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Abstract: In view of the complex spatiotemporal dynamic characteristics of public opinion 

dissemination in social networks, this paper proposes a public opinion dissemination prediction 

model based on the integration of dynamic time-weighted Rényi entropy (DTWRE) and graph neural 

networks. By incorporating a time-weighted mechanism, the model devises two tiers of Rényi 

entropy metrics—local node entropy and global time-step entropy—to effectively quantify the 

uncertainty and complexity of network topology at different time points. Simultaneously, by 

integrating DTWRE features with high-dimensional node embeddings generated by Node2Vec and 

utilizing GraphSAGE to construct a spatiotemporal fusion modeling framework, the model achieves 

precise prediction of link formation and key node identification in public opinion dissemination. The 

model was validated on multiple public opinion datasets, and the results indicate that, compared to 

baseline methods, it exhibits significant advantages in several evaluation metrics such as AUC, 

thereby fully demonstrating the effectiveness of the dynamic time-weighted mechanism in capturing 

the temporal evolution of public opinion dissemination and the dynamic changes in network 

structure. 

Keywords: dynamic time-weighted Rényi entropy; graph neural networks; spatiotemporal fusion 

modeling; node embeddings; public opinion prediction 

 

1. Introduction 

The scale-free nature of social networks and the cascading effect of information dissemination 

have made them a central medium for the evolution of public opinion in modern society. With the 

exponential growth in network scale, the complexity of information dissemination paths has 

increased significantly. Research indicates that more than 78% of information spread on social 

networks adheres to a power-law distribution [1], and this uneven mode of propagation allows public 

opinion on sudden incidents to cascade network-wide within hours; notably, during emergent public 

health events, the spread rate of misinformation can be as much as six times higher than that of 

accurate information [2]. Given that the creation and spread of misinformation occur with astonishing 

rapidity, they can rapidly affect the sentiments and actions of many users, which may not only trigger 

social panic and mislead public decisions but also damage the reputations of governments or 

businesses, ultimately resulting in economic and social instability [3,4]. 

In contrast to conventional media channels, the decentralized characteristics of social networks 

enable every user to become a source of information, creating an environment conducive to the 

proliferation of misinformation. The underlying mechanism of viral rumor diffusion encompasses 

not only the heterogeneity in user behavior [5] but is also intricately linked to the dynamic entropy 
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variations in network structure [6,7] and the evolution of community organization [8]. In public 

opinion propagation modeling, existing approaches have evolved through three stages: early studies 

primarily employed differential equation models based on propagation dynamics [9], but their 

oversimplified assumptions regarding network structure limited predictive accuracy; intermediate 

graph network approaches enhanced modeling capabilities by incorporating community structure 

and node centrality [10], yet they failed to address the integration of dynamic features; and recent 

machine learning techniques have achieved breakthroughs using graph embedding [11,12] and 

temporal modeling [13], although challenges remain in managing the causal relationships [14] and 

heterogeneity [15] of propagation paths. 

In recent years, the application of graph entropy has extended beyond merely measuring 

network complexity to include predicting information propagation paths and identifying key nodes. 

In particular, in scenarios such as public opinion dissemination [16] and virus transmission [17], 

graph entropy helps in understanding and forecasting the interactions among nodes and their 

information dissemination processes. Serving as a metric for network complexity, graph entropy is 

capable of depicting the global and local attributes of networks through the lens of information theory. 

Dehmer and Emmert-Streib investigated the application of graph entropy in complex networks, 

suggesting that by measuring characteristics like network topology and node distribution, graph 

entropy effectively captures network complexity [18]. While static network analyses utilizing 

Shannon entropy [19] can characterize structural stability, they are limited in their ability to portray 

dynamic evolutionary processes [20]. Conversely, Rényi entropy—a generalization of Shannon 

entropy—enables control over sensitivity through tuning the parameter α, making it adaptable to 

diverse network structures, though its application in forecasting public opinion propagation has yet 

to be thoroughly investigated. 

Additionally, numerous investigations have started leveraging machine learning—especially 

graph-based deep learning techniques—to model and forecast information spread in networks, 

thereby overcoming the limitations of conventional public opinion dissemination models in coping 

with complexity and dynamism. Graph Neural Networks (GNNs) have emerged as a significant 

breakthrough in network-structured data analysis in recent years. Notably, GraphSAGE (Graph 

Sample and Aggregation) stands out for its excellent inductive learning ability by aggregating 

features from neighboring nodes to learn node representations, thereby enabling the handling of 

large-scale graph data [21]. [22] introduced a GraphSAGE-based dynamic spatiotemporal graph 

convolutional network for traffic forecasting, which adeptly captures the dynamic spatiotemporal 

interdependencies in traffic networks and improves prediction precision. When applied to public 

opinion dissemination prediction, GraphSAGE effectively detects inter-node relationships and 

propagation potentials, especially in social networks where it manages network heterogeneity, node 

attributes, and structural information. The authors of [23] employed a weighted version of 

GraphSAGE to develop a rumor detection model called GSMA, which significantly improved the 

accuracy of rumor detection on the Weibo platform. In [24], the researchers introduced a temporal 

graph neural network (TGN) model that effectively analyzes the dynamic variations in the process 

of information propagation.  

Moreover, by combining features including graph structure, transmission chains, and user 

behavior metrics [25], researchers have further enhanced the predictive performance of their models. 

In order to improve both the predictive capability and stability of the model, this research 

incorporates graph embedding methods to achieve feature fusion. The Node2Vec algorithm [26], as 

a graph embedding method, generates neighborhood information for nodes through random walks, 

thereby learning low-dimensional representations that offer a novel perspective for analyzing 

complex networks. Within graph neural networks, the node embeddings produced by Node2Vec are 

used as input features, transforming intricate network structures into a format accessible to machine 

learning models, thereby aiding in the effective capture of latent relationships between nodes [27]. 

This approach has seen extensive application in public opinion propagation and link prediction tasks. 
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Current research on public opinion dissemination prediction faces key challenges. Firstly, 

existing models are unable to adequately consider the temporal dynamic characteristics of network-

based public opinion propagation—traditional models, largely based on static network assumptions 

[19,28], struggle to capture the time-varying nature of node interactions. Although graph embedding 

techniques optimize node representations through random walk strategies, they remain insufficient 

in modeling time decay effects [29] and causal relationships [30]. Secondly, assessments of node 

influence depend excessively on static indicators like degree centrality [31] and tend to concentrate 

on local node characteristics, overlooking the quantifiable contribution of dynamic entropy in 

forecasting propagation routes. For instance, the entropy-based influence model proposed in [32] can 

capture interaction frequency characteristics, yet it fails to consider the topological evolution along 

the temporal dimension. Thirdly, feature fusion remains limited as many approaches concentrate 

exclusively on single-dimensional attributes—like text sentiment [33] or community structure—

failing to collaboratively integrate multi-dimensional features. 

To address the aforementioned challenges, our research introduces a network public opinion 

dissemination prediction model that leverages dynamic time-weighted Rényi entropy (DTWRE) 

alongside deep learning. By fusing node time-weighted Rényi entropy features with Node2Vec 

embeddings, the model forms an innovative spatiotemporal fusion framework based on graph 

entropy theory and deep learning. Its core advantage lies in combining network topology with 

propagation complexity, which enables a more comprehensive characterization of public opinion 

dissemination patterns. This integration not only enhances the accuracy of public opinion 

dissemination prediction but also accounts for temporal dynamics, rendering the prediction results 

more interpretable and practically valuable. The graph neural network-based public opinion 

dissemination prediction model, by combining network structural information, node features, and 

propagation history data, can effectively uncover the underlying patterns in public opinion spread. 

Firstly, a dynamic Rényi entropy measurement system is constructed based on generalized graph 

entropy theory [34], introducing a time-weighting factor to jointly model network structural 

complexity and propagation dynamics. By tuning the entropy order α, this metric can flexibly capture 

the entropy variations present within diverse network structures and across various temporal 

windows. Secondly, by integrating the strengths of Rényi entropy features with those of graph 

embedding techniques during node embedding, and by fusing network structure, node attributes, 

and historical dissemination data, a predictive model is developed that automatically uncovers key 

insights embedded in the network and effectively captures the dynamic evolution of complex 

network structures. Lastly, an assessment framework is constructed by integrating metrics including 

node Rényi entropy, global Rényi entropy across time steps, and timeliness evaluations, which 

validates the model’s superior performance in detecting key nodes and predicting propagation paths. 

In summary, the principal contributions of this research are as follows: 

⚫ The introduction of dynamic time-weighted Rényi entropy furnishes a quantitative metric to 

capture the temporal dynamics and intrinsic structural complexity of network dissemination. 

⚫ A dual-level Rényi entropy framework is devised at both local node and global time-step scales, 

thereby facilitating the integrated modeling of localized and global structural complexity 

alongside propagation dynamics. 

⚫ The confluence of propagation temporal complexity and graph topology is exploited to establish 

a comprehensive spatiotemporal fusion model. 

⚫ The model's generalizability is rigorously validated across multiple real-world public opinion 

datasets, advancing innovative methodologies for key node detection and propagation pathway 

prediction. 

2. Methods 

This study presents a network public opinion propagation prediction model that integrates 

DTWRE with GraphSAGE. Its core concept is to quantify the varying complexity of the network 

structure at different time points using time-weighted Rényi entropy, and to combine this entropy 
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feature with node feature vectors derived from graph embedding techniques, which are subsequently 

input into a downstream graph neural network for link prediction tasks, ultimately achieving public 

opinion propagation forecasting. This section provides a detailed overview of the innovative 

methodologies employed in this research, including the computation of time-weighted Rényi entropy 

and the construction of an integrated GraphSAGE model framework. 

2.1. Spatiotemporal Fusion Modeling 

Within the domain of public opinion propagation prediction, Node2Vec employs random walks 

to learn the network’s topological information, effectively capturing both local and global node 

associations as well as the structural characteristics of dissemination paths. Although the low-

dimensional vectors generated retain substantial structural details, they inherently lack the capacity 

to represent the temporal evolution of public opinion, rendering them unable to distinguish between 

recently established and older connections. Moreover, a notable limitation of the Node2Vec 

algorithm is that its data-driven vector representations are difficult to interpret in terms of physical 

significance—such as node importance or dissemination capacity—a shortcoming that is effectively 

mitigated by the incorporation of Rényi entropy features. 

The novel time-weighted Rényi entropy introduced herein quantifies the uncertainty inherent 

in node propagation by incorporating the temporal dimension, thereby deepening the model’s 

predictive capability and elucidating the evolutionary trends of public opinion dissemination. As a 

metric for assessing propagation uncertainty, Rényi entropy—when augmented by a tailored time-

weighting mechanism—provides a refined portrayal of the dynamic complexity of nodes during 

public opinion dissemination. This approach further facilitates the modeling of the relative 

importance of different temporal phases, enabling the differentiation between early influencers and 

later disseminators, and thereby advancing the spatiotemporal exploration of public opinion 

propagation. 

However, a solitary entropy measure is insufficient to encapsulate the full spectrum of network 

structural characteristics, potentially yielding a lower informational content compared to the high-

dimensional embeddings generated by Node2Vec. Consequently, by integrating the complementary 

strengths of both approaches, Node2Vec is employed to capture the global network topology and 

discern the topological nuances of dissemination pathways. The incorporation of time-weighted 

Rényi entropy introduces temporal dynamic information, enabling the model to effectively perceive 

the evolving patterns of public opinion dissemination over time. GraphSAGE is capable of 

concurrently learning spatial topological relationships and temporal evolution trends, thereby 

mirroring the propagation patterns observed in actual social networks. The complete spatiotemporal 

fusion modeling process is illustrated in Figure 1. By leveraging the high-dimensional topological 

information from Node2Vec together with the temporal dynamic features of Rényi entropy, and 

training through GraphSAGE, the network structure and propagation characteristics are seamlessly 

integrated. This fusion enhances prediction accuracy, generalizability, and interpretability, while 

bolstering model stability—ultimately yielding a superior predictive framework for social network 

public opinion analysis. 

 

Figure 1. Schematic diagram of the spatiotemporal fusion modeling process. 
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2.2. Definition of Dynamic Time-Weighted Rényi Entropy 

Owing to the adjustable entropy order (α) in Rényi entropy, sensitivity to varying network 

structures can be fine-tuned. This facilitates entropy computation at both local node and global 

network levels, rendering the model more adaptable to diverse temporal instances and varying 

public opinion dissemination scenarios (such as emergent events or gradually unfolding topics). 

Based on the definition of Rényi entropy, two entropy indicators—Local Node Entropy (LNE) 

and Global Time-Step Entropy (DTWRE)—have been designed to characterize the multiscale 

information complexity inherent in public opinion propagation. These indicators are subsequently 

employed as features for training the GraphSAGE model. DTWRE comprehensively accounts for 

both the propagation characteristics of individual nodes and the influence of the network’s 

cumulative dissemination history on its current state, thereby providing an effective metric for 

modeling the complexity of public opinion propagation. 

Rényi entropy is a generalized entropy measure used to assess the uncertainty inherent in 

network structures. The mathematical definition of LNE is provided in [35] as follows: 

( , )

1
( , ) log ( )

1
u

u N v t

H v t p t


 

=
−

   (1) 

Here, ( , )N v t   denotes the set of neighbors for node v at time step t; ( )up t   represents the 

normalized probability distribution of an information metric (such as node degree or dissemination 

influence) for neighbor node u—with normalized probabilities derived from both node degree and 

PageRank values employed for comparative experiments—and α is the order parameter of Rényi 

entropy, which modulates sensitivity to varying degrees of distribution sparsity. To enhance 

predictive performance, a temporal factor is introduced via a time-weighting function ( )t   that 

aggregates entropy values from different time snapshots, thereby ensuring that more recent 

dissemination information exerts a greater influence on the overall entropy—closely mirroring the 

mechanisms of actual public opinion propagation. The formulated computation for DTWRE is as 

follows: 

( ) ( , )
t
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v V
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time global
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Here, ( )global

kH t  indicates the entropy of the network snapshot at time kt . ( )kt t −  is the time 

weight function, using exponential attenuation weight: 
( )

( ) kt t

kt t e
 − −

− =   (4) 

Here, λ > 0 governs the contribution of each time step to the final entropy value; a larger λ 

emphasizes recent dissemination, whereas a smaller λ allows for consideration of public opinion 

propagation over a more extended temporal range. Subsequently, LNE and DTWRE will be 

integrated with Node2Vec embedding features to furnish the downstream learning model with 

enriched feature inputs. 
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Table 1. Multi-level time-weighted entropy definition algorithm. 

Algorithm 1: DTWRE based on time weighting and time step segmentation. 

Input: A directed graph G = (V, E) with timestamps for each edge; LNE parameter 

α; decay factor for time weighting λ; maximum time step after dividing timestamps by 

a chosen time window T. 

Output: A trained GraphSAGE-based method for link prediction. 

1   Ti ← Split time step 

2   for v ∈ V do 

        p(v) ← (Node_degree(v) / Sum(Node_degree(vi))) 

for each t in [0...T] do 

( , )H v t  ← ComputeLNE(Subgraphs[t], p, α) 

( )globalH t  ← Sum( ( , )H v t ) 

( , )timeH G t  ← ComputeDTWRE( globalH , λ) 

end 

end 
3   Combined_features ←Concatenate(Weighted_Entropy, Node2Vec_embeddings) 

4   GraphSAGE-Entropy-based link prediction method(Combined_features) 

2.3. GraphSAGE for Public Sentiment Prediction 

To leverage graph-structured information for public opinion propagation forecasting, the 

GraphSAGE framework is employed for this task. Among the prevalent graph neural network 

architectures, Graph Convolutional Networks (GCNs) and GraphSAGE are two pivotal models. Both 

models are designed to extract meaningful patterns and features from graph data by training on 

extensive datasets, thereby acquiring parameters that enable accurate predictions across various 

graphs, facilitating tasks such as node classification and link prediction through comprehensive 

processing of node and edge information. 

GCNs learn vertex embeddings by integrating topological structure with vertex attribute 

information. However, GCNs require learning embeddings within a fixed graph and cannot directly 

generalize to vertices unseen during training—a hallmark of transductive learning. This necessitates 

retraining the model when new nodes emerge, leading to high computational costs and rendering 

such approaches less suitable for dynamic or large-scale graph data. 

In contrast, GraphSAGE constitutes an inductive learning framework capable of efficiently 

generating embeddings for unseen vertices by leveraging vertex attribute information. Its core 

concept is to learn an aggregation function that synthesizes the representations of neighboring 

vertices to yield the embedding vector of a target vertex, as depicted in Figure 2. The principal 

features of this approach include: 

1. Neighbor Sampling: Given that social networks typically manifest as large-scale, sparse graphs, 

GraphSAGE randomly samples a fixed number of neighbors for each node to curtail 

computational complexity—an essential strategy for managing extensive graph datasets. 

2. Feature Aggregation: For each node u, GraphSAGE aggregates features from its neighboring 

nodes and updates its own representation accordingly, as delineated in the following 

formulation: 
( ) ( 1)( ({ , ( )}))k k

u k vh W Aggregate h v N u −=     (5) 

Where: ( )k

uh  is the feature representation of node u at layer k. Aggregate{} is an aggregation 

function, where mean aggregation is used. kW  is a trainable parameter. σ is a nonlinear activation 

function, where ReLU is used. 

3. Final representation: After multi-layer aggregation, the final representation of node v is: 
( )

,1 ,2 ,3 ,[ , , ,..., ]n n n n n

v v v v v dh h h h h=   (6) 

In this study, we add DTWRE as an additional feature to the input of GraphSAGE, so that the 

model can learn the temporal dynamic characteristics in the propagation process. 
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Figure 2. Schematic diagram of the GraphSAGE sampling and aggregation process. 

3. Experiments 

This section delineates the experimental procedures and results of the proposed deep learning-

based public opinion propagation prediction model, which integrates DTWRE with Node2Vec 

embeddings, evaluated on real-world data. The experiments were conducted on the PyCharm 

platform, utilizing development tools such as PyTorch and the Deep Graph Library (DGL). DGL is a 

deep learning framework specifically designed for graph neural networks, offering efficient, flexible, 

and user-friendly tools for GNN research and development. To comprehensively assess the model's 

performance, comparisons were made with existing link prediction methods, demonstrating its 

superior results across various evaluation metrics. 

3.1. Datasets and Data Preprocessing 

For evaluation purposes, the following datasets were employed during both the validation and 

empirical phases: 

CollegeMSG Dataset: A classic dataset from SNAP comprising private messages exchanged on 

an online social network. As a temporal network widely used in research, it was employed during 

the validation phase to facilitate performance comparisons with other methodologies. 

Real-world Social Network Dataset: Chinese rumor data, including repost and comment 

information, scraped from the Sina Weibo misinformation reporting platform. Predicting these 

rumors aids in characterizing the propagation patterns of misinformation, thereby providing 

theoretical support for combating false information on social networks. 

The following data preprocessing steps were applied to the aforementioned raw datasets: 

◼ Time labels were standardized by converting them into timestamp format. 

◼ Data augmentation procedures were applied, taking into account the large scale of the real-

world social network dataset. 

◼ Isolated nodes, which do not participate in information dissemination, were removed to ensure 

graph connectivity and to uphold the validity of Rényi entropy computations. 

◼ From the real-world social network dataset—which includes the content of rumor-related Weibo 

posts, the publishers, records of reposts and comments, and interaction timestamps—filtering 

was conducted to extract the rumor originators along with the corresponding interaction 

relationships (comments and reposts) to construct a public opinion propagation network. 

◼ Temporal window segmentation was performed by partitioning dissemination data into 

multiple time windows based on timestamps; each window corresponds to a time step with 
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gradually varying weights. Different datasets were segmented into time steps according to 

empirical criteria, as illustrated in Figure 3. 

 

Figure 3. Schematic diagram of dynamic time weighting mechanism. 

The objective of the public opinion propagation prediction task is to forecast potential future 

links based on the known network structure. The ratio of positive to negative samples impacts both 

model training and generalizability. The construction of these samples is as follows: 

• Positive samples: Connected node pairs (u, v) extracted from the actual network. 

•  Negative samples: A negative sampling strategy was employed to randomly select 

unconnected node pairs (u, v) from the set of non-existent edges, that is, ( , )u v E . 

Here, E denotes the set of actual edges in the network. 

However, real-world networks are typically sparse—with the majority of potential edges 

absent—posing challenges for negative sample selection. Inadequate negative sampling can lead to 

data imbalance and diminish the model's discriminative power. To address this issue, oversampling 

was applied to the negative samples. 

3.2. Feature Engineering 

In this study, a multidimensional feature set is constructed to comprehensively capture both the 

dynamic information and structural characteristics inherent in public opinion propagation, serving 

as the input to the GraphSAGE model. The primary features utilized are categorized into two groups: 

entropy-based features and node embedding features.  

3.2.1. Rényi Entropy Feature 

As previously described, these features encompass both local and global dimensions. Local 

Node Entropy (LNE) quantifies a node’s propagation potential and local structural complexity within 

a given time step—each node v is characterized by its LNE at time t—while Dynamic Time-Weighted 

Rényi Entropy (DTWRE) measures the overall network complexity at a specific time step. Their 

integration yields a holistic evaluation of the complexity of public opinion dissemination across 

various propagation stages.  

3.2.2. Node2Vec Embedding Features 

To further capture the semantic and structural relationships among nodes, the Node2Vec 

algorithm is employed to generate node embeddings, following these specific steps: 

1. Graph Conversion: Transform the graph constructed with DGL into NetworkX format and 

convert it into an undirected graph to satisfy the requirements of Node2Vec. 

2. Embedding Computation: Perform random walk sampling on the network using the Node2Vec 

model, and generate continuous vector representations for nodes via the Skip-Gram model, with 

the embedding dimension set to 64. 
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3. Normalization: To eliminate scale discrepancies, normalize the generated node embeddings 

using MinMaxScaler and convert them into Tensor format to ensure consistency with other 

features. 

These node embedding features effectively complement the limitations of entropy-based metrics 

in capturing local structural nuances and semantic relationships, thereby enriching the node 

representations for the link prediction task.  

3.2.3. Feature Fusion 

In the final feature construction phase, the LNE, DTWRE, and Node2Vec embeddings are 

concatenated to form a comprehensive feature vector. 

This fusion approach integrates multiscale information: LNE captures the uncertainty of 

individual nodes within local structures, DTWRE reflects the network’s overall complexity at each 

time step, and node embeddings supply high-dimensional semantic details among nodes. Moreover, 

the incorporation of a time-weighting strategy allows the model to flexibly account for the influence 

of historical dissemination on the current state, thereby enhancing the capture of temporal dynamics 

in public opinion propagation. The resultant composite feature vector provides the GraphSAGE 

model with a more comprehensive input, facilitating more precise discrimination between positive 

and negative samples in link prediction and ultimately improving predictive accuracy. 

3.3. Model Construction and Training 

The detailed process for model construction and training is outlined below: 

1. Model Architecture: The proposed model is comprised of two principal components: 

(1) Feature Input Layer: This layer ingests the extracted node features—both entropy-based and 

embedding features—as input. 

(2) Graph Neural Network Layer: Employing GraphSAGE, this layer aggregates features from 

neighboring nodes to update node representations, thereby generating embeddings for 

nodes across distinct time windows. 

2. Predictor and Loss Function: To facilitate effective link prediction, a multilayer perceptron (MLP) 

is employed as the predictor. Comprising multiple fully connected layers, the MLP is designed 

to capture nonlinear relationships among node features and ultimately outputs a prediction score 

that quantifies the likelihood of a link forming. The binary cross-entropy loss function is used to 

optimize the predicted link probabilities for node pairs. Specifically, given a node pair (u, v), the 

model forecasts whether these nodes will establish a connection within a future time window. 

The formulation is as follows:  

( , )

ˆ ˆlog( ) (1 ) log(1 )uv uv uv uv

u v E

L y y y y


= − + − −   (7) 

where uvy  denotes the true connectivity status of node pair (u, v) and ˆ
uvy  represents the model's 

predicted link probability. 

3. Training Process: The training phase employs the Adam optimizer—recognized for its adaptive 

learning rate and rapid convergence—with hyperparameters refined via cross-validation. The 

model is trained over 100 epochs to minimize the loss function, thereby achieving optimal 

performance. 

3.4. Evaluation Metrics 

To facilitate comparisons with other approaches and to comprehensively assess the model's 

performance, the following commonly used evaluation metrics are adopted: 

AUC (Area Under the ROC Curve): This metric gauges the model’s ability to differentiate 

between positive and negative samples; higher values indicate superior predictive performance. 

Precision: Precision reflects the proportion of correctly predicted positive node pairs among 

those predicted as positive, with higher precision denoting greater accuracy. 
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Recall: Recall measures the proportion of actual positive node pairs that are successfully 

identified by the model, with higher recall indicating enhanced coverage of positive instances. 

F1-Score: The F1 score, defined as the harmonic mean of precision and recall, provides a 

balanced evaluation of the model's predictive capability. 

Temporal Performance: Considering the pronounced temporal evolution in public opinion 

propagation, the model's performance is assessed across varying time steps to monitor accuracy 

fluctuations over time. 

In summary, the key experimental steps encompass data processing, feature engineering, model 

training, and evaluation, as illustrated in Figure 4. 

 

Figure 4. Experimental procedure of the innovative model on real-world public opinion datasets. 

3.5. Experimental Parameter Setting 

During both training and evaluation, extensive experimental configurations and 

hyperparameter tuning were conducted to optimize model performance. The following parameters 

were systematically refined: 

1. Temporal Window Size: This parameter affects the model's ability to learn sequential 

information. Empirically determined window sizes were applied for different datasets to more 

effectively capture the dynamic nature of public opinion propagation. 

2. α Value (Entropy Order for LNE): This parameter determines the flexibility of the entropy 

calculation. A grid search approach was utilized to optimize α and select its optimal value. 

3. λ Value (Temporal Weighting Parameter): λ was tuned based on the characteristics of different 

time steps and historical public opinion propagation data. 

4. Negative Sampling Ratio: A specified proportion of negative samples was drawn during 

training. Various ratios were experimented with to evaluate their impact on model performance. 

To validate the effectiveness of the proposed approach, multiple baseline models were 

implemented for comparative analysis against the following classical prediction methods: 

① Traditional Node Degree-Based Method; 

② Traditional Node PageRank-Based Method; 

③ Node2Vec-Based Method Utilizing Node Embeddings; 

④ Traditional Static Rényi Entropy-Based Method. 

These baselines effectively corroborate the innovation of the proposed method while providing 

a balanced comparison of the contributions of various features to overall model performance. 

4. Results 

This section delineates the experimental findings of the proposed network public opinion 

propagation prediction model, which integrates DTWRE with deep learning, as evaluated on 

benchmark datasets. Through comparative experiments, performance assessments, temporal 

analyses, and extensions using real-world public opinion data, the efficacy of the proposed approach 

in predicting network public opinion propagation has been validated, with a detailed analysis of the 

various factors influencing model performance. The results indicate that the graph neural network 

model augmented with DTWRE attains higher accuracy and superior temporal responsiveness 

compared to traditional approaches. 
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4.1. Model Performance Comparison 

The experiment compared the four baseline methods mentioned above, and the comparison 

results of evaluation indicators are as follows: 

According to the findings in Table 2 and Figure 5, the innovative DTWRE method achieved the 

highest AUC (0.9742), demonstrating its capacity to better capture the latent dynamic propagation 

characteristics within the network, thereby enhancing its discriminative ability in distinguishing 

positive from negative samples. Moreover, DTWRE attained the highest precision at 0.9259, 

indicating that the vast majority of predicted positive samples correspond to genuine links. This 

outcome further substantiates the effectiveness of node embeddings in capturing semantic and 

structural nuances, while also highlighting the limitations of relying solely on embeddings to fully 

represent the dynamic aspects of public opinion propagation. In terms of recall, both DTWRE (0.9144) 

and Rényi entropy (0.8970) outperform methods based on node degree (0.8618) and PageRank 

(0.8613), indicating that the incorporation of entropy features enables a more comprehensive 

detection of existing links, thereby reducing false negatives. The novel approach achieved the highest 

F1-Score (0.9201), signifying an optimal balance between precision and recall. When compared to 

Node2Vec's F1-Score (0.9062), this result corroborates the superior overall performance conferred by 

the time-weighted mechanism. With an accuracy of 0.9207, DTWRE consistently outperforms all 

alternative methods, thereby demonstrating its robust performance in comprehensive link prediction 

tasks.  

Table 2. Comparison of the experimental results between the innovative method and the baseline method. 

Baseline 

Methods 
AUC Precision Recall F1-Score Accuracy 

① 0.9323 0.8522 0.8618 0.8570 0.8562 

② 0.9285 0.8509 0.8613 0.8561 0.8552 

③ 0.9649 0.9221 0.8909 0.9062 0.9078 

④ 0.9487 0.8677 0.8970 0.8821 0.8802 

DTWRE 0.9742 0.9259 0.9144 0.9201 0.9207 

 

Figure 5. Performance comparison between innovative method and baseline method. 

In summary, given that the influence of information at various time steps on network structure 

is heterogeneous during public opinion propagation, Rényi entropy enriches the dissemination 

information available to nodes, thereby enabling a more effective capture of latent structural features. 

Furthermore, time-weighted entropy features adeptly adjust to the evolving characteristics of public 
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opinion propagation, enhancing the model’s performance in dynamic dissemination scenarios. The 

proposed DTWRE method, by incorporating exponential decay weights to effectively integrate 

information across different time steps, surpasses all baseline methods across various metrics, 

thereby demonstrating its efficacy and state-of-the-art performance in network public opinion 

propagation prediction. 

4.2. Model Parameter Analysis 

To further elucidate the impact of key parameters on link prediction performance, extensive 

experiments were conducted on the DTWRE order α, the temporal weighting factor λ, and the 

positive-to-negative sample ratio, with the effects of varying these parameters on model performance 

illustrated via comprehensive visual charts. 

4.2.1. Impact of DTWRE Order α 

We explore the effect of DTWRE order α on the model performance by changing it. The 

consequences are as follows: 

Figure 6 illustrates that when α is set to 0.2, the AUC reaches 0.950, indicating a relatively low 

sensitivity in the entropy calculation that may inadequately capture the structural diversity among 

neighboring nodes. As α increases to 0.6, the AUC sharply ascends to 0.966, demonstrating that the 

entropy metric more effectively reflects the distributional uncertainty among node neighbors, thereby 

enhancing the model’s ability to differentiate between positive and negative samples. With further 

increases in α to 1, 1.5, 2, and 5, the AUC declines to 0.959, 0.955, 0.952, and 0.944 respectively, 

suggesting that excessively high α values overly accentuate the high-probability components of the 

distribution while neglecting lower-probability information, which in turn degrades the overall 

discriminative capability. Precision peaks at 0.922 when α is 0.6, followed by a slight decline as α 

increases further. The trends in recall and F1-Score mirror that of precision, achieving their optimum 

at α = 0.6, while both lower and higher values of α fail to attain an optimal balance. This variation 

indicates that an α value of 0.6 allows the entropy measure to effectively capture the diversity of a 

node's propagation potential, thereby enabling more precise discrimination between positive and 

negative samples; conversely, values that are too low or too high tend to induce information loss or 

introduce noise, thereby impairing overall performance. The accuracy trend parallels that of the AUC, 

rising from 0.888 at α = 0.2 to 0.916 at α = 0.6, and then gradually falling to 0.904 at α = 5, further 

substantiating that an optimal α value is 0.6. 

 

Figure 6. Impact of DTWRE order α on model performance. 

Consequently, it can be concluded from the results that all performance metrics peak when α is 

0.6, which aligns with the anticipated advantages of DTWRE features in capturing the dynamics of 

public opinion propagation. These data variations highlight the distinctive role of entropy in 

elucidating node influence and propagation uncertainty, offering a more comprehensive depiction of 
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the complexity inherent in public opinion diffusion compared to conventional metrics that solely 

consider node degree. 

4.2.2. Impact of the Temporal Weighting Parameter λ 

The parameter λ within the time-weighting function—an integral innovation of the DTWRE 

approach—warrants examination regarding its effect on model performance. The results are as 

follows: 

Figure 7 presents a comparative analysis of experimental data obtained under varying values of 

λ, revealing the following trends: When λ is set to a low value (e.g., 0.1), the insufficient emphasis on 

historical information results in overall suboptimal model performance; as λ increases from 0.1 to 

moderate values (ranging from 0.4 to 1.2), all performance metrics exhibit a marked improvement, 

indicating that moderately amplifying the weight of recent information facilitates the capture of 

dynamic public opinion propagation characteristics; at λ = 1.2, the model attains optimal levels in 

AUC, Recall, F1-Score, and Accuracy, thereby achieving the best overall performance; when λ is 

further increased to 2, although Precision and Accuracy experience a modest rise, Recall declines 

slightly, and overall metrics remain relatively stable, suggesting that an excessively high λ may lead 

to an overemphasis on recent data at the expense of historical information. 

 

Figure 7. Impact of time-weighted parameter λ on model performance. 

4.2.3. Impact of the Positive-to-Negative Sample Ratio 

In this study, careful consideration is given to the positive-to-negative sample ratio, since severe 

imbalance may bias the model toward the predominant class, whereas an optimal ratio facilitates the 

effective learning of intrinsic data patterns and enhances overall model performance and predictive 

accuracy. The figure below (Figure 8) illustrates the impact of varying positive-to-negative sample 

ratios on performance metrics.  
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Figure 8. Impact of positive-to-negative sample ratio on model performance. 

Analysis of Figure 8 reveals that the positive-to-negative sample ratio exerts a significant 

influence on model performance. When the ratio is set to 2—indicating an excess of negative 

samples—Precision is high, yet Recall declines markedly, resulting in lower overall F1-Score and 

Accuracy; conversely, when the ratio is set to 0.5 (fewer negative samples), Recall is elevated but 

Precision is insufficient. The optimal positive-to-negative sample ratio is approximately 0.75, at which 

point the model demonstrates the best performance in AUC, F1-Score, and Accuracy, thereby 

achieving an ideal balance between positive and negative samples. 

4.2.4. Temporal Performance Evaluation 

To validate the model's ability to capture the temporal dynamics of public opinion propagation, 

experiments were designed with varying time step lengths. Specifically, under constant conditions 

for other parameters such as λ, α, and the positive-to-negative sample ratio, the effect of different 

time step lengths on model performance was compared. The experimental results presented in the 

table below display performance metrics corresponding to time steps of 1.75 days, half a week, and 

one week. 

Table 3. Impact of the time step length on temporal evaluation. 

Time step 

length 
AUC Precision Recall F1-Score Accuracy 

604800 0.9680 0.9159 0.9044 0.9101 0.9107 

302400 0.9567 0.9016 0.8972 0.8994 0.8996 

151200 0.9579 0.8963 0.8882 0.8922 0.8927 

 

Figure 9. Temporal performance evaluation results. 
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As depicted in the figure, when the time window aligns with the overall temporal span of the 

dataset, employing a longer window offers a distinct advantage. Specifically, when a time window 

of 604,800 seconds (7 days) is employed, all performance metrics significantly outperform those 

obtained with shorter windows of 302,400 and 151,200 seconds. This indicates that a 7-day window 

can effectively capture the dynamic evolution of public opinion propagation and supply ample 

information for predicting link formation, whereas shorter windows may yield insufficient data, 

thereby diminishing overall performance. It is noteworthy that the 7-day window was determined 

based on the dataset’s total temporal span and empirical considerations; thus, only three appropriate 

window lengths were examined. Consequently, from a temporal performance standpoint, employing 

a longer time window is more conducive to robustly capturing the dynamics of network propagation. 

4.3. Prediction of Real Social Network Public Opinion 

Following the model's excellent performance on the benchmark dataset, further analysis was 

conducted on a real-world Weibo dataset to assess its generalizability in capturing public opinion 

propagation. This dataset encompasses interactive information such as reposts and comments related 

to rumors among Weibo users. To investigate the dissemination mechanisms of false public opinion, 

the innovative advantages of the DTWRE method were leveraged to analyze the rumor data, with 

the results presented as follows: 

Figure 10 illustrates the evolution of performance metrics over training epochs for the real-world 

public opinion dataset. Overall, the performance curves exhibit a rapid initial ascent, then gradually 

converge and stabilize around the 50th epoch at relatively high levels, reflecting the model’s robust 

capability to comprehensively distinguish between positive and negative links (i.e., public opinion 

propagation relationships) in the dataset.  

 

Figure 10. Results of the variation of performance metrics of the model in 100 training epochs. 

Figure 11 reveals a "center-periphery" structure within the social public opinion network, where 

red nodes in the central region exhibit high entropy values and are identified as key nodes that form 

a densely connected core, rapidly disseminating information to peripheral nodes and warranting 

focused attention in public opinion management. The significance of these nodes is further validated 

by retrospectively tracing their diffusion pathways within the original dataset. Red lines denote links 

predicted as positive—indicating edges where actual connections or information flows are more 

likely to occur during public opinion propagation. It is evident that the red lines radiate outward 

from the center, confirming the model’s identification of diffusion pathways from key nodes to 

ordinary nodes. 
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Figure 11. Visualization of model prediction results in real social network public opinion datasets. 

5. Conclusions 

This study addresses the critical issue of network public opinion propagation prediction by 

integrating machine learning techniques, complex network theory, and graph entropy analysis. A 

novel prediction model is proposed, which leverages dynamic time-weighted Rényi entropy to 

capture the evolving complexity of network dissemination, and harnesses the benefits of Node2Vec 

graph embeddings. These features are jointly fed into a GraphSAGE-based graph neural network to 

facilitate accurate public opinion forecasting. Extensive experimental results demonstrate that the 

proposed method consistently outperforms existing approaches across multiple datasets. Its unique 

advantage is particularly evident when handling network data with temporal dependencies, leading 

to a significant enhancement in the accuracy of public opinion propagation predictions. Moreover, 

this research offers a novel perspective on public opinion propagation prediction and introduces an 

innovative approach for applying time-weighted entropy features in complex network analysis, 

thereby holding substantial theoretical and practical significance. Future investigations may extend 

the applicability of dynamic time-weighted Rényi entropy to various network environments—such 

as biological networks and recommendation systems—and explore the integration of additional node 

features and propagation mechanisms to further enhance model generalizability. In addition, 

incorporating multimodal data (e.g., textual content and social interaction metrics) into public 

opinion propagation prediction could yield more precise predictive models and robust decision 

support systems in relevant fields. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

DTWRE Dynamic Time-Weighted Rényi Entropy 

LNE Local Node Entropy 
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