

1 Article

2 Design and Implementation of a Programmable 3 Multi-Parametric Five Degrees of Freedom Seismic 4 Waves Geo-Mechanics Simulation IoT Platform

5 Hasan Tariq ^{1,*}, Farid Touati ¹, Mohammed Abdulla E. Al-Hitmi ¹, Damiano Crescini ² and Adel
6 Ben Mnaouer ³

7 ¹ Department of Electrical Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar;
8 hasan.tariq@qu.edu.qa (H.T.); touatif@qu.edu.qa (F.T.); m.a.alhitmi@qu.edu.qa (M.A.E.A.-H.)

9 ² Brescia University, 25121 Brescia, Italy; damiano.crescini@unibs.it (D.C.)

10 ³ Canadian University Dubai, Dubai, UAE; adel@cud.ac.ae (A.B.M.)

11 * Correspondence: hasan.tariq@qu.edu.qa; Tel.: +974-50419852

12 Received: date; Accepted: date; Published:

13 **Abstract:** Natural calamities observation, study and simulation has always been a prime concern for
14 disaster management agencies. Billions of dollars are spent annually to explore geo-seismic
15 movements especially earthquakes but it has always been a unique accident. The real-time study of
16 seismic waves, ground motions, and earthquakes always needed a programmable mechanical
17 structure capable of physically producing the identical geo-seismic motions with seismology
18 domain definitions. A programmable multi-parametric five degrees of freedom electromechanical
19 seismic wave events simulation platform to study and experiment seismic waves and earthquakes
20 realization in the form of geo-mechanic ground motions is exhibited in this work. The proposed
21 platform was programmed and interfaced through an IoT cloud-based Web application. The geo-
22 mechanics was tested in the range of i) frequencies of extreme seismic waves from 0.1Hz to 178Hz;
23 ii) terrestrial inclinations from -10.000° to 10.000°; iii) velocities of 1km/s to 25km/s iv) variable arrival
24 times 1us to 3000ms; v) magnitudes M1.0 to M10.0 earthquake; vi) epi-central and hypo-central
25 distances of 290+ and 350+ kilometers. Wadati and triangulation methods have been used for entire
26 platform dynamics design and implementation as one of key contributions in this work. This
27 platform is as an enabler for a variety of applications such as training self-balancing and calibrating
28 seismic-resistant designs and structures in addition to studying and testing seismic detection
29 devices as well as motion detection sensors. Nevertheless, it serves as an adequate training colossus
30 for machine learning algorithms and event management expert systems.

31 **Keywords:** Motion sensors; seismic sensing; Wadati method; earthquakes; programmable;
32 simulation; test bench; calibration; machine learning; IoT platform.

34 1. Introduction

35 The natural disasters and accidents happen annually across the globe with earthquake and
36 floods being most devastating and alarming on the loss and damage benchmarks. The casualties
37 reported by natural calamities, i.e. 564.4million were the highest in 2006 as compared to the last 10
38 years [1], amounting to 1.5 times its annual average 224 million. The global natural disaster economic
39 damages, i.e. US\$ 154 billion scrutinized in the last year as the fifth costliest since 2006, i.e. 12% above
40 the 2006-2015 annual average registered in CRED database. Earthquake or seismic events have
41 proven to be the most obvious and recurring in all [2] the natural disasters i.e. 14,568 in 2018. The
42 death toll of 2,256 on September 28, 2018 in Indonesia was at the top of charts.

43 Domain realization and perception assistance is the foremost constraint in all simulation
44 platforms design and implementations. In geo-seismic domain, a plethora of contributions were
45 observed in simulation area from theoretical and mathematical modelling aspect. The Tullis group

46 simulator RSQSim [3] was appreciable for fault-friction modelling, fully dynamic single-event
47 simulations, rate- and state dependent friction(RSF) modelling with a gap of wave modelling and
48 ground motions realization. The ALLCAL [4] was one of the earthquake simulators developed by
49 scientists of the Southern California Earthquake Center(SCEC) and belonged to Tullis group of
50 simulators. The ALLCAL used the Triangulation rule for the geometrical modelling and estimation
51 of stresses and displacement to approximate fault friction and elastodynamics at very abstract level
52 had a gap of mechanical implementation and core geo-seismic realization. The Viscoelastic
53 earthquake simulator for San Francisco Bay region [5] was very noticeable approach towards
54 seismicity functions with a gap of real surface motion kinematics, i.e. seismic waves and arrival times.
55 The Virtual Quake(VQ) earthquake simulator [6] was a simulation-based forecast of the El Mayor-
56 Cucapah region and evidence of predictability in simulated earthquake sequences was a successor of
57 Virtual California(VC) can be used for forecasting and training mechanics. The gap of physical design
58 and implementation was very prominent in VQ contribution. The physics-based earthquake
59 simulator replicated seismic hazard statistics across California [7] and compared its results with
60 UCERF3(Uniform California Earthquake Rupture Forecast, version 3) and RSQSim reliant on
61 parameterized ground motion models(GMMs). The current state earthquake simulation [8]
62 contribution also had gaps in geo-seismic realization and its relationship with geo-mechanics
63 implementation. The gaps of geo-seismic realization as mechanical platform for physical
64 implementation were observed in all [3-8] contributions.

65 An effective early warning and disaster management(EWDM) needs a trustable ground motion
66 simulator for training and realization purposes. The contribution [9] was a generic earthquake test
67 and needed to be improved mechanically and electronically. The world's largest ground motion
68 simulator(GMS) [10] was jointly owned by the Civil Defense College and Ankara Search & Rescue
69 Unit operated at 380V and delivered a maximum frequency of 12Hz and velocity of 80 cm/s needed
70 serious attention from the design of skeleton, power efficiency, and size. The second largest
71 earthquake facility [11] in the world with a payload 1,200 tons, maximum velocity 200 cm/s, and
72 maximum displacement +/- 1 m for horizontal excitation and maximum velocity 70cm/s, maximum
73 displacement +/- 50cm for vertical excitation to realize destructive ground motion was limited to a
74 shake table i.e. P-waves simulation needed improvement in design, mechanic, and electronics for S-
75 waves. The myQuake [12] was energy and payload optimized and had P-wave capabilities but
76 needed improvement in characteristic frequencies and amplitudes benchmarks. The seismic events
77 variable rotation test bench [13] with angular acceleration 2~500 rad/s, angular velocity 0.0002~35
78 rad/s, angular resolution 10:1700, frequency range 0.001~1000 Hz and payload 5kg needed
79 advancement in frequency, mechanical design, power economics, and IoT. The GG SCHIERLE [14]
80 shake table with spring-loaded mechanism and capable of vibration of 2.99Hz frequency and 3mm
81 amplitude needed rework and improvement in seismic definitions, drive electronics, mechanical
82 structure, IoT and results detailing. The State Key Laboratory for Disaster Reduction in Civil
83 Engineering, Tongji University had a reference shake table used in [15] with carrying capacity of 20kg
84 required seismic definitions, drive intelligence, wave parametric design, IoT and data set import
85 capabilities. The [16] shake table with motor shaft based motion control mechanism in UC, Berkley
86 needed IoT, web interface and data set import support features. The gaps of programmable multi-
87 parametric geo-seismic to geo-mechanics motion controls realization and integration in web interface
88 for remote simulation were observed all [3-16] contributions.

89 Dedicated and comprehensive efforts were observed in automation centered electro-mechanical
90 design full scale shake table [17] by NHERI Tall Wood Project Team with gaps in parameter settings
91 and upload from remote location and detailed programmable geo-mechanics control. The
92 programmability feature in Fuzzy-PLC based earthquake simulator [18] was a revolutionary add-on
93 but till gaps of geo-seismic realization to motion commands for motors as well as user-interface(UI)
94 as human machine interface(HMI) was the limitation. The multi-purpose earthquake simulator [19]
95 and a flexible development platform for actuator controller design had only P-wave simulation
96 capability was very basic design. The flexible IoT platforms [20-23] based design and implementation
97 efforts had very appreciable high-resolution bi-axial displacement, acceleration, and vibration

98 sensing capabilities and needed improvement in multi-parametric gap of mechanical actuation as
 99 well as geo-seismic realization. The 4-DoF multi-parametric design [24] needed thorough
 100 improvements in geo-seismic domain realization as well as IoT features [25] like web to actuator
 101 control accomplished in this work.

102 The nine target gaps that needed to be addressed were mechanical design in terms of, i) more
 103 degrees of freedom(DoF); ii) multi-parametric geo-seismic realization; iii) geo-mechanics simulation
 104 capabilities by motion control intelligence; iv) power efficiency; v) data sets upload and download
 105 options; vii) web and IoT controls; viii) accuracy in P, S, Raleigh(R), and Love(L) waves; as well as ix)
 106 customizable ground motions generation.

107 This work focuses on a complete programmable multi-parametric 5-DOF seismic wave ground
 108 motions simulation platform (GMSP) for P, S, Rayleigh, and Love waves with the novel:

109

- Multi-parametric Geo-Seismic Realization Engine(GRE) Design and Implementation
- Programmable 5-DOF Seismic Machine Apparatus(SMA) Design and Fabrication
- Motion Control System (MCS) or Mechatronics System Assembly and Programming
- IoT Web Interface Design and Implementation with Seismic Parameters and Data Integration

113 2. GMSP Design and Implementation

114 A GMSP is a multi-sensing, multi-parametric, and programmable actuators platform that gives
 115 the exact realization of real seismic events by mathematical formulations. The first step is designing
 116 any physical world simulation system is to realize the domain parameters. The second step is the
 117 nearest possible physical model that resembles the real world application. In this third step, sensors
 118 are selected that realize the domain variables. The fourth step is the flexibility or programmability of
 119 actuators to create respective events. The entire conceptual model of this work in figure 1.

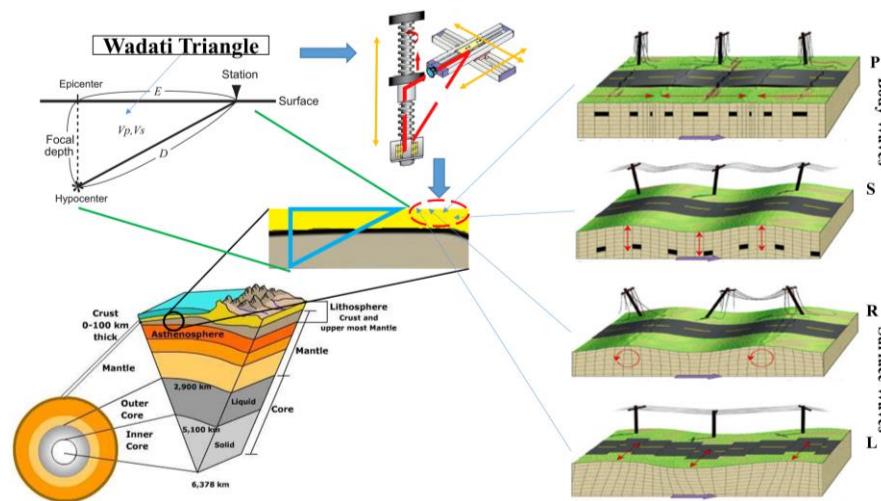


Figure 1. Overall Conceptual Layout of GMSP

120 2.1. Multi-parametric Geo-Seismic Realization Engine Design and Implementation

121 The objective of GRE was to convert seismological variables and parameters into actuator
 122 commands and sense them to ensure the accuracy of the simulation system. In seismology, there are
 123 two basic types of waves i.e. body waves and surface waves with sub-types of each. Body waves have
 124 two sub-types i.e. primary (P), secondary(S) and surface waves have Rayleigh(R) and Love(L) waves.
 125 For a sensing system, seismic waves are very specific ground motion events that need to be sensed
 126 in x, y, and z directions as D_x , D_y , and D_z . In figure 1, it can be observed that seismic waves study is
 127 focused on ground motion and anomalies in lithosphere and crust only. The point where the seismic
 128 fault occurs and generates the earthquake is called hypocenter(C_H) and its perpendicular point on
 129 earth surface is called epicenter(C_E). The point where seismic variables are observed is called a seismic

130 station(S_s). The hypocenter and epicenter measurement assists in the computation of magnitude(M)
 131 and energy(E) of earthquakes. After seismic motion generation, the triangulation method is used to
 132 find the epicenter as the first step. Three seismic stations are a mandatory requirement for the
 133 triangulation method. The P, S, R and L waves can be sensed any high-sampling and precision bi-
 134 axial motion sensors. The waves velocity or motion needs accelerometers and angular displacement
 135 needs inclinometers tactically oriented in x, y and z-axis. The conversion of seismic variables into
 136 motion control commands in given below in Table I. Let the five motors be first horizontal shaft motor
 137 be M_{HS1} , second horizontal shaft motor be M_{HS2} , first vertical shaft motor be M_{VS1} , second vertical shaft
 138 motor be M_{VS2} , and third vertical shaft motor be M_{HV3} .

139 **Table 1.** Realization Geo-Seismic Events as Motion Control Commands

	Geo-Seismic Domain	GMSP Motion Control Domain
Event Patterns		
	P-Waves Pattern(P_{EVENT})	M_{HS1} (CW + A-CW)
	S-Waves Pattern(S_{EVENT})	M_{VS1} (CW + A-CW)
	R-Waves Pattern(R_{EVENT})	M_{VS1} (CW) + M_{HS1} (CW) and M_{VS1} (A-CW) + M_{HS1} (A-CW)
Quantity of Patterns		
	L-Waves Pattern(L_{EVENT})	M_{HS1} (CW) + M_{HS2} (CW) + M_{HS1} (A-CW) + M_{HS2} (A-CW)
	Earthquake Pattern(E_{EVENT})	$T_{PRE} + P_{EVENT} + T_{POST-P} + S_{EVENT} + T_{POST-S} + R_{EVENT}$ Or $T_{PRE} + P_{EVENT} + T_{POST-P} + S_{EVENT} + T_{POST-S} + L_{EVENT}$ $n * W_{EVENT}(P_{EVENT}, S_{EVENT}, R_{EVENT}, L_{EVENT})$
Timers of Patterns		
	Number of Waves(N_{WAVES})	$n * E_{EQKS}$
	Number of Earthquakes(E_{EQKS})	
	Arrival Time of P-Wave(T_{AP})	T_{PRE}
	Arrival Time of S-Wave(T_{AS})	$T_{AP} + T_{WP-P} + T_{POST-P}$
	Arrival Time of Rayleigh Wave(T_{AR})	$T_{AS} + T_{WP-S} + T_{POST-S}$
	Arrival Time of Love Wave(T_{AL})	$T_{AS} + T_{WP-S} + T_{POST-S}$
	Delay(T_{POST})	
	Duration of Waves Pattern(T_{WP})	Post-Delay in Motors Commands
	Duration of Earthquake(T_{EQK})	$N_{WAVES} * T_W$
Magnitude of Pattern		
	Peak to Peak Amplitude of Waves(A_w)	$T_{PRE} + T_{WP-P} + T_{POST-P} + T_{WP-S} + T_{POST-S} + T_{WP-R}$ Or $T_{PRE} + T_{WP-P} + T_{POST-P} + T_{WP-S} + T_{POST-S} + T_{WP-L}$
	Magnitude of Earthquake (M_{R-EQKS})	$2 * \sum_{i=0}^n P_{LS}$ $\log(A_w/T_{EQK})$ or
Duration of a Single Wave	Time period of Waves(T_W)	Steps Timer for movement (CW + A-CW)
Frequency of a Single Wave Pattern	Frequency of a Wave(F_w)	$1 / T_w$
Distance Travelled	Distance Traveled by Waves(D_w)	Total Steps * T_w
	Distance Traveled by Unit Earthquake(D_{EQKS})	$D_{W-P} + D_{W-S} + D_{W-R}$ or $D_{W-P} + D_{W-S} + D_{W-L}$
Velocity of Waves	Velocity of P-Waves(V_p)	D_{W-P} / T_{W-P}

(can be X and Y)	Velocity of S-Waves(V_S)	D_{W-S} / T_{W-S}
	Velocity of R-Waves(V_R)	D_{W-R} / T_{W-R}
	Velocity of L-Waves(V_L)	D_{W-L} / T_{W-L}
Impact of P-Waves w.r.t to Equator and Poles	Angle of Incidence P-Waves(Θ_P) (can be X and Y)	Average Angle of P-Cluster where angle and acceleration is similar
Impact of S-Waves w.r.t to Equator and Poles	Angle of Incidence P-Waves(Θ_S) (can be X and Y)	Average Angle of S-Cluster where angle and acceleration is similar
Hypocentral Distance	Hypotenuse of Wadati Triangle (H_{WT})	$B_{WT} / \{\cos((\Theta_S + \Theta_P)/2)\}$
Epicentral Distance	Base of Wadati Triangle (B_{WT})	$(T_{AS} - T_{AP}) * \{(V_P * V_S) / (V_P - V_S)\}$
Epi-Hypo Distance	Perpendicular of Wadati Triangle (P_{WT})	$B_{WT} / \{\sin((\Theta_S + \Theta_P)/2)\}$
Location of S_S	GPS Coordinates ($Y^\circ N, X^\circ E$)	Longitude and Latitude Values
Location of (C_H, C_E)	GPS Coordinates of Offset = (B_{WT}) from S_S ($Y^\circ N, X^\circ E$)	$S_S (Y^\circ N, X^\circ E) + (B_{WT} [\sin((\Theta_S + \Theta_P)/2)]^\circ N, B_{WT} [\cos((\Theta_S + \Theta_P)/2)]^\circ E)$

140 In table 1, all the information regarding GRE is given. Clockwise and anti-clockwise rotation is
 141 expressed as CW and A-CW. Further details can be read from references cited in the introduction.

142 *2.2. Programmable 5-DOF Seismic Machine Apparatus Design and Fabrication*

143 The mechanics of seismic events and earth typography prevails the design of SMA
 144 measurements and design constraints. The extreme values for seismic variables in top 3 earthquakes
 145 i.e. the Chile Earthquake (1960) with M9.5, the Atlanta earthquake (1964) with M9.2 and the Indian
 146 Ocean earthquake (2004) with M9.1 have been employed as standard design parameter set. The SMA
 147 design process has been divided into two sections:

148 • SMA Static Parts Sizing and Dimensions
 149 • SMA Dynamic Parts Sizing and Dimensions

150 *2.2.1. SMA Static Parts Sizing and Dimensions*

151 The epicenter, hypocenter, focal depth, triangulation area, and seismic station are the static
 152 locations on the map thus their mechanical equivalents will also be static components. The global
 153 datasets on IRIS and USGS were used to specify the limits and extent of parts designed and used for
 154 mechanical structure. Considering into account the top 3 earthquakes i.e. 1960 Chilean earthquake in
 155 Valdivia with Richter M9.5, 1964 Alaska earthquake with Richter M9.2~9.3 and 2004 Indian Ocean
 156 earthquake in Sumatra with Richter M9.1, the static parts sizing was accomplished. The re-scaled
 157 sizing was performed in the same ratios to streamline the dimensions of static parts in GMSP given
 158 in table 2.

159 **Table 2.** GRE Dimensions for SMA Static Parts

Metadata	Top 3 Mega Earthquakes			SMA Parts Sizing	
	Name	Valdivia, 1960	Alaska, 1964	Sumatra, 2004	Structure
Epicentral Distance	150 km (Calc)	141 km (Calc)	157 km (Calc)	Assembly (AE)	35 ~ 146 mm
Hypocentral Distance	153 km (Calc)	143 km (Calc)	160 km (Calc)	Assembly (AD)	50 ~ 150 mm
Focal Depth	33 km	25 km	30 km	Assembly (AFD)	29.33 ~ 34.33 mm

Magnitude	9.5	9.2	9.1	Oscillation Tolerance	Hinged Joint (MS + Acrylic)
Triangulation Area	10 km E 90 km W 120 km N	20 km N 125 km E 64 km W	Not Found	GMSP Bed (GB)	300mm Side A 300mm Side B 300mm Side C

160 The 3D models of SMA static parts were designed in AutoCAD and are shown in figure 2. The
 161 word "(Calc)" means it was mathematically calculated using Pythagoras theorem and "Not Found"
 162 means that we could not found any reliable source of information for this field. The dimensions are
 163 approximated from the average of parameters of top 3 earthquakes.

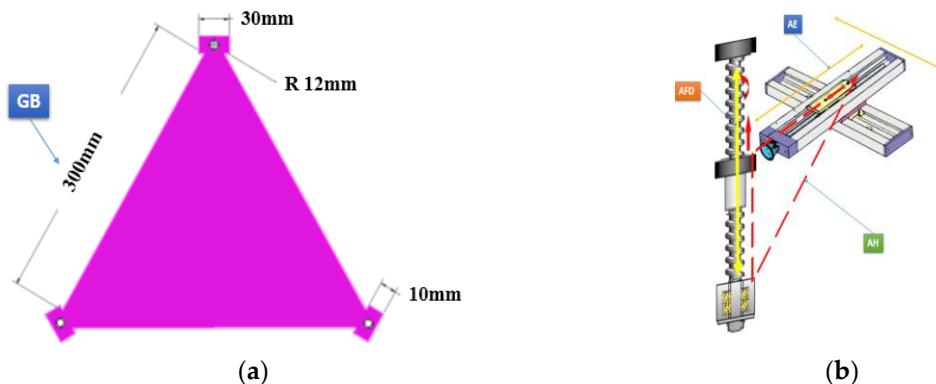


Figure 2. Core components of SMA Static Parts 3D Model as (a) GMSP Bed Dimensions; and (b) Assemblies (AE, AD, AFD)

164 In figure 2, it can be seen that initially static parts have been designed on the basis of realistic
 165 approximation of geology of top 3 earthquakes with scaling ratio of 0.33mm = 1km means GMSP bed
 166 is capable of simulating 1000km crust surface. The three corners represent 3 seismic stations in
 167 accordance with the Wadati triangle method and triangulation rule for geo-seismic estimations.

168 2.2.2. SMA Dynamic Parts Sizing and Dimensions

169 The dynamic parts include gears, shafts; and motors. The seismic waves velocities, frequencies,
 170 and wavelengths have led dynamic parts estimation. Considering into account of the standard
 171 seismology literature referred in the introduction section, the dimensions of the dynamic parts are
 172 given in table 3. The seismic velocities were governed by lead screws coupled with bi-polar stepper
 173 motors, frequencies by rotation per second(RPM) of motors by full-stepping and micro-stepping and
 174 wavelengths by the pitch of lead-screws and number of threads traveled per second. The unit pitch
 175 was the minimum unit of velocity for any wave and half times of rated RPM stepper was expected
 176 frequency generated by stepper motor as a multi-parametric actuator.

177 Table 3. GRE Dimensions for SMA Dynamic Parts

Metadata		Seismic Waves				SMA Parts Sizing	
Parameters	P	S	R	L	Structure	Dimensions	
Velocity	5~8 km/s	3~4 km/s	2~4.2 km/s	2~4.4 km/s	Lead (TPS)	2~8	
Frequency	4~8 Hz	1.5~3 Hz	0.03~0.7 Hz	0.05~0.5 Hz	Motor(RPM/2)	16~32	
Wavelength	5m~50 km	30m~500km		30 to 1000 km	Length(Screws)	0.05~500mm	

178 The frequencies have been achieved using revolution per minute, wavelength through the
 179 amplitude of vibration by scaling radius of earth $R = 6.371\text{km}$ i.e. circumference, $C = 40,075\text{ km}$. The
 180 average of wavelength of P-wave, $\lambda_P = 25\text{km}$ and S-wave, $\lambda_S = 235\text{km}$, diving it into least count of a
 181 measurement instrument $C/\lambda = (1603, 170.5)$ means that for GMSP the minimum displacement for P-
 182 wave is $d_P = 1.603\text{cm}$ and S-wave is, $d_S = 0.17\text{cm}$ to realize the comparative ground motions. For this,

183 two different lead screw assemblies were selected with stepper motors with step angles 1.8° and
 184 5000RPM, 20 steps per revolution for P-wave to achieve dP and 200 steps per revolution for dS. The
 185 desired assembly was designed in AutoCAD as 2D and 3D and given in fig 2 as a 4 DOF motion
 186 platform. The considerations like epicenter and seismic center have been kept in account while
 187 designing the mechanical assembly for GMSP.

188 **Table 4.** Stepper Motor and Lead Screw Specifications

Parts	Stepper Motors Specs			Lead Screws Dimensions				
Motors	RPM	Steps	Step-Angle	Screws	Pitch	TPI	Length	Diameter
Type 1	>32	200	1.8°	Type 1	1.25mm	20	500mm	8mm
Type 2	>16	18	20°	Type 2	3mm	8.5	140mm	3mm

189 Table 4 is complete interpretation and derivation from table 3, i.e. geo-seismic mechanics to the
 190 electromechanical domain. The motors and lead screws parameters are computed by maximum
 191 possible limits of high flexibility in the precision of the system.

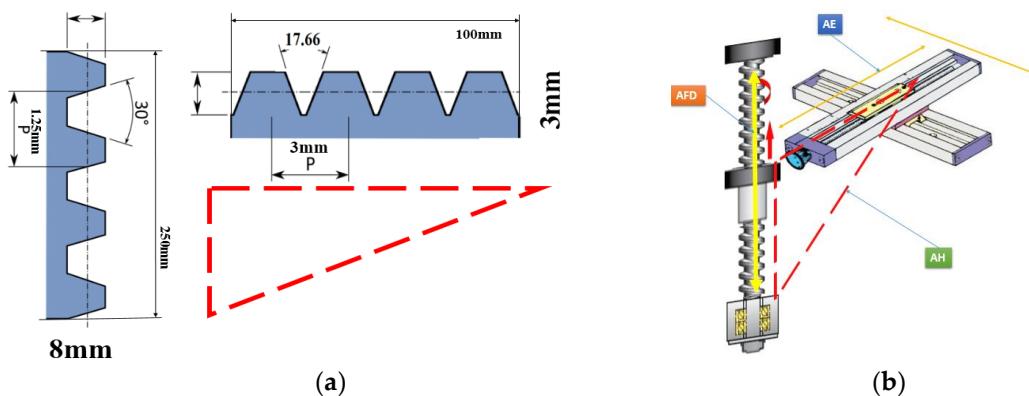


Figure 3. Description of SMA Dynamic Parts Mechanical CAD and 3D Model as (a) Lead Screws Design; and (b) Specifications Assemblies (AE, AD, AFD)

192 In figure 3, it can be seen that initially dynamic parts have been designed on the basis of realistic
 193 approximation mechanics of seismic waves from IRIS and USGS database. The pitch 1.25mm assists
 194 in 4km surface movement and 3mm in 9km as per scaling defined in table 3 i.e. single revolution of
 195 type 1 motor created motion of 4km and type 2 motor created 9km i.e. at max RPM will produce
 196 velocities of 1200km/min and 27000km/m. This speed is much more than realistic seismic velocities.
 197 The overall assembly is given in figure 4.

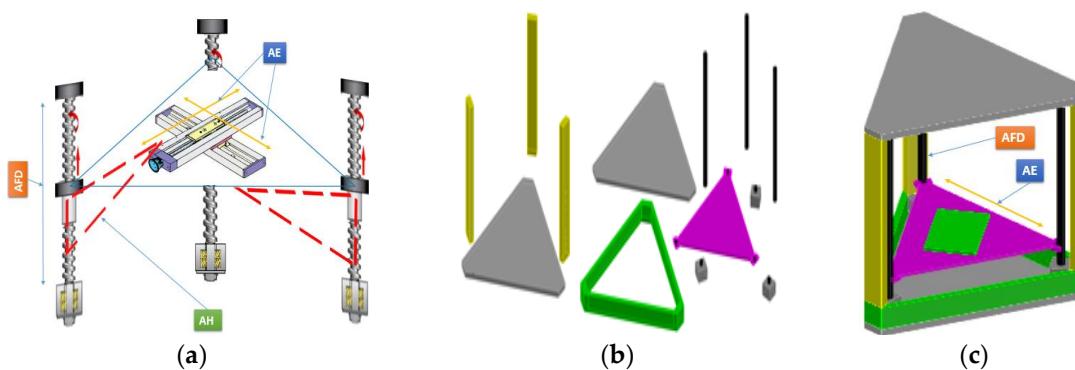
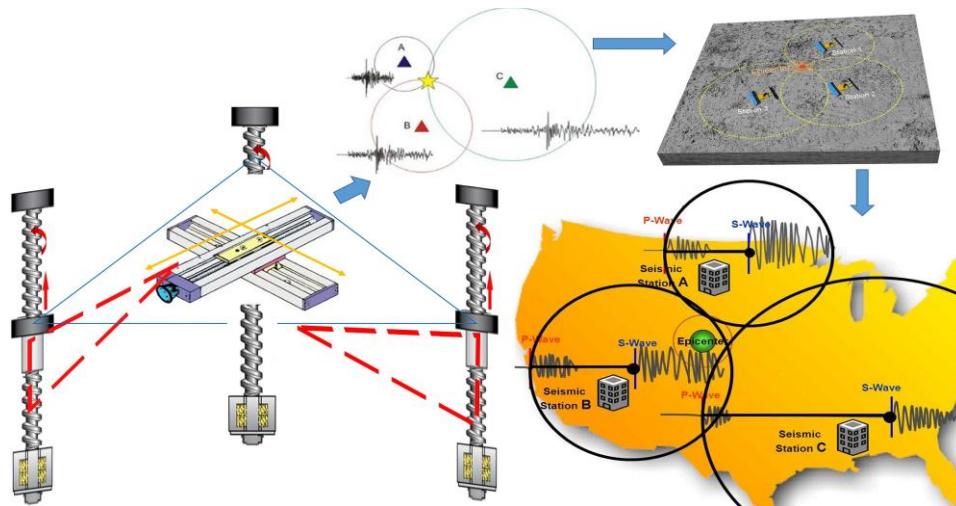



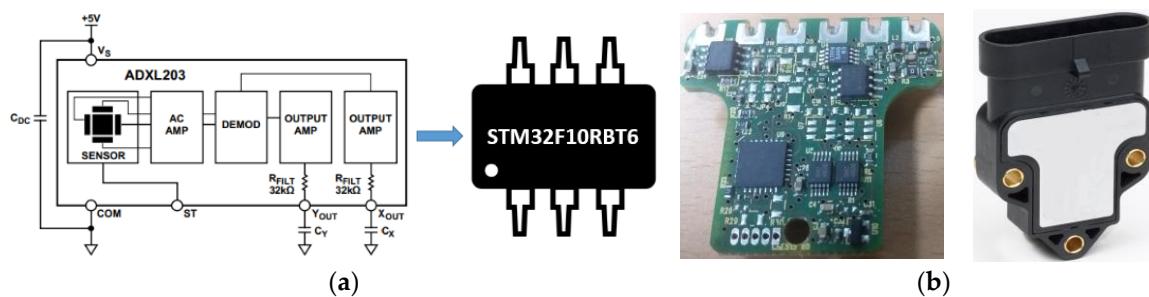
Figure 4. Exhibition of Overall GMSP Assembly and 3D Model as (a) Internal Assembly; (b) Overall Parts 3D Model (c) Assembled GMSP

198 In figure 4, the internal assembly is scaled and oriented according to the triangulation and
 199 Wadati method based on real-world calculations. The external assembly serves the purpose of

200 alignment and minimizing kinematic disturbances due to linear and angular motions and resulting
 201 vibrations. The entire concept of GSMP is given in the figure below.

Figure 5. The Comprehensive Realization of GMSP

202 In figure 5, the overall system is defined with geo-seismic reference and its operation capacity
 203 as a three station simulation platform as three equidistant assemblies (AE, AD, AFD) for A, B and C
 204 geo-locations.


205 3. Motion Control System (MCS) or Mechatronics System Assembly and Programming

206 The GMSP MCS consists of three subsystems the geo-seismic heterogeneous sensing node, geo-
 207 seismic actuator-drive system and MCS controller with IoT enablement capabilities. The GMSO at
 208 boot up is initialized with a perfectly static structure. The first step after booting is normalizing the
 209 SMA to 0 tilt-angle and move the GB to origin so that there are no offsets by the help of
 210 instrumentation support. In the second step, the GMSP gives an indication of "Ready" and is ready
 211 to take user inputs. The three components of MCS are:

- 212 • Geo-seismic heterogeneous-sensing node(GHN)
- 213 • Geo-seismic mechanics actuators-drive system (GMAS)
- 214 • GMSP MCS Controller

215 3.1. *Geo-seismic heterogeneous-sensing node(GHN):*

216 The block diagram of GHN is given in figure 6 focusing on the measurement requirements in
 217 table 3. A bi-axial accelerometer ADXL203 has been used for heterogeneous sensing i.e. acceleration
 218 and as well as tilt-angle measurements.

Figure 6. The GHN Version 0 as (a) GHN Architecture ; and (b) GHN Fabrication.

219 In figure 6, the STM32F10RBT6 (32-Bit microcontroller with CAN-Open Transceiver and 12-Bit
 220 ADC with a sampling rate of 1us) is interfaced with ADXL203 using to two ADC channels to
 221 constitute one GHN as per (a) and PCB as wells as IP68 enclosure is displayed in (b).

222 *3.2. Geo-seismic mechanics actuators-drive system (GMAS)*

223 The bipolar stepper motors type1 and type2 specified in table 3 are shown in figure 7 with respective
 224 motor drives i.e. A4988 with micro-stepping capabilities. The RPM and acceleration programming
 225 was also a novel task performed in this work for geo-mechanics. The motion control system consists
 226 of an ESP32 an Xtensa II 32-Bit SoC coupled with A4988 stepper drivers with micro-stepping
 227 capabilities and 12V/2A power supply drive for bi-polar stepper motors. The overall system layout
 228 is given in fig 3.

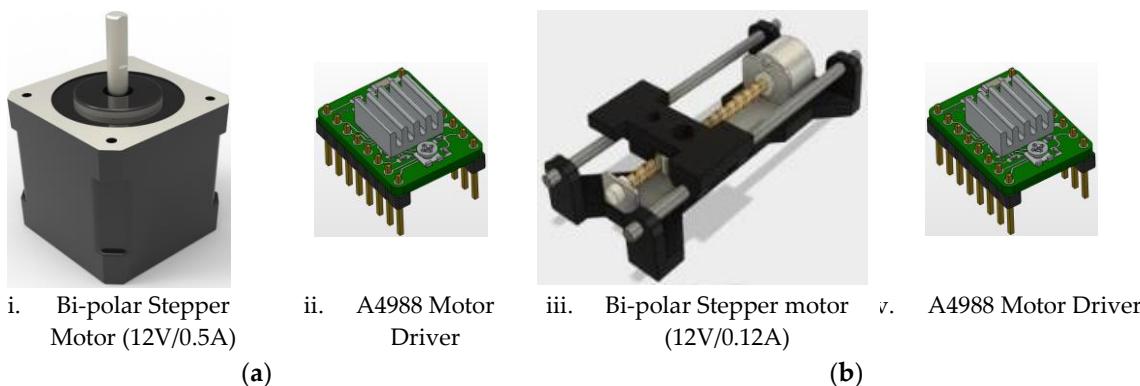


Figure 7. The GMSP Motors and Drives as (a) Type 1 Motor Drive System; and (b) Type 2 Motor Drive System.

229 Three bi-polar type1 for vertical movements and 2 bi-polar type2 for horizontal motions were
 230 used in GMSP.

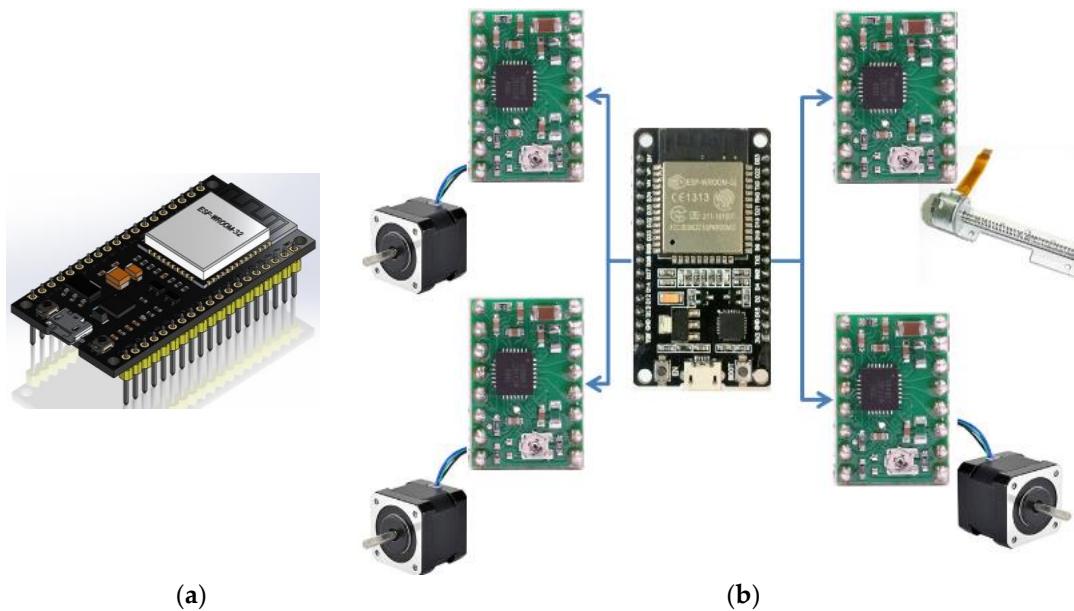
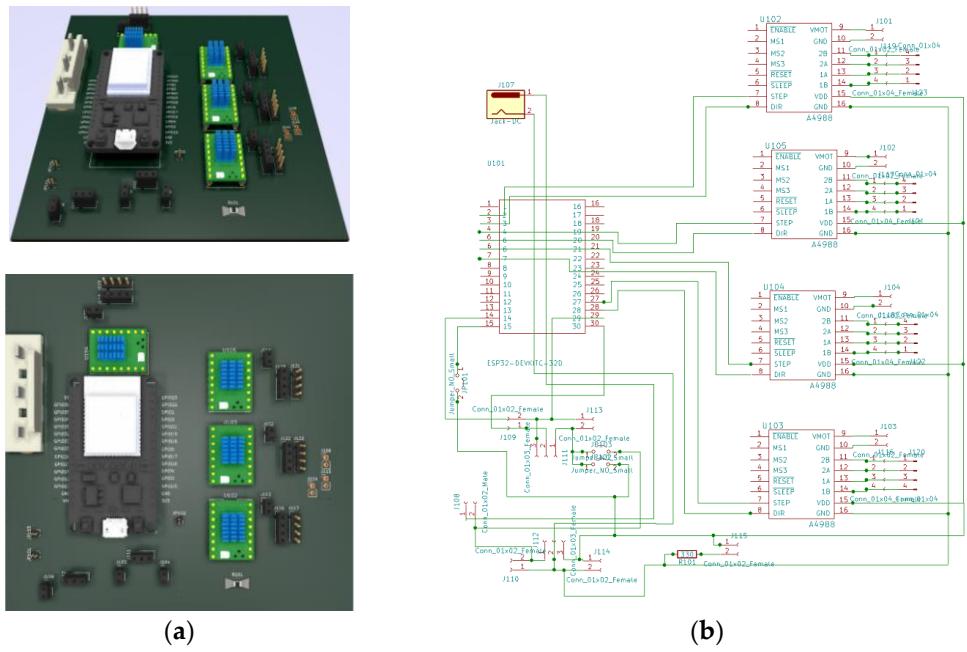



Figure 8. The GMSP Motion Actuation System as (a) Xtensa II 32-Bit SoC (ESP32); and (b) Motion Control System Layout.

231 In figure 8, it is prominent that a five joint system is powered using 5 stepper motors driven by
 232 five A4988 stepper drivers controlled through a single ESP32.

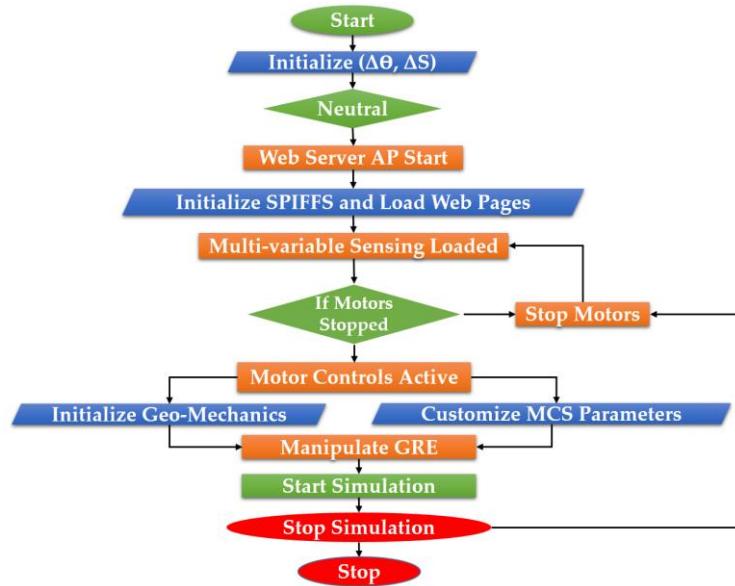
Figure 9. Layouts of the GMSP Motion Actuation System designed in KiCAD and FreeCAD as (a) PCB Layout Top Views (MCS); and (b) Motion Control System Schematics.

233 A complete GMAS MCS motherboard is shown that enables the entire GMSP is displayed in
 234 figure 9. The 3D view of the PCB of the GMSP MCS motherboard is displayed in figure 9(a) and
 235 detailed schematics in figure 9(b) sum up the contribution. Two further novelties in this work are
 236 schematic symbols, PCB footprints designs, and integration of their 3D models designed in FreeCAD
 237 with KiCAD footprint designer module.

238 *3.3. GMSP MCS Controller*

239 The GMSP MCS controller has three core components that are being used for overall GMSP:

240


- 241 • SMA Orientation Neutralizer(SON).
- 242 • SPIFFS (Serial Peripheral Flash File System) for a web interface for 3 pages.
- 243 • GRE SSG (Seismic Sequence Generator) for OTA firmware.

243 The control algorithm of the GMSP MCS is given in figure 10. The GMSP MCS follows a
 244 sequential methodology of operations given as:

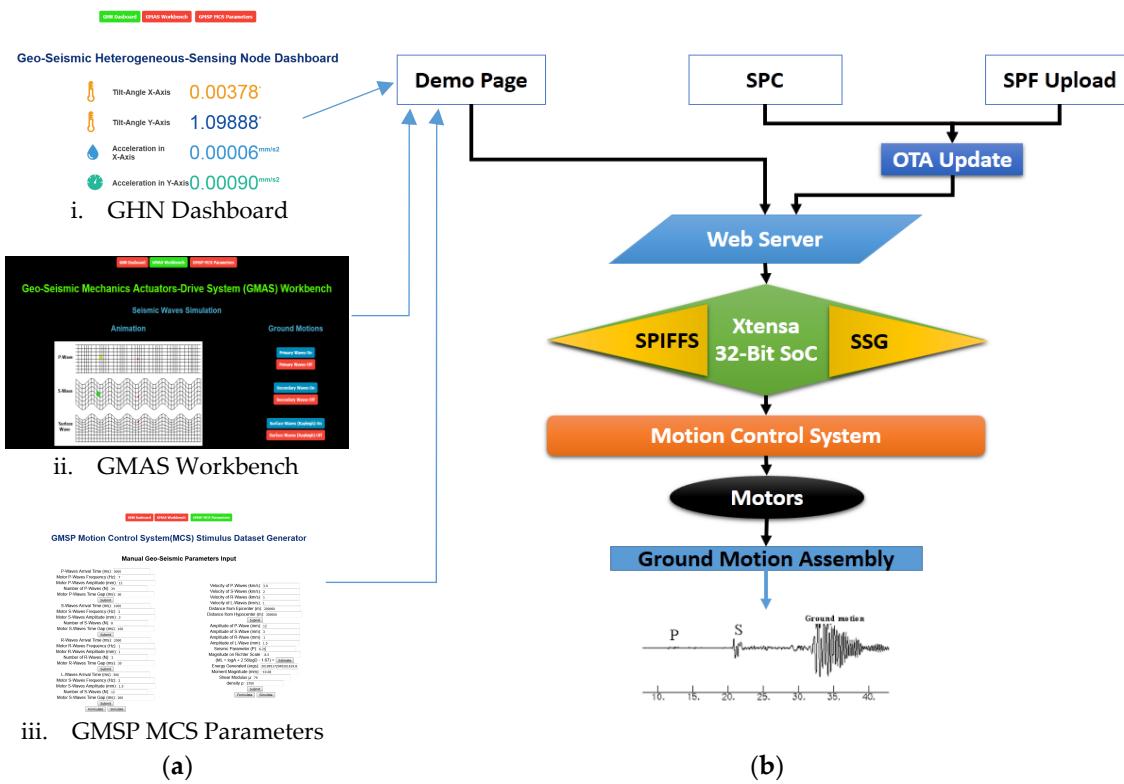
245 1. When System is powered on it takes inputs from GHN and brings itself into zero "g"
 246 condition i.e. removes all the initial value offsets using SON mechanism. Motors operate
 247 till it's zero acceleration and displacement at 0° tilt.

248 2. After SON operations, the access point is created, then AP is created after the acquisition
 249 of IP address. After a stable web server creation, the GMSP loads associated pages from
 250 SPIFFS for its user interactive web interface explained in later sections.

251 3. The GRE is stored as a binary code in firmware of SoC and is ready to receive user
 252 commands that simulate geo-mechanics by SMA actuated by MCS.

Figure 10. Flowchart of GMSP MCS Control Algorithm

253 Figure 10, the control algorithm of MCS and very self-explanatory from start till end. Safety
 254 operation in MCS is very vital that is neutralizing and stopping the motors by feedback control from
 255 GHN.


256 **4. IoT Web Interface Design and Implementation with Seismic Parameters and Data Integration**

257 The IoT web interface gives full flexibility in real-time geo-seismic sensing at the 100Hz sampling
 258 frequency, seismic waves and earthquake simulation by GMSP actuation, customized geo-seismic
 259 ground motion stimulus generation. HTML, CSS, and JavaScript were used to create user-friendly
 260 interfaces comprised of 4 web pages stored in SPIFFS of SoC. The four unique pages have 4 unique
 261 functions explained below:

262 • Page 1: GHN Dashboard
 263 • Page 2: Geo-Seismic Mechanics Actuators-Drive System (GMAS) Workbench
 264 • Page 3: GMSP Motion Control System(MCS) Stimulus Dataset Generator

265 When the system boots it creates an access point where all the users can connect to access the
 266 controls given on web named "NPRP8 Seismic Simulation Rig".

267 The HTML and CSS component that is being used as a frontend for user interaction is stored in
 268 SPIFFS and the main code with Web Server, AP, motor control instructions and wave generation
 269 functions in C are stored as SSG. The Page 1 i.e. GHN dashboard is active all the time and is displaying
 270 values as 100Hz refresh rate to inform the current state of X, Y tilt and acceleration. Page 2 has two
 271 portions one is dedicated for stored seismic waves simulation and the second part is earthquake
 272 simulation based on detailed data-set format required by GMSP that can be converted into motor
 273 controls. The USGS and IRIS datasets have to first convert into GMSP format. The datasets found on
 274 the cloud were having gaps and missing values. The extensive workout was required for the flawless
 275 formulation of IRIS and USGS datasets to be made adaptive with GMSP operational parameters. Page
 276 3 is geo-seismic domain based control form with all the parameter setting and simulation flexibility.

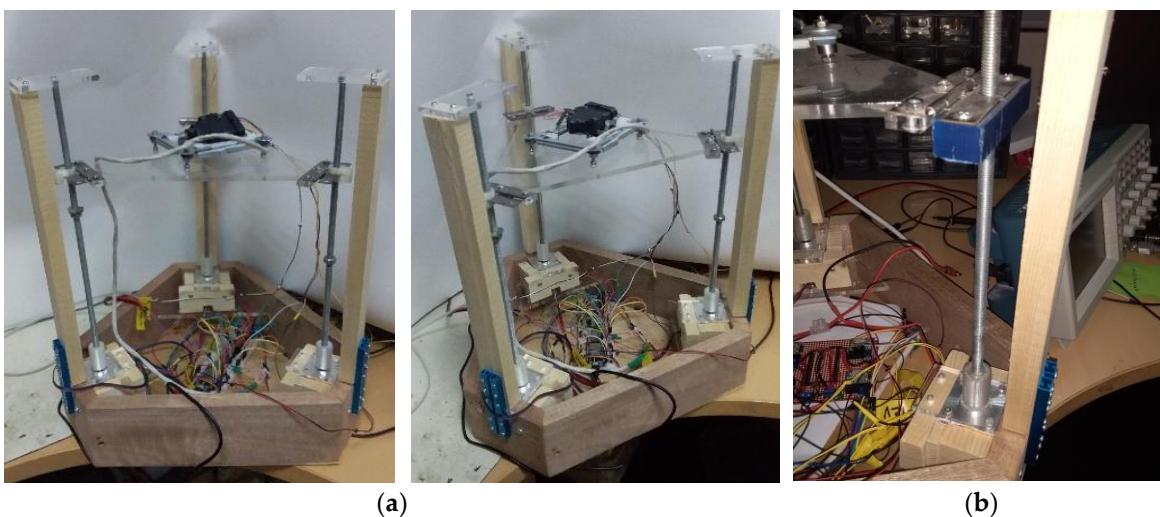


Figure 11. Description of GMSP IoT Web Platform as (a) Demo Pages; and (b) IoT Web Flow Diagram.

277 The first step after booting is normalizing the SMA to 0° tilt-angle and move the GB to origin so
 278 that there are no offsets by the help of instrumentation support. In the second step, the GMSP gives
 279 an indication of "Ready" and is ready to take user inputs. The three pages of GMSP Web-based
 280 hardware management system are:

281 **5. Results and discussion**

282 The GSMP was assembled for performing the experiments as shown in fig 6. The experiment
 283 has been set up with a bi-axis accelerometer node with 14-bit resolution also designed and fabricated
 284 in our previous works [13-15].

Figure 12. Photographs of Physically Assembled SMA of GMSP as (a) Two views of Physically Assembled GMSP Photographs; and (b) Single (B_{WT} and P_{WT}) Station Manipulator.

285 The results were observed from three sources, i.e. the GHN dashboard, Tektronix TDS 2014
 286 oscilloscope and MATLAB serial input. The GMSP results are very fertile and perceivable by
 287 seismologists and geologists.

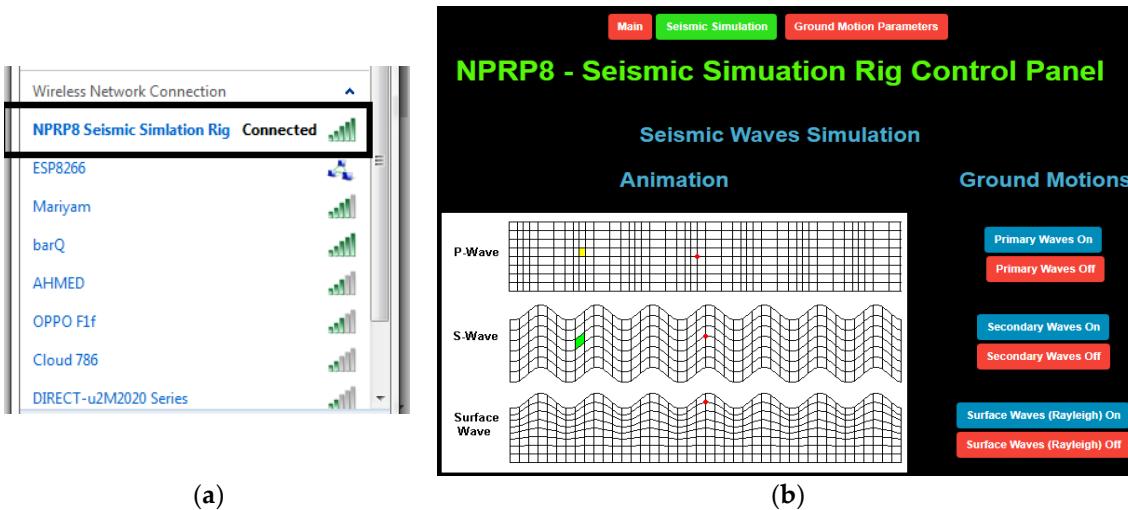


Figure 13. IoT Web Interface of GMSP as (a) AP Mode for Web Server Access; and (b) Home Page of GMSP IoT Platform.

288 The first indication for user interaction is the visibility of AP in wireless networks as shown in
 289 figure 13. After connecting to the AP the user needs to give IP of the gateway from network settings
 290 in the URL text field of web browser i.e. 192.168.1.1:81. This opens the GHN dashboard with current
 291 values. All the GHN values must be 0 to start the operation of GMSP.

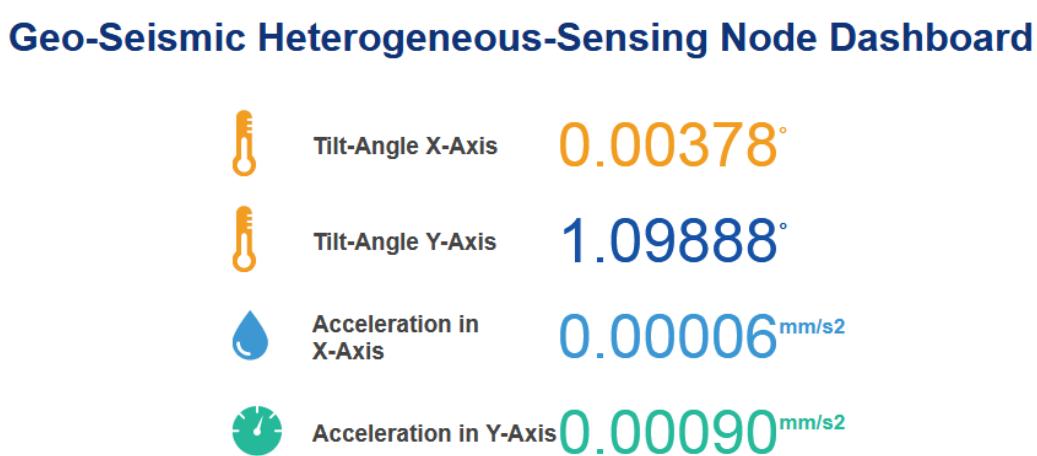


Figure 14. IoT Web GHN Dashboard

292 The first page is the GHN dashboard page as shown in figure 14 with a refresh rate of 100Hz.
 293 These values have to be almost zero to start the operation of GMSP. It needs a 10 to 20 min calibration
 294 in the worst case as SMA neutralizer self-calibrates the GMSP bed to achieve zero offset condition.
 295 The results were observed from two sources, i.e. the Tektronix oscilloscope and MATLAB serial
 296 input. The GMSP results are very fertile and perceivable by seismologists and geologists.

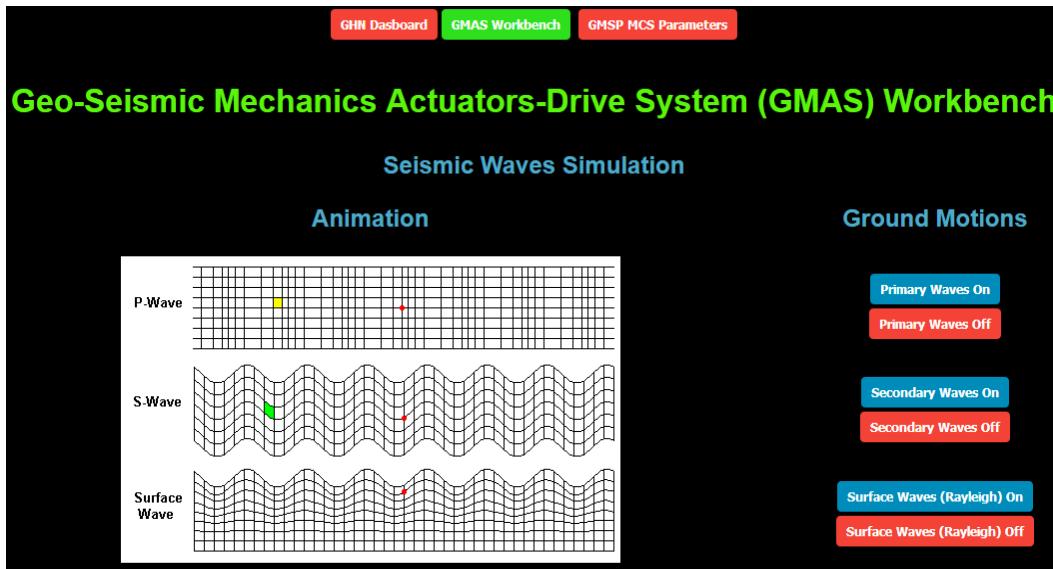


Figure 15. IoT Web GMAS Workbench – Seismic Wave Simulation (Top section)

297 This is a static page i.e. Page 2 shown in figure 15. Just press web buttons and start operations.
 298 The active operation button turned green. The P, S and surface waves are simulated just by pressing
 299 buttons according to the given parameters in Page 3.

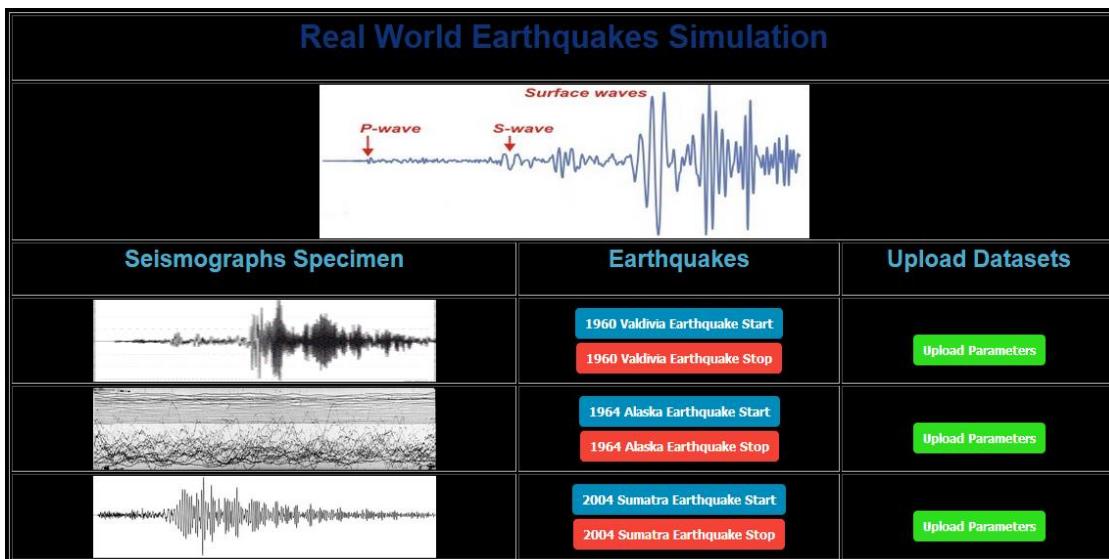


Figure 16. IoT Web GMAS Workbench – Earthquake Simulation (Bottom section)

300 The second section of Page 2 is shown in figure 16 i.e. dedicated for earthquake simulation. The
 301 green color of a button means “No Datasets Loaded”. Upon loading the buttons became blue. One of
 302 the key work in GMSP is designed a native IRIS and USGS dataset converter on a chip that can load
 303 live data from the cloud and simulate it on the go.

[GHN Dashboard](#)
[GMAS Workbench](#)
[GMSP MCS Parameters](#)

GMSP Motion Control System(MCS) Stimulus Dataset Generator

Manual Geo-Seismic Parameters Input

P-Waves Arrival Time (ms): 3000	Motor P-Waves Frequency (Hz): 7	Motor P-Waves Amplitude (mm): 12	Number of P-Waves (N): 34	Motor P-Waves Time Gap (ms): 50	Submit	Velocity of P-Waves (km/s): 3.9	Velocity of S-Waves (km/s): 2	Velocity of R-Waves (km/s): 1	Velocity of L-Waves (km/s): 1	Distance from Epicenter (m): 290000	Distance from Hypocenter (m): 350000	Submit
S-Waves Arrival Time (ms): 1000	Motor S-Waves Frequency (Hz): 2	Motor S-Waves Amplitude (mm): 3	Number of S-Waves (N): 8	Motor S-Waves Time Gap (ms): 100	Submit	Amplitude of P-Wave (mm): 12	Amplitude of S-Wave (mm): 3	Amplitude of R-Wave (mm): 1	Amplitude of L-Wave (mm): 1.5	Seismic Parameter (P): 6.21	Magnitude on Richter Scale: 8.5	(ML = logA + 2.56logD - 1.67) = Estimate
R-Waves Arrival Time (ms): 2000	Motor R-Waves Frequency (Hz): 1	Motor R-Waves Amplitude (mm): 1	Number of R-Waves (N): 3	Motor R-Waves Time Gap (ms): 30	Submit	Energy Generated (ergs): 301995172040201619.8	Moment Magnitude (mm): -10.08	Shear Modulus μ : 70	density ρ : 2700	Submit	Formulate	Simulate
L-Waves Arrival Time (ms): 500	Motor S-Waves Frequency (Hz): 2	Motor S-Waves Amplitude (mm): 1.5	Number of S-Waves (N): 12	Motor S-Waves Time Gap (ms): 200	Submit							
						Formulate	Simulate					

Figure 17. IoT Web GMAS Workbench – Seismic Wave Simulation (Top section)

304 The customized parameters input for GMSP to create seismic waves as well as the earthquake
 305 of any type that covers the safety and integrity of the motorized system as shown in figure 17. Page
 306 3 creates a motor command file on SPIFFS that stays that there deleted. These values become the right
 307 hand side variables of GRE.

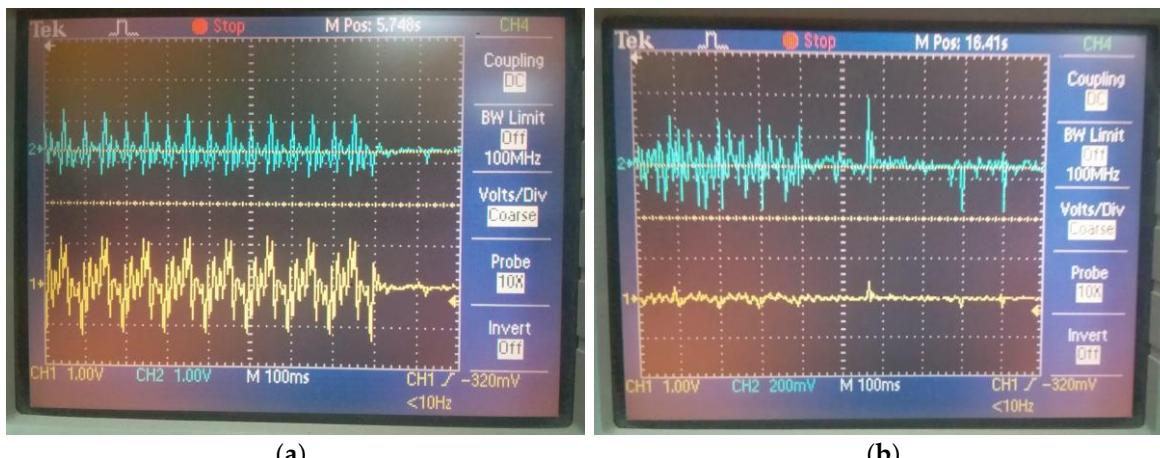


Figure 18. Observations of GMSP Simulation from Tektronix 2014 Oscilloscope as (a) P-Wave with 10.3mm Wavelength at 8 Hz; and (b) S-Wave with 17mm wavelength at 4 Hz.

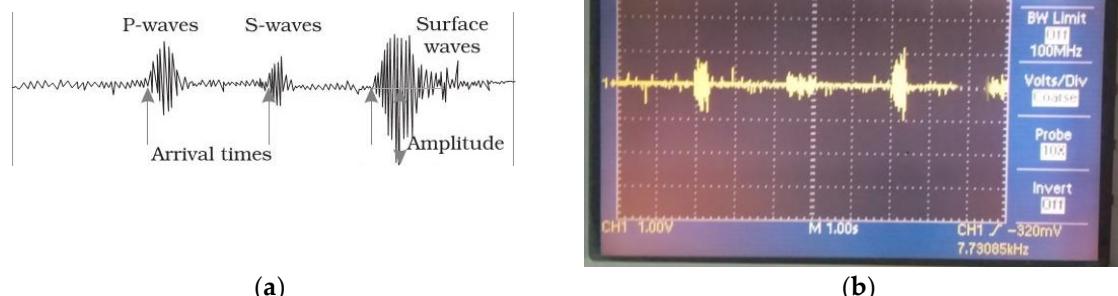

308 The results on the oscilloscope are very self-explanatory where the yellow line is for x-axis or
 309 vertical motion and cyan line for y-axis or horizontal motion. The frequencies achieved by the system
 310 are almost ideal and very accurate as shown in figure 18. The P-wave crust and trough is very
 311 extremely high and prominent with time period 100ms and unit segment of oscilloscope ± 1.6 VPK-PK
 312 covers 80% of the x-axis as proof of 8Hz frequency in figure 18(a). The s-wave is being measured at
 313 the same settings except that the unit division is 200mV i.e. total of 5 divisions on the y-axis and slight
 314 variation of ± 10 mV on the x-axis in figure 18(b).

Figure 19. Observations of GMSP Simulation observed from Tektronix 2014 Oscilloscope as (a) R-Wave with 16.03mm Wavelength at 35.73 Hz; and (b) L-Wave with 1.7mm wavelength at 78.092 Hz.

315 The results for R and L waves on the oscilloscope are very self-explanatory in figure 19. The
 316 frequencies achieved by the system i.e. 35Hz+ and 78Hz+ are extremely high and show the capability
 317 of the system to generate 10 times faster frequencies that were not observed in the literature before
 318 for R and L waves. The value 3.57684kHz is due to motor internal vibration when overstepped and
 319 accelerated to above final limits and creates plenty of pseudo-random noise that can be observed in
 320 the signal.

321 A much detailed observation of figure 19 (a) shows that R wave motion is translating along x-
 322 axis showing ± 2.5 V_{PK-PK} at 500mV grid setting i.e. slightly higher than the y-axis ± 2.2 V_{PK-PK} at 1V grid
 323 setting. In figure 19 (b) its only z-axis motion by changing the orientation of GHN on GMSP bed i.e.
 324 showing ± 2.1 V_{PK-PK} at 500mV grid setting. This surface motion is much challenging to produce as is
 325 only in one axis rest axis contain noise only.

Figure 20. Comparison of Characteristic Earthquake and Simulated Earthquake as (a) Standard Earthquake Pattern; (b) GMSP Simulated Pattern; (c) GMSP Generated Medium Earthquake Pattern; and (d) GMSP Generated High Earthquake Pattern.

326 The GMSP generated different earthquakes by varying the frequency as well as the amplitude
 327 of displacement as shown in figure 19. The characteristic earthquake pattern has used a masterpiece
 328 for simulation and all the patterns shown in figure 20 from (a) to (b) are by studying different data-
 329 sets mentioned in the literature review. The duration of an earthquake is 8s in figure 20 (a) i.e. 1s to
 330 9s on scope, P-waves arrival after 2s, S-waves after 4s and surface waves after 6s. Two earthquakes
 331 in figure (c) with duration 5.5 seconds without gap i.e. from 1.5s to 6s for first and 6s to 10s for the
 332 second earthquake with a 100mV amplitude of P-wave, 320mV for S-wave and 505mV for surface
 333 waves. The numbers 7.73085kHz, 88.6411kHz, and 89.6924kHz are due to pseudo-random noise
 334 produced by stepper motors being a different research domain in electro-mechanical engineering.

335 The serial out of the ESP32 was connected to PC for observations in MATLAB. The results in
 336 MATLAB were digital and had a lesser impact of pseudo-random noise observed in TDS 2014.

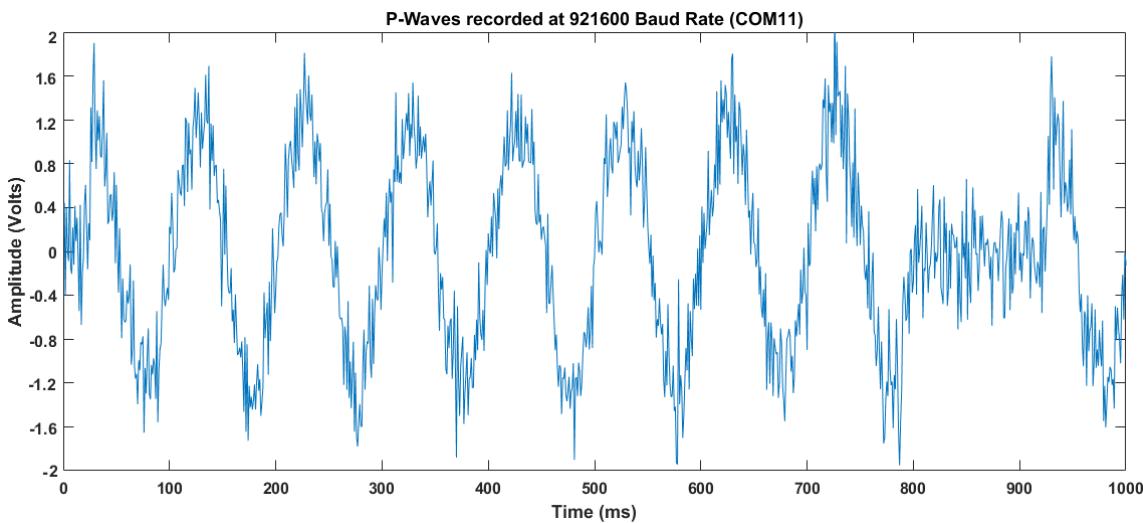


Figure 20. P-Waves observed in MATLAB for 8Hz on the x-axis

337 First, figure 18 (a) code was simulated and $\pm 1.6V_{PK-PK}$ curves were observed in MATLAB by only
 338 considering the x-axis acceleration signal. The plot captured data trace shows a significant difference
 339 in clarity in digital and analog data processing outputs.

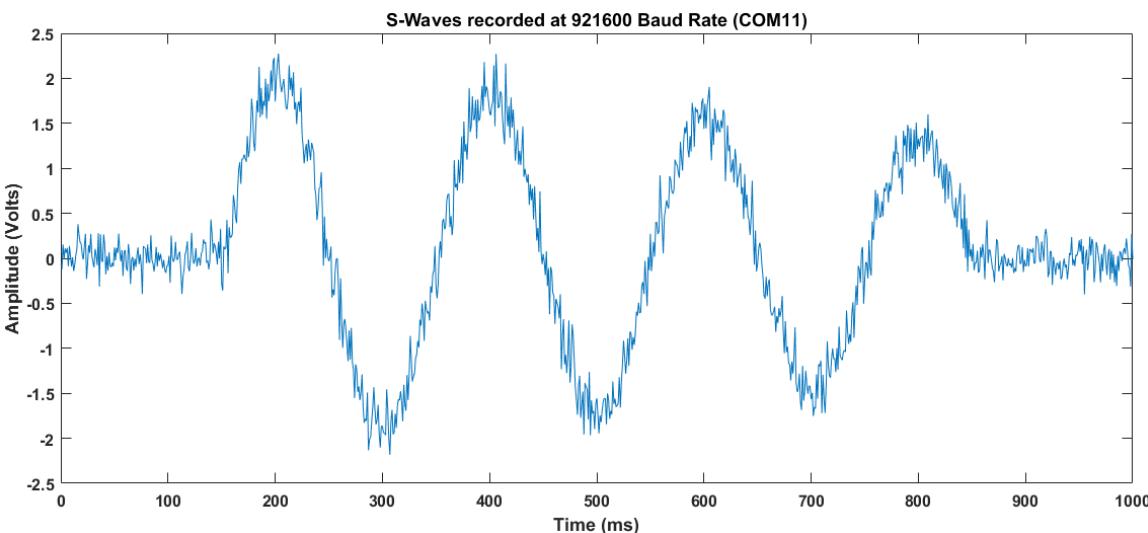


Figure 21. S-Waves observed in MATLAB

340 Furthermore, figure 18 (b) code was simulated and $\pm 2.2V_{PK-PK}$ curves were observed in
 341 MATLAB. The 200mV grid setting plot on the 2000ms scale on TDS 2014 displayed as figure 21 in
 342 MATLAB as a 1000ms scale for y-axis signal to demonstrate vertical ground motion capabilities.

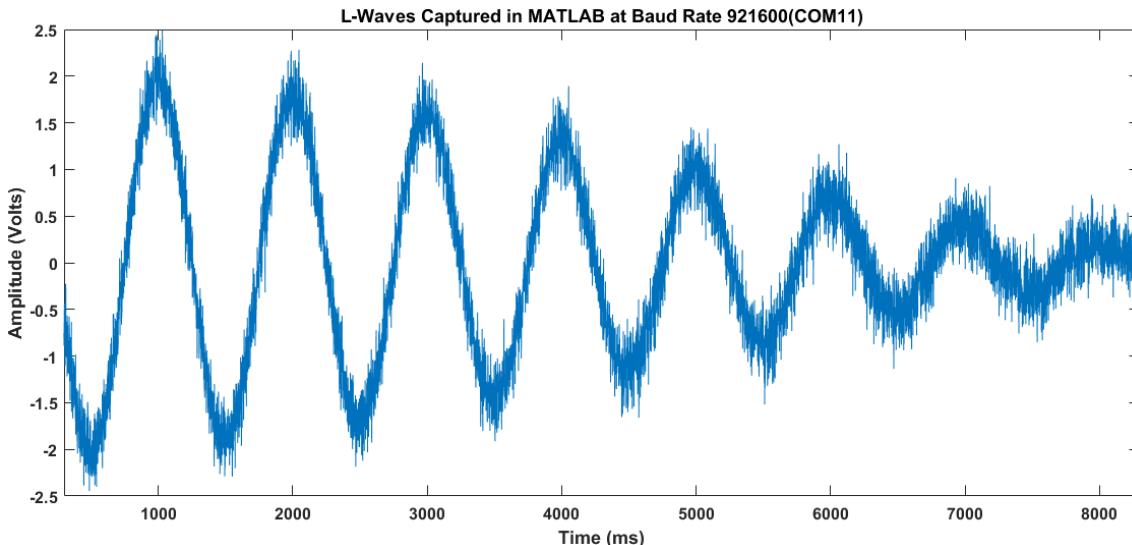


Figure 22. L-Waves observed in MATLAB at 1Hz

343 GMSP simulated L-wave with time period $T_L > 1.1s$ can be observed in MATLAB for custom
 344 parameters given in GMSP MCS stimulus page as shown in figure 22. The eight waves traveling over
 345 the crust can be observed in figure 22. The gradual degradation or depreciation in amplitude and
 346 time period of all the seismic waves is to seismic parameter Ψ dependent on the elasticity of and
 347 density of medium or stress and strain bearing capacity of the medium. In this simulation $\Psi = 6.21$
 348 has been used.

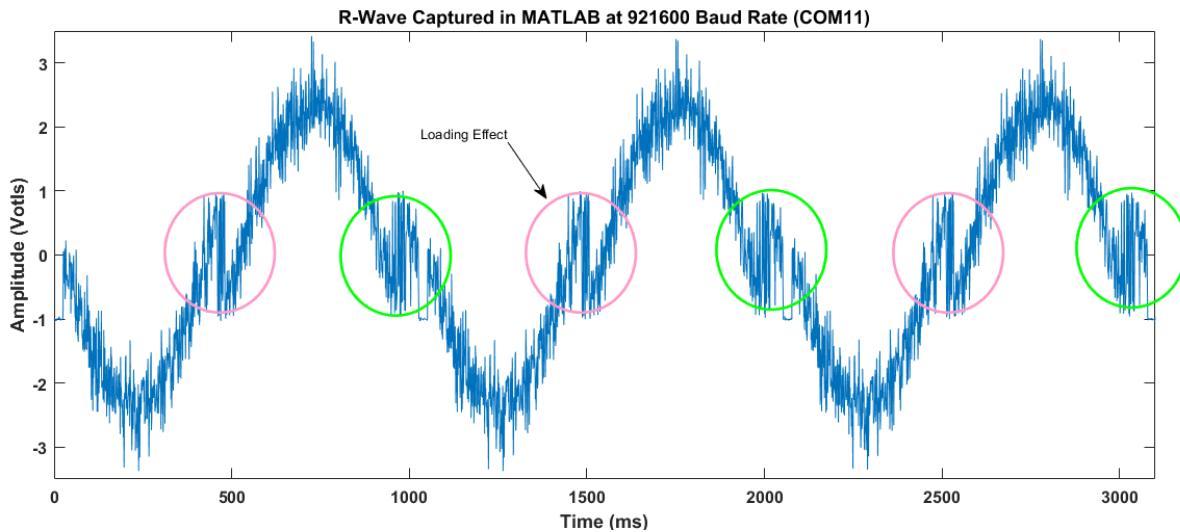


Figure 23. R-Waves observed in MATLAB

349 Figure 23 is based on R-wave simulation at $\Psi = 6.21$ and with the time period of $T_R = 1s$. The
 350 circles show the loading effect of motors and axis at a point where x-axis and y-axis motion merges
 351 or maximum x-axis value for a given y-axis i.e. when y-axis displacement just about to converge or
 352 touch the x-axis displacement its green and when y-axis about to diverge its purple means more y-
 353 axis and less x-axis means anti-clockwise in both scenarios.

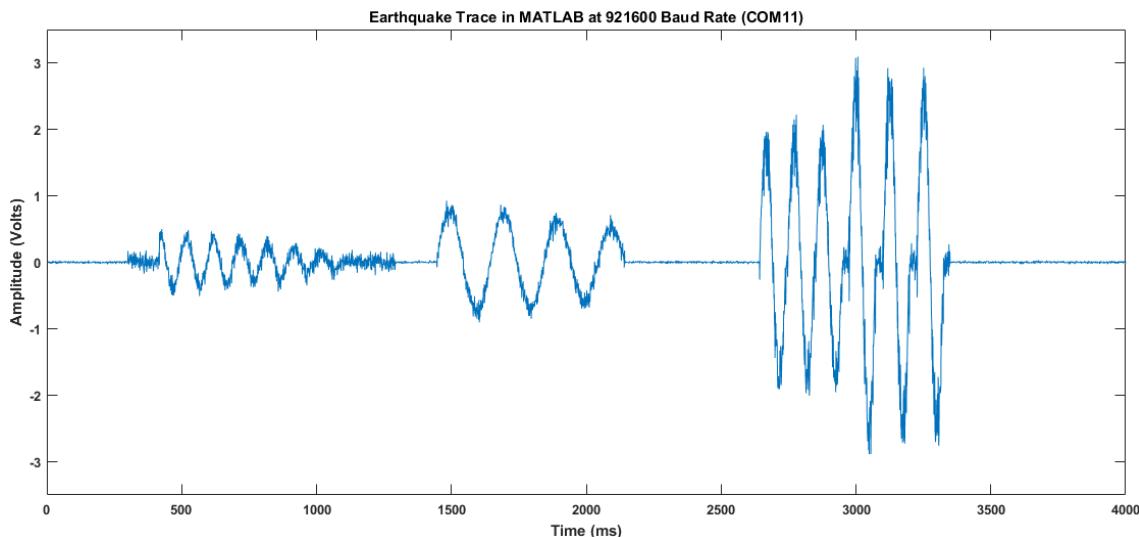


Figure 24. GMSP simulated Earthquake captured in MATLAB (4 seconds)

354 An earthquake comprised of eight P-waves of $\pm 0.4V_{PK-PK}$ amplitude and frequency 8Hz in the x-
 355 axis, four S-waves with $\pm 1V_{PK-PK}$ amplitude and frequency 4 Hz in the y-axis, three L-waves with
 356 $\pm 2.1V_{PK-PK}$ amplitude in the y-axis and three R-waves with $\pm 2.5V_{PK-PK}$ amplitude in z-axis were
 357 simulated based on standard earthquake seismograph.

358 **6. Conclusions**

359 A multi-parametric five degree-of-freedom seismic wave ground motions simulation platform
 360 for P, S, L and R seismic waves was designed, fabricated, assembled, programmed and tested for
 361 multiple ground motions i.e. at different frequencies, amplitudes, patterns, arrival times of seismic
 362 events. The possible minima and maxima were tested and results show that GMSP can serve as a
 363 reliable source for remote earthquake simulation and detection as global scale AI and machine
 364 learning platform. The results show the significance of GMSP for geo-physicists especially
 365 seismologists, a new era for motion control system developers, virtual reality and augmented reality
 366 scientists and data scientists to test their datasets. The platform was successful in emulating standard
 367 as well as extreme ranges of seismic frequencies, displacements, and velocities at given seismic
 368 parameters in addition to possible theoretical estimations in geo-seismic systems. Architects and
 369 construction engineers can use this platform to improve their realization for seismic-tolerant design
 370 and advise better structural optimization and material specifications to meet the acoustic analysis
 371 demands. This system can also record the ground motion and then simulate it again through SMA
 372 and GCS. This constitutes a strong tool to train algorithms for machine learning and AI as well as
 373 deep learning models. The limitation of this system in this version is stepper motor vibration noise
 374 observed in all plots, the IRIS, and USGS datasets need to be converted into GMSP motor command
 375 file before feeding to GRE and structural mounting assembly on surface waves sub-section to observe
 376 the behavior or micro-models of structures.

377 **Author Contributions:** Conceptualization, H.T.; Data curation, H.T.; Formal analysis, H.T.; Funding acquisition,
 378 F.T., M.A.E.A.-H., D.C. and A.B.M.; Investigation, H.T.; Methodology, H.T.; Project administration, F.T.;
 379 Resources, F.T., M.A.E.A.-H., D.C. and A.B.M.; Software, H.T.; Supervision, F.T.; Validation, H.T.; Visualization,
 380 H.T.; Writing—original draft, H.T.; Writing—review & editing, F.T., M.A.E.A.-H., D.C. and A.B.M.

381 **Funding:** This publication was made possible by NPRP grant # 8-1781-2-725 from the Qatar National Research
 382 Fund (a member of Qatar Foundation). The publication of this article was funded by the Qatar National Library.
 383 The statements made herein are solely the responsibility of the authors.

384 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
 385 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
 386 publish the results.

387 **References**

- 388 1. Debarati, G.; Philippe, H.; Pascaline, W.; and Regina, B. Annual Disaster Statistical Review 2016: The
389 numbers and trends, *Centre for Research on the Epidemiology of Disasters (CRED)*, 2016.
- 390 2. Suzette, K. Earthquake Statistics. *United States Geological Survey*, 2017.
- 391 3. Keith, R. D.; and James, H. D. RSQSim Earthquake Simulator. *Seismological Research Letters*, 2012.
- 392 4. Steven, N. W. ALLCAL Earthquake Simulator. *Seismological Research Letters*, 2012.
- 393 5. Fred F. P. A Viscoelastic Earthquake Simulator with Application to the San Francisco Bay Region. *Bulletin of the Seismological Society of America*, 2009.
- 394 6. Mark, R. Y; Kasey, W. S.; Eric, M. H.; John, B. R.; Donald, L. T.; Jay, W. P.; and Andrea, D. The Virtual
395 Quake earthquake simulator: a simulation-based forecast of the El Mayor-Cucapah region and
396 evidence of predictability in simulated earthquake sequences Earthquake Simulator. *Geophysical
397 Journal International*, 2015.
- 398 7. Shunsuke, H.; Kohei, F.; Tsuyoshi, I.; Muneo, H.; Seckin, C.; and Takane, H. A physics-based Monte
399 Carlo earthquake disaster simulation accounting for uncertainty in building structure parameters.
400 *Fourteenth International Conference on Computational Science*, 2014.
- 401 8. Muneo, H.; and Tsuyoshi, I. Current state of integrated earthquake simulation for earthquake hazard
402 and disaster. *Journal of Seismology*, 2007.
- 403 9. Terry, E. T.; Keith, R. D.; Michael, B; James, H. D.; Edward H. F.; Eric M. H.; Louise, H. K.; Fred F. P.;
404 John B. R; Michael, K. S; Donald, L. T.; Steven, N. W.; and Burak, Y. Generic Earthquake Simulator.
405 *Seismological Research Letters*, 2009.
- 406 10. Alkut, A. A new 3-D Earthquake Simulator for Training and Research Purposes. *Thirteenth World
407 Conference on Earthquake Engineering*, 2010.
- 408 11. Keiichi, O.; Toru, H.; Nobuyuki, O.; and Masayoshi, S. Project on 3-D Full-Scale Earthquake Testing
409 Facility. *Fourth Report*, 2006.
- 410 12. Kai-Chao, Y.; Wei-Tzer, H.; Cheng-Lung, L.; Pei-En, W. U.; and Jiunn-Shean, C. Virtual
411 Instrumentation Design on Earthquake Simulation System. *International Conference on Artificial
412 Intelligence and Industrial Engineering(AIIE)*, 2015.
- 413 13. Velikoseltsev, A.; Alexander, Y.; and Khvostov, V. Implementation of the high accuracy variable
414 rotation testbench: seismology options. *Fourth IWGoRS*, 2016.
- 415 14. A.N Swaminathan, P.Sankari. Experimental Analysis of Earthquake Shake Table. *American Journal of
416 Engineering Research(AJER)*, 2017.
- 417 15. Weixing, S. Shaking Table Experimental Study of Reinforced Concrete High-Rise Building. *Twelfth
418 WCEE*, 2000.
- 419 16. Jordan, E. B. Seismic Modeling with an Earthquake Shake Table, *DigitalCommons*, 2012.
- 420 17. Shiling, P.; John, V. L.; Andre, R. B.; Jeffrey, B.; Hans, E. B.; James, D.; Eric, M.; Reid, Z.; Massimo, F.;
421 and Douglas, R. Full-Scale Shake Table Testing of a Two Storey Mass-Timber Building with Resilient
422 Rocking Wall Lateral System. *Sixteenth European Conference on Earthquake Thessaloniki Engineering*, 2017.
- 423 18. Renann, G. B.; and Elmer, P. D. Design and Development of a Fuzzy-PLC for an Earthquake Simulator
424 / Shake Table. *Seventh International Conference Humanoid, Nanotechnology, Information Technology
425 Communication and Control, Environment and Management (HNICEM)*, 2017.
- 426 19. Narutoshi, N. A multi-purpose earthquake simulator and a flexible development platform for actuator
427 controller design. *Journal of Vibration and Control*, 2017.
- 428

429 20. Farid, T.; Hasan, T.; Damiano, C.; and Adel, B. M. Design and Simulation of a Green Bi-Variable Mono-
430 Parametric SHM Node and Early Seismic Warning Algorithm for Wave Identification and Scattering.
431 *Fourteenth International Wireless Communications & Mobile Computing Conference(IWCMC)*, 2018.

432 21. Farid, T.; Hasan, T.; Mohammed, A. A.; Adel, B. M.; Anas, T.; and Damiano, C. IoT and IoE prototype
433 for scalable infrastructures, architectures and platforms. *International Robotics & Automation Journal*,
434 2018.

435 22. Hasan, T.; Anas, T.; Farid. T.; Mohammed, A. A.; Adel, B. M.; and Damiano, C. Geographical Area
436 Network—Structural Health Monitoring Utility Computing Model. *International Journal of Geo-
437 Information*, 2018.

438 23. Hasan, T.; Anas, T.; Farid. T.; Mohammed, A. A.; Adel, B. M.; and Damiano, C. Structural Health
439 Monitoring Installation and Deployment Scheme using Utility Computing Model. *Second European
440 Conference(EECS)*, 2018.

441 24. Hasan, T.; Farid, T.; Damiano, C.; and Adel, B. M. Design and Implementation of Programmable Multi-
442 Parametric 4-Degrees of Freedom Seismic Waves Ground Motion Simulation IoT Platform. *Fifteenth
443 International Wireless Communications & Mobile Computing Conference(IWCMC)*, 2019.

444 25. Hasan, T.; Anas, T.; Farid. T.; Mohammed, A. A.; Adel, B. M.; and Damiano, C. Design and
445 Implementation of Information Centered Protocol for Long Haul SHM Monitoring. *International
446 conference on Design and Test of Integrated Micro and Nano-Systems(DTS)*, 2019.