions; in our example, mixture

with uniform, T and Gaussian distributions are employed to create these target mixed distributions.

The learning process is demonstrated using Figure 3, 4 and 5 for two randomly created examples.

Target distribution 1, which is mixed with 8 normal distributions, is shown as the upper subplot

in Figure 3. Target distribution 2 is mixed with normal distributions, T distributions, and uniform

distributions in the lower subplot of Figure 3.

Figure 4 shows our initial GMM before learning. Target density and learned GMM are compared

in 5 and Figure 6, respectively.

Using GMM with 200 components, the target distribution is learned. As a training dataset, we

select 5000 data points from each target distribution. The target distribution 1 refers to those situations

where GMM can perform best. Geometrically speaking, while target distributions are mixed with

components which share a bell shape like structure, using GMM to approximate is an appropriate

choice instinctively. But in situations like target distribution 2, while we add uniform distribution

in the component distribution set, it becomes difficult for GMM to work with unless we have more

components. Figure 4 provides a explanation. We can see that our initial GMM’s density is remarkably

similar to a uniform distribution before training. Because there are more components, GMM may learn

more structure. Deep cuts and straight lines, for example. This shows that if we want to simulate

arbitrary densities that are not bound by multimodal, flat peaks, deep cuts, and all conceivable

variations, higher order mixture components are required for GMM. When using the traditional EM
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algorithm and assuming that there are 200 Gaussian components, the parameters that we must learn

for a GMM are 3x200. By fixing mu and sigma as bases and smoothness, as we suggested in this study,

the number of remaining parameters that must be learned is constrained to 200.

Figure 3. Target Distributions.

Figure 4. Initialize GMM.
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Figure 5. Trained GMM vs Target Distribution 1.

Figure 6. Trained GMM vs Target Distribution 2.

Figure 5 and Figure 6 demonstrate how well the suggested approach approximates target density.

Comparing the two results, target density 1, which mixes with bell shape like distributions, works

better than target distribution 2, which mixes with uniform distributions and others. Overall though,

despite the fact that Figure 6’s output contains a lot of unwelcome sags and crests, GMM approximation

still succeeds in capturing those crucial aspects of target density. In Figure 5 and Figure 6, demonstrate

how two distinct algorithms discussed in Section 2.5 performed. On the graph, there are three curves.

Green represents the target density, blue represents the taught GMM density from algorithm 2, and

orange represents the learnt GMM density from method 1. The orange curve and the blue curve nearly

cross each other. Algorithm differences are hardly discernible from one another.

Table 1 and Table 2 present average losses(L) in Eq.(9) over 20 experiments. In Table 1, the target

distribution is randomly generated Gaussian mixture distributions. Some approximation examples

are shown in Figure 7 subplots (1)-(3). Table 2 presents the average L by approximating the mixture

distribution of which components contain Normal, T and Uniform distributions. Some examples are

shown in Figure 7 subplots (4)-(6).
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Table 1. Average Loss of 20 Experiments With 8 random Gaussian Components. Data size: 5000 data

points.

Average Loss of 20 Experiments

Algorithm 1

σ = 1 ∗ r σ = 2 ∗ r σ = 3 ∗ r

L =0.07099 L =0.05091 L =0.044296

Algorithm 2

σ = 1 ∗ r σ = 2 ∗ r σ = 3 ∗ r

L =0.06866 L = 0.05085 L =0.04447

Table 2. Average Loss of 20 Experiments With 8 Non-Gaussian random Components. Data size: 5000

data points.

Average Loss of 20 Experiments

Algorithm 1

σ = 1 ∗ r σ = 2 ∗ r σ = 3 ∗ r

L =0.08912 L =0.08738 L =0.09432

Algorithm 2

σ = 1 ∗ r σ = 2 ∗ r σ = 3 ∗ r

L =0.08678 L = 0.08749 L =0.09446

Figure 7. Other trained examples.

According to the tables, it is generally preferable to use GMM to approximate target distributions

with normal components as opposed to mixing target distributions with distributions of different

types. They also make the intriguing discovery that changing σ will alter accuracy across the board.

Target distributions combined with normal distributions perform better when σ is increased from 1*r

to 3*r. But when the target density gets more complex, a sigma with 2*r works the best. Distributions

with extreme features need for a σ that is neither too large nor too small, as seen in comparison with

subplots 1-3 and subplots 4-6 in Figure .7. More expressiveness but less overall smoothness result as σ

gets smaller. In cases where distribution density are not smooth, O ur experiments demonstrate that

the proposed method is still able to capture all of the major characteristics of the target distributions

and yield approximations that are generally good in practice. Table 1 and Table 2 imply that the error

we make is less than 0.095. 0 ≤ L ≤ is a definite upper and lower constraint for the metric function L.

This indicates that the margin of error for our experiments is less than 5%. The performance of the

overall model should be influenced by a link between the number of mixture components and the

amount of the data. We have conducted tests to show the relationship between how data size impacts
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the accuracy under various amounts of mixed components, yet we have not yet found a suitable

solution to this problem.

We conduct 30 experiments for each GMM with component sizes ranging from 10 to 1000, as

shown in Table 3. We use method 2 and the learning process with σ = 3 ∗ r. Target distributions

are mixed distributions that were produced at random, identical to the experiments in Table 1 and

Table 2. It demonstrates that with components under 200, an increase in data size does not improve

performance when compared to the tests shown in Table 1. Information loss L for data sizes of

20000 and 50000 is 0.0778 and 0.065 for GMM with 100 components, which is worse than GMM

with 200 components learning under 5000 data points. The performance of components with 200

components consistently improves from 0.04447 to 0.025 when data size is increased. After a certain

point, increasing the size of components under the same data size may not always result in a better

output. Component sizes 500 and 1000 perform no better than 200 with data size 20,000. Yet, a GMM

with 500 components beats all other GMMs with a data size of 50,000. These discoveries reflect our

understanding of GMM distribution decomposition intuitively. A specific number of components are

required to obtain an appropriate level of detail representation of a density when we deconstruct a

distribution. More data points and more components are required to discover finer details. In our

investigation, the GMM with 200 components showed sufficient robustness for usage in practical

applications. Model accuracy was able to rise even when the data amount was increased from 5000 to

50000.

Table 3. Average Loss of 25 Experiments With different numbers of components compare with data

size 20000 data points and 50000 data points.

Average Loss of 30 Experiments with Data size 20000
Numbers of Components

10 30 50 100 200 500 1000

L = 0.710 L = 0.336 L = 0.200 L = 0.0778 L = 0.0295 L = 0.0326 L = 0.0378

Average Loss of 30 Experiments with Data size 50000
Numbers of Components

10 30 50 100 200 500 1000

L = 0.715 L = 0.364 L = 0.210 L = 0.065 L = 0.025 L = 0.0203 L = 0.0289

3.2. Neural network application

We demonstrate a few neural network applications using GMMs and our GMMs learning

techniques in this section. The first one involves creating handwritten numbers with an autoencoder

while learning the output distribution of the encoder using GMM. In the second, known as style

transfer, gram matrix distribution is learned using GMM.

3.2.1. Mnist Data set of handwritten digits generation

We replicate the numerical experiment from [11] in this experiment. In the Kolouri et al.

experiment[11], they showed how to use Sliced Wasserstein Distance to learn an embedding layer

(latent variables) through GMM. In our method, we train the GMM using suggested techniques.

The proposed structure of the neural network model by [11] is exactly what is used. It was created

by combining an autoencoder generator and a straightforward convolution neural network with

classification output as the discriminator. [24–28] The whole process is illustrated in Figure 8.

We present our findings in Figure 9 and compare them with the learning strategy suggested at

[11]. We have our results, which are randomly picked from our learnt GMM distributions, on the left

side of Figure 9. Comparing with [11], our finding at the number 8 is more clear than SW-GMM and

EM-GMM. Likewise, at number 9, our generation are less confused with number 4. Our results reveal

more variety at number seven. Our learning method recognizes various varieties of the number 7. In

addition, our learnt GMM captures some rounded shapes and writing habits that place dashes in the
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middle when writing a number 7. The majority of the random samples in our results don’t have a lot

of unidentifiable generations, unlike the red-highlighted EM-GMM and SW-GMM results in Figure 9.

Figure 8. Model Structure.

Figure 9. Result comparison.
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It is worth mentioning that, in our training process, in order to gain faster convergence, we slightly

amended the loss function of GAN. The loss function for GAN is Eq.(10).

J(G) = −α
1

2
Ezlog (1 − D (G (z))) + ‖ x − G (z) ‖2 (10)

where J(G) is the loss of a generator, α is a constant to adjust the level of discriminator loss,
1
2 Ezlog (1 − D (G (z))) is the discriminator loss same as [29] and x is the target image and G (z)

is output image generated by generator.

Following up the notation given on [29], for the generator loss, we multiply α to the cross-entropy

loss to regulate how much we want to listen to the discriminator. Adding in Mean Square Loss guides

the generator to generate images close to the dataset.

Another intriguing experiment is that we attempted random mixing of a few of GMM data

through different classes. The examples in Figure 10 include 4 examples. Despite the fact that the

number of those created images is getting intractable, our generated images continue to retain input

category attributes. For instance, 0 and 4 produced an image that resembled 9. The image created by

GMM samples randomly merged from classes 0 and 3 is shown in the example in the upper right.

Figure 10. Random Mixing.

The diffusion model employs stochastic processes to introduce noise and produce accurate data

mapping. When similar images are diverted from an image by noise, a one-to-one path is created for

the neural network to work with. [30–32]. In our work, using GMM as an intermediary for latent

variables results in a comparable outcome. The fact that each class’s variables are well-segmented

enables us to produce random combinations of features. As illustrated in Figure 10, it is simple to use

and has more control over generated images. Language image models may find it advantageous to

represent words as a GMM distribution. The values of latent variables are sampled at random, so the

resulting images are less likely to become repetitive.

3.2.2. Style Transfer

Here we introduce a modified version of style transfer[23] algorithm where we turns gram matrix

into GMM. The foundation of style transfer is the gram matrix. It shows the degree of correlation

between each extracted feature as calculated by a neural network. In our trials, we applied trained

VGG19 [33] for feature extraction in accordance with the original study. Variation is one of the causes

for incorporating GMM into the algorithm. A specific gram matrix determines a specific algorithmic

result. To provide diversity to the algorithm, we could change the learning rate or the weights assigned
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to style features and content features, although doing so aggressively could result in a chaotic result.

Moreover, the traditional method struggles to manage the degree of feature mixing between two styles

when we attempt to combine multiple styles at once. Turning a gram matrix into a distribution and

doing random sampling is one method of solving these issues. The feature combination is randomized

using a sample from a gram matrix. It is similar to what we show in the MNIST handwritten digits

generation studies where blending characteristics stochastically can create new digits.

Figure 11 shows the process of how a gram matrix is produced. Passing an image into VGG19

produces output features from each layer. Take 5 output features from each block and perform Eq.(11)

to calculate the gram matrix. For convenience, we call it VGG19 feature extraction module.

Gl
ij = ∑

k

Fl
ikFl

jk, (11)

Figure 11. Result comparison.

We demonstrate how to put up a gram matrix data set as well as the entire algorithmic process

in Figure 12. In order to get a data set of gram matrices for each layer, we first randomly crop two

styles of photos and then send them to the VGG19 feature extraction module independently. Second,

using Algorithm 2, we train GMM using a dataset of gram matrices for each layer. Third, sample

the gram matrix and carry out the same optimization procedure as in the orginal work[23]. The

probability of the features in the gram matrix is determined by the dataset. For instance, the gram

matrix dataset comprises 1/4 of the data points from style 1 and 3/4 of the data points from style 2, if

we arbitrarily crop 25 photos from style 1 and 75 images from style 2. The sampled gram matrix will

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2023                   doi:10.20944/preprints202302.0275.v2

https://doi.org/10.20944/preprints202302.0275.v2


17 of 20

probably comprise 25% values from style 1 and 75% values from style 2 as we sample the gram matrix

distributions. Our method is illustrated graphically in Figure 13. We make use of two well-known

Vincent Van Gogh works. Both "The Starry Night" and "Sunflowers" are used as the target and style

images, respectively. The result image displays an increasing number of features from style image 2

as we steadily increase the size of style 2 photos in the data set. We discover that each output image

shares the same style but has attributes that differ substantially from one to the next by learning several

random sampling gram matrices. Nearly like altering position and angle of each stroke. When all

output photographs are combined, the result will look like the painting’s features are flowing. Here is

a youtube1 video showcase the results. As shown in Figure 13, the feature blending levels between two

styles are 0%, 10%, 20%, and 80%. Each mixing level generates 10 photos at once. Using this method,

we can investigate the properties that neural networks can extract and how they impact the result.

Figure 12. Result comparison.

1 https://youtu.be/yP22_ycAqMA
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Figure 13. Random Mixing.

4. Conclusions and Future Work

In this paper, we demonstrate that GMMs with large-sized components can approximate arbitrary 
distribution by using the Fourier decomposition concept. We offer two straightforward, easy-to-use 
GMM learning methods. Numerical tests are conducted to demonstrate the efficacy of our approach. 
Also, we showed how to use GMMs with natural networks. Our algorithm learns latent space for 
Autoencoder handwritten digits generation and gram matrix for style transfer. The neural network is 
able to produce meaningful images by merging characteristics from several categories by randomly 
mixing the sampled latent variables across multiple categories. We use GMM in the transfer gram 
matrix in the same way that we handle latent variables in the autoencoder.

In the future, we will work on a more explicit theoretical demonstration of the claim that the 
GMM can approximately decompose arbitrary distributions. We will continue to seek for ways to 
construct more sophisticated applications because our experiment demonstrates that GMM enables us 
to have greater control and variation over neural networks.
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