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Abstract: The current treatment for cervico-facial cancer involves radio and/or chemotherapy.
Unfortunately, cancer therapies can lead to local and systemic complications such as mucositis,
which is the most common dose-dependent complication in the oral cavity and gastrointestinal tract.
Mucositis can cause a considerably reduced quality of life in cancer patients already suffering from
physical and psychological exhaustion. However, melatonin, whose role in the treatment of
mucositis has recently been investigated, offers an effective alternative therapy in the prevention
and/or management of radio and/or chemotherapy-induced mucositis. This review focuses on the

pathobiology and management of mucositis in order to improve the quality of cancer patients’ lives.
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Overview of mucositis pathobiology

Mucositis, one of the most severe toxic side effects of cancer therapy, can affect the entire
gastrointestinal tract, with the oral cavity being the most common affected site. It presents in
virtually all head and neck cancer patients receiving chemo and/or radiotherapy, in 60-85% of those
receiving myeloablative therapy for stem-cell transplantation and in 20-40% of patients receiving
conventional chemotherapy [1-3]. The use of concomitant chemotherapy and/or targeted agents
increases the risk of mucositis.

Oral lesions lead to considerably decreased quality of life in these patients due to solid and
liquid food dysphagia, dysarthria and odynophagia, resulting in depression in some patients, who
often require percutaneous endoscopic gastrostomy tube insertion [4]. In addition, mucositis lesions
may represent a gateway to opportunistic infections, can complicate cancer treatment and extend
hospitalization [5-6]. On the other hand, given its dose-limiting toxicity for both chemo and

radiotherapy, mucositis can have a direct impact on survival rates [7].

Pathophysiology of mucositis

Recent developments in mucositis research have highlighted multiple factors which contribute
to mucosal injury [8]. A five-phase chronological process has been proposed: initiation, primary
damage response (upregulation and message generation), signal amplification, ulceration and the
healing phase [9]. Mucositis commences when gastrointestinal (GI) mucosa are exposed to cytotoxic

agents, resulting in cellular DNA damage and cell death, mainly through the generation of oxidative
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stress and reactive oxygen species (ROS) formation. ROS directly induce tissue injury and trigger a
cascade of inflammatory pathways [10]. Ortiz et al. have also observed a mitochondrial oxidation
response to radiation with subsequent mitochondrial dysfunction [11].

The progression of mucositis is characterized by significant inflammatory mediator
up-regulation due to the activation of the NF-kB pathway (upregulation and message generation
phase). This is followed by the signaling and amplification phase, during which, once activated by
chemotherapy and ROS, NF-kB promotes the expression of multiple pro-inflammatory molecules,
including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNFa, and pro-IL-18,
and ensures feedback amplification of the NF-kB-dependent signaling pathway [10]. Furthermore,
mitochondrial ROS production promotes inflammation by activating a multi-protein cytoplasmic
complex, such as the NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome.
NLRP3 inflammasome assembly leads to caspase-1 activation and subsequent cleavage of
pro-cytokines such as pro-IL-1B, pro-IL-18 and pro-IL-33 into their mature form [11-12] resulting in
ulceration (ulceration phase). Therefore, the NFkB pathway, mitochondrial dysfunction and
subsequent NLRP3 inflammasome activation are the three main players involved in the
development of oral mucositis, which amplify the whole inflammatory process via positive feedback
loops, thus prolonging tissue injury and ending in the healing phase.

During initiation phase of mucositis, patients begin to develop erythema followed by focal
areas of oral mucosal desquamation [13], which mainly occur at the submucosa and basal
epithelium level. Therefore, although no evident damage to mucosal integrity is observed
clinically, the tissue biology is altered [10]. The progression of mucositis is then prolonged and
severe, mucosal integrity is breached, ulceration begins to form and the patient starts to have a
burning sensation. Atrophic changes occur in the GI mucosa, culminating in tissue injury and stem
cell death. GI epithelial integrity and function are destroyed and impaired, respectively. A fibrinous
exudate, or pseudomembrane, containing bacteria covers the ulcer. Bacterial colonization at the
mucosa ulcers further induces inflammation by stimulating infiltration and activation of
macrophages, which occurs approximately two weeks after therapy [10]. Cell wall residues
originating from colonizing bacteria penetrate the submucosa, where they activate macrophages in
the infiltrate [14]. This can lead to prolonged hospitalization, the need for parenteral nutrition,
severe pain, risk of infection and sepsis and increased risk of morbidity and mortality.

The final stage of mucositis pathobiology is the healing process. Epithelial cells controlled by
signals secreted by the extracellular matrix, which are then downregulated to avoid hyperplasia,
migrate, grow and differentiate to form a wound. With the healing process under way, symptoms
begin to abate [9], and healing is completed within 4 weeks after the final dose of radiation.
Unfortunately, even after full replenishment of the epithelium, the structure of the reconstituted
submucosa differs from its pre-radiotherapy state [15].

On the other hand, radiation-induced damage to healthy intestine tissue is a common
side-effect caused by out-of-field or scattered radiation [16]. We recently demonstrated that tongue
irradiation also induces intestinal damage. Typical macroscopic traces of mucositis were also
detected in the small intestines of irradiated animals, including a significant decrease in villus
height and morphological alterations associated with substantial intestinal architecture changes

[17]. Given the involvement of mitochondrial oxidative stress, bio-energetic impairment and
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subsequent NLRP3 inflammasome activation in the development of radiotherapy-induced gut

toxicity, oral irradiation of rats also resulted in increased small intestinal damage.

Mucositis management
As there is no effective therapy for mucositis or its associated pain, a large number of studies
have been conducted in this field. Strategies for managing oral mucositis include preventative

measures and therapeutic approaches (Figure 1) [13].
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Figure 1: Actual strategies for managing oral mucositis

Current supportive measures to reduce the risk and severity of oral mucositis include improved
oral hygiene, which eliminates the presence of any irritants to the oral mucosa [18]. Systemic
analgesics are also recommended, as tissue injury activates nociceptive receptors which increase
pain alongside the underlying tissue damage [7].

Several topical palliative agents, including Caphosol, Episil, GelClair and MuGard, have been
approved for the treatment of mucositis, are aimed at alleviating pain and improving the patient’s
quality of life. However, data on the efficacy of these agents in controlling mucositis-related
symptoms are scarce [13,19-22].

A combination of treatments, such as local rinses with a 2% viscous lidocaine solution, magic
mouthwash preparations, a topical morphine solution and other systemic analgesics, are used to
control pain [23]. Frequent rinsing with sodium chloride solution helps to keep the mucosa moist,
reduces caking of secretions and soothes inflamed/ulcerated mucosa. An oral rinse containing
doxepin appears to be effective for easing acute oral mucositis pain caused by radiation therapy

(with or without chemotherapy) [24]. However, there is no significant evidence to suggest that
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these mouthwashes are effective [25]. Another type of topical agent is the transdermal patch,
composed of fentanyl, which is a potent, fast and short acting, synthetic opioid analgesic, although
transdermal fentanyl causes mild dizziness, gastrointestinal reactions and itching [26].

Oral decontamination, involving treatments such as Nystatin and chlorhexidine [27], may
result in significant positive outcomes in the prevention of ulcerations linked to oral mucositis.
Recently, Silva et al. [28] tested a soft pastille formulation consisting of 0.25% lidocaine and 78,000 IU
Nystatin, which was found to facilitate accurate drug administration by physicians and to enable
patients to control drug retention time in the mouth in order to manage the pain treatment
process. On the other hand, chlorhexidine is an effective broad-spectrum antiplaque antiseptic agent
[29]. However, these drugs are not very effective in reducing the severity or incidence of mucositis
[30-31].

Cryotherapy, during which patients suck on ice chips for 30 minutes prior to and during
chemotherapy infusion [32-35], has been shown to effectively attenuate the onset and severity of
mucositis in patients undergoing chemotherapy with 5-fluorouracil and melphalan. However, it is
only effective for short bolus chemotherapeutic infusions [36], may not be tolerated by some
subjects and thus cannot play a significant role in radiation-induced oral mucositis treatments
[23].

Several antioxidant agents to prevent mucositis or to reduce its severity have been tested. One of
the first drugs used to treat mucositis was amifostine [13], a thiol compound which is
dephosphorylated to an active metabolite and acts as a potent ROS scavenger. However, given its
limited and inconsistent results, amifostine is not recommended for the prevention of oral mucositis
in patients receiving either chemotherapy or radiotherapy alone [37]. N-acetyl cysteine (NAC) is
another antioxidant containing thiol groups, which stimulates glutathione synthesis and scavenges
free radicals. In addition to its antioxidant properties, NAC prevents NF-«kB activation which
increases the inflammatory response. In a double-blind, randomized, placebo-controlled trial, NAC
significantly reduced severe oral mucositis incidence [53].

Given that a reduction in the proliferative capacity of oral epithelial cells is thought to play a role
in mucositis pathogenesis, various growth factors capable of increasing epithelial cell proliferation
have been studied with regard to oral mucositis management. Although palifermin, an
epithelial-specific growth factor, is the only agent approved for the prevention of oral mucositis in
bone-marrow transplant patients [38], it is also associated with adverse side effects, requires
intravenous administration and is expensive [39]. Other growth factors, such as velafermin,
filgrastim and argramostim, have been analyzed for use in the treatment of mucositis [40].
Smad?, which has recently received considerable attention [41], was initially identified as a TGF-3
superfamily signaling antagonist, which blocks TGF-p-induced growth inhibition and apoptosis in
keratinocytes [42] and  reduces inflammation by antagonizing NF-kB activation. All of these
characteristics may make Smad7 beneficial in the treatment of oral mucositis [41].

Several anti-inflammatory agents have produced good results in studies of oral mucositis in
animals; there is still conflicting evidence, however, on the efficacy of these agents in reducing the
severity of mucositis in humans [13]. Benzydamine HCl is a non-steroidal anti-inflammatory drug
that inhibits pro-inflammatory cytokines including TNF-a and IL-1p. It has been administered in an
intravenous formulation recommended for the prevention of oral mucositis in patients with head

and neck cancer receiving moderate-dose radiation therapy without concomitant chemotherapy
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[43]. A long list of anti-inflammatory drugs has produced inconsistent results with regard to the
prevention of chemotherapy-induced oral mucositis. This is the case for Misoprostol, a synthetic
prostaglandin E1 analog, which has anti-inflammatory mucosa protection properties. However, the
overall results of using misoprostol mouthwash in the prevention of radiation-induced oral
mucositis in head and neck cancer patients were negative [44-45]. While glutamine, a nonessential
amino acid, may mitigate mucosal injury by reducing pro-inflammatory cytokine production and
cytokine-related apoptosis [46-47], it produced inconsistent results in the prevention of
chemotherapy-induced oral mucositis [48-50].

Multiple studies have indicated that the application of low-level laser therapy (LLLT) reduces
the incidence and, by hastening oral re-epithelialization, favorably influences oral mucositis
outcomes in patients undergoing standard, hematopoietic stem cell transplantation and
myeloablative chemotherapy [51-56]. Although the mechanism involved in these benefits is not
understood, it has been suggested that LLLT may reduce ROS and/or pro-inflammatory cytokine
levels which contribute to mucositis pathogenesis [23]. However, many of the pathways stimulated

by LLLT are associated with undesirable tumor behaviors and/or treatment responses [57].

Melatonin: a new treatment for mucositis

Melatonin (N-acetyl-5-methoxytryptamine), a hormone synthesized from tryptophan, is
produced by the pineal gland; it has been detected in multiple extrapineal organ tissues at much
higher concentrations than in the pineal gland [58]. It is a potent free radical scavenger with
anti-oxidant properties, which increases the expression and activity of endogenous antioxidant
enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione
reductase (GRd) and y-glutamyl-cystein synthase. This special class of antioxidant generates a series
of metabolites that are also free radical scavengers when scavenging free radicals [59-63]. In other
words, as compared to other antioxidants, melatonin is more effective in preventing damage caused
by oxidative stress. Capable of crossing cell membranes and of easily reaching all cell compartments,
it is taken up by mitochondria and can maintain mitochondrial homeostasis in different
experimental models [58,64-67]. Melatonin increases membrane fluidity, electron transfer chain
(ETC) complex activity, ATP production and mitochondrial membrane potential, while reducing
oxidative stress and closing mitochondrial permeability transition pores (MPTPs) [68]. Its important
anti-inflammatory effects include  expression inhibition of iNOS/i-mtNOS, COX-2 and
pro-inflammatory cytokines such as IL-1B or TNF-o.. Many of these properties are attributed to the
inhibition of NF-kB-dependent innate immune pathway activation [69-70], and we recently showed
that melatonin blunts NLRP3 inflammasome activation under different experimental conditions
[11,71-72].

A) Melatonin in the oral cavity

We recently demonstrated that melatonin is synthesized in oral mucosa, where it is involved in
autocrine/paracrine signaling by binding to MT1, MT2, and RORY receptors, thus suggesting that it
plays a role in normal oral mucosal physiology [11]. We found that aralkylamine N-acetyltransferase
(AANAT) and acetylserotonin O-methyltransferase (ASMT), the two main enzymes in melatonin
synthesis, are expressed in oral mucosa and also in salivary glands. However, melatonin, which is

also found in saliva, is believed to passively enter the mucous through the circulatory system in
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salivary glands (parotid, submaxillary and sublingual glands) [58,73]. Thus, as the quantity of
melatonin entering the oral cavity is proportional to salivary flow, xerostomia, which actually
aggravates periodontal status, could be associated with oral pathologies [74]. Together, these
data, which are corroborated by the literature, demonstrate that melatonin has important
implications for the prevention of oral cavity diseases by limiting tissue damage through free
radicals and by stimulating immune responses. Almughrabi et al. demonstrated the relationship
between low levels of melatonin in saliva and the increased severity of oral pathologies such as
gingivitis, chronic periodontitis and aggressive periodontitis [75]. The beneficial effects of topical
melatonin applications in patients with periodontal diseases, as evidenced by improvements in
gingival index and pocket depth, have been established by Gomez-Moreno et al. [76]. Melatonin has
also proven to be an effective treatment for oral infections such as herpes [74]. Kara et al. showed
that it decreases proinflammatory cytokines in gingivitis and periodontitis [77]. Cutando et al. [78]
showed that melatonin treatment in patients with diabetes significantly reduced the gingival index,
pocket depth and RANKL levels and also increased osteoprotegrin concentrations. Due to its
anti-inflammatory and anti-oxidative effects, the severity of gingival and periodontal inflammation
was reduced. Other studies have demonstrated that melatonin could be a beneficial therapy after
surgical procedures in the oral cavity by preventing inflammatory and infectious complications
induced by oxidative stress [79]. Cutando et al. [79] showed that topically applied melatonin in the
evacuated sockets following tooth removal reduced oxidative stress and inflammation and
accelerated the healing process. Thus, by being directly deposited in the oral cavity, it has the
capacity to treat oral disorders and pathologies by reducing inflammatory responses in the gingiva

and periodontium [74].

B) Melatonin as a radio-protective agent

For many years, the radio-protective effects of melatonin have been observed in different
experimental models as well as organs and tissues. Tan et al. [80] were the first to report its ability to
protect against electromagnetic radiation emitted by ultraviolet light, with subsequent studies
reporting its effectiveness in protecting against ionizing radiation. Vijayalaxmi et al., who carried out
a series of experiments to study the radio-protective effects of melatonin in vitro and in vivo, showed
that melatonin guarded against gamma radiation-induced cell damage in blood lymphocytes
[81-84]. Other authors have reported that it prevents hemolysis in irradiated human red blood cells
[85]. Pretreatment with melatonin guards erythrocytes, granulocytes, macrophages, megakaryotes
and T cells against radiation-induced cellular injury and also inhibits splenocyte apoptosis in
whole-body irradiated mice [86]. It also prevents radiation-induced damage in retinal cells [87],
thymocytes [88] and bone-marrow cells in mice [89]. Several in vivo studies reveal that it increases
the survival rate of animals exposed to radiation. Pre-treatment with 250 mg/kg melatonin raised the
survival rate of lethally whole-body irradiated (9.5 Gy) mice [90] to approximately 43% and to 85%
at a dose of 8.15 Gy [91]. Iwata et al. demonstrated that pre-treatment with intraperitoneally
administered melatonin at a dosage of 150 mg/kg showed a survival rate of around 100% for mice
following a radiation dose of 7.5 Gy [92], with an amelioration in radiation-induced injury in
radio-sensitive organs such as bone marrow, spleen and gastrointestine [93]. In all these
experiments, melatonin was observed to protect against radiation-induced genotoxicity in both the

somatic and germ cells of mice. Its radio-protective impact was also demonstrated in the testis and
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ovary of irradiated rodents [94-97]. Melatonin also plays an important protective role against
radiation-induced damage to the thyroid gland [98] and the small intestine [99], which is one of the
most radio-sensitive organs, resulting in inflammation-induced radiation enteritis. Its
administration prior to irradiation guards against intestinal damage caused by X-rays [100]. It
prevents mucosal intestinal damage caused by radiotherapy by countering structural changes in the
small intestine (as evidenced by the villous pattern of the intestinal mucosa) [101] and also inhibits
gut bacterial translocation to the spleen, liver and kidney [86].

The mechanisms involved in melatonin as a radioprotective agent have been attributed to its
antioxidant properties, which reduce radiation-induced DNA damage and lipid peroxidation, and
to its protection of the immune system by reducing apoptosis through the inhibition of p53 and Bax
and by enhancing anti-apoptotic protein Bcl-2 [86,93,102]; it is also involved in repairing lesions
in cellular DNA [103].

In patients, administration of melatonin resulted in amelioration of hypotension, myelotoxicity,
and lymphocytopenia associated with radiotherapy [104]. Therefore, its use as a prophylactic agent
could reduce morbidity and limit radiation-induced injury in cancer patients under radiotherapy

[86,102].

B) Use of melatonin in the prevention of radiation-induced mucositis

Together, given the data summarized in this review, highlighting its anti-inflammatory and
antioxidant function in the oral cavity and its potential effectiveness in protecting against ionizing
radiation, melatonin could, in our view, play a beneficial role in the prevention of mucositis. We
demonstrated that the application of a melatonin gel to oral mucosa can totally prevent oral
mucositis in irradiated rats [11]. The purpose of this study was to investigate the pathophysiology of
oral mucositis and how melatonin can prevent its development. We observed that melatonin gel is
capable of preventing mucosal disruption and the emergence of ulcers. Furthermore, it can prevent
the loss of proliferative progenitor stem cells caused by radiation and enhance their capacity to
repopulate the tissue. In addition, ionizing radiation exposure causes oxidative damage to DNA,
which arrests the cell cycle, inhibits growth and increases cell death [86]. Thus, protection of
cellular DNA is of the utmost importance in reducing radiation-induced cellular perturbation and
also in the proliferation/differentiation of normal cells. Melatonin treatment significantly reduces
radiation-induced DNA degradation. Therefore, given the high dependence of both epidermis and
mucosal epithelia  on resident self-renewing stem cells, the therapeutic interventions using
melatonin described above, which can reduce the deleterious effects of radiation on normal

epithelial stem cells, could have a considerable impact on the quality of life of cancer patients.
On the other hand, it is well known that irradiation inhibits the activity of mitochondrial
ETC complexes which enhances electron leakage and subsequent superoxide anion (O:" -)
generation, leading to persistent oxidative stress, responsible, at least partially, for
radiation-induced cell death in normal human fibroblast cells [105]. Given the induction of
mitochondrial dysfunction by ionizing radiation, we assessed whether mitochondrial damage is
involved in radiation-induced mucositis. We also determined whether the known improvement by
melatonin of mitochondrial function could protect oral mucosa against deleterious radiation effects.

In our experiments, we found that the application of melatonin gel decreased the radiation-induced
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oxidation responses of mitochondria. We also observed that the protective effect of melatonin was
mediated by the increased expression and activity of mitochondrial antioxidant enzymes such as
GRd. This reduced the mitochondrial GSSG/GSH ratio and restored mitochondrial GSH homeostasis
[64], thus enabling mitochondria to recover from post-radiation oxidative stress. This is in line with
the finding that melatonin gel increases ETC protein expression and activity and also expands citrate
synthase activity, reflecting the increase in mitochondrial mass, resulting in a full recovery of their
bio-energetic capacity and prevention of cell death. These findings suggest that the reduction in
mitochondrial damage by melatonin by preserving mitochondrial structure and function may
underlie its efficacy in preventing mucositis. The prevention of mitochondrial damage in irradiated
oral mucosa may therefore constitute one of the mechanisms by which melatonin protects against
cell death. Interestingly, we found that it inhibits mitochondrial-dependent apoptosis by decreasing
the Bax/Bcl-2 ratio. It also significantly inhibits p53 and Bax protein expression, while
anti-apoptotic Bcl-2 protein expression increases considerably. Consequently, at least part of its
radio-protective capacity could depend on the inhibitory action of p53-related signaling proteins,
which prevents the opening of MPTPs and thus blocks the release of cytochrome c to the cytosol. In
this regard, radiation induces MPTPs to open up and mitochondrial DNA (mtDNA) to translocate to
the cytosol. In addition to ROS released from damaged mitochondria to the cytosol, mtDNA
promotes the assembly of NLRP3 inflammasome, a multiprotein complex which activates caspase-1
[106]. Once activated, caspase-1 converts NF-kB-dependent pro-inflammatory cytokines, including
pro-IL-1B, into a mature form. Thus, the activation of both NLRP3 inflammasome and NF-xB innate
immunity pathways leads to overproduction of IL-1B, TNF-o and other pro-inflammatory mediators
[106]. This double-stranded, innate immune response by the NF-kB and NLRP3 inflammasome
pathways could explain the difficulty of finding an effective anti-mucositis therapy. Furthermore,
the presence of impaired mitochondria underlying these inflammatory responses makes the search
for a specific treatment more difficult. Our results highlight the importance of scavenging ROS and
the protection of mitochondria from irradiation in order to suppress inflammasome activation and
consequently the development of oral mucositis. This would, in turn, help to explain the therapeutic
benefits of melatonin gel in combating oral mucositis (Figure 2).

On the other hand, as discussed above, epithelial crypts in the intestinal region contain the
highest proliferating cells [107], which are extremely sensitive to ionizing radiation [108]. Recent
studies have reported that, even when the intestine is outside the irradiation field, radiation-induced
damage to healthy intestine tissue is a common side-effect of out-of-field or scattered radiation. This
could explain why typical signs of mucositis were detected in the small intestine following tongue
irradiation. Histological analysis revealed crypt loss, lower villi numbers and shorter lengths in the
gastrointestinal region, leading to the conclusion that radiation enteropathy prevention requires
protection of the small intestine. Melatonin gel treatment in the mouth, which was observed to
reduce intestinal morpho-pathological changes [17], is therefore also associated with improved

preservation of both small intestinal and oral mucosa.
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Figure 2: Molecular pathways of melatonin gel to prevent oral mucosa

In addition, a number of studies have shown that melatonin contains remarkable oncostatic
properties. Its antiproliferative properties have been demonstrated in an extensive variety of tumors,
including breast, endometrial, prostate, colon and ovarian cancers as well as choriocarcinoma,
melanoma, neuroblastoma and osteosarcoma among others [109-110]. Its oncostatic mechanisms are
associated with several hallmarks of cancer. Its anticancer action directly inhibits the proliferation
and growth of tumor cells [111]. Melatonin protects normal cells from apoptosis, while, at the same
time, promoting apoptotic cell death in several types of cancer cell [112]. Its immuno-modulatory
anticancer action also augments antitumor immune response [113]. Additionally, melatonin has an
important metabolic effect, which decreases glucose uptake by cancer cells [114] and inhibits
tumor growth through the suppression of the uptake of linoleic acid and its metabolism by the
tumor to the mitogenic molecule 13-HODE [115]. Its anti-angiogenic and anti-metastatic properties
have also been reported in numerous studies [116-118]. Given its capacity to increase the efficacy of
anticancer drugs, these data show that melatonin can be used not only to treat mucositis due to the

absence of  adverse side effects, but also can be used in cancer co-treatment programs.

Conclusions

In summary, oral mucositis is a clinically important, deleterious consequence of chemo and
radiotherapy, for which no effective treatment has been found to date. Mucositis lesions can be
painful, affect nutrition and quality of life and have a significant economic impact. The pathogenesis

of oral mucositis is multifactorial and complex, and not all mucositis can be prevented. Once
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mucositis has developed, therapy should focus on supportive care, which aims to maintain
hydration, provide appropriate caloric intake through enteral or parenteral nutritional support,
relieve pain and to prevent infection. This review discusses current clinical practices in the
management of oral mucositis and emphasizes that no standard therapeutic approach has been
developed for patients suffering from oral mucositis. Thus, basic, translational and clinical research
into how to prevent and treat oral and gastrointestinal mucositis continues. Our findings, showing
that melatonin  reduces irradiation toxicity and prevents treatment-induced mucositis, indicate
that, with its oncostatic and cytoprotective properties, it constitutes an innovative, adjuvant strategy
in the treatment of cancer. We demonstrated that treatment with melatonin gel protects rats from
post-radiation oral mucositis, prevents duodenal inflammation and necrosis and restores mucosal
endogenous melatonin levels in irradiated animals. A clinical trial of this gel, which is under patent,

is currently underway to test for the prevention of oral mucositis in head and neck cancer patients.
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Abbreviations

ApoE apolipoprotein E
COX-2 Cyclooxygenase-2
CTCAE Common Terminology Criteria for Adverse Events

EGF epidermal growth factor

G-CSF granulocyte colony-stimulating factor

GIT gastrointestinal tract

GM-CSF  granulocyte-macrophage colony stimulating factor
IL-1 Interleukin-1

MAPK mitogen-activated protein kinase

MMP matrix metalloproteinase

mTOR mammalian target of rapamycin

NAC N-acetyl cysteine

NCI National Cancer Institute

NF-«B nuclear factor kappa-B
NLRP3 NACHT, LRR and PYD domains-containing protein 3

NSAID non-steroidal anti-inflammatory drug
PARs protease-activated receptors
PGE Prostaglandin E

PLAG 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol
rhEGF recombinant human EGF

ROS reactive oxygen species

SAP serum amyloid-P

Smad7 mothers against decapentaplegic homolog 7
TCM traditional Chinese medicine

TGF-p transforming growth factor beta

TNF-a tumor necrosis factor-a
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