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Abstract 

In order to improve the accuracy of cross‐platform advertisement recommendation, a graph neural 

network  (GNN)‐based  advertisement  recommendation  method  is  analyzed.  Through  multi‐

dimensional modeling, user behavior data  (e.g., click  frequency, active duration)  reveal  temporal 

patterns of interest evolution, ad content (e.g., type, tag, duration) influences semantic preferences, 

and  platform  features  (e.g.,  device  type,  usage  context)  shape  the  environment  where  interest 

transitions occur. These factors jointly enable the GNN to capture the latent pathways of user interest 

migration across platforms. The experimental results are based on the datasets of three platforms, 

and Platform B reaches 0.937 in AUC value, which is the best performance. Platform A and Platform 

C showed a slight decrease in precision and recall with uneven distribution of ad labels. By adjusting 

the hyperparameters such as  learning rate, batch size and embedding dimension, the adaptability 

and robustness of the model in heterogeneous data are further improved. 

Keywords:  graph  neural  network;  cross‐platform  advertisement  recommendation;  graph 

convolutional network 

 

Introduction 

Graph Neural Network (GNN) as a deep learning method that can effectively process graph‐

structured data, has been widely used in the fields of complex networks, recommender systems and 

social  media  analysis.  Its  ability  to  capture  deep  dependencies  between  data  by  modeling 

relationships between nodes and edges makes it possible to accurately capture various types of data 

features and potential correlations when dealing with large‐scale heterogeneous data. In the field of 

advertisement recommendation, GNN has a significant advantage in improving the effectiveness and 

accuracy of  recommendation  systems by mining  the multidimensional  relationships  among user 

behavior, advertisement content and platform features. Based on this, exploring the application of 

graph neural networks in cross‐platform advertisement recommendation has important theoretical 

and practical value, as it deepens the understanding of interest migration modeling in heterogeneous 

graph structures (theoretical), and enhances the precision and adaptability of ad delivery strategies 

across diverse platforms (practical). 

Characterization of Cross‐Platform Advertising Campaigns 

Cross‐platform  advertising  campaigns  involve  the  integration  and  analysis  of  data  from 

multiple platforms and need  to pay attention  to  the  similarities and differences  in user behavior 

across  platforms1.  The  data  characteristics  of  each  platform  include  usersʹ  click  rate,  interaction 

frequency,  browsing  time,  and  device  usage  habits,  all  of  which  contribute  differently  to  ad 

effectiveness  and  recommendation  accuracy:  higher  click  rates  and  interaction  frequency  often 
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indicate stronger engagement and are directly  linked to higher conversion potential, while  longer 

browsing  time  reflects  sustained attention  to ad  content. Device usage habits offer  context about 

access  environments,  influencing  ad  display  strategies  and  user  receptiveness, which  ultimately 

shape the effectiveness and acceptance of ad campaigns. Through graph neural network (GNN), deep 

learning and feature extraction can be performed on cross‐platform user behavior data to capture the 

correlation between platforms and improve the accuracy of the recommendation system. Effective 

campaign analysis requires consideration of the diversity of advertising content, user profiles and 

platform  characteristics  to  optimize  the  advertising  strategy  and  further  enhance  the  prediction 

ability of advertising effects. 

Cross‐Platform Ad Campaign Recommendation Model Construction Based on 

Graph Neural Network 

Graph Neural Network Model Architecture Design 

In  constructing  a  graph  neural  network  architecture  for  cross‐platform  advertisement 

recommendation,  the  heterogeneity  and  dynamics  of  the  user‐platform‐advertisement  ternary 

relationship  must  be  fully  considered.  The  model  design  employs  a  combined  architecture  of 

multilayer graph convolutional network (GCN) and graph attention network (GAT) to support non‐

uniformly weighted learning of node features and dynamic representation updating of neighboring 

edges.  Specifically,  GCN  captures  global  structural  information  by  aggregating  features  of 

neighboring nodes, which is crucial for understanding relationships in large‐scale graph structures. 

GAT, on the other hand, introduces an attention mechanism that enables the model to assign different 

weights  to  neighboring  nodes,  thus  enabling  more  fine‐grained  and  adaptive  learning  of 

relationships, especially in cases where the graph structure is sparse or highly heterogeneous (e.g., 

cross‐platform advertisement data). In this study, we use a hybrid model of Graph Convolutional 

Network (GCN) and Graph Attention Network (GAT), where GCN is used for feature aggregation 

of the global structure, while GAT weights the contribution of each neighboring node through the 

attention  mechanism,  which  in  turn  improves  the  accuracy  of  cross‐platform  advertisement 

recommendation. Mathematical expression of feature aggregation strategy:   

For each layer of Graph Convolutional Network (GCN) and Graph Attention Network (GAT) 

model, the mathematical expression of feature aggregation is as follows: 
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Where  )1( lh denotes  the  feature  representation  of  node     in  layer 1l ,  )(N   is  the  set  of 

neighboring nodes of node   ,  uc   is the normalization coefficient between node     and node  u , 
)(lW   is the weight matrix in layer l , and     is the activation function. In GAT,  uc/1   is replaced 

by the weights computed through the attention mechanism, thus enabling the model to dynamically 

adjust  the  importance of each neighbor node[2]  .The  input graph  is modeled as a heterogeneous 

graph, and the node types cover three categories: users, advertisement spots, and platform devices, 

among which the user nodes contain behavioral features in 11 dimensions such as Click Frequency, 

Active  Duration,  and  Historical  Interaction  Count;  and  the  advertisement  nodes  contains  8 

dimensions of content characteristics such as placement type, content label, material duration, etc.; 

the platform node is coded with 6 dimensions such as device type, system version, average daily visit 

duration, etc.Error! Reference source not found. . Meanwhile, in order to better capture the evolution 

of user  interests over  time, a  time‐aware GNN  (e.g., TGAT)  is  introduced  into  the model, which 

enables the model to adapt to the dynamically changing interest migration over time by encoding 

user behaviors  into  time windows and modeling  the sequence. Specifically, user behavior data  is 

partitioned  into  multiple  time  windows  (e.g.,  Δt  =  2h,  6h,  12h)  and  temporal  information  is 

incorporated  into  node  features  through  temporal  encoding.  In  addition,  the  time‐aware  graph 
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attention network (TGAT) is able to adaptively adjust the weights of user behaviors within the time 

windows to strengthen the modelʹs ability to capture changes in user interests,As shown in Figure 1. 

 

Figure 1. Temporal User Behavior with Time Windows (Δt = 2h, 6h, 12h). 

Furthermore,To better model cross‐platform user  interest transitions, we adopt a shared user 

node strategy, where the same user across different platforms is represented as a single node. User 

behavior logs from different platforms are aligned via a unified user ID mapping mechanism based 

on hashed identifiers and temporal activity matching. In the graph edge design, we introduce a new 

edge type ̋ view‐cross‐platformʺ, connecting the same user node across platform nodes when the user 

interacts with semantically similar ads within a predefined time window (e.g., 24 hours). The edge 

weight reflects the frequency and continuity of cross‐platform behaviors (e.g., 0.85 if the user clicked 

similar ads within 24h across platforms). This shared structure enhances the GNN’s ability to capture 

interest migration paths and semantic consistency across heterogeneous platforms. 

The graph edge types cover three categories: ̋ view‐platformʺ, ̋ click‐adʺ, and ̋ browse‐userʺ, and 

the edge attributes cover three categories: ʺwatch‐platformʺ, ʺclick‐adʺ, and ʺbrowse‐userʺ. The edge 

attributes  include  12  numerical  attributes  such  as  timestamp,  click‐conversion  rate  grouping,  ad 

weight index, etc. These attributes are first normalized to ensure that they are on a comparable scale 

before being input into the model. Specifically, numerical attributes like timestamps are standardized 

to a range between 0 and 1 using min‐max normalization, while click‐conversion rates and ad weight 

indices  are  scaled  using  z‐score  normalization  to  center  the  data  and  reduce  variance.  This 

preprocessing step ensures that the model can efficiently learn from the data without being biased 

by any single attributeʹs scale. As shown in Figure 1, the graph edge type covers ʺview‐platformʺ, 

ʺclick‐adʺ, and ʺview‐userʺ. As shown in Figure 2. 

 

Figure 2. GNN‐based cross‐platform ad recommendation architecture. 

Hyperparameter Optimization for Sequential Recommendation Models 

To  optimize  cross‐platform  ad  recommendation  performance,  hyperparameters  are  finely 

tuned,  including  learning  rate  (0.0005,  0.001,  0.0050),  batch  size  (128,  256,  384,  512),  embedding 

dimensions (64, 128, 256), and number of graph attention heads (GAT Heads). A combination of grid 

search and Bayesian optimization is used to adjust the learning rate and fix the minimum validation 

set  loss  point.  This  approach  is  advantageous  because  grid  search  allows  for  an  exhaustive 

exploration of hyperparameters over a fixed, predefined grid, ensuring that a broad range of potential 

values is considered. On the other hand, Bayesian optimization intelligently narrows down the search 

space by using previous evaluation  results  to predict  the next best hyperparameter settings,  thus 

improving efficiency and reducing computational cost3 . The batch size is adjusted according to the 
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platform user active density, and  the embedded dimension  test avoids GNN gradient explosion. 

Optimization is carried out under different ad type share and platform behavior time window (Δt=2h, 

6h, 12h) to improve recommendation performance and stability, and the sequence recommendation 

score is calculated as follows: 

),( ,
1

, jtt

T

t
tji ehfS  
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Among them, jiS ,   denotes the recommendation score of the user i   for the ad j   , T   is the length 

of the user behavior sequence, t   is the GAT attention weight, th   is the user state vector of the
t   th 

moment, jte ,   is  the  feature  embedding  of  the  ad  at  that moment,  and )(f   is  the  feed‐forward 

network  scoring  function.  By  dynamically  adjusting  the t  mechanism,  the model  can  adapt  to 

different  user  behavior  lengths  and  improve  the  accuracy  of  cross‐platform  behavior  transfer 

capture5  .  The  effect  of  related  parameter  configuration  is  shown  in  Table  1.  The  complete 

optimization and  inference process  is visualized  in Figure 3, which outlines the modular pipeline 

including data input, model configuration, batch parallelism, and multi‐hop subgraph inference. 

Table 1. Hyperparameter combination design and performance parameters of the sequence recommendation model. 

parameter 
term 

parameter value 
Scope of 

adjustment 
Sample of data inputs 

(10,000) 

GPU 
Occupancy 

(MB) 

Model training time 
(min/epoch) 

learning 
rate 

0.0005/0.001/0.005 
three‐speed 
adjustment 

42/42/42  7632  17/21/25 

Batch size  128/256/384/512 
four‐speed 
adjustment 

30/35/42/48  6520~9100  14/16/18/21 

Embedding 
Dimension 

64/128/256 
three‐speed 
adjustment 

42  5980~8124  15/17/20 

attention 
span 

4/8/12 
Multiple 
Attention 

Optimization 
42  6220~8910  16/19/23 

 

Figure 3. Learning rate and embedding size optimization parameter grid. 

Model Training and Inference Strategies 

The model training phase adopts a distributed training strategy, which is accelerated by four 

NVIDIA A100 40GB graphics cards in parallel to realize the convergence regulation of the ultra‐large 

scale  heterogeneous  graph  structure  in  the  high‐dimensional  feature  space6  .  The  input  data 

dimension  is
6

102.4 N   ,  the node  feature dimension  is 256,  the edge  feature dimension  is 12,  the 

number of training iteration rounds is set to 300, and the minimum validation loss strategy is chosen 

to save the model snapshot in each round. The model training loss function is defined as weighted 

cross‐entropy loss: 
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Where iŷ   denotes the model output probability, iy   is the real label, and iw   is the weighting factor of 

user behavior, which improves the generalization ability under the unbalanced sample distribution. 

The  inference  stage adopts Graph Mini‐Batch  Inference  (GMI)  strategy, which  is based on multi‐

channel parallel subgraph sampling and caching mechanism  to control  the upper  limit of explicit 

memory, and the inference path adopts k‐hop Neighborhood Expansion (NExpansion) strategy: 
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Where, )(lH   is the node embedding of layer l   , )(iN   is the set of neighboring nodes of node i   , )(lW   is 

the weight matrix of  layer l   ,  and id   is  the node degree. The  inference process maintains  a  time 

window of Δt = 6 hours, a node sampling rate of 15%, a cache window depth of 2 hops, and a GPU 

graphics memory  footprint  controlled within  36.2 GB7  . As  shown  in Figure  4,  the  training  and 

inference process  is presented  in a modularized way, which specifies  the data  input path, model 

loading strategy and multi‐batch distributed computing process. 

 

Figure 4. Flowchart of GNN model training and inference. 

Experimental Results and Analysis 

Experimental Data Set 

The experimental dataset is derived from ad placement logs from three mainstream platforms 

(Platform‐A, Platform‐B, and Platform‐C), covering 2,870 records from January to December 2023. 

Data sources include social platforms, online video platforms, and information apps, captured via 

API. Fields include Ad_ID, Platform_ID, User_ID, Behavior Type (click, browse, stay), Timestamp, 

Device_Type, OS_Version, Content_Tag, and Contextual Characteristics  (time period, geography, 

network environment). User behaviors are divided into 12 categories and 37 types of advertisement 

tags, and the data are de‐weighted and normalized to provide a high‐quality basis for graph neural 

network building and sequence recommendation8 . 

Model Training and Evaluation 

For  the  constructed  cross‐platform  advertisement  recommendation  graph  neural  network 

model, the experimental phase is divided using 70% of training set, 15% of validation set and 15% of 

testing set9 . The training process is performed using Adam optimizer with the initial learning rate 

set to 0.001, the number of training rounds is fixed to 300, and the cross‐entropy loss is monitored on 

the validation set to implement the early stopping mechanism. The evaluation metrics are selected as 

five core metrics: AUC, Accuracy, F1 value, Precision, and Recall to comprehensively measure the 
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discriminative  ability  and  generalization  performance  of  the model.  These metrics were  chosen 

because they provide a balanced view of model performance across different scenarios, particularly 

in  a multi‐platform  context. AUC  is  used  to  evaluate  the modelʹs  ability  to  rank  ads  correctly, 

regardless of the threshold, which is crucial in a multi‐platform setting where platforms may have 

different label distributions. Accuracy is included to assess the overall correctness of the model, while 

Precision  and  Recall  are  vital  for  understanding  the  trade‐off  between  false  positives  and  false 

negatives, which is especially important in advertising, where targeting the right audience is critical. 

F1 value combines both Precision and Recall, offering a single metric that balances the two, making 

it particularly useful in contexts where both false positives and false negatives need to be minimized. 

The evaluation is carried out simultaneously with the independent dimension of each platform and 

the combined dimension of the whole platform to ensure the modelʹs adaptability to heterogeneous 

data, as shown in Table 2. 

Table 2. Summary of model training and evaluation results. 

Assessment dimensions  Accuracy 
(%) 

Accuracy 
(%) 

Recall rate 
(%) 

F1 value 
(%)  AUC 

Platform‐A (test set)  87.3  85.9  83.2  84.5  0.921 
Platform‐B (test set)  89.1  88.2  86.5  87.3  0.937 
Platform‐C (test set)  86.5  84.7  82.1  83.4  0.915 

Cross‐platform merger 
(overall)  88  86.6  84  85.3  0.931 

According to the results in Table 2, the model demonstrates stable predictive performance on 

each platform test set, in which Platform‐B has the highest AUC value of 0.937, indicating that it has 

stronger discriminative power in the recognition of advertising behaviors on this platform. Platform‐

A and Platform‐C are slightly lower in terms of accuracy and F1 index. The analysis found that the 

distribution of advertisement label categories in these two platforms is more uneven, which leads to 

a decrease in the modelʹs fitting ability on a few categories of samples.   

To address this issue, we implemented and compared two mitigation strategies during training: 

(1) applying a weighted cross‐entropy loss, where underrepresented ad labels were assigned higher 

weights (e.g., frequent label = 1.0, rare label = 1.8); and (2) oversampling minority classes to at least 

1.5×  their  original  count.  Comparative  experiments  on  Platform‐C  showed  that  weighted  loss 

improved  the F1  score  from 83.4%  to 84.6%, while oversampling  enhanced Recall  from 82.1%  to 

84.3%, albeit with a slight drop in Precision. These results suggest that label imbalance significantly 

affects  performance,  and  a  combination  of  weighting  and  sampling  may  offer  more  robust 

improvements.The  combined  dimension  evaluation  shows  that  the  model  maintains  high 

consistency and robustness under the overall cross‐platform data structure, and the F1 value reaches 

85.3%, which  indicates  that  the GNN  architecture  is well  adapted  to  cope with  the problems  of 

platform heterogeneity and advertisement diversity10 . 

Analysis of Experimental Results 

The  experimental  evaluation  results  reflect  that  the  model  has  high  consistency  and 

discriminative ability in multi‐platform advertisement recommendation scenarios, but there are still 

some differences in the performance in terms of the diversity of user behaviors and the heterogeneity 

of platform contents. Combined with the statistics of five core indexes on each platform test set after 

training  (see Table 3),  it can be  found  that Platform‐B outperforms Platform‐A and Platform‐C  in 

AUC and F1 values. This suggests that the model demonstrates stronger generalization ability on 

platforms with clearer structural labels and more stable user behavioral patterns. As shown in Figure 

1,  Platform‐Bʹs  higher AUC  and  F1  values  highlight  its  better  ability  to  accurately  predict  user 

behaviors and recommend ads effectively, especially in environments with well‐defined user actions. 

In contrast, Platform‐Cʹs performance fluctuates due to its higher label density and more complex ad 

types,  leading  to  lower  consistency  in  recommendation  accuracy.  The  recall  and  precision  of 
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Platform‐C fluctuates greatly, showing that the model has better generalization ability in the face of 

complex  ad  types  and  fragmented  ads.  the modelʹs  recognition  stability  decreases when  facing 

complex ad types with fragmented behavioral sequences. In addition, although the overall merged 

results  are  high  in  all  indicators,  they  imply  the  local  error  balance  caused  by  the  distribution 

differences  between  platforms,  and  further  optimizing  the modelʹs  ability  to  capture  features  of 

multi‐platform differences will be the direction of subsequent improvement. 

Table 3. Comparative analysis of experimental indicators of each platform. 

Assessment 
platforms 

Accuracy 
(%) 

Accuracy 
(%) 

Recall 
rate 
(%) 

F1 value 
(%) 

AUC 
value 

Average 
behavioral 
sequence 
length 

Number 
of ad 
types 

Label density 
(labels/advertisements) 

Platform‐A  87.3  85.9  83.2  84.5  0.921  12.4  28  2.3 

Platform‐B  89.1  88.2  86.5  87.3  0.937  15.8  24  1.7 

Platform‐C  86.5  84.7  82.1  83.4  0.915  10.3  37  3.1 

Cross‐
platform 
merger 

88  86.6  84  85.3  0.931  13.2  37  2.5 

From the data in Table 3, Platform‐B performs optimally in all indicators, with an accuracy of 

89.1%, an AUC value of 0.937, and an F1 value of 87.3%, thanks to  its  longest average behavioral 

sequence  length  (15.8), which  enables  the model  to  learn  the user  interest migration paths more 

adequately. Although Platform‐C includes the most diverse ad types (37 categories) and the highest 

label density (3.1), it has the lowest F1 value and AUC, indicating that label redundancy and sample 

sparsity  interfere with  the modelʹs  discriminative  performance. After merging  the  data,  all  the 

indicators are at a high level, indicating that the model has good stability under the overall multi‐

platform data fusion. 

Conclusion 

The recommendation system for cross‐platform ad campaigns effectively improves the accuracy 

of ad delivery through a graph neural network model, especially when dealing with heterogeneous 

data and diverse ad content, demonstrating strong adaptability. The experimental results show that 

the behavioral differences between different platforms and the density of ad labels have a significant 

impact on the performance of the model, especially in Platform‐B, where the model exhibits the best 

accuracy and AUC value.    Subsequent work should further optimize the multi‐platform data fusion 

by exploring advanced techniques such as transfer learning to align features across platforms, semi‐

supervised  learning  to  leverage  unlabeled  data  for  improving  feature  extraction,  and  domain 

adaptation methods to bridge the gap between different platform behaviors. Additionally, improving 

the modelʹs ability to recognize complex ad types and fragmented user behaviors can be achieved 

through incorporating multi‐modal data, such as text, images, and behavioral sequences, to better 

capture diverse  content  features and user  interactions. These approaches will  contribute  to more 

accurate and efficient cross‐platform ad recommendations. 

In this article, Xiang Li and Xinyu Wang are the co‐first authors. 
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