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Abstract: The integration of Artificial Intelligence (AI) in healthcare has transformed clinical practices by
improving the accuracy of diagnosis, optimizing surgical procedures, improving the patient experience, and
accelerating drug development. This article provides a comprehensive overview of the many applications of
artificial intelligence (Al) across several industries, including fast diagnostics, where ML algorithms greatly
enhance the accuracy and velocity of disease diagnosis. State-of-the-art robotic-assisted minimally invasive
surgical procedures that shorten patients” hospitalization and improve their chances of recovery, cutting-edge
Al applications in healthcare monitoring, and medication development. The article also looks at the primary
challenges that Al in healthcare will inevitably encounter, such as differences in product quality, a shortage of
skilled workers, privacy and ethical issues, and the need for improved regulatory frameworks. Despite the
challenges, Al contributes significant advantages to the healthcare industry, providing novel and remarkable
contributions to the efficiency of medical procedures and the progress of medical outcomes. The paper
emphasizes the importance of cooperation in overcoming current challenges and enhancing the acceptability
of Al technology in clinical settings. This will ensure that Al-driven innovations continue to enhance the
standards of patient care.

Keywords: Artificial Intelligence; Healthcare Innovation; Robotic Surgery; Medical Diagnostics.
Personalized Medicine

1. Introduction

In recent years, advancements in technology have significantly transformed the field of
informatics, particularly in the field of information processing, due to the introduction of cutting-
edge technologies. Previously, the primary issue revolved around obtaining information. Ultimately,
the scientific community is now benefiting from the advantages of the rapidly developing, readily
accessible, and swiftly analyzed datasets that may also be conveniently stored in databases [1]. These
technologies and developments have not only enhanced human abilities but also accelerated
technological advances.[2]. The term “artificial intelligence” (AI), coined by John McCarthy in 1956,
represents the initial concept of replicating human intellect in computers. The concept has
revolutionized several domains, enabling significant technical breakthroughs and streamlining
problem-solving processes [3,4]. Undoubtedly, Al will significantly impact the future, with the
medical industry being at the forefront of experiencing its benefits. This kind of simulation of human
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intellect in machines is also called Al This includes the techniques of machine learning (ML), deep
learning (DL), and neural networks (NN).

The field of Healthcare AI has made significant advancements since its beginnings, with
algorithms now achieving expert-level accuracy in detecting diseases from medical pictures. The
rapid advancement of artificial intelligence (AlI) will catalyze a revolution across several industries.

Artificial intelligence has the potential to completely transform the field of medical physics [5,6].
Therefore, it is essential for the community to strategize and address upcoming problems and
possibilities to lead the way in the new era of the fourth industrial revolution. Despite these
progressions, the incorporation of medical Al systems into routine clinical practice is still an
important but mostly neglected topic. Furthermore, the medical artificial intelligence community
faces the technological, ethical, and interpersonal issues that are difficult to resolve. In order to ensure
the secure and effective use of these technologies, it is important to address the challenges they
provide [5,6].

Although Al algorithms have proven effective in retrospective medical studies, their application
in real-world medical practice has been limited [7,8]. Critics argue that, despite promising data, Al
systems may exhibit inadequate speed or complexity for best use in real-world medical settings [8,9].
The challenges may arise from the interactions between people and Al systems [10]. Retrospective in
silico datasets frequently undergo rigorous filtering and cleaning procedures, which may reduce their
practical relevance in medical practice. Al has been extensively utilized in various areas of modern
biology and biomedicine due to its rapid progress and development [11].

Its primary aim is to replicate human-like intelligence in computers, enabling the creation of self-
aware intelligent systems. Al applications include vision, robotics, data analytics, problem solving,
natural language processing, decision science, and linguistics [12-14]. Al's profound impact on
clinical medicine is also evident, enhancing medical practice significantly. Al systems are
instrumental in early disease detection, enabling personalized medicine, and improving the
efficiency of administrative procedures.

As Al technology progresses, its integration into clinical settings is poised to transform
healthcare delivery, significantly improving patient outcomes. Al’s potential extends to
revolutionizing diagnosis, treatment planning, drug discovery, personalized treatments, and data
analysis. Al, with its advanced algorithms and machine learning abilities, can efficiently analyze vast
amounts of medical data to extract important conclusions and offer precise projections. This assists
healthcare professionals in making informed decisions, enhancing patient care, and optimizing the
use of resources [14]. The evidence for these developments is supported by clinical data obtained
from electronic health records (EHR), genomic data derived from whole genome sequencing (WGS)
inquiries, and digital imaging data acquired from MRI, ultrasound, biomedical research, and digital
pathology systems [14]. Al has an extensive application and receives investments from prominent
institutions like as the Mayo Clinic and the Cleveland Clinic, as well as technology heavyweights like
Philips, Siemens, and GE [15].

Al also plays a significant role in biotechnology firms like BERG and pharmaceutical companies
like Takeda for biomarker discovery and drug development [15-17]. Companies such as Google and
Apple are investing in Al-powered wearable technologies that monitor health and lifestyle [15].
Additionally, Facebook’s Preventive Health feature offers users access to health resources and
recommendations for checkups [18]. These developments illustrate the expansion of American “Big
Tech” or “GAFAM” corporations in the healthcare sector, with Al at the forefront of this
transformation. Numerous studies have highlighted Al’s transformative impact on medicine and
healthcare . This article discusses Al's immense potential to revolutionize various sides of healthcare
delivery, including diagnostics accuracy, Surgical precesion.Patient care , treatment planning, drug
discovery, personalized care, and medical imaging

1.1. Enhancing Diagnostic Accuracy with Al:

Artificial Intelligence (Al) can analyze, induce, and organize medical data through electronic
information technology, allowing doctors to diagnose diseases more accurately and provide
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treatment plans.[19] Al encompasses many fields, such as machine learning, evolutionary computing,
natural language processing, etc. enabling feasible computations in multi-layer neural networks.
Machine learning overcomes the limitations of traditional statistical methods, allowing for the
integration and interpretation of complex data[20]. Doctors collect extensive medical data
electronically, such as medical records and imaging scan results, and use machine learning
algorithms to analyze and make judgments, discovering characteristics and patterns of diseases,
thereby enhancing the precision and efficiency of disease diagnosis.[21] For instance, early cancer
diagnosis systems, cardiovascular disease (CVD) risk prediction models. Additionally, Google’s
DeepMind project has developed an automatic tissue layer segmentation model using Al deep
learning, achieving significant results in diagnosing 50 common ophthalmic diseases including
retinal disorders, with high accuracy. Intelligent pathology diagnosis utilizes deep learning
technology to automatically analyze pathology images, enhancing the accuracy and efficiency of
diagnoses. [22]. Applying Al to clinical workflows can also provide valuable insights for nursing
decisions. With trained computational methods, clinical doctors can more scientifically and rapidly
obtain valuable search results [23]. Thus, based on the patient’s condition and disease characteristics,
combined with their professional knowledge and clinical experience, doctors can use intelligent
medical systems to generate personalized treatment plans and continuously adjust and optimize
them according to changes in the patient’s condition [19]. Some of recent enhancement is expalines
in Figure 1.
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Figure 1. The figure illustrates the structure for integrating artificial intelligence (AI) into medical
diagnostics, consisting of four primary components. Al application is closely associated with
important medical domains like as ophthalmology, cancer diagnosis, and cardiovascular risk
prediction. Artificial intelligence has the potential to enhance diagnosis accuracy by analyzing data
and recognizing trends. The primary components are machine learning algorithms, high
computational capacity, and natural language processing. Additionally, there is a continous
integration of clinical applications to provide specific treatment.

1.2. AI-Enabled Medical Equipment Innovations:

Current technologies are primarily focused on the increasing integration of complex computer
algorithms and equipment modalities. The updates to a new generation of medical examination
equipment like X-ray Computer Tomography (CT) and Magnetic Resonance Imaging (MRI) have
improved the segmentation, analysis, and diagnosis of medical images [24]. Technologies like deep
learning aid clinicians in intelligently evaluating and identifying imaging data, enabling more
accurate assessment of disease types and severity, as well as the selection of suitable treatment
therapies. For example, the AIRad Companion Organs RT software is an Al-based application used
for various clinical analyses [25].Compared to traditional equipment, Al-Rad solutions can generate
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clinically acceptable contours and save time, thus benefiting the radiotherapy process. Additionally,
there are numerous chest X-ray Al tools available on the market for detecting conditions like
pneumothorax and pleural effusion, which, as clinical trials have shown, are highly sensitive and
assist doctors in their analyses [26,27].

Conventional blood glucose monitoring requires patients to puncture their fingers, a technique
that does not offer immediate data. In recent times, there has been a significant increase in the
adoption of wearable continuous glucose monitoring (CGM) biosensors [28]. These sensors test using
patient’s sweat and saliva and synchronize the results with connected mobile devices via Al
algorithms, digitizing diabetes monitoring [29]. Medical care systems based on Wireless Sensor
Networks (WSN) used in medical institutions can closely monitor patients’ vital signs in real-
time[30]. Sensors can be placed on or around the patient’s body to monitor blood sugar levels, pulse
rates, breathing patterns, etc., allowing doctors and nursing staff to remotely monitor these metrics
without disrupting the patient’s daily life. This helps in providing more timely treatment to patients
and supports the establishment of IoT systems in healthcare institutions[31].

Medical imaging serves as an essential tool for diagnosing and treating various illnesses,
including cancer, heart disease, and eye conditions. Al technology, by automatically detecting and
interpreting images, enhances the precision and efficiency of medical imaging analysis [[32]. The use
of deep learning algorithms, which involve neural networks processing extensive data, represents a
notable Al advancement in medical imaging [33]. These algorithms are trained to identify patterns in
medically-oriented images, aiding in disease or damage detection and prediction [34].

A significant milestone in Al for medical imaging is the development of deep learning
algorithms for skin cancer identification. These algorithms match the accuracy of human
dermatologists [35] and are also applied in diagnosing other cancers like breast and lung cancer by
analyzing CT and MRI scans [36]. In addition, artificial intelligence (AI) helps in automatically
identifying and highlighting regions of importance in photographs, hence decreasing the amount of
time and effort needed for manual examination [36]. In eye care, Al algorithms have successfully
detected conditions such as glaucoma and diabetic retinopathy with high precision [37].Some of the
Al enhanced medical medical equipments are described in Figure 2.

Radiology Workflow
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Figure 2. The image illustrates the application of Al-augmented medical instruments in the radiology
workplace. It highlights the major functions, such as image reconstruction, pathology identification,
and treatment prognosis. These capabilities are integrated with smart medical devices such as blood
pressure monitors and an artificial pancreas. This combination aims to improve diagnostic precision
while also enhancing treatment efficiency for patients.


https://doi.org/10.20944/preprints202407.0938.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2024 d0i:10.20944/preprints202407.0938.v1

Despite these advancements, Al in medical imaging faces challenges, including the need for
high-quality data for training and validating algorithms and potential biases in these algorithms,
requiring ongoing monitoring and revision [38] Issues such as inconsistent imaging protocols and
the diversity of clinical scenarios add complexity, while privacy regulations and data sharing
restrictions complicate Al development and application [38,39]

Predictive analytics in healthcare, powered by Al improves patient outcomes by identifying
those at risk of chronic diseases and tailoring interventions accordingly. This process involves
analyzing data from EHRs and other sources using various statistical models and machine learning
techniques[40,41]. Al's ability to predict patient readmission rates and response to treatments helps
optimize healthcare delivery[42]. However, the effectiveness of these tools is often limited by the
diversity and size of training datasets, which affects their applicability across different patient
demographics and disease types [43].

To address these challenges, enhancing data representation, increasing dataset diversity, and
improving model interpretability are crucial. These steps aim to develop more accurate, reliable, and
equitable predictive analytics tools in healthcare.

1.3. Al driven robotic Surgical Precision

Today, artificial intelligence medical robots have become instrumental in the field of medical
services, assisting surgeons in performing various surgeries, primarily minimally invasive spine
surgeries (MIS) [44] Robot-Assisted Surgical Systems (RASS) use highly precise instruments for
minimally invasive operations, which can speed up recovery, thereby reducing hospital stays and
lowering patient treatment costs[45]. For example, a study compared the results of robot-assisted
rectal resection with traditional laparoscopic surgery, finding that robot-assisted surgery resulted in
less blood loss, fewer surgical site infections, shorter hospital stays, and lower rates of reoperation
[46]. During surgery, robots can monitor the patient’s condition and perform operations
automatically according to the doctor's commands. This reduces the risk of medical incidents and
enhances the precision and stability of the surgery [47]. Surgical robot technology can reduce human
error by using visual and motion sensing technology to sense and adjust the position and force of
surgical instruments in real-time, which is essential for surgeries requiring high precision [48].some
of the application of Al is illustrated in the Figure 3.

Surgical robot technology also enables remote surgeries. Through the internet and remote
control technology, specialists can remotely operate surgical robots, monitor the surgical process in
real-time, and provide guidance[49]. Remote surgical systems can reduce occupational hazards faced
by surgeons, including radiation exposure and spinal injuries caused by prolonged use of lead
aprons, or potential infectious diseases transmission (such as COVID-19)[50]. In one study on robot-
assisted coronary intervention, radiation exposure was reduced by 95% compared to traditional
surgical positions. Moreover, it can reduce physician fatigue, thereby minimizing errors during
surgery. With further development and refinement of surgical robot systems, there is hope that
patients in remote areas can receive timely surgical services in a shorter timeframe, potentially saving
lives[51].
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Figure 3. The figure summarizes three critical aspects of enhancing the role of artificial intelligence in
surgery. On the one hand, visual and motion technology relies on various sensors, adaptive
movements as well as enhanced visualization to achieve surgical precision. On the other hand, robot-
assisted surgery utilizes Al for the exact percutaneous and minimal invasive technique, which is
directed only by the surgeon for the best outcome. Finally, the control of remote surgery applies
communication technology helps for global reach and collaborates experts which provides surgeons
with the ability to perform and supervise surgeries from a remote location. In brief, the picture
illustrates how Al can improve the accuracy of surgery, extend the capabilities and bring together
globe experts for knowledge-sharing.
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1.4. Elevating Patient Care with Al Technologies

In recent years, artificial intelligence has been applied in multiple medical fields, and Al
technology can also enhance patients’ medical experiences[66]. By analyzing patients’ genomic data
and other biomarkers, Al can tailor personalized treatment plans, offering more precise treatment
guidance. This not only improves treatment outcomes and patients’ quality of life but also saves on
treatment time and costs[67]. Studies show that up to 65% of patients are dissatisfied with the waiting
times at clinics, and difficulty in accessing healthcare has always been a problem for the public[68].
The application of intelligent medical appointment and payment systems allows patients to more
conveniently seek medical advice, make appointments, undergo treatment, make payments, pick up
medications, and check medical records, thus improving the efficiency of hospital management and
providing more convenient services for patients[69].

Additionally, Al can also optimize the allocation and utilization of medical resources. In
situations where medical resources are scarce, Al can help healthcare institutions optimize queuing,
ward allocation, and other processes to enhance resource utilization efficiency[70]. With Al-driven
remote monitoring systems, patients can track and monitor their vital signs and alert healthcare
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providers to any potential issues. This can lead to earlier detection and improvement of treatment
outcomes, and reduce the need for in-person visits to medical facilities. Furthermore, it allows for
effective medical services to be provided to patients far from hospitals through technologies like
remote monitoring and telecare[71]. Virtual consultations offered by remote medical systems mean
that patients do not need to visit medical facilities to receive treatment, which is particularly beneficial
for those living in remote areas or with mobility issues[72]. Healthcare workers can also track the
health status and lifestyle habits of discharged patients through intelligent health management
systems, analyze patients” health risks, and provide targeted advice, thereby improving the doctor-
patient relationship.[73]

In the field of drug development, artificial intelligence can assist scientists in analyzing chemical
data and accelerating the process of developing new drugs. Deep learning technology, as a data
mining method, has shown tremendous prospects in the field of drug design.[74] Al learning
methods ensure a systematic assessment of physicochemical properties, toxicity, side effects,
biological activity, and pharmacokinetics at a conjectural level. Additionally, multi-target refined
computational methods can be used to reduce the failure rate of preclinical lead molecules by
decreasing the number of synthetic compounds tested in in vitro or in vivo systems, thus reducing
loss rates and research and development expenditures[75]. A critical part of the drug development
process is the synthesis of selected molecules; Al technology can optimize the sorting of molecules,
thereby selecting the most effective synthesis pathways.[76] Moreover, machine learning techniques
and predictive modeling software also help identify target-specific virtual molecules, as well as the
associations between molecules and their targets, while optimizing safety and efficacy attributes[77].

Based on patients’ genomic and clinical data, artificial intelligence can provide personalized
medication selections and dosages. By analyzing patients’ genotypes, medical histories, and other
relevant information, machine learning algorithms can predict the efficacy and side effects of specific
drugs, helping doctors devise the most suitable treatment plans for patients[78]. Major
pharmaceutical corporations such as Bayer, Roche, and Pfizer have initiated partnerships with
information technology companies. Insilico Medicine has utilized artificial intelligence to develop a
pharmaceutical therapy to treat idiopathic pulmonary fibrosis [79]. Recently, Al has played a
significant role in the development of new anti-cancer therapies. For instance, a group of novel
medications has been successfully developed using Al techniques. These drugs have demonstrated
the ability to effectively inhibit the growth of tumor cells, relax the pain of patients, and prolong their
life expectancy [80].

Al robots are revolutionizing healthcare by automating repetitive tasks and delivering
personalized treatments, thereby enhancing patient outcomes and reducing costs. These robots vary
widely, from exoskeletons to mobile and humanoid forms. In rehabilitation, Al robots are pivotal,
assisting patients with physical therapy exercises tailored to improve their functional and motor skills
[81,82] Furthermore, Al robots are used for physically demanding or precision tasks such as tele-
surgery, where surgeons operate remotely using robotic arms, achieving greater precision and
flexibility than traditional methods. This technology proves particularly beneficial for complex or
otherwise impossible surgeries using conventional techniques.

In geriatric care, Al robots support the elderly with daily activities like dressing and bathing and
provide companionship [83]. Although their adoption in eldercare is limited due to high costs, such
robots are more prevalent in countries like Japan, which has a significant aging population [84]. Al
robots are also useful in hazardous environments, such as contaminated areas or emergency
situations, where they can navigate dangers, assess conditions, and relay real-time information to
response teams [85].

Despite the potential for increased efficiency and reduced medical errors, the cost of
implementing and maintaining robotic technologies remains a major barrier, particularly in
developing countries like India [86]. A Canadian study on the financial impact of robotic urology
highlighted substantial costs, with the initial setup for robot-assisted prostatectomy exceeding $2
million USD, and total expenses over seven years reaching $3.5 million CAD for prostatectomy alone.
This includes costs for operation, maintenance, and training, with each robotic procedure costing
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considerably more than traditional surgeries [87,88]. However, the long-term benefits could offset
these costs through increased procedural volume [88], and short-term gains have been noted in
reduced hospital stays, less blood loss, and improved surgical margins, enhancing postoperative
outcomes like continence and sexual function [88,89].

Artificial intelligence (AI) is poised to revolutionize the process of drug development by
significantly decreasing the time and expenses involved in bringing novel medications to the
market.Al algorithms analyze diverse data sources, including scientific publications, clinical trials,
and chemical databases, to identify potential drug targets and assess the efficacy and safety of new
compounds [90]. In virtual screening, Al examines vast compound databases to find candidates likely
to bind to specific protein targets [91]. Al further aids in analyzing genetic data to pinpoint new
therapeutic targets for personalized treatments, such as in cancer [92]. Additionally, by reviewing
clinical trial data and electronic health records, Al helps predict potential drug side effects, enhancing
safety and reducing adverse events in new drugs [93].The different application of Al has shown in
Figure 4.

. “Bioinformatics Al applications
Al laboratory data analysis AT in genomics and drug discovery

“Machine learning radiology

Al diaguostic lmaging ~Al-enhanced MRICT scanning

+Al and automation in surgery
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Figure 4. This image depicts the diverse uses of artificial intelligence (Al) in clinical practice,

Al drug development

emphasizing five crucial domains: Artificial intelligence (AI) is utilized in diagnostic imaging to
enhance the precision and efficiency of medical diagnoses. Al is also employed in laboratory data
analysis to reduce the time needed for comprehension, drug discovery, and identification of
biomarkers. Additionally, Alis used in managing patients’ data, allowing for continuous monitoring
of their health and personalized treatment. Al is further utilized in medication development, offering
predictive modeling for rapid medication creation and personalization. Lastly, Al is employed in
robotic surgery. The applications collectively illustrate that Al plays a distinctive role in enhancing
service delivery and patient care to unprecedented levels.

2. Strategies for Effective AI Adoption
2.1. Standardizing Al Technologies for Better Medical Outcomes

The widespread development and entry of artificial intelligence hardware and software into the
medical market have brought about quality issues[94]. Al in the medical field requires a large amount
of data, but many data sources are unreliable and vary greatly in quality, negatively impacting the
accuracy of diagnoses and treatments, leading to inaccurate results[95]. The inconsistency in product
standardization and quality also affects the accuracy of Al systems. Al devices are not all-powerful;
for example, robots using precise surgical instruments make operations more precise but cannot
perform surgeries involving sensitive nerves[96]. Moreover, their costs are significantly higher than
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traditional surgeries, and they may also have unknown safety issues. To address the problem that
surgical robots cannot handle all types of surgeries, researchers have developed robots for specific
surgical operations, but these still present issues of high costs [97].

2.2. Addressing the Skills Shortage in AI Development

Currently, there is a shortage of talent in the research and application of artificial intelligence
technology [98]. Al requires human operation and implementation, and due to issues with the
education system, clinical professionals lack engineering knowledge, and those involved in device
development are not familiar with clinical medicine, which is a bottleneck issue [99]. Healthcare
workers’ acceptance of Al-assisted medicine still needs improvement[66]. However, so far, Al has
not eliminated any jobs in the healthcare field, but full integration of Al into clinical work and
electronic medical record systems remains challenging [100]. We should accelerate the training of
medical staff in AI medical knowledge to quickly master advanced science and technology. Schools
should also reform their educational models to speed up the training of interdisciplinary talent
combining medicine and engineering [101]. Additionally, it is important to enhance public awareness
of scientific knowledge so that everyone can consciously accept the benefits brought by AI [102].

2.3. Navigating Ethical and Privacy Challenges in Al Applications

Literature reports on the risks of artificial intelligence in terms of privacy and ethics, mainly
focusing on the following aspects: patient agency and oversight, technological robustness and safety,
privacy of patient identity and confidentiality of medical data, transparency and diversity in
diagnosis and treatment, non-discrimination and fairness, accountability for medical harm, etc [103].
With Al-assisted diagnostics and treatment, patients have the right to know about the system'’s
limitations, the rationality of decisions, and other related issues [104]. However, in reality, patients
are unable to communicate effectively in medical settings, severely challenging their medical
autonomy, leaving them no choice but to passively accept the involvement of Al [105]. It is believed
that smart medicine, based on Al technology, complicates the protection of information security and
individual privacy, and shows indifference to medical humanitarian care, thus becoming a complex
of risks[106]. It is proposed to cultivate humanitarian care in Al and to use ethical review to help
improve the governance system of technology[107]. Ethical issues in the medical application of Al
are increasingly gaining attention, and while problems are inevitable, we need to explore solutions.
Before using Al, any potential theoretical problems should be adequately addressed and resolved to
eliminate negative impacts and resolve ethical risks. This is the responsibility and duty that ethicists
should undertake[108].

2.4. Al Regulatory Challenges

The absence of relevant laws and regulations and the inadequacy of policy management are also
key factors restraining the application of artificial intelligence technology in the healthcare
industry[109]. Currently, there is a lack of laws and regulations that align with practical
circumstances and policy management measures to ensure the legal, standardized, and safe
application of technology in the healthcare sector[110]. Moreover, in the actual operations of hospitals
at various levels, there is also a lack of corresponding regulations and operational procedures to
ensure the practical effectiveness and social benefits of the technology[111].

Fortunately, many countries around the world have enacted numerous laws and regulations
regarding the application of artificial intelligence in healthcare, gradually establishing a
comprehensive legal system for medical intelligence [112]. Furthermore, artificial intelligence (AI)
assists in automatically identifying and highlighting regions of significance within photographs,
hence decreasing the amount of time and effort needed for manual examination [113].

The EU Al Act, approved in 2023, is the first and entire legal framework designed to govern Al
technology [114]. It categorizes systems based on their risk level and imposes necessary standards for
high-risk Al in areas such as data and documentation, transparency, human oversight, accuracy, and
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cybersecurity. As stated in the legislation, national authorities will track compliance. The US Al Bill
of Rights, introduced in 2023, presents an optional framework of principles aimed at directing the
development and utilization of Al It primarily emphasizes the importance of addressing algorithmic
discrimination, safeguarding data privacy, providing transparency and explanations for Al systems,
and ensuring human alternatives and supervision [115].

Prevously, several countries also makind policies for promoting and regulating the development
of Health Medical Big Data Application [116] for a New Generation of Artificial Intelligence which
outlined the development directions and regulatory policies for smart hospital construction, surgical
robots, intelligent diagnostics, intelligent physiological monitoring, image recognition, new drug
development, pharmaceutical regulation, and intelligent epidemic monitoring and prevention [117].
These policies have promoted the healthy development of the medical Al technology industry and
will effectively improve the efficiency of medical resource allocation and the quality of medical
services [118].

3. Conclusion:

The research on Al in the field of health industry has led to a new era of medical innovation,
which is characterized by notable progress and challenges. The given review has proven how
artificial intelligence is changing healthcare services by enhancing the diagnosis, the surgeon’s
accuracy, the patient’s experience, and the new medication development speed. Through the
swiftness of Al's diagnosis, healthcare may not only be more efficient but also more accurate, thus,
playing a great role in the early detection and better medical care. Besides, the artificial intelligence
has turned into a necessary part of surgery, by giving precision, which leads to the elimination of
human error, thus, patients can recover faster. On the contrary, the incorporation of Al into the
healthcare too has some difficulties. The main difficulties are the quality of the AI products, the
shortage of qualified persons with the training in both Al and clinical applications, and the ethical
and privacy issues. Besides, the current legal structure cannot keep up with the fast pace of the
technical progress, thus, the process of the widespread adoption is limited.

We are on the edge of a medical revolution, hence we should adopt a contemporary perspective
that directly addresses these matters. This involves improving educational programmes to help
students understand the relationship between engineering and clinical practice, establishing
stringent regulations for Al systems to ensure compliance with laws in the field, and creating a
regulatory framework that safeguards patients while also fostering innovation and success. Despite
its limitations, the implementation of artificial intelligence (Al) in healthcare will play a crucial role
in advancing patient outcomes and operational efficiency. In order for Al to become a complementary
tool for human knowledge in the pursuit of achieving high-quality care, it is imperative that
stakeholders from various domains, including physicians, technologists, politicians, and ethicists,
collaborate to address the challenges that will arise during the advancement of Al in this field.
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