
 1

Review 

Oral Mucositis: Melatonin Gel an Effective New 
Treatment 
Ahmed E Abdel Moneim,1 Ana Guerra-Librero2, Javier Florido2, Ying-Qiang Shen2, Beatriz 
Fernández-Gil2 Darío Acuña-Castroviejo2,3 and Germaine Escames 2,3* 

1 Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt; 
aest1977@hotmail.com 

2 Centro de Investigación Biomédica, Universidad de Granada, Spain; gescames@ugr.es 
3 CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, 

Spain 
* Correspondence to: gescames@ugr.es; tel.: +34-618-521-646 

 
Abstract: The current treatment for cervico-facial cancer involves radio and/or chemotherapy. 
Unfortunately, cancer therapies can lead to local and systemic complications such as mucositis, 
which is the most common dose-dependent complication in the oral cavity and gastrointestinal tract. 
Mucositis can cause a considerably reduced quality of life in cancer patients already suffering from 
physical and psychological exhaustion. However, melatonin, whose role in the treatment of 
mucositis has recently been investigated, offers an effective alternative therapy in the prevention 
and/or management of radio and/or chemotherapy-induced mucositis. This review focuses on the 
pathobiology and management of mucositis in order to improve the quality of cancer patients’ lives.  
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Overview of mucositis pathobiology 
Mucositis, one of the most severe toxic side effects of cancer therapy, can affect the entire 
gastrointestinal tract, with the oral cavity being the most common affected site. It presents in 
virtually all head and neck cancer patients receiving chemo and/or radiotherapy, in 60–85% of those 
receiving myeloablative therapy for stem-cell transplantation and in 20–40% of patients receiving 
conventional chemotherapy [1-3]. The use of concomitant chemotherapy and/or targeted agents 
increases the risk of mucositis. 

Oral lesions lead to considerably decreased quality of life in these patients due to solid and 
liquid food dysphagia, dysarthria and odynophagia, resulting in depression in some patients, who   
often require percutaneous endoscopic gastrostomy tube insertion [4]. In addition, mucositis lesions 
may represent a gateway to opportunistic infections, can complicate cancer treatment and extend 
hospitalization [5-6]. On the other hand, given its dose-limiting toxicity for both chemo and 
radiotherapy, mucositis can have a direct impact on survival rates [7]. 
 

Pathophysiology of mucositis 
Recent developments in mucositis research have highlighted multiple factors which contribute 

to mucosal injury [8]. A five-phase chronological process has been proposed: initiation,  primary 
damage response (upregulation and message generation), signal amplification, ulceration and the 
healing phase [9]. Mucositis commences when gastrointestinal (GI) mucosa are exposed to cytotoxic 
agents, resulting in cellular DNA damage and cell death, mainly through the generation of oxidative 
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stress and reactive oxygen species (ROS) formation. ROS directly induce tissue injury and trigger a 
cascade of inflammatory pathways [10]. Ortiz et al. have also observed a mitochondrial oxidation 
response to radiation with subsequent mitochondrial dysfunction [11]. 

The progression of mucositis is characterized by significant inflammatory mediator 
up-regulation due to the activation of the NF-κB pathway (upregulation and message generation 
phase). This is followed by the signaling and amplification phase, during which, once activated by 
chemotherapy and ROS, NF-κB promotes the expression of multiple pro-inflammatory molecules, 
including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNFα, and pro-IL-1β, 
and ensures feedback amplification of the NF-κB-dependent signaling pathway [10]. Furthermore, 
mitochondrial ROS production promotes inflammation by activating a multi-protein cytoplasmic 
complex, such as the NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome. 
NLRP3 inflammasome assembly leads to caspase-1 activation and subsequent cleavage of 
pro-cytokines such as pro-IL-1β, pro-IL-18 and pro-IL-33 into their mature form [11-12] resulting in 
ulceration (ulceration phase). Therefore, the NFκB pathway, mitochondrial dysfunction and 
subsequent NLRP3 inflammasome activation are the three main players involved in the 
development of oral mucositis, which amplify the whole inflammatory process via positive feedback 
loops, thus prolonging tissue injury and ending in the healing phase. 

During  initiation phase of mucositis,  patients begin to develop erythema followed by focal 
areas of  oral mucosal desquamation [13], which mainly occur at the  submucosa and basal 
epithelium level. Therefore, although no evident damage to mucosal integrity is  observed 
clinically,  the tissue biology is altered [10]. The progression of mucositis is then prolonged and 
severe, mucosal integrity is breached, ulceration begins to form and the patient starts to have a 
burning sensation. Atrophic changes occur in the GI mucosa, culminating in tissue injury and stem 
cell death. GI epithelial integrity and function are destroyed and impaired, respectively. A fibrinous 
exudate, or pseudomembrane, containing bacteria covers the ulcer. Bacterial colonization at the 
mucosa ulcers further induces inflammation by stimulating infiltration and activation of 
macrophages, which occurs  approximately two weeks after therapy [10]. Cell wall residues 
originating from colonizing bacteria penetrate the submucosa, where they activate macrophages in 
the infiltrate [14]. This can lead to prolonged hospitalization, the need for parenteral nutrition, 
severe pain, risk of infection and sepsis and increased risk of morbidity and mortality. 

The final stage of mucositis pathobiology is the healing process. Epithelial cells controlled by 
signals secreted by the extracellular matrix, which are then downregulated to avoid hyperplasia, 
migrate, grow and differentiate to form a wound. With the healing process under way, symptoms 
begin to abate [9], and healing is completed within 4 weeks after the final dose of radiation. 
Unfortunately, even after full replenishment of the epithelium, the structure of the reconstituted 
submucosa differs from  its  pre-radiotherapy state  [15]. 
 On the other hand, radiation-induced damage to healthy intestine tissue is a common 
side-effect caused by out-of-field or scattered radiation [16]. We recently demonstrated that tongue 
irradiation also induces intestinal damage. Typical macroscopic traces of mucositis  were also 
detected in the small intestines of irradiated animals,  including a significant decrease in villus 
height and morphological alterations associated with substantial  intestinal architecture changes 
[17]. Given the involvement of mitochondrial oxidative stress, bio-energetic impairment and 
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subsequent NLRP3 inflammasome activation in the development of radiotherapy-induced gut 
toxicity, oral irradiation of rats also resulted in increased small intestinal damage. 

 
Mucositis management  

As there is no effective therapy for mucositis or its associated pain, a large number of studies 
have been conducted in this field. Strategies for managing oral mucositis include preventative 
measures and therapeutic approaches (Figure 1) [13]. 

 

 
 

Figure 1: Actual strategies for managing oral mucositis 
 
Current supportive measures to reduce the risk and severity of oral mucositis include improved 

oral hygiene, which eliminates the presence of any irritants to the oral mucosa [18]. Systemic 
analgesics are also recommended, as tissue injury activates nociceptive receptors which   increase 
pain alongside the underlying tissue damage [7].  

Several topical palliative agents, including Caphosol, Episil, GelClair and MuGard, have been 
approved for the treatment of mucositis, are aimed at alleviating pain and improving the patient’s 
quality of life. However, data on the efficacy of these agents in controlling mucositis-related 
symptoms are scarce [13,19-22]. 

A combination of treatments, such as local rinses with a 2% viscous lidocaine solution, magic 
mouthwash preparations, a topical morphine solution and other systemic analgesics, are used to 
control pain [23]. Frequent rinsing with sodium chloride solution helps to keep the mucosa moist, 
reduces caking of secretions and soothes inflamed/ulcerated mucosa. An oral rinse containing 
doxepin appears to be effective for easing  acute oral mucositis pain caused by radiation therapy 
(with or without chemotherapy) [24]. However,  there is no significant evidence  to suggest  that 
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these mouthwashes are effective [25]. Another type of topical agent is the transdermal patch, 
composed of fentanyl, which is a potent, fast and short acting, synthetic opioid analgesic, although 
transdermal fentanyl causes mild dizziness,  gastrointestinal reactions and itching [26]. 

Oral decontamination, involving  treatments such as Nystatin and chlorhexidine [27], may 
result in significant positive outcomes in  the prevention of  ulcerations linked to oral mucositis.  
Recently, Silva et al. [28] tested a soft pastille formulation consisting of 0.25% lidocaine and 78,000 IU 
Nystatin, which was found to facilitate accurate drug administration by physicians and to  enable  
patients to control drug retention time  in the mouth in order to manage  the pain treatment 
process. On the other hand, chlorhexidine is an effective broad-spectrum antiplaque antiseptic agent 
[29]. However, these drugs are not very effective in reducing the severity or incidence of mucositis  
[30-31].  

Cryotherapy, during which patients suck on ice chips for 30 minutes prior to and during 
chemotherapy infusion [32-35], has been shown to effectively attenuate the onset and severity of 
mucositis in patients undergoing chemotherapy with 5-fluorouracil and melphalan.  However, it is 
only effective for short bolus chemotherapeutic infusions [36],  may  not be  tolerated  by some 
subjects and thus cannot play a significant  role  in radiation-induced oral mucositis treatments 
[23]. 

Several antioxidant agents to prevent mucositis or to reduce its severity have been tested. One of 
the first drugs used to treat mucositis was amifostine [13], a thiol compound which is 
dephosphorylated to an active metabolite and acts as a potent ROS scavenger. However, given its 
limited and inconsistent results, amifostine is not recommended for the prevention of oral mucositis 
in patients receiving either chemotherapy or radiotherapy alone [37]. N-acetyl cysteine (NAC) is 
another antioxidant containing thiol groups, which stimulates glutathione synthesis and scavenges 
free radicals. In addition to its antioxidant properties, NAC prevents NF-κB activation which 
increases the inflammatory response. In a double-blind, randomized, placebo-controlled trial, NAC 
significantly reduced severe oral mucositis incidence [53]. 

Given that a reduction in the proliferative capacity of oral epithelial cells is thought to play a role 
in mucositis pathogenesis, various growth factors capable of increasing epithelial cell proliferation 
have been studied with regard to oral mucositis management. Although palifermin, an 
epithelial-specific growth factor, is the only agent approved for the prevention of oral mucositis in 
bone-marrow transplant patients [38], it is also associated with adverse side effects, requires 
intravenous administration and is expensive [39]. Other growth factors, such as velafermin, 
filgrastim and argramostim, have  been  analyzed for use in the treatment of mucositis [40]. 
Smad7, which has recently received considerable attention [41], was initially identified as a TGF-β 
superfamily signaling antagonist, which blocks TGF-β-induced growth inhibition and apoptosis in 
keratinocytes [42] and    reduces inflammation by antagonizing NF-κB activation. All of these 
characteristics may make Smad7 beneficial in the treatment of oral mucositis [41].   

Several anti-inflammatory agents have produced good results in  studies of oral mucositis in 
animals; there is still conflicting evidence, however, on the efficacy of these agents in reducing the 
severity of mucositis in humans [13]. Benzydamine HCl is a non-steroidal anti-inflammatory drug 
that inhibits pro-inflammatory cytokines including TNF-α and IL-1β. It has been administered in an 
intravenous formulation recommended for the prevention of oral mucositis in patients with head 
and neck cancer receiving moderate-dose radiation therapy without concomitant chemotherapy 
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[43]. A long list of anti-inflammatory drugs has produced inconsistent results with regard to the 
prevention of chemotherapy-induced oral mucositis. This is the case for Misoprostol, a synthetic 
prostaglandin E1 analog, which has anti-inflammatory mucosa protection properties. However, the 
overall results of using misoprostol mouthwash in the prevention of radiation-induced oral 
mucositis in head and neck cancer patients were negative [44-45]. While glutamine, a nonessential 
amino acid, may mitigate mucosal injury by reducing pro-inflammatory cytokine production and 
cytokine-related apoptosis [46-47], it produced inconsistent results in the prevention of 
chemotherapy-induced oral mucositis [48-50]. 

Multiple studies have indicated that the application of low-level laser therapy (LLLT) reduces 
the incidence and, by hastening oral re-epithelialization, favorably influences oral mucositis 
outcomes in patients undergoing standard, hematopoietic stem cell transplantation and 
myeloablative chemotherapy [51-56]. Although the mechanism involved in these benefits is not 
understood, it has been suggested that LLLT may reduce ROS and/or pro-inflammatory cytokine 
levels which contribute to mucositis pathogenesis [23]. However, many of the pathways stimulated 
by LLLT are associated with undesirable tumor behaviors and/or treatment responses [57].  
 
Melatonin: a new treatment for mucositis 
 Melatonin (N-acetyl-5-methoxytryptamine), a hormone synthesized from tryptophan, is 
produced by the pineal gland; it has been detected in multiple extrapineal organ tissues at much 
higher concentrations than in the pineal gland [58]. It is a potent free radical scavenger with 
anti-oxidant properties, which increases the expression and activity of endogenous antioxidant 
enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione 
reductase (GRd) and γ-glutamyl-cystein synthase. This special class of antioxidant generates a series 
of metabolites that are also free radical scavengers when scavenging free radicals [59-63]. In other 
words, as compared to other antioxidants, melatonin is more effective in preventing damage caused 
by oxidative stress. Capable of crossing cell membranes and of easily reaching all cell compartments, 
it is taken up by mitochondria and can maintain mitochondrial homeostasis in different 
experimental models [58,64-67]. Melatonin increases membrane fluidity, electron transfer chain 
(ETC) complex activity, ATP production and mitochondrial membrane potential, while reducing 
oxidative stress and closing mitochondrial permeability transition pores (MPTPs) [68]. Its important 
anti-inflammatory effects include  expression inhibition of iNOS/i-mtNOS, COX-2 and 
pro-inflammatory cytokines such as IL-1β or TNF-α. Many of these properties are attributed to the 
inhibition of NF-κB-dependent innate immune pathway activation [69-70], and we recently showed 
that melatonin  blunts NLRP3 inflammasome activation under different experimental conditions 
[11,71-72]. 
 

A) Melatonin in the oral cavity 
We recently demonstrated that melatonin is synthesized in oral mucosa, where it is involved in 

autocrine/paracrine signaling by binding to MT1, MT2, and RORγ receptors, thus suggesting that it 
plays a role in normal oral mucosal physiology [11]. We found that aralkylamine N-acetyltransferase 
(AANAT) and acetylserotonin O-methyltransferase (ASMT), the two main enzymes in melatonin 
synthesis, are expressed in oral mucosa and also in salivary glands. However, melatonin, which is 
also found in saliva, is believed to passively enter the mucous through the circulatory system in 
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salivary glands (parotid, submaxillary and sublingual glands) [58,73]. Thus, as the quantity of 
melatonin  entering the oral cavity is proportional to salivary flow, xerostomia, which actually 
aggravates periodontal status,  could be associated with oral pathologies [74].  Together, these 
data, which are corroborated by the literature, demonstrate that melatonin has important 
implications for the prevention of oral cavity diseases by limiting tissue damage through free 
radicals and by stimulating immune responses. Almughrabi et al. demonstrated the relationship 
between low levels of melatonin in saliva and the increased  severity of oral pathologies such as 
gingivitis, chronic periodontitis and aggressive periodontitis  [75]. The beneficial effects of topical 
melatonin applications in patients with periodontal diseases, as evidenced by improvements in 
gingival index and pocket depth, have been established by Gomez-Moreno et al. [76]. Melatonin has 
also proven  to be an effective treatment for oral infections such as herpes  [74]. Kara et al. showed 
that it decreases proinflammatory cytokines in gingivitis and periodontitis [77]. Cutando et al. [78] 
showed that melatonin treatment in patients with diabetes significantly reduced the gingival index, 
pocket depth and RANKL levels and also increased osteoprotegrin concentrations. Due to its 
anti-inflammatory and anti-oxidative effects, the severity of gingival and periodontal inflammation 
was reduced. Other studies have demonstrated that melatonin could be a beneficial therapy after 
surgical procedures in the oral cavity by preventing inflammatory and infectious complications 
induced by oxidative stress [79]. Cutando et al. [79] showed that topically applied melatonin in the 
evacuated sockets following tooth removal reduced oxidative stress and inflammation and 
accelerated the healing process. Thus, by being directly deposited in the oral cavity, it has the 
capacity to treat oral disorders and pathologies by reducing inflammatory responses in the gingiva 
and periodontium [74]. 
 

B) Melatonin as a radio-protective agent 

For many years, the radio-protective effects of melatonin have been observed in different 

experimental models as well as organs and tissues. Tan et al. [80] were the first to report its ability to 

protect against electromagnetic radiation emitted by ultraviolet light, with subsequent studies 

reporting its effectiveness in protecting against ionizing radiation. Vijayalaxmi et al., who carried out 

a series of experiments to study the radio-protective effects of melatonin in vitro and in vivo, showed 

that melatonin guarded against gamma radiation-induced cell damage in blood lymphocytes 

[81-84]. Other authors have reported that it prevents hemolysis in irradiated human red blood cells 

[85]. Pretreatment with melatonin guards erythrocytes, granulocytes, macrophages, megakaryotes 

and T cells against radiation-induced cellular injury and also inhibits splenocyte apoptosis in 

whole-body irradiated mice [86]. It also prevents radiation-induced damage in retinal cells [87], 

thymocytes [88] and bone-marrow cells in mice [89]. Several in vivo studies reveal that it increases 

the survival rate of animals exposed to radiation. Pre-treatment with 250 mg/kg melatonin raised the 

survival rate of lethally whole-body irradiated (9.5 Gy) mice [90] to approximately 43% and to 85%  

at a dose of 8.15 Gy [91]. Iwata et al. demonstrated that pre-treatment with intraperitoneally 

administered melatonin at a dosage of 150 mg/kg showed a survival rate of around 100% for mice 

following a radiation dose of 7.5 Gy [92], with an amelioration in radiation-induced injury in 

radio-sensitive organs such as bone marrow,  spleen and gastrointestine [93]. In all these 

experiments, melatonin was observed to protect against radiation-induced genotoxicity in both the 

somatic and germ cells of mice.  Its radio-protective impact was also demonstrated in the testis and 
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ovary of irradiated rodents [94-97]. Melatonin  also plays an important protective role against 

radiation-induced damage to the thyroid gland [98] and the small intestine [99], which is one of the 

most radio-sensitive organs, resulting in inflammation-induced radiation enteritis. Its 

administration prior to irradiation guards against intestinal damage caused   by X-rays [100]. It 

prevents mucosal intestinal damage caused by radiotherapy by countering structural changes in the 

small intestine (as evidenced by the villous pattern of the intestinal mucosa) [101] and also inhibits 

gut bacterial translocation to the spleen, liver and kidney [86].  

The mechanisms involved in melatonin as a radioprotective agent have been attributed to its 

antioxidant properties, which reduce radiation-induced DNA damage and lipid peroxidation, and 

to its protection of the immune system by reducing apoptosis through the inhibition of p53 and Bax 

and by enhancing anti-apoptotic protein Bcl-2 [86,93,102]; it is also involved in  repairing  lesions 

in cellular DNA [103]. 

In patients, administration of melatonin resulted in amelioration of hypotension, myelotoxicity, 

and lymphocytopenia associated with radiotherapy [104]. Therefore, its use as a prophylactic agent 

could reduce morbidity and  limit radiation-induced injury in cancer patients under radiotherapy 

[86,102]. 

 

B) Use of melatonin in the prevention of radiation-induced mucositis 

Together, given the data summarized in this review, highlighting  its anti-inflammatory and 

antioxidant function in the oral cavity and its potential effectiveness in protecting against ionizing 

radiation, melatonin could, in our view, play a beneficial role in the prevention of mucositis. We 

demonstrated that the application of a melatonin gel to  oral mucosa can totally prevent oral 

mucositis in irradiated rats [11]. The purpose of this study was to investigate the pathophysiology of 

oral mucositis and how melatonin can prevent its development. We observed that melatonin gel is 

capable of preventing mucosal disruption and the emergence of ulcers. Furthermore, it can prevent 

the loss of proliferative progenitor stem cells caused by radiation and enhance their capacity to 

repopulate the tissue. In addition, ionizing radiation exposure causes oxidative damage to DNA, 

which  arrests the cell cycle, inhibits growth  and increases cell death [86]. Thus, protection of 

cellular DNA is of the utmost importance in reducing radiation-induced cellular perturbation and 

also in the proliferation/differentiation of normal cells. Melatonin treatment significantly reduces 

radiation-induced DNA degradation. Therefore, given the high dependence of both epidermis and 

mucosal epithelia   on resident self-renewing stem cells, the therapeutic interventions using 

melatonin described above, which can reduce the deleterious effects of radiation on normal 

epithelial stem cells, could have a considerable impact on the quality of life of cancer patients. 

On the other hand, it is well known that irradiation inhibits the activity of mitochondrial 

ETC complexes which enhances electron leakage and subsequent superoxide anion (O2
 −) 

generation, leading to persistent oxidative stress, responsible, at least partially, for 

radiation-induced cell death in normal human fibroblast cells [105]. Given the induction of 

mitochondrial dysfunction by ionizing radiation, we assessed whether mitochondrial damage is 

involved in radiation-induced mucositis. We also determined whether the known improvement by 

melatonin of mitochondrial function could protect oral mucosa against deleterious radiation effects. 

In our experiments, we found that the application of melatonin gel decreased the radiation-induced 
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oxidation responses of mitochondria. We also observed that the protective effect of melatonin was 

mediated by the increased expression and activity of mitochondrial antioxidant enzymes such as 

GRd. This reduced the mitochondrial GSSG/GSH ratio and restored mitochondrial GSH homeostasis 

[64], thus enabling mitochondria to recover from post-radiation oxidative stress. This is in line with 

the finding that melatonin gel increases ETC protein expression and activity and also expands citrate 

synthase activity, reflecting the increase in mitochondrial mass, resulting in a full recovery of their 

bio-energetic capacity and prevention of cell death. These findings suggest that   the reduction in 

mitochondrial damage by melatonin by preserving mitochondrial structure and function may 

underlie its efficacy in preventing mucositis. The prevention of mitochondrial damage in irradiated 

oral mucosa may therefore constitute one of the mechanisms by which melatonin protects against 

cell death. Interestingly, we found that it inhibits mitochondrial-dependent apoptosis by decreasing 

the Bax/Bcl-2 ratio. It also significantly inhibits p53 and Bax protein expression, while   

anti-apoptotic Bcl-2 protein expression increases considerably. Consequently, at least part of its 

radio-protective capacity could depend on the inhibitory action of p53-related signaling proteins, 

which prevents the opening of MPTPs and thus blocks the release of cytochrome c to the cytosol. In 

this regard, radiation induces MPTPs to open up and mitochondrial DNA (mtDNA) to translocate to 

the cytosol. In addition to ROS released from damaged mitochondria to the cytosol, mtDNA 

promotes the assembly of NLRP3 inflammasome, a multiprotein complex which activates caspase-1 

[106]. Once activated, caspase-1 converts NF-κB-dependent pro-inflammatory cytokines, including 

pro-IL-1β, into a mature form. Thus, the activation of both NLRP3 inflammasome and NF-κB innate 

immunity pathways leads to overproduction of IL-1β, TNF-α and other pro-inflammatory mediators 

[106]. This double-stranded, innate immune response by the NF-kB and NLRP3 inflammasome 

pathways could explain the difficulty of finding an effective anti-mucositis therapy. Furthermore, 

the presence of impaired mitochondria underlying these inflammatory responses makes the search 

for a specific treatment more difficult. Our results highlight the importance of scavenging ROS and 

the protection of mitochondria from irradiation in order to suppress inflammasome activation and 

consequently the development of oral mucositis. This would, in turn, help to explain the therapeutic 

benefits of melatonin gel in combating oral mucositis (Figure 2). 

On the other hand, as discussed above,  epithelial crypts in the intestinal region contain the 

highest proliferating cells [107], which are extremely sensitive to ionizing radiation [108]. Recent 

studies have reported that, even when the intestine is outside the irradiation field, radiation-induced 

damage to healthy intestine tissue is a common side-effect of out-of-field or scattered radiation. This 

could explain why typical signs of mucositis were detected in the small intestine following tongue 

irradiation. Histological analysis revealed crypt loss, lower villi numbers and shorter lengths in the 

gastrointestinal region, leading to the conclusion that radiation enteropathy prevention requires 

protection of the small intestine. Melatonin gel treatment in the mouth, which was observed to  

reduce  intestinal morpho-pathological changes [17], is therefore also  associated with improved 

preservation of both small intestinal  and oral mucosa. 
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Figure 2: Molecular pathways of melatonin gel to prevent oral mucosa 

 

In addition, a number of studies have shown that melatonin contains remarkable oncostatic 

properties. Its antiproliferative properties have been demonstrated in an extensive variety of tumors, 

including breast, endometrial, prostate, colon and ovarian cancers as well as choriocarcinoma, 

melanoma, neuroblastoma and osteosarcoma among others [109-110]. Its oncostatic mechanisms are 

associated with several hallmarks of cancer. Its anticancer action directly inhibits the proliferation 

and growth of tumor cells [111]. Melatonin protects normal cells from apoptosis, while, at the same 

time, promoting apoptotic cell death in several types of cancer cell [112]. Its  immuno-modulatory 

anticancer action also augments  antitumor immune response [113]. Additionally, melatonin has an 

important metabolic effect, which  decreases   glucose uptake by cancer cells [114] and inhibits 

tumor growth through the suppression of the uptake of linoleic acid and its metabolism by the 

tumor to the mitogenic molecule 13-HODE [115]. Its anti-angiogenic and anti-metastatic properties 

have also been reported in numerous studies [116-118].  Given its capacity to increase the efficacy of 

anticancer drugs, these data show that melatonin can be used not only to treat mucositis due to the 

absence of   adverse side effects, but also can be used in cancer co-treatment programs.  

 

Conclusions  
In summary, oral mucositis is a clinically important, deleterious consequence of chemo and 

radiotherapy, for which no effective treatment has been found to date. Mucositis lesions can be 
painful, affect nutrition and quality of life and have a significant economic impact. The pathogenesis 
of oral mucositis is multifactorial and complex, and not all mucositis can be prevented. Once 
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mucositis has developed, therapy should focus on supportive care, which aims to maintain 
hydration, provide appropriate caloric intake through enteral or parenteral nutritional support, 
relieve pain and to prevent infection. This review discusses  current clinical practices in the 
management of oral mucositis and emphasizes that no standard therapeutic approach has been 
developed for patients suffering from oral mucositis. Thus, basic, translational and clinical research 
into how to prevent and treat oral and gastrointestinal mucositis continues. Our findings, showing 
that melatonin   reduces irradiation toxicity and prevents treatment-induced mucositis, indicate 
that, with its oncostatic and cytoprotective properties, it constitutes an innovative, adjuvant strategy 
in the treatment of cancer. We demonstrated that treatment with melatonin gel protects rats from 
post-radiation oral mucositis, prevents duodenal inflammation and necrosis and restores mucosal 
endogenous melatonin levels in irradiated animals. A clinical trial of this gel, which is under patent, 
is currently underway to test for the prevention of oral mucositis in head and neck cancer patients. 
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ApoE apolipoprotein E 
COX-2 Cyclooxygenase-2 
CTCAE Common Terminology Criteria for Adverse Events 
EGF epidermal growth factor 
G-CSF granulocyte colony-stimulating factor 
GIT gastrointestinal tract 
GM-CSF granulocyte-macrophage colony stimulating factor 
IL-1 Interleukin-1 
MAPK mitogen-activated protein kinase 
MMP matrix metalloproteinase 
mTOR mammalian target of rapamycin 
NAC N-acetyl cysteine 
NCI National Cancer Institute 
NF-κB nuclear factor kappa-B 
NLRP3 NACHT, LRR and PYD domains-containing protein 3 
NSAID non-steroidal anti-inflammatory drug 
PARs protease-activated receptors 
PGE Prostaglandin E 
PLAG 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol 
rhEGF recombinant human EGF 
ROS reactive oxygen species 
SAP serum amyloid-P 
Smad7 mothers against decapentaplegic homolog 7 
TCM traditional Chinese medicine 
TGF-β transforming growth factor beta 
TNF-α tumor necrosis factor-α 
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