Type of the Paper: Short Communication

Factorial of Sum of Two nonnegative Integers is equal to Multiple of the Product of Factorial of the Two Nonnegative Integers

Chinnaraji Annamalai 1,*

- Department of Management, Indian Institute of Technology Kharagpur, India; anna@iitkgp.ac.in
- * Correspondence: annacraj@gmail.com

Abstract: This paper presents a theorem in factorial functions with the sum of any two nonnegative integers that is equal to multiple of the product of factorial of the same two nonnegative integers.

Keywords: algorithm; combinatorics; factorial function; computation

MSC: 05A10

1. Introduction

The integers involving in factorial functions or factorials [1-8] are non-negative numbers. These have several applications in computing, science, and engineering.

Definition: The factorial of any non-negative integer n, denoted by n!, is the product of all nonnegative integers less than or equal to n.

For example, $5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$. Note that zero factorial is always one, that is, 0! = 1.

2. Theorem in Factorials

The theorem [1-8] states that the factorial of sum of any two nonnegative integers is equal to multiple of the product of factorials of the same two nonnegative integers.

Theorem1. For any two nonnegative integers m and n, $(m+n)! = k \times m! \times n!$ $(k \ge 0)$.

Proof of Theorem 1.

The theorem $(m + n)! = k \times m! \times n!$ can be proved by mathematical induction.

Basis. Let m = 2 and n = 3. $(2 + 3)! = 720 = 60 \times 2! \times 3!$ is obviously true.

Inductive hypothesis. Let us assume that it is true for (m-b) and (n-c) $(b,c \ge 0)$,

that is,
$$((m-b) + (n-c))! = h \times (m-b)! \times (n-c)!$$
.

Inductive Step. We must show that the hypothesis is true for (m - b + b) and (n - c + c).

$$((m-b+b) + (n-c+c)!) = h \times (m-b+b)! \times (n-c+c)!.$$

By simplifying this result, we get $(m + n)! = k \times m! \times n!$, (h = k).

Hence, theorem is proved. □

Corollary 1. For any k nonnegative integers n_1, n_2, n_3, \cdots and n_k ,

$$(n_1 + n_2 + n_3 + \dots + n_k)! = (a_1 \times a_2 \times a_3 \times \dots \times a_{k-1}) \times n_1! \times n_2! \times n_3! \times \dots \times n_k!,$$

that is,
$$\left(\sum_{i=1}^k n_i\right)! = A \prod_{i=1}^k n_i!$$
,

where $A = a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1}$ and $A, a_1, a_2, a_3, \cdots, a_{k-1}$ are coefficients.

For instance,

If
$$n_1 = n_2 = n_3 = \dots = n_k = 0$$
. Then, $(n_1 + n_2 + n_3 + \dots + n_k)! = (k \times 0)! = 0! = 1$.

If
$$n_1 = n_2 = n_3 = \dots = n_k = 1$$
. Then, $(n_1 + n_2 + n_3 + \dots + n_k)! = (k \times 1)! = k!$.

If
$$n_1 = n_2 = n_3 = \dots = n_k = 2$$
. Then, $(n_1 + n_2 + n_3 + \dots + n_k)! = (k \times 2)! = (2k)!$.

If
$$n_1 = n_2 = n_3 = \dots = n_k = k$$
. Then, $(n_1 + n_2 + n_3 + \dots + n_k)! = (k \times k)!$.

This novel idea can help to the researchers working in computational science, management, science, and engineering.

3. Conclusions

In this article, an innovative combinatorial technique and theorem are introduced and the theorem states that the factorial of sum of any k nonnegative integers is equal to multiple of the product of factorials of the k nonnegative integers. This methodological advance can enable the researchers working in computational science, management, science and engineering to solve the most real life problems and meet today's challenges [9].

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Annamalai, C. Application of Factorial and Binomial identities in Communications, Information and Cybersecurity", Research Square, 2022; https://doi.org/10.21203/rs.3.rs-1666072/v6.
- 2. Annamalai, C. Application of Factorial and Binomial identities in Cybersecurity, engrXiv, 2022; https://doi.org/10.31224/2355.
- 3. Annamalai, C. *Application of Factorial and Binomial identities in Computing and Cybersecurity*, Research Square, 2022; https://doi.org/10.21203/rs.3.rs-1666072/v3.
- 4. Annamalai, C. Theorems based on Annamalai's Binomial Coefficient and Identity, Zenodo, 2022; https://doi.org/10.5281/zenodo.6548228.
- 5. Annamalai, C. *Application of Factorial and Binomial identities in Cybersecurity and Communications*", Research Square, 2022; https://doi.org/10.21203/rs.3.rs-1666072/v4.
- Annamalai, C. Application of Annamalai's Factorial and Binomial Identities in Cybersecurity, OSF Preprints, 2022; https://doi.org/10.31219/osf.io/dig34.
- 7. Annamalai, C. Application of Factorial and Binomial identities in Communication and Cybersecurity, Research Square, 2022; https://doi.org/10.21203/rs.3.rs-1666072/y45.
- 8. Annamalai, C. Factorial of Sum of Nonnegative Integers", OSF Preprints, 2022; https://doi.org/10.31219/osf.io/cb72k.
- 9. Annamalai, C. Application of Exponential Decay and Geometric Series in Effective Medicine, Advances in Bioscience and Biotechnology, 2010; Volume 1, pp. 51-54. https://doi.org/10.4236/abb.2010.11008.