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Abstract: Finite difference methods are commonly used in the pricing of discretely monitored exotic options
in the Black-Scholes framework, but they tend to converge slowly due to discontinuities contained in terminal
conditions. We present an effective analytical modification to existing finite difference methods which greatly
enhances their performance on discretely monitored options with non-smooth terminal conditions. We apply
this modification to the popular Crank-Nicolson method and obtain highly accurate option pricing results with
significantly reduced CPU cost. We also introduce an adaptive mesh refinement technique which further improves
the computational speed of the modified finite difference method. The proposed method is especially useful for

options with high monitoring frequencies, which are difficult to price using other existing methods.
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1. Introduction

Discretely monitored exotic options, including barrier options and autocallable structured prod-
ucts, are commonly traded throughout the world. Unlike continuously monitored barrier options,
discrete barrier options cannot be priced using analytical formulas. Instead, these options are priced
using numerical techniques such as Monte-Carlo simulations, finite difference methods, quadrature
methods [1,2], and several other sophisticated mathematical techniques (e.g. [3-7]). Discrete barrier
options can also be priced approximately using continuity correction techniques [8,9], but the accuracy
of these methods is often quite limited.

To price options with low to moderate monitoring frequencies (e.g. monthly), quadrature methods
can be quite effective [2]. However, these methods are not suitable for pricing options with high
monitoring frequencies (e.g. daily), since they involve computations of convolution integrals at all
monitoring points (or barriers), which can be very expensive when monitoring frequencies become
large. Monte-Carlo simulations suffer from the same limitation, where significantly more random
numbers need to be generated along a rapidly increasing number of paths as monitoring frequencies
increase. Finite difference methods, in contrast, are not subject to such limitations, as long as monitoring
points are placed on the computational grid, but they tend to converge slowly due to discontinuities
contained in terminal conditions. Performance of finite difference methods can be improved using
advanced numerical techniques such as adaptive mesh models [10], Rannacher time-stepping [11,12],
and the TR-BDF2 method [13], but these methods either are formulated in a different setting (e.g. for
tree-based pricing models [10]), or suffer from relatively low accuracies due to the incorporation of
low-order approximations near terminal /boundary points (e.g. [11,12]).

We present an analytical modification to finite difference methods in the Black-Scholes framework
to remove any discontinuities contained in the terminal conditions, which greatly improves the
accuracy and efficiency of these methods. We will apply the modification to the popular Crank-
Nicolson method, and introduce an effective adaptive mesh refinement technique to further improve
the computational speed of the modified method. The modified finite difference method is valuable in
practice thanks to its high accuracy and ease of implementation. It also complements our previous
quadrature method [2] since its performance is unaffected by higher monitoring frequencies.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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1.1. A Brief Review of Products Considered

The modified finite difference method is applicable to various types of discretely monitored
options, including discrete barrier options, autocallable structured products, and snowball options.

Barrier options are among the most popular types of exotic options. A barrier option may be
activated (knock-in option) or deactivated (knock-out option) when the underlying asset price crosses
certain barrier levels. A single barrier option has one barrier at each observation date, while a double
barrier option has two barriers at each observation date. The final payoff of a barrier option (if it is
active at maturity) may be of the same type as that of a vanilla option or that of a digital option.

For an autocallable product, there is a pre-specified barrier level at each observation date. If the
underlying asset price is greater (less) than or equal to the barrier level, the option is exercised and a
pre-specified fixed-rate return is paid. If the asset price is below (above) the barriers at all observation
dates, the option is never exercised and the investor receives a negative return at maturity.

A snowbeall option has an up-and-out barrier and a down-and-in barrier, and the down-and-in
barrier is usually monitored daily. If the asset price reaches the up-and-out barrier, the option is
exercised and a pre-specified fixed-rate return is paid. If the option expires without any barrier being
reached, the investor receives a fixed coupon payment. If the up-and-out barrier is never reached
but the down-and-in barrier is reached sometime before maturity, the investor automatically writes a
vanilla put and may receive a negative return.

1.2. Organization of the Paper

The rest of the paper is organized as follows. Section 2.1 defines the class of (discrete) option
pricing problems that our method is intended to solve, and the rest of Section 2 details the various
ingredients of our method including, specifically, the analytical modification (Section 2.3) we introduce
for standard finite difference methods (Section 2.2) in the context of discrete option pricing, and an
adaptive mesh refinement technique for the analytically modified finite difference methods (Section
2.4). The efficacy and efficiency of our method is then demonstrated through extensive numerical
studies in Section 3, and the paper is concluded in Section 4.

2. Materials and Methods

2.1. Basic Assumptions

We consider a general class of discretely monitored options with barriers. Note that an option
with knock-in barriers is equivalent to the difference of an option without those knock-in barriers and
another option with knock-out barriers at the same dates and same levels. Therefore, it suffices to
consider options with only knock-out barriers. To this end, assume that

(A) The option to be priced has two strike prices K, K;}; € [0, c0], with K;, < K}, at each observation
date T);,, m =1,2,..., M. The expiration date is Tj;.

(B) The option is exercised if S < K, or S > K;}; at some T, and the payoffs are given by a;,S + b;,
(if S < K;;) and a;;S + b;}; (if S > Kj}), respectively, for some a;, by € R.

(C) The final payoff at maturity is

apS + by, for K]\7/1 <5< K;\FA,

for some ay, by € R.

These assumptions are general enough to cover a wide class of discretely monitored options, such
as the ones mentioned in the introduction. For instance, down-and-out put barrier options would have

1<m<M-1: K} =00,0<K, <o, a, =0, b, =0;

m=M: Ky;=0,0<Kj <oo, ay=—1, by =K},

aj; = by =0.
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Double barrier knock-out call options would have

1<m<M-1: 0<KE <o, al=0,0b5=0;
m=M: Kjj=00,0<Ky <oo, apy=1,by=-Kj,

ay; = by, =0.
Common up-and-out autocallable products would have

1<m<M: 0<K) <o, K, =0,a}=0,b,>0;
m=M: ay=0, by <0.

We further assume that the price of the underlying asset S(t) satisfies the following stochastic
differential equation under the risk-neutral measure:

dS(t) = [r(t) — q(B)]S(t) dt + o (£)S(t) AW(E), 2.1)

where r(t) is the risk-free forward interest rate, q(t) the yield rate, o(t) the volatility, and W(t) the
Wiener process. Interest rates, yield rates, and volatilities are assumed to be deterministic functions of
time.

To summarize, our basic assumptions are

1. There are finitely many observation points, and two exercise levels (possibly o) at each ob-
servation point. If S is above the upper exercise level or below the lower exercise level at any
observation point, the option is exercised and the payoff is a linear function in S.

2. At maturity, if S is between the two exercise levels, a payoff is incurred which is also a linear
function in S.

3. The underlying asset price S follows a geometric Brownian motion with possibly time-dependent
interest rates, yield rates, and volatilities.

Given the above assumptions, we shall begin the description of our method with a brief review of
the finite difference methods commonly used in the pricing of discretely monitored options.

2.2. Finite Difference Methods

Suppose we wish to find an option’s value at some Tp < Tp; and the spot price of the underlying
asset is Sp. Let V(t,S) denote the value of the option (as a function of the asset price S) at any

time t > Tj. Since S follows a geometric Brownian motion, the option’s value V (¢, S) satisfies the
Black-Scholes PDE

2 2
TS+ ) —aw]s S5+ T 2 27

(t,S) + 5 552

(t,S) =r(t)V(tS), (2.2a)
for Ty < t < Ty, with the terminal condition

amS+by, Ky <S <K
V(Tm,S) = ayS+by, S<Ky , (2.2b)
ayS+by, S>Ky

and boundary conditions

4yS + by, S <Ky

, 1<m<M-1, (2.2¢)
ahiS+0by, S>K

V(T,,S) = {

determined by Assumptions (B)—(C) from Section 2.1.
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For convenience, we introduce the change of variable Z = In S to transform equation (2.2a) into a

simpler form:

aa—‘t/(t,ez) = L[V(teD)], (2.3a)

where the differential operator £ is defined as

o?(t) 92 0 o2 (t)

L= — 372 p(t)ﬁ —l—?’(t), with P(t) = T(t) - q(t) )

(2.3b)

It is not convenient to solve the PDE (2.3a) directly due to the discrete boundary conditions (2.2c).
Instead, for each 1 < m < M, we consider the PDE

aalgn(t,Z) = LYu(t,2Z), Ty—1 <t <Ty, (2.4a)
supplemented with the terminal condition
Y (T, Z) = V(Tp, €%). (2.4b)

Since the terminal value problem (2.4) has a unique solution for each m, we have

V(t,e?) =Yu(t,Z), Tu_1<t< Ty,

and by (2.2¢),
Y (T1,7Z), In(K, ;) <Z<In(K! ;)
V(Ty1,6) =S a,, % +b, ,, Z<In(K, ) , 1<m< M. (2.5)
at e +bt , Z>In(K! )

The terminal value problems (2.4) are solved successively for m = M, M — 1, ...,1. Note that for
m = M, the terminal condition Yy;(Tar, Z) = V (T, €%) is known by (2.2b). Now foreach 1 < m < M,
assume the terminal condition Y, (T, Z) is known. The PDE (2.4a) is solved backward in t to yield
Y (Tyu—1,Z). Then we obtain V(T,,_1,e%) by (2.5), which by (2.4b) is equal to Yy, _1(Ty_1,Z), the
terminal condition of the PDE (2.4a) for m — 1. This process can then be repeated until we finally
obtain V (T, e?), from which the option’s value V(Tp, Sp) can be easily deduced.

Now we give a brief review of the standard procedure of solving (2.4) numerically on a uniform
grid using finite difference methods. Let fy, t, .. ., t denote the grid points in time, and Zy, Z1, ..., Zpp
the grid points in space where Zp = In(Sp). Denote

Vi =Yu(t,Zj), n=rt), pr=pt), o=0(t),
tN —to Zop —Zy k k
k = — h = — A = — = —.
N 2p T
In practice, barriers are observed at the end of a business day, so it is convenient to find a uniform
t-grid such that every monitoring point lies on the grid, i.e. for every 1 < m < M, there exists an [,
such that t;, = Tj,. The PDE (2.4a) can be discretized using the backward-time centered-space (BTCS),
forward-time centered-space (FTCS), or Crank-Nicolson (C-N) finite difference method.
The BTCS (or explicit Euler) method consists of the recurrence equations

Y=Y 3 (Y = Y]y (2.6)
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and is explicit (recall that we are solving (2.4a) backward in time). The FI'CS (or implicit Euler) method,
on the other hand, consists of the recurrence equations
Y=Y g A (Y — Y1) 2.7)
HaHop (g =2+ Y y) = kY,
and is implicit. The C-N method is a combination of the BTCS and FTCS methods and can be written
as
(fpof - %/\pl—l)ylril,j—l + (=1 Jpot, — %krl—l)yzniu (2.8)
+ (G107 + A0 )Y 1 = — (3T — 1A Y]
+(—-1+ %,ualz + %krl)YIi’Jf - (%yaf + %Apl)YIi’]f+1.

For j € {0,2P}, we impose the extrapolation boundary condition'

2*V

which is equivalent to
%Yy Y

and can be discretized as

(U= 3mYh, = 2Y+ (1 +3m)Y)i =0, i=I1-1,1, j=0,2P. (2.9¢)

The C-N method is generally more accurate than the BTCS and FTCS methods [14], although the FTCS
method has better stability properties [13].
For convenience, we denote

®; = iyfflz — %)\pz, pr=-1- %V“Iz - %krl'
v = tuot +ire, 6= —1+ Luo? + tkr,.

Equations (2.8) and (2.9¢) can be written together as a matrix equation
A YL = BY], (2.10a)

where
m o__ m m m \T
1 — <Yl,O/ Yl,l’ tees Yl,2P> ’

1 Note, in view of the linear boundary condition (2.2¢), that the extrapolation boundary condition (2.9a) is a natural choice of

the numerical boundary condition at j = 0, 2P.
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isa (2P + 1)-column vector and A;, B are (2P + 1) x (2P + 1) tridiagonal matrices:
Br+cirar v —Copty
& Bi Vi
A = ) (2.10b)
a Bi "
ap—co—y Prte,-m
Op—c140p =y +co40y
—u o1 -
Bl = '.‘ '.‘ '.' , (2.10C)
—u d1 =
—ap+co,—y O —C1,-
where
S 2 c 1F 2h
TR T s

Note that the unknowns Y;" ; in the j = 0 equation and Y}, ; in the j = 2P equationfori =1 —1, |
can be eliminated using the boundary condition (2.9c). Equation (2.10a) can be solved for Y;* ; using
the Thomas Algorithm, which has an O(P) complexity.

Note that the terminal condition (2.4b) is typically discontinuous as can be seen from (2.5). This
means that the C-N method, when applied as it is, cannot achieve a second-order convergence as for
smooth terminal conditions [11].

2.3. Analytical Modification

We will remove the aforementioned discontinuities from terminal conditions by introducing an
analytical modification to existing finite difference methods. First, we recall some classical results from
the theory of binary options.

Lemma 2.1. Let K > 0, and let x 4 denote the characteristic function of a set A. Consider a binary option with
expiration time Ty, priced at T,,,_1.

1. If the option has payoﬁ‘Vm(y) X[K,00)Y, then Viu_1(S) = ¢4.(S,K, 1).
2. If Vu(y) = x(0,q¥, then Viu_1(S) = ¢5,(S, K, —1).

3. IfVm( ) = X[K,c0)/ then Vm 1(S) = QD%(S,K,l).

4. If Vi (y) = X(o,), then Viu_1(S) = ¢h,(S, K, —1).

The functions 7, and ¢, are defined as
(S, K, e) = e N (edq)S, ¢L(S, K, €) = e TN (edy),
where Ty = Ty, — Ty—1,
T T T o2
rm—/ r / m—/ q 1%1:/ O_(t>dt/
-1 Tm m 1 Tm Tm—l Tm

N is the cumulative normal distribution function, and

2

1 S O
dl—W{IOgK+( qm )Tm} d2—d170'm\/7m.

Proof. By definition, ¢ is the value of an asset-or-nothing option, and ¢!, is the value of a cash-or-
nothing option. The valuation formulas are just standard results for binary options [14]. O
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Since Yy (T, Z) in the terminal condition (2.4b) generally has discontinuities at In(K;; ), we do
not solve the terminal value problem (2.4) directly, but instead seek to remove these discontinuities
first. We describe our basic idea as follows.

2.3.1. Basic idea of the analytical modification
Foreach 1 < m < M, note that V(T,,, S) is continuous for K;, < S < K};. We define the one-sided

limits
V¥ = lim V(T K, —€), V,, = lim V(Ty, K, +¢€), (2.11a)
e—0T e—0T
8 R1% - 1%
+ _ . e + _ - _ . e —
Vi, = egrg+ 35 (T, Ky =€), Vg, = egrg+ 35 (T, K;, +€), (2.11b)

and consider Uy, (t, Z) defined as the solution to the PDE

BUm

= (62) = LUn(,Z),  Ty1 <E< T, (2.12a)

supplemented with the (continuously differentiable) terminal condition

V (T, %), In(K,,) < Z < In(K}})
U (T, Z) = 3 Vg, (e = Ky) + Vi, Z < In(K;,) . (2.12b)

Vi (2 — Ki) + Vi, Z > In(KS)
Note that by (2.2b)-(2.2¢c), we have

0, In(K;,) < Z <In(K}})
V(T e?) = Un(Ti, Z) = { Gpe? + by, Z < In(K;,) , (2.13)
ate? +b, Z>In(K})

where

it =at -V

G b = by + VS K — Vi

This shows that V(t,e?) — Uy, (t, Z) is the sum of values of four binary options for Ty,_; <t < Ty, and
hence by Lemma 2.1,

V(Tou1,6%) = Un(Tou-1,Z) = iy (€%, Ky, =1) + b (%, Ky, —1) (2.14a)
+ a8 (7, Ky, 1) + b ¢b (7, Ko, 1), In(K, ) <Z <In(K! ),

or

V(Tou-1,6%) = Un(Tu-1, Z) + iy (€%, Ky, 1) + by (%, Ky, —1) (2.14b)
+ a8 (7, Ky, 1) + b db (7, K5, 1), In(K, ) < Z<In(K ).

m—1
For each 1 < m < M, we solve (2.12) numerically for U, (T,_1,Z) and obtain V(T,,_1,e?) using
(2.14b). Repeating this process for m = M, M —1,...,1, we finally obtain V (T, ez), from which the
option’s value V (T, So) can be easily deduced.

Remark 2.2. For the given terminal condition (2.2b), a closed-form expression can in fact be obtained
for Up(t, Z); see, for example, [2, Proposition 2.4]. In practice, however, M is often “reasonably large”,
e.g., in the order of tens or hundreds, so that the incorporation of such exact formulas of Ujy; makes
little difference in the numerical approximations obtained for V (T, S). Thus we do not specifically
differentiate Uy from other U,,’s (m < M — 1) in our study.
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2.3.2. Implementation of the Analytical Modification

In practice, it may not be possible to place all barriers on the computational grid, which means
we may not be able to compute the values of VTQI—L, Vsjfm forall1 < m < M — 1 as defined in (2.11). Note
that the values of Vﬁ, VSiM for m = M follow from the closed-form expression of V(Ty, %) as given
in (2.2b). For1 <m < M,— 1, however, we will have to find an approximation to these values. To this
end, denote

Up(t,Z) = Upm(t, Z2), (2.15)

which is the smooth solution defined in (2.12) for m = M. Foreach 1 < m < M — 1, assume
we have already computed a three times continuously differentiable (C3) function U, 1(Ty, Z) for
Z e€{Zy,7Zy,...,Zyp} and have obtained the smooth part of V (T}, eZ), namely Yy, 11(Tn, Z) (see (2.5)),
at the grid points. Note that this is true for m = M — 1, in which case we have already computed a C3
function Uy (Ty_1, Z) by (2.15) and have obtained Yus(Ty_1, Z) by (2.14b).

Denote " +1
ymr1 _ym
m+1 _ ) m+1 _ _Lj+1 Li-1 _ Yt )
Y= m+1(t, Zj), Yo = hel ~ 3 (t,Z;),
and let

pm = min{j > 0: Z; > In(K,)}, pm = max{j < 2P: Z; < In(K,;)}.

Note that In(K};) are located between Z pt and Z pz+1- Weuse linear interpolations of Yy, 11(Ty, Z) on
the grid to approximate Vi, V', as follows:

1
— 1 1 1 —
= Ygwn ™ i Yot~ Yo pn) 1K) = 2], (2.162)
1
1 1 1
o= Yng,,,p i+ E(Ygft:,pzﬂ - Y;f;;,ﬂ) [In(K;;) — Z,:], (2.16b)
1
— 1 1 1 —
d, = Yl’:;; — E(Yl'r"’l;r;_l . Yl':;,;) [In(K;,) — Zp,;], (2.16¢)
1
df = Yl’";}n + E<YZZ;%+1 — Ylﬁ;}n) [In(K;}) = Z,,: ]. (2.16d)
Since U,,41(Ty, Z) and hence Y;,41(Ty, Z) is C3 in Z, we have
= Vi =0,  dy— "V, =O(K). (2.17)
This means that the order of the interpolation error does not exceed that of the C-N method.
Consider Uy, (t, Z) defined as the solution to the PDE
aam ~
T(t,Z) = LUnx(t,Z), Ty <t < Ty, (2.18a)
supplemented with the terminal condition
V(Tp, e%), In(K;,) < Z < In(K}})
U (T, Z) = { ¢, (e —K;)) +d,,, Z <In(K;;) . (2.18b)
cm(e? = Kg) +dy,  Z >In(K;)
Note that by (2.2¢c), we have
0, In(K;,) < Z < In(K}})
V(T %) = U (T, Z) = { &e? +dy,, Z < In(K;) , (2.19)

&he? +df, Z>In(K})

m
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where
At _ ot &+ st _ gt dpt gt
Cp =y — Cs dy, = by, + ¢, K, — 4.

This shows that V(t,e?) — Uy, (t, Z) is the sum of values of four binary options for T,_1 < t < T, and
hence by Lemma 2.1,

V(Tp_1,6) — Up(Typ_1, Z) = Ep¢? (6%, K, —1) 4+ dp gl (67, K;,, —1) (2.20a)
+ Gh (2, K 1) + d ol (e, K, 1), In(K, ) <Z<In(K| ),

or

V(Ty_1,6”) = Up(Tp_1,Z) + ¢t (6%, K, —1) 4+ dp gl (67, K;,, —1) (2.20b)
+ G (2, K, 1) + dhoh (e, K1), In(K, () < Z<In(K| ).

Now that we have computed U, (Ty;,_1, Z) and the smooth part of V(T,,_1, %), namely Yy, (T, 1, Z),

i_l, di_l as in (2.16), which means we have the terminal condition

U,-1(Ty_1,Z) as in (2.18b). Then we repeat this process for m — 1.

we continue to compute c

We summarize the modified finite difference method as follows:
: form = M —1downto 1 do

—_

Compute 5, dii using (2.16)

Solve (2.18) numerically for Uy, (T, 1, Z)

Compute Yy, (Ty,—1, Z), the smooth part of V(T,,_1, eZ), using (2.20b)
end for
: Obtain option value V(Tp, So) = V (T, e??)

Note that the terminal value problem (2.18) is the same as (2.4) except that the terminal condition
(2.18b) now has a higher degree of smoothness, and the problem (2.18) can be solved numerically
using the same finite difference methods as the ones described in Section 2.2, in particular the C-N
method. Since the terminal condition Uy, (T, Z) in (2.18b) is almost continuously differentiable (the
jumps are of order h? by (2.17)), the C-N method converges quite well in practice (Section 3.1). In
principle, Rannacher time-stepping can be used to improve the performance of the C-N method near
monitoring points, but this is important only when accurate discrete approximations to option Greeks
are needed (Section 3.4).

2.4. Adaptive Mesh Refinement

Note that the function Uy, (t, Z) in (2.18) tends to have large derivatives near the barriers and
behaves relatively smoothly away from the barriers. This means that it makes sense to use finer grids
near the barriers and coarser ones elsewhere.

Adaptive mesh refinement techniques are well-known and are widely used in numerical solutions
of PDEs. In the field of quantitative finance, adaptive mesh models have been developed for the BTCS
method [10]. Alternatively, nonuniform grids based on changes of variables have also been introduced
in the literature [13]. Since here we are using an analytically modified C-N method, we introduce an
effective adaptive mesh refinement technique which further improves the computational efficiency of
our method.

We begin by assuming that the upper barriers Kj; (and lower barriers K;,, respectively) are equal
or close to each other for all 1 < m < M, which is almost always satisfied in practice. Our basic idea is
to construct fine grids near the barriers, and solve the Black-Scholes PDEs on both the original and the
fine grids at each time step.

First, we find integers 0 < q; < g, < q; <g; < 2P such that

exp(Zq;) <K, < exp(Zq;), and exp(qu) <K} < exp(Zq;),
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forall 1 < m < M. Then we construct a fine grid for [g;, 4, ] and a similar one for [¢], g5 | by dividing
each interval of size & into 1 equal parts. We illustrate the fine grid near K}, for n = 4 in Figure 1.

t=1t;_4 Barrier Ki

t=t k=aqi k=gq;

Figure 1. Illustration of the original grid (solid lines) and the fine grid (dashed lines) near the barrier
K, (thick line).

Let
= (g —qt),  xF=Zp+jh/n, 0<j<n®,

and define

which is the smooth solution defined in (2.12) for m = M. Foreach 1 < m < M — 1, assume we have
already computed a C3 function Uy, 41(Ty, Z) for

Z € Qh = {Zo,Zl,...,Zzp}U{xat,Xit,...,in},

and have obtained the smooth part of V(T e%), namely Y, 11(Tm, Z), at the grid points. Note that
this is true for m = M — 1 by (2.21) and (2.14b).

Recall from (2.16) that c;, d; are approximations to Vsim, Vi computed using the values of
Yy+1(Tm, Z) on the original (coarse) grid. We shall now find approximations to VjE Vit using the
values of Yy, +1 (T, Z) on the fine grids. To this end, denote

1
Y = Yo (1, x),

Yi(m+1) . Yi(m-i—l)

Y (m+1) Lj+1 Lj—1 ~ m+1 (t j:)
S,l,i + 7 7
/ 2he"i /n 95 /
and let
Uy =min{j > 0: x; >In(K,)}, u, =max{j <nt: x;r <In(K;)}.
Define
— o (m+1) n,,—(m+1) —(m+1) _
fm = S J T S P T S I T ] [ u,;]’ (2:222)
+ _ yH(m1) | Moy 4 (mt1) () £+
m Ys Lk + h [Ys p u,ﬁﬂ Ys L i ] [ u;]' (2.22b)
- (m+1) 1 (m+1) —(m+1) -
L = Ylm um -7 [Ylm um— Y um ] [In(K,, um]’ (2.22¢)
1 n 1 1
A T ) ) e
Note that, in general, f;:, ¢;: provide a better approximation to VjE V= than 5, d.
Consider U, (t, Z) defined as the solution to the PDE
oU,, .
Y(t,Z) = LUn(t,Z), Tyt <t < Ty, (2.23a)
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supplemented with the terminal condition
V (T, e?), In(K,,) < Z < In(K;})
Ui (T, Z) = $ for (¢ —K)) + g Z < In(K;,) . (2.23b)

fr(e” —=K3) + &, Z = In(Ky))

The PDE (2.23a) is the same as (2.18a), but we do not solve it all the way back to T},_;. Instead, for each
Ly—1 <1 <1y, assume we have computed ﬁm(tl,Z) for Z € Gy, which is true for I = [, by (2.23b). We
first solve the PDE (2.23a) numerically using the terminal condition U, (t, Zx) on the coarse grid for
just one time step from #, to t;_;. More specifically, denote by U = U, (t;, Z) the solution computed
on the coarse grid; we solve the matrix equation (2.10a) which in our new notation becomes

A0, =507, (2.24)
where
O = (U, ap, .., Ui T,
is a (2P + 1)-column vector and A;, Bj are (2P + 1) x (2P + 1) tridiagonal matrices as defined in
(2.10). After solving for ﬁ}’il from (2.24), we solve the PDE (2.23a) again on the fine grids for n time

steps with reduced step size k/n, using the boundary conditions linearly interpolated (in time) from
fJ;"_l, fJ;" at qli and q; For convenience, we denote, for 0 <i <mn,

r; =r(ti+ik/n), p;i = p(t+ik/n), o1, =o(t; +ik/n),
2 2
Qu1i = §OHOT = GAPLi, B = —1— 30T — gikn,
1,2 11 1,2 | 1
Tuli = MO+ gAPL, Onli = — 1 anpoy; 4 gkn
and Wlil.’;? = Un(t,;, x]i) The matrix equation on the fine grids then becomes
+ + + ;
‘A"/lflriflwl—nii—l = B",I*Liwl—n{,i + Wi n>i>1, (2.25a)

where

W:I:m — <W:|:m W:l:m ”.,W:I:m ni—1>T’

1-1,i 1-1,i17 "'1-1,i,27 1-1,i,
+m +m
_“n,lfl,iwl_lli,o - ‘Xn,lfl,iflwl_lli_llo
0
+ . .
Wi, = : , (2.25b)
0

+m +m
=Y —1iW e = Y1t Wiy g e
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are (n* —1)-column vectorsand A, ; 1, By;_1;are (n= —1) x (n* — 1) tridiagonal Toeplitz matrices:

ﬁn,l—l,i Yn,l-1,i
Qni-1i PBul-1i Yni-1,
Ani1i = g . , (2.25¢)
Qpi-1i Pui-1i Tni-1,
Qpi-1,i Pni-1,
Oni—1i  —Tni-1,
—Qui1i  Oni-1i  —Tnl-1,
B,i—1;= . (2.25d)
&y i1, 5n,l—1,z' —Yn,l-1,i
—&pi-1;i  Oni—1,
Note that, in (2.25b),
+m  __ ym i rme_ ym
W0 = Uy ge + (UG = UL ), (2.26a)
+m _1ym i rmo Y ym
W e = O e+ (O =T ), (2.26b)

are boundary conditions linearly interpolated (in time) from coarse grid solutions U" |, U7 at zﬁ and
qzi. After solving for W™ | from (2.25a), we set

1-1,0
Un(ti1,Z) =Uf"y;,  0<j<2P,jé&{q  +1,qf +2...,9; —1}, (2.27a)
and
(o1, x7) = Wiy, 1<j<n® -1 (2.27b)

Since Z = x,fj for0 < j < gqi— qli, equation (2.27) completes the definition of Uy, (t;_1, Z) for
Z € Gj,. We then repeat this process for | = I, 1, — 1,...,1,,_1 + 1 to obtain Z:Im(Tm,l,Z) for Z € G,.
By (2.23b), V(Tw,e?) — Uy (Ty, Z) is piecewise linear in ez, meaning V (¢, e?) — Uy (t, Z) is the

sum of values of four binary options. It follows from Lemma 2.1 that

V(Tp_1,?) = Un(Tp_1,Z) + fn ¢ (%, K, —1) + Gl (67, K, —1) (2.28)
+ fl % (2, K1) + ol (e, K, 1), In(K, ) < Z<In(Kf ),

where
Fr _ o+ ot I
S =0m — fu, En =bn+ fu Kt — 8-
Then we repeat this process for m — 1.
We summarize the adaptive mesh refinement procedure as follows:

1: Construct a fine grid for [g;, ¢, | and a similar one for [q;, 45 ] by dividing each interval of size h

into n equal parts
2: form = M —1downto 1 do

3 Compute f;;, git using (2.22)

4:  Solve (2.23) numerically for one time step (with step size k) on coarse grid

5:  Solve (2.23) numerically for n time steps (with step size k/n) on fine grids, using (2.26) as
boundary conditions

6:  Combine numerical solutions on coarse and fine grids to obtain Uy, (T,,_1, Z)
Compute Yy, (Ty,_1, Z), the smooth part of V(T,,_1,e?), using (2.28)
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8: end for
9: Obtain option value V(Tp, So) = V (T, e??)

3. Results

3.1. Convergence Study

To study the convergence properties of the proposed method, either with or without mesh
adaptation, we first apply the original and the analytically modified C-N method to the following five
options:

¢ Option I: A cash-or-nothing call option with final payoff:

0, S<Kj
V(Ty,S) = { i M.
by, S>> Ky,
* Option II: An asset-or-nothing call option with final payoff:
0, S <K},
V(Ty, S) = { | M.
a MS, S> KM
e Option III: A vanilla call option with final payoft:
0, S < K},
V(Tm,S) =14 N ff
ay(S—Ky), S>Ky,
¢ Option IV: An exotic call option with final payoff:
0, S < K3,
V(Ti,S) =9 +y2 T
ay(S—Ky)* S>Ky

We remark that this option does not have a counterpart in real-life financial applications. It is
designed here solely to test the convergence properties of the proposed method.

These four options are standard options without discretely monitored structures, and for all cases we
set

r=002 g=0 0=02
To=0, Tu=1 So=11, Kj;=12, a} =b} =100.

Note also that the final payoffs of the above four options have increasingly higher degree of smoothness
(discontinuous, discontinuous, C%, and C?, respectively). The fifth option, on the other hand, is a
discretely monitored option:

e Option V: A double-barrier knock-out option with different monitoring frequencies for the two
barriers. Assume there are 250 business days in a year, and the option will expire one year from
the valuation date which we denote as day 0. The spot price of the underlying asset at day 0 is
1.1. The upper barrier level is 1.2, and its observation dates are {15, 36, 57, 78, 99, 120, 141, 162,
183, 204, 225, 246}, resembling a monthly monitoring structure. The lower barrier is monitored
daily, and the barrier level is 0.9. We further assume that the notional value of the option is 100,
that the payoff at maturity is 10% of the notional value, namely 10, and that

r=002, g=0 o0c=02
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In practice, this type of barrier structure is common for snowball options and their variants. Note
that the lower barrier of a snowball option is a knock-in barrier, but the option can be priced as the
difference between an up-and-out barrier option and a double-barrier knock-out option using PDE
methods. Tables 1-8 present results from convergence studies of the four standard options (I-IV) priced
using the original C-N method. Since our purpose here is to examine numerically the relationship
between convergence rates and smoothness of terminal conditions, the analytically modified C-N
method is not used which otherwise would produce (almost) exact pricing results for the first three
options (I-II). All four options are priced on the interval®

Ip := [Soe™®7, Spe®] ~ [0.33131363, 3.65212862],

with a time step k = (Tyy — To) /N = 1/N and a mesh size h = k, where N ranges from 10 to 5,120.
For the first three options, exact option values are available from analytical formulas, while for the
fourth option, the option value is estimated on a finer grid with N = 10,240. For each numerical
approximation vy ; to Vg ; := V(To, SpelI=P)) calculated at Ty on the computational grid, two types of
errors are defined:

) 2P 5 1/2
L*-error = <Z|UO,]' -V, h) ,
j=0
L®-error = max |vgi— Vol
j:O,l,...,2P| 0j = 0]

The numerical order of an error (L? or L) ey calculated on a grid of size N is estimated using the

formula:
_ In(enya/en)
PN In2 '

Table 1. Unmodified C-N on a cash-or-nothing call option.

Time steps N L2-error L2-order L*®-error L*®-order
10 5.8171 x 10° - 9.8610 x 10° —
20 2.9073 x 10° 1.0006  4.8658 x 10° 1.0191
40 1.4550 x 100 0.9986  2.4428 x 10° 0.9941
80 72763 x 1071 09997  1.2224 x 10° 0.9988
160 36379 x 1071 1.0001  6.1104 x 101 1.0004
320 1.8189 x 1071 1.0000  3.0550 x 10~ 1.0001
640 9.0947 x 1072 1.0000  1.5275 x 101 1.0000
1280 45473 x 1072 1.0000  7.6376 x 102 1.0000

2560 22737 %1072 1.0000 3.8188 x 1072  1.0000
5120 1.1368 x 1072 1.0000  1.9094 x 102 1.0000

Exact option value at Sg: 32.5191.

2 Note that the actual computational domain is [In(Sp) — 60, In(Sg) + 607
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Table 2. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding strike
price; refinement ratio: 10% of grid points; refinement factor: 2) on a cash-or-nothing call option.

Time steps N L2-error L2-order L*®-error L*®-order
10 3.1317 x 109 — 52137 x 109 -
20 1.4875 x 100 1.0741  2.4860 x 10° 1.0685
40 72892 x 1071 1.0290  1.2223 x 109 1.0242
80 36387 x 10~ 1.0023  6.1124 x 1071 0.9998
160 1.8189 x 101 1.0003  3.0551 x 10! 1.0005
320 9.0947 x 1072 1.0000 15275 x 101  1.0000
640 45473 x 1072 1.0000  7.6376 x 102 1.0000
1280 22737 x 1072 1.0000  3.8188 x 102  1.0000

2560 1.1368 x 1072 1.0000  1.9094 x 10~2  1.0000
5120 56842 x 1073 1.0000  9.5470 x 1073 1.0000

Exact option value at Sp: 32.5191.

Table 3. Unmodified C-N on an asset-or-nothing call option.

Time steps N L2-error L2-order L*®-error L*®-order
10 6.9281 x 10° - 1.1685 x 10! —
20 3.4987 x 10° 0.9856  5.8427 x 10° 0.9999
40 1.7599 x 100 0.9913  2.9519 x 10° 0.9850
80 87137 x 10~1  1.0142  1.4632 x 10° 1.0125
160 43621 x 1071 09983  7.3249x10~1  0.9982
320 21824 x 1071 09991  3.6650 x 101 0.9990
640 1.0915 x 10~1 09995  1.8332x10"!  0.9995
1280 54586 x 1072 0.9998  9.1678 x 1072 0.9997

2560 27285 x 1072 1.0004 45825 x 1072  1.0004
5120 13643 x 1072 09999 22914 x 1072  0.9999

Exact option value at Sy: 44.7791.

Table 4. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding strike
price; refinement ratio: 10% of grid points; refinement factor: 2) on an asset-or-nothing call option.

Time steps N L2-error L2-order L*®-error L*®-order
10 3.7822 x 10° - 6.2695 x 10° -
20 1.8067 x 10° 1.0659  3.0115 x 10° 1.0579
40 87547 x 101 1.0452  1.4660 x 109 1.0386
80 43694 x 1071 1.0026  7.3348 x 10~1  0.9991
160 21841 x 107! 1.0004  3.6672 x 1071 1.0001
320 1.0920 x 10~ 1.0000  1.8338 x 10! 0.9998
640 54600 x 1072 1.0000  9.1696 x 10=2  0.9999
1280 27289 x 1072 1.0006 45831 x 1072  1.0005

2560 13644 x 1072 1.0000 2.2916 x 1072 1.0000
5120 6.8213 x 1073 1.0002  1.1457 x 1072 1.0001

Exact option value at Sg: 44.7791.
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Table 5. Unmodified C-N on a vanilla call option.

Time steps N L2-error L2-order L*®-error L*®-order
10 7.9800 x 102 — 1.6636 x 101 —
20 1.0897 x 1072 2.8725 15701 x10~2  3.4054
40 33141 x 1073 17172  5.0951 x 1073  1.6237
80 19199 x 1073 0.7876 37769 x 1073 0.4319
160 39259 x 107% 22900 7.8586 x 107%  2.2649
320 63321 x 1075 26323 12798 x 107%  2.6184
640 1.0403 x 1075 26057 1.6422x107° 29622
1280 28782 x 1076  1.8537 45740 x 10~  1.8441

2560 65587 x 1077 21337  9.9775x10~7  2.1967
5120 20410 x 1077 1.6841  3.1296 x 1077 1.6727

Exact option value at Sp: 5.75609968.

Table 6. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding strike
price; refinement ratio: 10% of grid points; refinement factor: 2) on a vanilla call option.

Time steps N L2-error L2-order L®-error L*®-order
10 3.2530 x 1072 - 46209 x 1072 —
20 12858 x 1072 13391  1.6971 x 1072  1.4451
40 22103 x 1073 25404 34654 x 1073 2.2920
80 59012 x 107% 19052 9.1791 x 107%  1.9166
160 1.7804 x 1074 1.7288  2.6539 x 104  1.7902
320 59818 x 107> 15736 82063 x 1075  1.6933
640 1.7355 x 1075  1.7852  2.3272x10~°>  1.8181
1280 45091 x 107 19444  6.1307 x 10~° 1.9245

2560 14927 x107% 15949 19607 x 1076 1.6447
5120 3.0864 x 1077 22739 43884 x 1077  2.1596

Exact option value at Sg: 5.75609968.

Table 7. Unmodified C-N on an exotic call option with quadratic payoff.

Time steps N L2-error L2-order L®-error L*®-order
10 2.8546 x 1071 - 5.3502 x 107! -
20 71561 x 1072 19961  1.3917 x10~!  1.9428
40 1.7810 x 1072 2.0065  3.4844 x 102 1.9978
80 44342 1073 20059 87139 x 1073  1.9995
160 1.1058 x 1073 2.0035 21799 x 1073 1.9990
320 27600 x 107%  2.0024 54472 x107*  2.0007
640 6.8835 x 107> 2.0034  1.3591 x10~*  2.0028
1280 1.7084 x 1075  2.0105 3.3713x107°  2.0113

2560 41531 x 107  2.0404 8.1676 x 10~®  2.0453
5120 9.0598 x 1077 21967  1.7631 x 1076 22118

Estimated option value at Sy: 1.80238666.
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Table 8. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding strike
price; refinement ratio: 10% of grid points; refinement factor: 2) on an exotic call option with quadratic

payoff.
Time steps N L2-error L2-order L®-error L*®-order

10 2.8384 x 1071 — 5.3502 x 10~1 —
20 71193 x 1072 19953  1.3917 x 10! 1.9428
40 17723 x 1072 2.0061  3.4844 x 1072  1.9978
80 44128 x 1073 2.0059 87139 x 1073  1.9995
160 1.1009 x 103 2.0030  2.1799 x 1073 1.9990
320 27493 x 10~*  2.0016 54472 x10~*  2.0007
640 6.8627 x 107> 2.0022  1.3591 x 10~%  2.0028

1280 1.7053 x 1075  2.0087 33713x107°  2.0113

2560 41528 x 107%  2.0379  8.1676 x 10~ 2.0453

5120 9.0774 x 10~7 21937 17631 x10~¢  2.2118

Estimated option value at Sy: 1.80238670.

It can be observed from these tables that:

¢ For the first two options (I-II), the C-N method converges at only first order due to the discon-
tinuity at S = K}& contained in the terminal conditions. On the other hand, mesh adaptation
around the discontinuity S = Kj,, where option prices are expected to undergo the most rapid
variation, helps reduce the error by a factor of 7 where n = 2 here is the refinement factor.

¢ For the next two options (III-IV), the C-N method converges at a higher order due to the
improved smoothness of the terminal condition at S = K};. The precise relationship between the
convergence rate and the smoothness of the terminal condition is the subject of a future research,
but these examples seem to suggest that a C! terminal condition is already sufficient to restore
the second-order accuracy of the C-N method (see Remark 3.2).

* When mesh adaptation is applied to the third option, the error first improves by roughly a
factor of n = 2 up until N = 160, after which no significant improvement in error is observed
(Table 6). This is due to the fact that the terminal condition in this case has a higher degree of
smoothness at S = K} (i.e., C%), as a result of which the largest error on a sufficiently fine grid
does not concentrate around S = Kj;, and hence is not captured by the adaptive mesh which
surrounds the strike price S = K. Similar observations apply to the fourth option, whose
terminal condition has an even higher degree of smoothness at S = K}, (i.e., C!) and for which
no improvement in error is observed for the adaptive mesh calculation at all.

* Despite these observations, the mesh adaptation technique still turns out to be useful when
applied to discretely monitored options with high monitoring frequencies, where errors near
the barriers caused by the non-smoothness of the terminal conditions dominate the calculations
(Section 3.1, 3.3).

Remark 3.1. Since the terminal conditions V (T, S) for the first two options contain a discontinuity at
S = K;I and since the C-N method, with or without analytical modifications, is non-dissipative, the
following modification is needed in discrete approximations vy ; to V (T, S) so that the convergence
of vy, to V(Twm, S) in a suitable weak sense (e.g., in the sense of H® for some s > 0), and hence the
convergence of v ; to V (T, S), can be ensured: let jy be chosen such that

In(So) + (jo — P)h < In(K};) < In(Sp) + (jo+1 — P)h,
or equivalently, such that

, 1, (K ,
]0§P+Eln ?0 =:0p <jo+1
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Then for the first option, we set

0, J<jo
oN,j = 9 bap J>Jos
biGo+1—260), j=jo

and for the second option, we set

0, j<jo
UN,j = HRLASOE(];P)}Z, ] > jO .
Lay, [Soelot =P L KE1(o+1—6), j=jo

For the next two options, the terminal conditions V (T, S) are continuous throughout Iy and hence
such modification is not needed. One may simply take

on, = V(Tm, Soel =PIy,

For dissipative schemes such as FTCS and TR-BDF2, the above modification is not needed either.

Remark 3.2. We have carried out a preliminary error analysis for the proposed method and found that
the convergence rate corresponding to a discontinuous, C°, and C! terminal condition is 1/3, 1, and
5/3, respectively. However, these results are likely suboptimal because they didn’t make full use of the
dissipation properties of the Black-Scholes PDE.

Tables 9-14 present results from convergence studies of the discretely monitored option (V) priced
using both the original and the analytically modified C-N methods. To examine more closely the
relationship between the convergence rate and the smoothness of the terminal conditions, we further
distinguish between the following two cases for the analytically modified C-N method:

¢ A CO-modification at the barriers:

U (T, Z) = 4 V-, Z <In(K;) ,
v, Z > 1In(K}))

which is (2.12b) with V; = V_{ ., = 0 and which is only continuous at the barriers.
e A Cl-modification at the barriers:

V(Ty,e%), In(K;,) < Z <In(K}})
Un(Tw, Z) = { Vg, (e” = Ky) + V,,  Z <In(Ky,) ,

Viu(e? —=Kp) + Vo, Z>In(Ky)

which is just (2.12b) and is continuously differentiable at the barriers.

For all three methods, namely, original C-N and analytically modified C-N with C%- and C'-modifications,
the option is priced on the same interval as in the previous cases:

Ip := [Soe %7, Spe] ~ [0.33131363, 3.65212862].

The calculations are advanced with a time step k = 1/ N, i.e., with Ny time steps per business day,
and with a mesh size i = k where Nj ranges from 1 to 64. Since the exact option values V (T, S) are
not available, reference values V{ ; against which all numerical approximations vy ; are compared are
calculated on a uniform fine grid using the analytically modified C-N method with a C!-modification
at the barriers and with Ny = 128 time steps per business day.
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Table 9. Unmodified C-N on a discretely monitored option.

Time steps L2-error L2-order L*®-error L*®-order
per day N
1 3.6069 x 1072 - 7.7073 x 1072 -
2 29071 x 1072 0.3112  1.0085 x 10~}  —0.3879
4 13482 x 1072  1.1085  5.5888 x 102 0.8515
8 74259 x 1073 0.8604 7.8729 x 1072 = —0.4944
16 34649 x 1073 1.0997  4.5890 x 1072 0.7787
32 2.0030 x 1073 0.7907  7.1400 x 1072 —0.6377
64 9.7519 x 107%  1.0384  4.3468 x 102 0.7160

Reference option value at Sp: 1.83652751.

Table 10. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding barriers;
refinement ratio: 10% of grid points; refinement factor: 2) on a discretely monitored option.

Time steps L2-error L2-order L*®-error L*®-order
per day Ny
1 2.9450 x 102 - 1.0086 x 101 -
2 13587 x 1072 1.1161  5.5891 x 102 0.8516
4 72129 x 1073 09135  1.5366 x 1072 1.8628
8 35757 x 1073 1.0123 45890 x 1072  —1.5784
16 1.8192 x 1073 09749  1.4147 x 1072 1.6977
32 1.0506 x 1073 0.7922 43468 x 102  —1.6195
64 45819 x 107% 11972  1.5059 x 1072 1.5293

Reference option value at Sp: 1.83652751.

Table 11. Modified C-N (order of modification: C%) on a discretely monitored option.

Time steps L2-error L2-order L*®-error L*®-order
per day Ny
1 9.1679 x 10~% — 1.0413 x 1072 -
2 51266 x 10~%*  0.8386  8.4570 x 103 0.3002
4 14637 x 107*  1.8084 25410 x 1073  1.7347
8 63903 x 1075 1.1957 22136 x 1073 0.1990
16 1.7888 x 1075  1.8369  7.1738 x 10~*  1.6256
32 7.8390 x 1076 1.1902 54218 x 10~%*  0.4040
64 22096 x 107 1.8269  2.0286 x 107*  1.4183

Reference option value at Sp: 1.83652751.

Table 12. Modified C-N (order of modification: C’) with mesh adaptation (refinement region: grid
points surrounding barriers; refinement ratio: 10% of grid points; refinement factor: 2) on a discretely
monitored option.

Time steps L2-error L2-order L*®-error L*®-order
per day N
1 6.0032 x 10~4 - 8.4504 x 1073 -
2 12291 x 10~% 22881 20014 x 1073  2.0780
4 50400 x 107> 1.2862  1.3139 x 1073 0.6072
8 13808 x 107°  1.8679  4.9008 x 104 1.4227
16 63195 x 107  1.1276 32296 x 10~%  0.6017
32 13910 x 107® 21837  9.1382 x 107> 1.8214
64 8.1619 x 10~7  0.7691  7.7478 x 107> 0.2381

Reference option value at Sp: 1.83652751.
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Table 13. Modified C-N (order of modification: C') on a discretely monitored option.

Time steps L2-error L2-order L*®-error L*®-order
per day N
1 34536 x 104 - 1.6624 x 1073 -
2 48800 x 107> 2.8232  3.9060 x 10~*  2.0895
4 1.0948 x 107> 21561  1.4502 x 10~* 1.4294
8 28768 x 1076 19282  2.8341 x 107> 2.3553
16 8.0608 x 107  1.8355 84779 x 10~¢  1.7411
32 2.0010 x 1077 2.0102  1.8274x10~¢  2.2140
64 42000 x 1078 22523  4.8192x 1077  1.9229

Reference option value at Sp: 1.83652751.

Table 14. Modified C-N (order of modification: C') with mesh adaptation (refinement region: grid
points surrounding barriers; refinement ratio: 15% of grid points; refinement factor: 2) on a discretely
monitored option.

g::s;;ejl\)ls L2-error 12-order L*®-error L*®-order
0
1 4.8584 x 107> — 3.9005 x 104 —
2 1.2210 x 10~° 1.9925  1.4489 x 10~* 1.4288
4 3.0740 x 107° 19899 28372x107°  2.3524
8 8.6209 x 10~7 1.8342 84697 x 107¢  1.7441
16 21269 x 107 2.0191  1.8294 x 10~° 2.2110
32 45269 x 10~8 22322 48141 x 1077 1.9260
64 97158 x 10710 55421 34793 x 1077  7.1123

Reference option value at Sp: 1.83652751.

It can be observed from these tables that:

* For the original C-N method, the numerical approximations v ; converge to the reference values
Vo, in L? at an average rate of roughly 1 but do not converge in L* at all (Table 9). This reduced
convergence rate or even lack of convergence is clearly a consequence of the discontinuities at
the barriers contained in the terminal conditions. On the other hand, mesh adaptation around
the barriers, where option prices are expected to undergo the most rapid variation, helps reduce
the error by a factor of n where 1 = 2 here is the refinement factor (Table 10).

¢ For the analytically modified C-N method, with either CY or Cl-modifications, the numerical
approximations v ; converge to the reference values Vp ; in both L? and L™ and do so at a higher
rate due to the improved smoothness of the terminal conditions at the barriers. More specifically,
with C’-modifications, vg,j converge to Vg ; in L? at an average rate of roughly 3/2 and in L at
an average rate of roughly 1 (Table 11), while with Cl-modifications, the convergence in both
L? and L™ has an average rate of roughly 2 (Table 13). In other words, these examples seem
to suggest that a C!-modification to the terminal conditions is already sufficient to restore the

second-order accuracy of the C-N method.

e When mesh adaptation is applied with C’-modifications, both the L2- and L®-errors improve
by roughly a factor of n3/2 = 23/2 ~ 2.8284 for all Ny, demonstrating the effectiveness of the
adaptive mesh (Table 12).

* When mesh adaptation is applied with C!-modifications, the numerical approximations 0o,j
calculated on the finest grid with Ny = 64 are almost identical with the reference values Vo,i
calculated on the uniform fine grid with Ny = 128, as suggested by the unusually small errors (last
row, Table 14). On the other hand, for numerical approximations v ; calculated on coarser grids
with Ny < 32, both the L2- and L®-errors improve by roughly a factor of n? = 2% = 4 for all Ny
when mesh adaptation is enabled. This provides another strong evidence for the effectiveness of
the adaptive mesh, especially on discretely monitored options with high monitoring frequencies.
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» We remark that for mesh adaptation applied with C!-modifications, a sufficiently large area
around the barriers needs to be refined in order for the adaptive mesh to be effective, in view
of the improved smoothness of the terminal conditions near the barriers. Indeed, when the
refinement ratio in Table 14 was reduced from 15% to 10%, meaning only the (2P + 1) x 10%
grid points around each barrier are refined, the resulting adaptive mesh was only able to
produce marginal improvement in error for Ny < 4 and was not able to produce any meaningful
improvement in error at all for all larger Ny. This is not an issue when mesh adaptation is applied
with C%-modifications or with no analytical modifications, where the errors near the barriers
caused by the non-smoothness of the terminal conditions dominate the calculations.

3.2. Comparison with other Numerical Methods

To assess the efficacy and efficiency of the proposed method on options with discretely monitored
structures, we next apply other popular, (formally) second-order numerical methods such as C-N with
Rannacher time-stepping (CN-RAN) and trapezoidal rule with second-order backward differentiation
formula (TR-BDF2) to the discretely monitored option introduced in the previous section. Both
methods (CN-RAN and TR-BDF2) have been applied to the four standard options introduced above,
and their convergence properties have been found to be very similar to those of the original C-N
method (Tables 1, 3, 5 and 7).

Tables 15 and 16 present results from convergence studies of the discretely monitored option
priced using the CN-RAN and the TR-BDF2 methods. It can be observed from these tables that:

* Both methods exhibit very similar convergence behaviors and converge in both L? and L® at an
average rate of roughly 1. This shows, in particular, that both methods lose their second-order

accuracy when applied to problems containing discontinuities.
¢ For a given time step k and mesh size i, both methods produce results that are more accurate

than the original C-N method (Table 9) but less accurate than the analytically modified C-N
method (Tables 11 and 13).

Table 15. CN-RAN (with the first two C-N steps after each monitoring point replaced by four half-step
FTCS steps) on a discretely monitored option.

g;?g;;egs L2-error L2-order L®-error L*®-order
0
1 5.7654 x 1072 - 1.2330 x 101 -
2 27923 x 1072 1.0460  5.9944 x 1072 1.0405
4 12227 x 1072 1.1914  2.6136 x 1072 1.1976
8 56326 x 1073 1.1181  1.2007 x 1072 1.1222
16 27276 x 1073 1.0462  5.8052 x 1073 1.0485
32 13349 x 1073 1.0309 2.8390 x 1073  1.0319
64 6.6204 x 107%  1.0118  1.4074x 1073  1.0124

Reference option value at Sp: 1.83652751.

Table 16. TR-BDF2 (with & = 2 — 1/2) on a discretely monitored option.

g‘i;lgasmgls L2-error L2-order L*®-error L*-order
y No
1 41522 x 1072 — 8.7929 x 102 -
2 21859 x 1072 0.9256  4.6308 x 102 0.9251
4 1.0773 x 1072 1.0208  2.2860 x 1072 1.0184
8 52753 x 1073 1.0301  1.1204 x 1072 1.0289
16 26388 x 1073 09994  5.6054 x 1073 0.9991
32 13128 x1073  1.0072  2.7893 x 1073 1.0069
64 6.5650 x 107*  0.9997  1.3950 x 103 0.9997

Reference option value at Sp: 1.83652751.
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As amore direct comparison of the different numerical methods studied in the literature (including
in this work) and commonly used in practice, we list in Table 17 the pricing results of the following
five methods applied to the discretely monitored option introduced in the previous section:

Analytically modified C-N with a C!-modification (CN-C1).

C-N with Rannacher time-stepping (CN-RAN).

Trapezoidal rule with second-order backward differentiation formula (TR-BDF2).
Forward-time centered-space (or implicit Euler) (FTCS).

Monte-Carlo simulations (MC).

Table 17. Comparison of different methods on a discretely monitored option.

Time steps CN-C1 CN-RAN

perday Ng  V(To,Sp) error CPUtime V(Tp,Sp)error CPU time
1 6.7233 x 10~* 05618  1.1520 x 107! 0.1195
2 3.1867 x 1073 0.6440  5.5935 x 102 0.2298
4 1.9737 x 107> 0.8517  2.4723 x 1072 0.3972
8 6.3714 x 10 1.4262  1.1473 x 1072 0.8562
16 1.8043 x 10~° 28770 55642 x 1073 2.1088
32 4.5282 x 1077 73977  2.7281 x 1073 8.5549
64 9.4676 x 1078 23.4999  1.3534 x 1073 46.2784

Reference option value at So: 1.83652751.

Time steps TR-BDEF2 FTCS

perday Ng  V(Tp, Sp) error  CPUtime V(T Sp) error  CPU time
1 8.5771 x 1072 0.1145  1.3770 x 107! 0.0648
2 4.4429 x 1072 02203  6.7278 x 1072 0.1141
4 2.1929 x 102 0.4887  3.3502 x 102 0.2415
8 1.0782 x 102 12014  1.6546 x 1072 0.5837
16 5.3920 x 103 3.8852  8.2700 x 1073 1.6694
32 2.6851 x 1073 19.8665  4.1230 x 103 5.1475
64 1.3427 x 1073 96.9560  2.0614 x 1073 21.6645

Reference option value at So: 1.83652751.

Number MC
of paths  V(Tp,Sp) error ~ CPU time

40000 2.6953 x 102 13.1037
60000 5.6742 x 1073 17.2020
80000 6.3685 x 1073 22.7554
100000 3.2074 x 1073 28.0916
120000 1.6717 x 1073 33.6178
140000 3.2980 x 104 38.8197
160000 3.2803 x 1073 44.4004

Reference option value at Sy: 1.83652751.

For each method, the (pointwise) error of the option value at S, together with the CPU time (in
seconds)’ used to obtain the pricing result, are shown for different time steps Ny. Each CPU time is
measured by running the corresponding code 5 times and dividing the total CPU time by 5. It can be
observed from the table that for a given level of accuracy, the CN-C1 method requires the least amount
of CPU time while all other four methods typically require significantly more CPU time. As a specific
example, consider the accuracy level of 2 x 10~3. A more refined study shows that to achieve this level
of accuracy, the CN-C1 method requires less than 0.5618 seconds while the other four methods require

¢ 16.7132 seconds (CN-RAN),

3 The code is developed in Python and is run on a personal computer.


https://doi.org/10.20944/preprints202411.2426.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2024 d0i:10.20944/preprints202411.2426.v1

23 of 28

¢ 36.1549 seconds (TR-BDF2),
e 22.8074 seconds (FTCS), and
® 26.4529 seconds (MC),

respectively (Table 18). This confirms the efficiency of the CN-C1 method.

Table 18. CPU time (in seconds) required to achieve an accuracy level of 2 x 1073 by different methods
on a discretely monitored option.

Time steps CN-C1 Time steps CN-RAN

perday Ny V(Tp, So) error CPUtime perday Ny V(Tp,Sp)error CPU time
1 6.7233 x 104 0.5618 43 2.0210 x 1073 16.2035
— — — 44 1.9749 x 1073 17.3225

— — — 43.4555* 2.0000 x 103 16.7132*

Reference option value at Sy: 1.83652751.
*: Estimates obtained from linear interpolation.

Time steps TR-BDF2 Time steps FTCS

perday Ng  V(Tp, Sp) error CPUtime perday Ny V(Tp, Sp) error  CPU time
42 2.0449 x 1073 34.4220 65 2.0309 x 1073 21.8704
43 19971 x 1073 36.2668 66 19978 x 1073 22.8741

42.9393* 2.0000 x 1073 36.1549* 65.9335* 2.0000 x 1073 22.8074*

Reference option value at So: 1.83652751.
*: Estimates obtained from linear interpolation.

Number MC

of paths V(Ty, So) error CPU time

108300 2.1369 x 1073 26.7155

108400 1.6615 x 1073 25.8035
108328.80* 2.0000 x 1073 26.4529*

Reference option value at So: 1.83652751.
*: Estimates obtained from linear interpolation.

Remark 3.3. It may appear from these results that MC is even more efficient that the TR-BDF2 method.
The reality is that, if higher accuracy is demanded (higher than 2 x 10~3), then the TR-BDF2 method
will definitely outperform MC, even though it is relatively slow compared with other finite difference
methods considered here.

3.3. Effectiveness of Adaptive Mesh Refinement

We also demonstrate the effectiveness of the mesh adaptation technique by applying the CN-C1
method to the discretely monitored option introduced in the previous sections, both with and without
mesh adaptation. The result shows that, with a mesh refinement factor of n = 8, an adaptive mesh
calculation with Ny time steps per business day is able to achieve an accuracy level comparable to that
of a uniform grid calculation with 8Ny time steps per business day, with a more than 60% save in CPU
time (Table 19). This confirms the efficiency of the mesh adaptation technique.


https://doi.org/10.20944/preprints202411.2426.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2024 d0i:10.20944/preprints202411.2426.v1

24 of 28

Table 19. Comparison of CN-C1 with and without mesh adaptation (refinement region: grid points
surrounding barriers; refinement ratio: 15% of grid points; refinement factor: 8) on a discretely
monitored option.

Uniform grid with Adaptive mesh with Save in
No 8N time steps per day Np time steps per day CPU time
V(Ty,So) error  CPUtimety V(T Sp)error CPUtimens (19— 1)/
1 6.3714 x 10~° 14262  1.3181 x 1075 0.5203 63.52%
2 1.8043 x 107° 2.8770  3.6323 x 10°° 1.0140 64.75%
4 45282 x 1077 73977  9.2715x 1077 2.6514 64.16%
8 94676 x1078 234999 21480 x 1077 7.7067 67.21%

Reference option value at Sp: 1.83652751.

3.4. Approximations to Derivatives

It is well known that finite difference methods applied to options with non-smooth terminal
conditions tend to produce poor approximations to option Greeks such as Delta A and Gamma I'. In
fact, as demonstrated in [11], when the original C-N method is applied to a European call option, the
discrete approximations to A and I both fail to converge, and the discrete approximation to I' even
grows unboundedly when the computational grid is refined. To examine the quality of the discrete
approximations to option Greeks produced by the proposed method, we calculate A and I' for the
discretely monitored option introduced in the previous section, using the formulas

V1=V

21S;

Vo =2V + Vo1 Vo1 — Vo,
hZS;' ZhS?‘

>
e
l

7

where ;) ; are the same reference option values calculated on a uniform fine grid using the CN-C1
method with Ny = 128 time steps per business day. The approximated Greeks are shown in Figures
2 and 3 together with the option values, where it can be seen that while the discrete approximation
to A is free of oscillations, the discrete approximation to I' contains a small amount of oscillations
near the lower barrier 0.9 which is monitored daily. These oscillations are likely consequences of the
O(h?) errors introduced by the linear interpolation approximations to V, 9V /9S at the barriers (see
(2.17)) which have been significantly amplified by the high-frequency monitoring at the lower barrier.
To remove these high-wavenumber oscillations, we replace the first C-N step after each monitoring
point by two half-step dissipative steps such as FTCS (implicit Euler) steps and apply the resulting
method, coded CN-C1-RAN1, again to the discretely monitored option introduced in the previous
section. The results (Figure 4) demonstrate the effectiveness of the modified method in the elimination
of high-wavenumber oscillations and also confirm the second-order convergence of both the option
value V and option Greeks A, T in both L2 and L* (Table 20).
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Option value V with Ny = 128 time steps per day
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Figure 2. Option values V (top) and Delta A (bottom) estimated using the CN-C1 method on a uniform

fine grid with Ny = 128 time steps per day.
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Figure 3. Option Gamma I’ (top) estimated using the CN-C1 method on a uniform fine grid with
Np = 128 time steps per day and a closeup of the I" plot (bottom).
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Figure 4. Option Gamma I’ (top) estimated using the CN-C1-RAN1 method on a uniform fine grid
with Ny = 128 time steps per day and a closeup of the I plot (bottom).

Table 20. CN-C1-RANT1 on a discretely monitored option.

Time steps 14

per day N L?-error L?-order L*®-error L*-order
1 49821 x 1073 — 1.1748 x 102 —
2 12441 x 1073 20017 29359 x 1073 2.0006
4 3.1037 x 10~4 2.0031 7.3259 x 104 2.0027
8 7.6925x107°  2.0124  1.8167 x 10~* 2.0117
16 1.9033 x 1075 2.0150  4.4944 x 107> 2.0151
32 45273 %107 20718  1.0692 x 10~ 2.0716
64 9.0650 x 10~7  2.3203  2.1407 x 10~° 2.3203

Reference option value at So: 1.83652817.

Time steps A

per day Ny L%-error L*-order L*-error L*®-order
1 5.7753 x 102 — 29170 x 1071 —
2 1.3173 x 102 21323  6.8630 x 1072 2.0876
4 32319 x 1073 20272  1.5790 x 102 2.1198
8 8.0164 x 107*  2.0113  3.8938 x 1073 2.0198
16 19799 x 10~¢  2.0175  9.6006 x 10~* 2.0200
32 47122 107> 20710  2.2842 x 10~* 2.0714
64 94293 x 107 23212  4.5697 x 10~ 2.3215

Reference option Delta at Sp: —7.15943969.

Time steps T

per day Ny L2-error L?-order L*®-error L*®-order
1 5.2142 x 10° - 45269 x 10! -
2 1.0219 x 100 2.3512 7.7774 x 100 2.5411
4 2.1477 x 1071 2.2504 1.7798 x 10° 2.1275
8 49782 %1072 21091  4.9207 x 107! 1.8548
16 1.1808 x 1072 2.0758  1.2036 x 107! 2.0316
32 27632 %1073 20954  3.1979 x 102 1.9121
64 55058 x 107%  2.3273  6.8740 x 1073 2.2179

Reference option Gamma at Sg: —135.82019205.

Remark 3.4. When applied with mesh adaptation, the CN-C1-RAN1 method produces option Greeks
A, T converging at reduced convergence rates, most likely due to the small mismatches among different
parts of Uy, (t_1, Z;) introduced by the direct transfer of the fine grid solutions Wli—nli,o to coarse grid
(see (2.27)). While this issue may be addressed using, say, a high-order smoothing operator, we decide
not to pursue this direction further but instead recommend the readers to consider CN-C1-RAN1
(without mesh adaptation) if accurate approximation to option Greeks is important and to consider
CN-C1 (with or without mesh adaptation) if option Greeks are not needed or not important.
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4. Discussion

We have introduced an analytical modification for finite difference methods used in the pricing of
discretely monitored options in the Black-Scholes framework. The modified finite difference methods
can be used to price single and double barrier options, autocallable structured products, and snowball
options. We have demonstrated the efficacy and efficiency of the proposed method on the traditional
Crank-Nicolson scheme which, in its analytically modified form CN-C1 or CN-C1-RANT1, is capable of
producing much more accurate pricing results with much lower CPU cost than other popular option
pricing methods such as CN-RAN, TR-BDF2, and Monte-Carlo simulations. We have also introduced a
mesh adaptation technique for the analytically modified Crank-Nicolson method, which is capable of
achieving an accuracy level comparable to that of a uniform fine grid calculation with a more than 60%
improvement in computational speed. We strongly believe that the proposed method and the related
ideas will prove a valuable tool for practitioners working with the aforementioned types of options.

This work can be extended in several directions. First, it is desirable to carry out a rigorous
error analysis and obtain a precise quantification of the relationship between convergence rates and
smoothness of terminal conditions for the proposed method. We have done some preliminary analysis
along this direction (Remark 3.2) and the full analysis is currently a work in progress. Second, the
proposed method has assumed a volatility that is independent of the asset price S, which may be
too restrictive in some practical situations. It is desirable to relax this assumption and apply similar
analytical modifications to option pricing problems with variable (in S) volatility. This is the subject of
a current research and the results will be reported in a forthcoming paper.
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