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Highlights 
What are the main findings? 

 The integration of artificial neural networks (ANNs) and ensemble learning methods, in particular 
bagging, significantly improves the prediction accuracy of bearing layer depth, thereby enhancing urban 
resilience in smart cities. 

 The ensemble learning approach using bagging outperforms single models by about 20% in predicting 
liquefaction risk, promoting more reliable and sustainable urban development strategies. 
What are the implications of the main finding? 

 The improved prediction accuracy of liquefaction risk using ensemble learning techniques can guide 
smarter infrastructure planning and disaster mitigation strategies in rapidly urbanizing areas. 

 The adoption of advanced machine learning models such as bagging can optimize resource allocation for 
geotechnical investigations, reducing costs and increasing safety in smart city development. 

Abstract: This paper explores how smart cities can cope with land subsidence and liquefaction in the context 
of rapid urbanization in Japan. Since the 1960s, liquefaction has become an important topic in geotechnical 
engineering, and great efforts have been made to evaluate the resistance of soil to liquefaction. There is 
currently a lack of machine learning applications specifically for smart cities in areas such as geological hazards. 
This study uses two machine learning techniques, artificial neural networks and ensemble learning, to obtain 
a prediction model with high performance in predicting the bearing layer depth to improve the accuracy of 
geo-engineering surveys. The model was developed by analyzing actual survey data from 433 locations in 
Setegaya, Tokyo, by using artificial neural networks (ANNs) and bagging, respectively. The results show that 
machine learning has great advantages in predicting the bearing layer depth. In addition, compared with a 
single model such as artificial neural networks, the prediction performance of ensemble learning can be 
improved by about 20%. Both interdisciplinary approaches can help predict address risks and thus promote 
sustainable urban development, highlighting the potential of smart cities in the future. 

Keywords: artificial neural networks; bagging technique; ensemble learning; geotechnical engineering; 
liquefaction prediction; machine learning in geology; smart cities; urban resilience 
 

1. Introduction 
Japan's urban landscape, characterized by rapid urbanization and cuĴing-edge technological 

advances, is at the forefront of addressing complex challenges in the construction and infrastructure 
sectors. However, in Japan, the significant structural damage of-ten caused by the seĴlement or tilting 
of structures, due to the liquefaction of saturated sandy soils during large earthquakes [1]. As shown 
in Figure 1, liquefaction is a phenomenon in which, when an earthquake occurs and the ground 
receives a strong shock, soil particles that were previously in contact and supporting each other break 
apart, and the entire ground becomes a viscous liquid-like state. When liquefaction occurs, water 
gushes out of the ground, and the previously stable ground suddenly becomes soft, causing buildings 
that were standing on it to sink (tilt), manholes and buried pipes to float, and the entire ground to 
flow downward. Liquefaction has become an important topic of geo technical engineering since the 
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1960s and significant efforts have been made on the assessment of liquefaction resistance of in situ 
soils. The current methodology for this assessment commonly relies on in situ measurements such as 
SPT-N (number of blows for 30-cm penetration in standard penetration tests; [2,3]). Case histories 
indicate that most of the damaging liquefaction disasters occurred in geologically very young, sandy 
deposits, such as those found in manmade islands, former river channels, filled lakes, swamps and 
so on [4,5], as well as pipeline backfill [6]. The sudden instability of the ground during such events 
can lead to the catastrophic destruction of buildings and infrastructures, resulting in significant 
economic losses as well as the tragic loss of human life. This critical was further highlighted in [1,7,8]. 

 
Figure 1. Specific manifestations of liquid speech phenomenon. 

In order to promote the investigation and publish relevant results, deepen the public's awareness 
of the hazards of liquefaction, and do a good job in the prevention and control of liquefaction of 
residential land. The importance of smart cities is self-evident. Smart cities refer to the use of various 
information technologies or innovative ideas to integrate the constituent systems and services of the 
city in order to improve the efficiency of resource utilization, optimize urban management and 
services, and improve the quality of life of citizens. Specifically, the concept of "intelligence" is to 
enable humans to manage the state of production and life in a more sophisticated and dynamic way 
through the application of new generation information technology. The emergence of the Internet of 
Things makes it possible to access remote sensor data and to control the physical world from a 
distance, meaning that cities can effectively sense and manage essential elements such as the water 
supply, building operations, and road and transport networks [9]. Data vitalization proposes a new 
paradigm for large-scale dataset analysis and offers ubiquitous data support for top-level 
applications for smart cities [10,11]. For this study, as shown in Figure 2, in the integration and 
visualization of the smart city, an AI-driven predictive model that synthesizes data from diverse 
databases, including geotechnical and geographic information, enhances urban resilience and 
promotes the development of a safer and more sustainable society. This approach contributes to the 
sustainable growth of smart cities and ensures the safety of their inhabitants [12]. 

 
Figure 2. Visualization of smart cities and its relevance to this study. 
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Nowadays, the monitoring technology for geology and liquefaction has been continuously 
improving, but it still has great limitations. The main reason is that traditional empirical methods 
lack credibility and universality. Therefore, the field of machine learning is expected to become a new 
field to improve the accuracy of prediction. Techniques such as artificial neural networks [13], 
ensemble learning [14–17], which enhances prediction through algorithmic diversity, are at the 
forefront of spatial and temporal data analysis. At present, machine learning is widely used in many 
countries around the world for address prediction and other purposes [18,19]. By using machine 
learning to help beĴer analyze geology and make predictions, it can help with city planning. This 
also reflects the widespread use and impact of machine learning around the world. The main purpose 
of this study is to use AI technology that goes beyond traditional technology to predict geological 
information, analyze reliable data sets, and create a new prediction model. Since this is a new field, 
this study is divided into creating a single model using neural networks and an integrated model that 
integrates multiple models using bagging for analysis and comparison. By comparing the results, a 
model with beĴer prediction performance is obtained to solve Japan's liquefaction problem, hoping 
to obtain smart infrastructure and data-based smart cities. This also heralds a new era of urban 
development. By combining the ever-evolving new technologies with traditional research, we can 
help everyone beĴer deal with urban development s and ensure a sustainable future. 

2. About Artificial Neural Networks (ANNs) 
A wide variety of models have been developed in the field of machine learning since the term 

"Machine Learning “was coined in1959 by ArthurSamuel [20]. In many cases, they provide improved 
results [21] due to their capacity for handling more complex data beĴer than classical statistical 
methods [22,23]. Recent developments in computing technologies have produced several machine 
learning algorithms, especially Artificial Neural Networks (ANNs), which have the ability to operate 
nonlinearly [24]. ANNs are a mathematical model or computational model that imitates the structure 
and function of biological neural networks and is used to estimate or approximate functions. ANNs 
have become popular and helpful model for classification, clustering, paĴern recognition and 
prediction in many disciplines. ANNs are one type of model for machine learning (ML) and has 
become relatively competitive to conventional regression and statistical models regarding usefulness 
[25]. The great potential of ANNs is the high-speed processing provided in a massive parallel 
implementation and this has heightened the need for research in this domain [26,27].  

Regarding the creation of a PyTorch-based neural network model to predict the output, it is 
divided into the following 7 steps: defining the problem; preparing the dataset; defining the model; 
defining the loss function and optimizer; training the model; evaluating the model; and model tuning. 

2.1. Defining the Problem 
This study is to predict the bearing layer depth. The bearing layer is "a stratum that is sufficiently 

solid to bearing a particular building". In other words, it is "a stratum that is strong and does not 
easily undergo detrimental deformation when subjected to weight". A hammer weighing 63.5±0.5 kg 
is used to hit the drill rod at a free fall height of 76±1 cm to drive the sampler used in the standard 
penetration test into the ground 30 cm. The number of hits required is called the N-value. The N-
value represents the relationship between soil moisture content and clay and organic maĴer content 
and is used to estimate the soil bearing load and the degree of seĴlement after drainage. N-value of 
20 or less is often unstable as a foundation layer for civil engineering structures. In general, soil with 
an N-value of 20 or more or rock is desirable as a foundation bearing layer. When the N-value is 
between 30 and 50, it can be said that the layer is suitable as the foundation ground for civil 
engineering and building structures. If the N-value of 50 or more, it can be f the N-value of 50 or 
more, it can be judged to be very solid. It is a good bearing layer that can withstand even large 
structures such as high-rise condominiums [28]. Therefore, in this study, the N-value is greater than 
50 or more within the range of more than 3 m in a row, it is called the bearing layer [29]. 

ML tools are aiming at solving two classic statistical tasks - classification (paĴern recognition) 
and regression (function approximation) [30]. The goal of the former is to predict real-valued labels 
for data, whilst the goal of the laĴer is to predict discrete labels [31]. First, it needs to clarify whether 
the problem is regression or classification. Obviously, predicting bearing layer depth is a continuous 
value, so this is a regression problem. 
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2.2. Preparing the Dataset 
This study used geological information survey data from Setegaya, Tokyo. The data came from 

the bearing layer depth and longitude and latitude of the actual survey conducted by the partner 
company. The corresponding elevatioN-values were found on the Tokyo Geographical Institute 
through the longitude and latitude. The specific data examples are shown in Table 1. After collecting 
the data, we preprocessed the data, including processing missing values and outliers. For outliers in 
the data, choose to delete them directly; for missing values, since there are relatively few missing 
data, choose to complete the data using the mean. After confirming the relevance and feature 
importance, the data set was completed. A total of 433 data were used in this study. The data analysis 
of 433 data is shown in Table 2. Among the 433 data, the ratio of training set, verification set, and test 
set is: 7:2:1. In addition, the specific distribution of the 433 data on the map is shown in Figure 3. The 
four locations listed in Table 1 are also marked in Figure 3. 

 
Figure 3. Specific distribution of 433 data on the map. 

Table 1. The specific dada examples of Setegaya, Toyko. 

Latitude longitude Bearing layer depth Elevation (m) 
35.629 139.674 13.38 38.8 
35.6114 139.632 11 11 
35.6582 139.649 12.8 37.3 
35.6679 139.669 13.53 36.5 

Table 2. Overall analysis of 433 data used in learning. 

Area (km2) Data density (pcs/km2) Standard deviation of the data 
58.1 7.46 9.53 

2.3. Creating the Model 
Use PyTorch to define a neural network model shown as Figure 4. The activation function selects 

the most used ReLU in deep neural networks, and its calculation method is as follows Eq. (1). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2024 doi:10.20944/preprints202409.0243.v1

https://doi.org/10.20944/preprints202409.0243.v1


 5 

 

 
Figure 4. The prototype of artificial neural network about Case-1. 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (1) 

When 𝑥 is less than 0, the output is 0, and when 𝑥 is greater than 0, the output is 𝑥. 
For a model with three inputs and one output, first define it as a simple fully connected network. 

Fully connected, in a neural network, means that every neuron in the current layer is directly 
connected to all neurons in the previous layer. This connection means that the output of the previous 
layer will be fully passed to every neuron in the current layer, and each neuron will perform a 
weighted summation of these inputs according to the weights and biases, and finally get the output 
through the activation function. For regression problems, the mean square error (MSE) is used as the 
loss function, and the optimizer selects the stochastic gradient descent (SGD). Regarding 
hyperparameter adjustment, manual adjustment is used. 

3. Building the Bagging 
Ensemble learning methods, which involve building and combining multiple learners, have 

been shown to produce beĴer results and achieve improved generalisation compared with any of the 
constituent classifiers alone [32–34]. Ensemble learning use multiple machine learning algorithms to 
produce weakly predictive results based on features extracted through a variety of projections on the 
data and fuse the results with various voting mechanisms to achieve a beĴer performance than that 
obtained by any constituent algorithm alone [35]. Many methods for constructing ensembles have 
been developed, but bagging, boosting and stacking are the commonly used techniques [36]. Briefly, 
bagging (also known as bootstrap aggregation; [37]) is the way to improve the stability and accuracy 
of MLA through training the same algorithm many times by using different subsets sampled from 
the training data [38]. 

The aggregation of multiple learners leads to a lower variance of the model while its bias may 
remain the same given the bias-variance decomposition of error for machine learning models. Given 
multiple models of the same machine learning algorithm trained on different training data, the bias 
of the machine learning algorithm is the similarity between the models’ average prediction and the 
ground truth, and its variance is the difference between the predictions [38]. Random forest [39] as 
shown in Figure 5 is a prominent implementation of bagging that uses decision trees and introduces 
additional features to the sampling process [40]. 
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Figure 5. The specific process of random forest about Case-2. 

After creating the model, hyperparameter tuning is still required. The optimization method 
selected is manual parameter tuning. Finally, it is confirmed that when the number of decision trees 
in the hyperparameter is 91, the model performance of the prediction model is the best. The specific 
hyperparameter values are shown in Table 3. N_estimators is the number of sub-datasets generated 
by sampling the original data set with replacement, that is, the number of decision trees. Max_depth 
is the maximum depth of the decision tree. ‘None’ means that the decision tree will not limit the depth 
of the sub-tree when building the optimal model. Max_features is the maximum number of features 
considered when building the optimal model of the decision tree. ‘auto’ means that the maximum 
number of features is the square root of N. After creating the model, hyperparameter tuning is still 
required. The optimization method selected is manual parameter tuning. Finally, it is confirmed that 
when the number of decision trees in the hyperparameter is 91, the model performance of the 
prediction model is the best. The specific hyperparameter values are shown in Table 3. The specific 
creation steps are to extract samples from the original data set using bootstrap sampling to form 
multiple sub-datasets. Secondly, for each sub-dataset, a decision tree is constructed. At each node, a 
part of the features is randomly selected for spliĴing. Next, the above steps are repeated until 91 
decision trees are generated. Finally, 91 decision trees are cultivated using the sample data, and their 
predictions are averaged to derive the final prediction. This averaging process follows Eq. (2). 

Y＝
１

𝑁
෍ 𝑋௡

ே

௡＝１

 (2) 

where Y is the predicted value of the forest, 𝑋௡ is the prediction of an individual decision tree, 
and 𝑁 is the total number of decision trees. 

Table 3. The values of hyperparameters of bagging in Case-2. 

4. Results and Discussion 
In the context of smart city development, the integration of AI technology can significantly 

improve urban management. This study focuses on two case studies in Setagaya, Tokyo. The accuracy 
and effectiveness of these methods are critical for smart city applications, including urban planning, 
and environmental monitoring. Case-1 uses ANNs to create a prediction model and Case-2 uses 

Hyperparameters Value 
N_esimators 91 
Max_depth None 

Max_features auto 
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bagging to create a prediction model, where the explanatory variables are latitude, longitude, 
elevation and bearing layer depth. The target variable is the bearing layer depth. 

4.1. Results on Predicting Bearing Layer Depth 
In the Case-1, the model created by ANNs was used to predict actual data of the bearing layer 

at 10 locations in Setegaya, Tokyo. The actual measurements at these locations provided the basis for 
evaluating the accuracy of the predictions, and the error values between the predicted and actual 
values were calculated. Table 4 and Figure 6 give the specific prediction results and errors of 10 points 
in the two cases. Figure 7 shows the results of all points in Case-1, indicating the accuracy of the 
method in spatial prediction. Like Case-1, Case-2 also used the same data and made predictions using 
the model created by bagging. Figure 8 gives the prediction results of all points for Case-2.  

Table 4. Average error of prediction of bearing layer depth in two cases. 

Predicted location Error of Case-1 (m) Error of Case-2 (m) 
1 1.40 0.75 
2 0.80 0.53 
3 5.30 3.41 
4 0.70 1.95 
5 0.89 0.09 
6 1.40 0.22 
7 0.56 0.02 
8 0.70 0.10 
9 0.26 0.26 
10 0.78 1.26 

Average error (m) 1.27 0.86 
CI 10.16±0.77 10.56±1.05 

 
Figure 6. Prediction errors of ten points in ANNs and Bagging. 
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Figure 7. Prediction results of Case-1 by using ANNs. 

 
Figure 8. Prediction results of Case-2 by using Bagging. 

4.2. Comparison of Prediction Results Between Neural Network and Bagging. 
Table 5 lists the prediction results of ANNs and bagging methods in detail, from which it can be 

seen that the prediction model of bagging method is beĴer than ANNs in accuracy. Table 5 uses four 
matrices of MAE, MSE, RMSE and confidence interval to evaluate the prediction accuracy of the 
models in Case-1 and Case-2. MAE is the mean of the absolute values of the errors; MSE is a measure 
of the mean squared error between the predicted and actual values in the dataset. The lower the MSE, 
the beĴer the model fits the dataset. RMSE is a measure of the square root of the mean squared error 
between the predicted and actual values in the dataset. The lower the RMSE, the beĴer the model fits 
the dataset. Based on these matrices, it can be concluded that the prediction model built using the 
bagging method is superior. The confidence interval (CI) can be regarded as an estimated range, 
which gives an interval that can be considered to contain an unknown population parameter at a 
certain confidence level. In other words, it is an estimate of the possible value of the population 
parameter, and this estimate is based on the data we obtained from the sample. Choose to set a 95% 
confidence level and a normal distribution, and finally calculate the confidence interval. The formula 
for the CI is shown as Eq. (3). 

𝐶𝐼 = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 ± (𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 ×  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟) (3) 
Among them, the critical value is 1.96. 

Table 5. Result of bearing layer depth by using artificial neural network and bagging. 

 MAE MSE RMSE 
ANN 1.07 2.89 1.70 

Bagging 0.86 1.79 1.34 

This difference in performance motivates us to conduct a deeper analysis of the pros and cons 
of each method, especially in the context of their application in smart city planning and development. 

It can be seen that compared with a single model; the prediction performance of the integrated 
model is improved by about 20%. Because a single model can only capture local features and paĴerns, 
it is easily affected by noise and randomness and may not perform well when facing complex tasks 
and large-scale data. However, ensemble learning can use the "wisdom" of multiple models to 
integrate the results of multiple models through voting, weighting, etc., which enhances the model's 
anti-noise ability and generalization ability. It can be concluded from many literatures [41,42]. 
Secondly, there are certain differences between individual learners, which will lead to different 
classification boundaries, that is, there may be errors. Then, after merging multiple individual 
learners, a more reasonable boundary can be obtained, the overall error rate can be reduced, and 
beĴer results can be achieved. In the case where the data set is too small, you can perform partitioning 
and replacement operations separately to generate different data subsets, and then use the data 
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subsets to train different learners, and finally merge them into a strong learner. Finally, because the 
data partition boundary is too complex, it is difficult to describe the situation using a linear model, 
so training multiple models and then fusing the models will achieve beĴer model performance. 

Improved the performance of the bagging model. Because of this, the depth of support for the 
observation points of the direct review, the addition of the bagging process, etc., and the high-level 
system. As shown in Figure 9, divided Figure 3 is an example of four points in the center, with a 
radius of 1km, and a contour map of the depth of support within the range. 

 
Figure 9. Contour map of bearing layer depth within a 1 km range at four points in Figure 3. 

In smart cities, bagging should help in the following aspects: 
(1) Geological data analysis and prediction: Smart cities rely on a large amount of data for 

decision-making. Bagging can beĴer analyze geological and other related data by reducing the 
variance of the model and improving the prediction performance. 

(2) Hazard detection: In smart cities, it is very important to detect abnormal situations in a timely 
manner. The prediction model of the bearing layer depth created using bagging can be used as 
the basis for drawing disaster maps, so as to detect and respond to abnormal situations more 
effectively. 

(3) Resource optimization: Based on the model of this study, it can help optimize resource 
allocation, such as seĴing a trusted bearing layer depth, predicting unknown points before 
construction, and omiĴing the geological survey step if it exceeds the trusted value, thereby 
reducing various costs. 

These contents show the potential of bagging in smart cities, helping city managers make more 
informed decisions by improving data analysis and prediction performance. 

5. Conclusions 
At the heart of smart city development is the critical role of predictive analytics, which uses data 

to predict future scenarios and inform decision-making processes. This study establishes a high-
precision prediction method for unknown points and unknown areas, demonstrating the great 
potential of machine learning in geotechnical engineering. The purpose of smart cities is to promote 
the optimal use of scarce resources and improve the quality of life of residents. Data collection 
technology is at the core of advancing smart city planning and achieving the desired results. Data-
driven insights help local governments improve urban planning and urban service deployment, 
thereby improving the quality of life of residents. The potential of smart cities to use data for urban 
improvement is demonstrated. The specific results are as follows: 
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(1) By learning "latitude", "longitude", "altitude" and "bearing layer depth", high-precision bearing 
layer depth prediction is achieved. This accuracy is critical for smart cities because 
understanding the geotechnical properties of the ground can have a significant impact on 
infrastructure development from building construction to transportation network design. 

(2) Compared with the prediction of a single model such as a neural network, the prediction 
performance of ensemble learning using bagging is beĴer, and the prediction accuracy can be 
increased to about 20%. The use of bagging allows for beĴer analysis of data, which can 
promote beĴer urban planning. 

(3) When using the multi-model ensemble learning method Bagging to predict geotechnical 
engineering survey results, it was found that a small change in the depth of the training data 
would have a significant impact on the model performance of the prediction model. This also 
emphasizes that the accuracy of the data must be guaranteed. 

However, there are still major limitations to the current research results. First, the reliability of 
the prediction results cannot be determined. Because in today's research, the judgment of prediction 
performance is made by making predictions at the actual location that has been measured and 
comparing the predicted value with the actual value. But if a completely unknown point is predicted, 
how to ensure the credibility of the predicted point is a major that needs to be studied in the future. 
Secondly, the number of machine learning features is too small. The three feature quantities used 
today are not comprehensive enough for the depth of the bearing layer. Other relevant ground 
conditions will continue to be introduced in the future. Analyzing more features and ensuring their 
relevance will help further improve model performance. Finally, there are also many ways to learn 
ensembles, and how to choose the optimal solution is also a question to be considered in the future. 

This study not only confirms the effectiveness of ensemble learning in the field of geological 
prediction, but also proves its potential in smart cities. 
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