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Abstract: Finite difference methods are commonly used in the pricing of discretely monitored exotic options

in the Black-Scholes framework, but they tend to converge slowly due to discontinuities contained in terminal

conditions. We present an effective analytical modification to existing finite difference methods which greatly

enhances their performance on discretely monitored options with non-smooth terminal conditions. We apply

this modification to the popular Crank-Nicolson method and obtain highly accurate option pricing results with

significantly reduced CPU cost. We also introduce an adaptive mesh refinement technique which further improves

the computational speed of the modified finite difference method. The proposed method is especially useful for

options with high monitoring frequencies, which are difficult to price using other existing methods.

Keywords: discrete option pricing; finite difference method; analytical modification; autocallable structured

product; barrier option; snowball option

1. Introduction

Discretely monitored exotic options, including barrier options and autocallable structured prod-
ucts, are commonly traded throughout the world. Unlike continuously monitored barrier options,
discrete barrier options cannot be priced using analytical formulas. Instead, these options are priced
using numerical techniques such as Monte-Carlo simulations, finite difference methods, quadrature
methods [1,2], and several other sophisticated mathematical techniques (e.g. [3–7]). Discrete barrier
options can also be priced approximately using continuity correction techniques [8,9], but the accuracy
of these methods is often quite limited.

To price options with low to moderate monitoring frequencies (e.g. monthly), quadrature methods
can be quite effective [2]. However, these methods are not suitable for pricing options with high
monitoring frequencies (e.g. daily), since they involve computations of convolution integrals at all
monitoring points (or barriers), which can be very expensive when monitoring frequencies become
large. Monte-Carlo simulations suffer from the same limitation, where significantly more random
numbers need to be generated along a rapidly increasing number of paths as monitoring frequencies
increase. Finite difference methods, in contrast, are not subject to such limitations, as long as monitoring
points are placed on the computational grid, but they tend to converge slowly due to discontinuities
contained in terminal conditions. Performance of finite difference methods can be improved using
advanced numerical techniques such as adaptive mesh models [10], Rannacher time-stepping [11,12],
and the TR-BDF2 method [13], but these methods either are formulated in a different setting (e.g. for
tree-based pricing models [10]), or suffer from relatively low accuracies due to the incorporation of
low-order approximations near terminal/boundary points (e.g. [11,12]).

We present an analytical modification to finite difference methods in the Black-Scholes framework
to remove any discontinuities contained in the terminal conditions, which greatly improves the
accuracy and efficiency of these methods. We will apply the modification to the popular Crank-
Nicolson method, and introduce an effective adaptive mesh refinement technique to further improve
the computational speed of the modified method. The modified finite difference method is valuable in
practice thanks to its high accuracy and ease of implementation. It also complements our previous
quadrature method [2] since its performance is unaffected by higher monitoring frequencies.
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1.1. A Brief Review of Products Considered

The modified finite difference method is applicable to various types of discretely monitored
options, including discrete barrier options, autocallable structured products, and snowball options.

Barrier options are among the most popular types of exotic options. A barrier option may be
activated (knock-in option) or deactivated (knock-out option) when the underlying asset price crosses
certain barrier levels. A single barrier option has one barrier at each observation date, while a double
barrier option has two barriers at each observation date. The final payoff of a barrier option (if it is
active at maturity) may be of the same type as that of a vanilla option or that of a digital option.

For an autocallable product, there is a pre-specified barrier level at each observation date. If the
underlying asset price is greater (less) than or equal to the barrier level, the option is exercised and a
pre-specified fixed-rate return is paid. If the asset price is below (above) the barriers at all observation
dates, the option is never exercised and the investor receives a negative return at maturity.

A snowball option has an up-and-out barrier and a down-and-in barrier, and the down-and-in
barrier is usually monitored daily. If the asset price reaches the up-and-out barrier, the option is
exercised and a pre-specified fixed-rate return is paid. If the option expires without any barrier being
reached, the investor receives a fixed coupon payment. If the up-and-out barrier is never reached
but the down-and-in barrier is reached sometime before maturity, the investor automatically writes a
vanilla put and may receive a negative return.

1.2. Organization of the Paper

The rest of the paper is organized as follows. Section 2.1 defines the class of (discrete) option
pricing problems that our method is intended to solve, and the rest of Section 2 details the various
ingredients of our method including, specifically, the analytical modification (Section 2.3) we introduce
for standard finite difference methods (Section 2.2) in the context of discrete option pricing, and an
adaptive mesh refinement technique for the analytically modified finite difference methods (Section
2.4). The efficacy and efficiency of our method is then demonstrated through extensive numerical
studies in Section 3, and the paper is concluded in Section 4.

2. Materials and Methods

2.1. Basic Assumptions

We consider a general class of discretely monitored options with barriers. Note that an option
with knock-in barriers is equivalent to the difference of an option without those knock-in barriers and
another option with knock-out barriers at the same dates and same levels. Therefore, it suffices to
consider options with only knock-out barriers. To this end, assume that

(A) The option to be priced has two strike prices K−
m , K+

m ∈ [0, ∞], with K−
m ≤ K+

m , at each observation
date Tm, m = 1, 2, . . . , M. The expiration date is TM.

(B) The option is exercised if S ≤ K−
m or S ≥ K+

m at some Tm, and the payoffs are given by a−mS + b−m
(if S ≤ K−

m ) and a+mS + b+m (if S ≥ K+
m ), respectively, for some a±m , b±m ∈ R.

(C) The final payoff at maturity is

aMS + bM, for K−
M < S < K+

M,

for some aM, bM ∈ R.

These assumptions are general enough to cover a wide class of discretely monitored options, such
as the ones mentioned in the introduction. For instance, down-and-out put barrier options would have

1 ≤ m ≤ M − 1 : K+
m = ∞, 0 < K−

m < ∞, a−m = 0, b−m = 0;

m = M : K−
M = 0, 0 < K+

M < ∞, aM = −1, bM = K+
M,

a+M = b+M = 0.
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Double barrier knock-out call options would have

1 ≤ m ≤ M − 1 : 0 < K±
m < ∞, a±m = 0, b±m = 0;

m = M : K+
M = ∞, 0 < K−

M < ∞, aM = 1, bM = −K−
M,

a−M = b−M = 0.

Common up-and-out autocallable products would have

1 ≤ m ≤ M : 0 < K+
m < ∞, K−

m = 0, a+m = 0, b+m > 0;

m = M : aM = 0, bM < 0.

We further assume that the price of the underlying asset S(t) satisfies the following stochastic
differential equation under the risk-neutral measure:

dS(t) =
[
r(t)− q(t)

]
S(t) dt + σ(t)S(t) dW(t), (2.1)

where r(t) is the risk-free forward interest rate, q(t) the yield rate, σ(t) the volatility, and W(t) the
Wiener process. Interest rates, yield rates, and volatilities are assumed to be deterministic functions of
time.

To summarize, our basic assumptions are

1. There are finitely many observation points, and two exercise levels (possibly ∞) at each ob-
servation point. If S is above the upper exercise level or below the lower exercise level at any
observation point, the option is exercised and the payoff is a linear function in S.

2. At maturity, if S is between the two exercise levels, a payoff is incurred which is also a linear
function in S.

3. The underlying asset price S follows a geometric Brownian motion with possibly time-dependent
interest rates, yield rates, and volatilities.

Given the above assumptions, we shall begin the description of our method with a brief review of
the finite difference methods commonly used in the pricing of discretely monitored options.

2.2. Finite Difference Methods

Suppose we wish to find an option’s value at some T0 < TM and the spot price of the underlying
asset is S0. Let V(t, S) denote the value of the option (as a function of the asset price S) at any
time t ≥ T0. Since S follows a geometric Brownian motion, the option’s value V(t, S) satisfies the
Black-Scholes PDE

∂V
∂t

(t, S) +
[
r(t)− q(t)

]
S

∂V
∂S

(t, S) +
σ2(t)

2
S2 ∂2V

∂S2 (t, S) = r(t)V(t, S), (2.2a)

for T0 ≤ t ≤ TM, with the terminal condition

V(TM, S) =


aMS + bM, K−

M < S < K+
M

a−MS + b−M, S ≤ K−
M

a+MS + b+M, S ≥ K+
M

, (2.2b)

and boundary conditions

V(Tm, S) =

{
a−mS + b−m , S ≤ K−

m

a+mS + b+m , S ≥ K+
m

, 1 ≤ m ≤ M − 1, (2.2c)

determined by Assumptions (B)–(C) from Section 2.1.
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For convenience, we introduce the change of variable Z = ln S to transform equation (2.2a) into a
simpler form:

∂V
∂t

(t, eZ) = L
[
V(t, eZ)

]
, (2.3a)

where the differential operator L is defined as

L := −σ2(t)
2

∂2

∂Z2 − ρ(t)
∂

∂Z
+ r(t), with ρ(t) := r(t)− q(t)− σ2(t)

2
. (2.3b)

It is not convenient to solve the PDE (2.3a) directly due to the discrete boundary conditions (2.2c).
Instead, for each 1 ≤ m ≤ M, we consider the PDE

∂Ym

∂t
(t, Z) = LYm(t, Z), Tm−1 ≤ t ≤ Tm, (2.4a)

supplemented with the terminal condition

Ym(Tm, Z) = V(Tm, eZ). (2.4b)

Since the terminal value problem (2.4) has a unique solution for each m, we have

V(t, eZ) = Ym(t, Z), Tm−1 < t ≤ Tm,

and by (2.2c),

V(Tm−1, eZ) =


Ym(Tm−1, Z), ln(K−

m−1) < Z < ln(K+
m−1)

a−m−1eZ + b−m−1, Z ≤ ln(K−
m−1)

a+m−1eZ + b+m−1, Z ≥ ln(K+
m−1)

, 1 ≤ m ≤ M. (2.5)

The terminal value problems (2.4) are solved successively for m = M, M − 1, . . . , 1. Note that for
m = M, the terminal condition YM(TM, Z) = V(TM, eZ) is known by (2.2b). Now for each 1 ≤ m ≤ M,
assume the terminal condition Ym(Tm, Z) is known. The PDE (2.4a) is solved backward in t to yield
Ym(Tm−1, Z). Then we obtain V(Tm−1, eZ) by (2.5), which by (2.4b) is equal to Ym−1(Tm−1, Z), the
terminal condition of the PDE (2.4a) for m − 1. This process can then be repeated until we finally
obtain V(T0, eZ), from which the option’s value V(T0, S0) can be easily deduced.

Now we give a brief review of the standard procedure of solving (2.4) numerically on a uniform
grid using finite difference methods. Let t0, t1, . . . , tN denote the grid points in time, and Z0, Z1, . . . , Z2P
the grid points in space where ZP = ln(S0). Denote

Ym
l,j = Ym(tl , Zj), rl = r(tl), ρl = ρ(tl), σl = σ(tl),

k =
tN − t0

N
, h =

Z2P − Z0

2P
, λ =

k
h

, µ =
k
h2 .

In practice, barriers are observed at the end of a business day, so it is convenient to find a uniform
t-grid such that every monitoring point lies on the grid, i.e. for every 1 ≤ m ≤ M, there exists an lm
such that tlm = Tm. The PDE (2.4a) can be discretized using the backward-time centered-space (BTCS),
forward-time centered-space (FTCS), or Crank-Nicolson (C-N) finite difference method.

The BTCS (or explicit Euler) method consists of the recurrence equations

Ym
l,j − Ym

l−1,j +
1
2 λρl(Ym

l,j+1 − Ym
l,j−1) (2.6)

+ 1
2 µσ2

l (Y
m
l,j+1 − 2Ym

l,j + Ym
l,j−1) = krlYm

l,j ,
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and is explicit (recall that we are solving (2.4a) backward in time). The FTCS (or implicit Euler) method,
on the other hand, consists of the recurrence equations

Ym
l,j − Ym

l−1,j +
1
2 λρl−1(Ym

l−1,j+1 − Ym
l−1,j−1) (2.7)

+ 1
2 µσ2

l−1(Y
m
l−1,j+1 − 2Ym

l−1,j + Ym
l−1,j−1) = krl−1Ym

l−1,j,

and is implicit. The C-N method is a combination of the BTCS and FTCS methods and can be written
as

( 1
4 µσ2

l−1 − 1
4 λρl−1)Ym

l−1,j−1 + (−1 − 1
2 µσ2

l−1 − 1
2 krl−1)Ym

l−1,j (2.8)

+ ( 1
4 µσ2

l−1 +
1
4 λρl−1)Ym

l−1,j+1 = −( 1
4 µσ2

l − 1
4 λρl)Ym

l,j−1

+ (−1 + 1
2 µσ2

l + 1
2 krl)Ym

l,j − ( 1
4 µσ2

l + 1
4 λρl)Ym

l,j+1.

For j ∈ {0, 2P}, we impose the extrapolation boundary condition1

∂2V
∂S2 (t, S) = 0, (2.9a)

which is equivalent to
∂2Ym

∂Z2 (t, Z)− ∂Ym

∂Z
(t, Z) = 0, (2.9b)

and can be discretized as

(1 − 1
2 h)Ym

i,j+1 − 2Ym
i,j + (1 + 1

2 h)Ym
i,j−1 = 0, i = l − 1, l, j = 0, 2P. (2.9c)

The C-N method is generally more accurate than the BTCS and FTCS methods [14], although the FTCS
method has better stability properties [13].

For convenience, we denote

αl =
1
4 µσ2

l − 1
4 λρl , βl = −1 − 1

2 µσ2
l − 1

2 krl ,

γl =
1
4 µσ2

l + 1
4 λρl , δl = −1 + 1

2 µσ2
l + 1

2 krl .

Equations (2.8) and (2.9c) can be written together as a matrix equation

Al−1Ym
l−1 = BlY

m
l , (2.10a)

where
Ym

l = ⟨Ym
l,0, Ym

l,1, . . . , Ym
l,2P⟩

T ,

1 Note, in view of the linear boundary condition (2.2c), that the extrapolation boundary condition (2.9a) is a natural choice of
the numerical boundary condition at j = 0, 2P.
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is a (2P + 1)-column vector and Al , Bl are (2P + 1)× (2P + 1) tridiagonal matrices:

Al =


βl + c1,+αl γl − c2,+αl

αl βl γl
. . . . . . . . .

αl βl γl
αl − c2,−γl βl + c1,−γl

, (2.10b)

Bl =


δl − c1,+αl −γl + c2,+αl

−αl δl −γl
. . . . . . . . .

−αl δl −γl
−αl + c2,−γl δl − c1,−γl

, (2.10c)

where

c1,± =
2

1 ± 1
2 h

, c2,± =
1 ∓ 1

2 h
1 ± 1

2 h
.

Note that the unknowns Ym
i,−1 in the j = 0 equation and Ym

i,2P+1 in the j = 2P equation for i = l − 1, l
can be eliminated using the boundary condition (2.9c). Equation (2.10a) can be solved for Ym

l−1 using
the Thomas Algorithm, which has an O(P) complexity.

Note that the terminal condition (2.4b) is typically discontinuous as can be seen from (2.5). This
means that the C-N method, when applied as it is, cannot achieve a second-order convergence as for
smooth terminal conditions [11].

2.3. Analytical Modification

We will remove the aforementioned discontinuities from terminal conditions by introducing an
analytical modification to existing finite difference methods. First, we recall some classical results from
the theory of binary options.

Lemma 2.1. Let K > 0, and let χA denote the characteristic function of a set A. Consider a binary option with
expiration time Tm priced at Tm−1.

1. If the option has payoff V̂m(y) = χ[K,∞)y, then V̂m−1(S) = ϕa
m(S, K, 1).

2. If V̂m(y) = χ(0,K]y, then V̂m−1(S) = ϕa
m(S, K,−1).

3. If V̂m(y) = χ[K,∞), then V̂m−1(S) = ϕb
m(S, K, 1).

4. If V̂m(y) = χ(0,K], then V̂m−1(S) = ϕb
m(S, K,−1).

The functions ϕa
m and ϕb

m are defined as

ϕa
m(S, K, ϵ) = e−qmτmN (ϵd1)S, ϕb

m(S, K, ϵ) = e−rmτmN (ϵd2),

where τm = Tm − Tm−1,

rm =
∫ Tm

Tm−1

r(t)
τm

dt, qm =
∫ Tm

Tm−1

q(t)
τm

dt, σ2
m =

∫ Tm

Tm−1

σ2(t)
τm

dt,

N is the cumulative normal distribution function, and

d1 =
1

σm
√

τm

{
log

S
K
+

(
rm − qm +

σ2
m
2

)
τm

}
, d2 = d1 − σm

√
τm.

Proof. By definition, ϕa
m is the value of an asset-or-nothing option, and ϕb

m is the value of a cash-or-
nothing option. The valuation formulas are just standard results for binary options [14].
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Since Ym(Tm, Z) in the terminal condition (2.4b) generally has discontinuities at ln(K±
m), we do

not solve the terminal value problem (2.4) directly, but instead seek to remove these discontinuities
first. We describe our basic idea as follows.

2.3.1. Basic idea of the analytical modification

For each 1 ≤ m ≤ M, note that V(Tm, S) is continuous for K−
m < S < K+

m . We define the one-sided
limits

Ṽ+
m = lim

ϵ→0+
V(Tm, K+

m − ϵ), Ṽ−
m = lim

ϵ→0+
V(Tm, K−

m + ϵ), (2.11a)

Ṽ+
S,m = lim

ϵ→0+

∂V
∂S

(Tm, K+
m − ϵ), Ṽ−

S,m = lim
ϵ→0+

∂V
∂S

(Tm, K−
m + ϵ), (2.11b)

and consider Um(t, Z) defined as the solution to the PDE

∂Um

∂t
(t, Z) = LUm(t, Z), Tm−1 ≤ t ≤ Tm, (2.12a)

supplemented with the (continuously differentiable) terminal condition

Um(Tm, Z) =


V(Tm, eZ), ln(K−

m) < Z < ln(K+
m)

Ṽ−
S,m(e

Z − K−
m) + Ṽ−

m , Z ≤ ln(K−
m)

Ṽ+
S,m(e

Z − K+
m) + Ṽ+

m , Z ≥ ln(K+
m)

. (2.12b)

Note that by (2.2b)-(2.2c), we have

V(Tm, eZ)− Um(Tm, Z) =


0, ln(K−

m) < Z < ln(K+
m)

ã−meZ + b̃−m , Z ≤ ln(K−
m)

ã+meZ + b̃+m , Z ≥ ln(K+
m)

, (2.13)

where
ã±m = a±m − Ṽ±

S,m, b̃±m = b±m + Ṽ±
S,mK±

m − Ṽ±
m .

This shows that V(t, eZ)−Um(t, Z) is the sum of values of four binary options for Tm−1 ≤ t ≤ Tm, and
hence by Lemma 2.1,

V(Tm−1, eZ)− Um(Tm−1, Z) = ã−mϕa
m(e

Z, K−
m ,−1) + b̃−m ϕb

m(e
Z, K−

m ,−1) (2.14a)

+ ã+mϕa
m(e

Z, K+
m , 1) + b̃+m ϕb

m(e
Z, K+

m , 1), ln(K−
m−1) < Z < ln(K+

m−1),

or

V(Tm−1, eZ) = Um(Tm−1, Z) + ã−mϕa
m(e

Z, K−
m ,−1) + b̃−m ϕb

m(e
Z, K−

m ,−1) (2.14b)

+ ã+mϕa
m(e

Z, K+
m , 1) + b̃+m ϕb

m(e
Z, K+

m , 1), ln(K−
m−1) < Z < ln(K+

m−1).

For each 1 ≤ m ≤ M, we solve (2.12) numerically for Um(Tm−1, Z) and obtain V(Tm−1, eZ) using
(2.14b). Repeating this process for m = M, M − 1, . . . , 1, we finally obtain V(T0, eZ), from which the
option’s value V(T0, S0) can be easily deduced.

Remark 2.2. For the given terminal condition (2.2b), a closed-form expression can in fact be obtained
for UM(t, Z); see, for example, [2, Proposition 2.4]. In practice, however, M is often “reasonably large”,
e.g., in the order of tens or hundreds, so that the incorporation of such exact formulas of UM makes
little difference in the numerical approximations obtained for V(T0, S). Thus we do not specifically
differentiate UM from other Um’s (m ≤ M − 1) in our study.
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2.3.2. Implementation of the Analytical Modification

In practice, it may not be possible to place all barriers on the computational grid, which means
we may not be able to compute the values of Ṽ±

m , Ṽ±
S,m for all 1 ≤ m ≤ M − 1 as defined in (2.11). Note

that the values of Ṽ±
M , Ṽ±

S,M for m = M follow from the closed-form expression of V(TM, eZ) as given
in (2.2b). For 1 ≤ m ≤ M − 1, however, we will have to find an approximation to these values. To this
end, denote

ŨM(t, Z) = UM(t, Z), (2.15)

which is the smooth solution defined in (2.12) for m = M. For each 1 ≤ m ≤ M − 1, assume
we have already computed a three times continuously differentiable (C3) function Ũm+1(Tm, Z) for
Z ∈ {Z0, Z1, . . . , Z2P} and have obtained the smooth part of V(Tm, eZ), namely Ym+1(Tm, Z) (see (2.5)),
at the grid points. Note that this is true for m = M − 1, in which case we have already computed a C3

function ŨM(TM−1, Z) by (2.15) and have obtained YM(TM−1, Z) by (2.14b).
Denote

Ym+1
l,j = Ym+1(tl , Zj), Ym+1

S,l,j =
Ym+1

l,j+1 − Ym+1
l,j−1

2heZj
≈ ∂Ym+1

∂S
(tl , Zj),

and let
p−m = min

{
j > 0 : Zj > ln(K−

m)
}

, p+m = max
{

j < 2P : Zj < ln(K+
m)

}
.

Note that ln(K±
m) are located between Zp±m

and Zp±m±1. We use linear interpolations of Ym+1(Tm, Z) on
the grid to approximate Ṽ±

m , Ṽ±
S,m as follows:

c−m = Ym+1
S,lm ,p−m

− 1
h
(Ym+1

S,lm ,p−m−1
− Ym+1

S,lm ,p−m
)
[
ln(K−

m)− Zp−m

]
, (2.16a)

c+m = Ym+1
S,lm ,p+m

+
1
h
(Ym+1

S,lm ,p+m+1
− Ym+1

S,lm ,p+m
)
[
ln(K+

m)− Zp+m

]
, (2.16b)

d−m = Ym+1
lm ,p−m

− 1
h
(Ym+1

lm ,p−m−1
− Ym+1

lm ,p−m
)
[
ln(K−

m)− Zp−m

]
, (2.16c)

d+m = Ym+1
lm ,p+m

+
1
h
(Ym+1

lm ,p+m+1
− Ym+1

lm ,p+m
)
[
ln(K+

m)− Zp+m

]
. (2.16d)

Since Ũm+1(Tm, Z) and hence Ym+1(Tm, Z) is C3 in Z, we have

c±m − Ṽ±
S,m = O(h2), d±m − Ṽ±

m = O(h2). (2.17)

This means that the order of the interpolation error does not exceed that of the C-N method.
Consider Ũm(t, Z) defined as the solution to the PDE

∂Ũm

∂t
(t, Z) = LŨm(t, Z), Tm−1 ≤ t ≤ Tm, (2.18a)

supplemented with the terminal condition

Ũm(Tm, Z) =


V(Tm, eZ), ln(K−

m) < Z < ln(K+
m)

c−m(eZ − K−
m) + d−m , Z ≤ ln(K−

m)

c+m(eZ − K+
m) + d+m , Z ≥ ln(K+

m)

. (2.18b)

Note that by (2.2c), we have

V(Tm, eZ)− Ũm(Tm, Z) =


0, ln(K−

m) < Z < ln(K+
m)

c̃−meZ + d̃−m , Z ≤ ln(K−
m)

c̃+meZ + d̃+m , Z ≥ ln(K+
m)

, (2.19)
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where
c̃±m = a±m − c±m , d̃±m = b±m + c±mK±

m − d±m .

This shows that V(t, eZ)− Ũm(t, Z) is the sum of values of four binary options for Tm−1 ≤ t ≤ Tm, and
hence by Lemma 2.1,

V(Tm−1, eZ)− Ũm(Tm−1, Z) = c̃−mϕa
m(e

Z, K−
m ,−1) + d̃−mϕb

m(e
Z, K−

m ,−1) (2.20a)

+ c̃+mϕa
m(e

Z, K+
m , 1) + d̃+mϕb

m(e
Z, K+

m , 1), ln(K−
m−1) < Z < ln(K+

m−1),

or

V(Tm−1, eZ) = Ũm(Tm−1, Z) + c̃−mϕa
m(e

Z, K−
m ,−1) + d̃−mϕb

m(e
Z, K−

m ,−1) (2.20b)

+ c̃+mϕa
m(e

Z, K+
m , 1) + d̃+mϕb

m(e
Z, K+

m , 1), ln(K−
m−1) < Z < ln(K+

m−1).

Now that we have computed Ũm(Tm−1, Z) and the smooth part of V(Tm−1, eZ), namely Ym(Tm−1, Z),
we continue to compute c±m−1, d±m−1 as in (2.16), which means we have the terminal condition
Ũm−1(Tm−1, Z) as in (2.18b). Then we repeat this process for m − 1.

We summarize the modified finite difference method as follows:

1: for m = M − 1 downto 1 do

2: Compute c±m , d±m using (2.16)
3: Solve (2.18) numerically for Ũm(Tm−1, Z)
4: Compute Ym(Tm−1, Z), the smooth part of V(Tm−1, eZ), using (2.20b)
5: end for
6: Obtain option value V(T0, S0) = V(T0, eZP)

Note that the terminal value problem (2.18) is the same as (2.4) except that the terminal condition
(2.18b) now has a higher degree of smoothness, and the problem (2.18) can be solved numerically
using the same finite difference methods as the ones described in Section 2.2, in particular the C-N
method. Since the terminal condition Ũm(Tm, Z) in (2.18b) is almost continuously differentiable (the
jumps are of order h2 by (2.17)), the C-N method converges quite well in practice (Section 3.1). In
principle, Rannacher time-stepping can be used to improve the performance of the C-N method near
monitoring points, but this is important only when accurate discrete approximations to option Greeks
are needed (Section 3.4).

2.4. Adaptive Mesh Refinement

Note that the function Ũm(t, Z) in (2.18) tends to have large derivatives near the barriers and
behaves relatively smoothly away from the barriers. This means that it makes sense to use finer grids
near the barriers and coarser ones elsewhere.

Adaptive mesh refinement techniques are well-known and are widely used in numerical solutions
of PDEs. In the field of quantitative finance, adaptive mesh models have been developed for the BTCS
method [10]. Alternatively, nonuniform grids based on changes of variables have also been introduced
in the literature [13]. Since here we are using an analytically modified C-N method, we introduce an
effective adaptive mesh refinement technique which further improves the computational efficiency of
our method.

We begin by assuming that the upper barriers K+
m (and lower barriers K−

m , respectively) are equal
or close to each other for all 1 ≤ m ≤ M, which is almost always satisfied in practice. Our basic idea is
to construct fine grids near the barriers, and solve the Black-Scholes PDEs on both the original and the
fine grids at each time step.

First, we find integers 0 < q−1 < q−2 < q+1 < q+2 < 2P such that

exp(Zq−1
) < K−

m < exp(Zq−2
), and exp(Zq+1

) < K+
m < exp(Zq+2

),
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for all 1 ≤ m ≤ M. Then we construct a fine grid for [q−1 , q−2 ] and a similar one for [q+1 , q+2 ] by dividing
each interval of size h into n equal parts. We illustrate the fine grid near K+

m for n = 4 in Figure 1.

Figure 1. Illustration of the original grid (solid lines) and the fine grid (dashed lines) near the barrier
K+

m (thick line).

Let
n± = n(q±2 − q±1 ), x±j = Zq±1

+ jh/n, 0 ≤ j ≤ n±,

and define
ÛM(t, Z) = UM(t, Z), (2.21)

which is the smooth solution defined in (2.12) for m = M. For each 1 ≤ m ≤ M − 1, assume we have
already computed a C3 function Ûm+1(Tm, Z) for

Z ∈ Gh :=
{

Z0, Z1, . . . , Z2P
}⋃{

x±0 , x±1 , . . . , x±n±
}

,

and have obtained the smooth part of V(Tm, eZ), namely Ym+1(Tm, Z), at the grid points. Note that
this is true for m = M − 1 by (2.21) and (2.14b).

Recall from (2.16) that c±m , d±m are approximations to Ṽ±
S,m, Ṽ±

m computed using the values of
Ym+1(Tm, Z) on the original (coarse) grid. We shall now find approximations to Ṽ±

S,m, Ṽ±
m using the

values of Ym+1(Tm, Z) on the fine grids. To this end, denote

Y±(m+1)
l,j = Ym+1(tl , x±j ),

Y±(m+1)
S,l,j =

Y±(m+1)
l,j+1 − Y±(m+1)

l,j−1

2hex±j /n
≈ ∂Ym+1

∂S
(tl , x±j ),

and let
u−

m = min
{

j > 0 : x−j > ln(K−
m)

}
, u+

m = max
{

j < n+ : x+j < ln(K+
m)

}
.

Define

f−m = Y−(m+1)
S,lm ,u−

m
− n

h
[
Y−(m+1)

S,lm ,u−
m−1

− Y−(m+1)
S,lm ,u−

m

][
ln(K−

m)− x−
u−

m

]
, (2.22a)

f+m = Y+(m+1)
S,lm ,u+

m
+

n
h
[
Y+(m+1)

S,lm ,u+
m+1

− Y+(m+1)
S,lm ,u+

m

][
ln(K+

m)− x+
u+

m

]
, (2.22b)

g−m = Y−(m+1)
lm ,u−

m
− n

h
[
Y−(m+1)

lm ,u−
m−1

− Y−(m+1)
lm ,u−

m

][
ln(K−

m)− x−
u−

m

]
, (2.22c)

g+m = Y+(m+1)
lm ,u+

m
+

n
h
[
Y+(m+1)

lm ,u+
m+1

− Y+(m+1)
lm ,u+

m

][
ln(K+

m)− x+
u+

m

]
. (2.22d)

Note that, in general, f±m , g±m provide a better approximation to Ṽ±
S,m, Ṽ±

m than c±m , d±m .
Consider Ûm(t, Z) defined as the solution to the PDE

∂Ûm

∂t
(t, Z) = LÛm(t, Z), Tm−1 ≤ t ≤ Tm, (2.23a)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 November 2024 doi:10.20944/preprints202411.2426.v1

https://doi.org/10.20944/preprints202411.2426.v1


11 of 28

supplemented with the terminal condition

Ûm(Tm, Z) =


V(Tm, eZ), ln(K−

m) < Z < ln(K+
m)

f−m (eZ − K−
m) + g−m , Z ≤ ln(K−

m)

f+m (eZ − K+
m) + g+m , Z ≥ ln(K+

m)

. (2.23b)

The PDE (2.23a) is the same as (2.18a), but we do not solve it all the way back to Tm−1. Instead, for each
lm−1 < l ≤ lm, assume we have computed Ûm(tl , Z) for Z ∈ Gh, which is true for l = lm by (2.23b). We
first solve the PDE (2.23a) numerically using the terminal condition Ûm(tl , Zk) on the coarse grid for
just one time step from tl to tl−1. More specifically, denote by Ûm

l,k = Ûm(tl , Zk) the solution computed
on the coarse grid; we solve the matrix equation (2.10a) which in our new notation becomes

Al−1Ûm
l−1 = BlÛ

m
l , (2.24)

where
Ûm

l = ⟨Ûm
l,0, Ûm

l,1, . . . , Ûm
l,2P⟩

T ,

is a (2P + 1)-column vector and Al , Bl are (2P + 1) × (2P + 1) tridiagonal matrices as defined in
(2.10). After solving for Ûm

l−1 from (2.24), we solve the PDE (2.23a) again on the fine grids for n time
steps with reduced step size k/n, using the boundary conditions linearly interpolated (in time) from
Ûm

l−1, Ûm
l at q±1 and q±2 . For convenience, we denote, for 0 ≤ i ≤ n,

rl,i = r(tl + ik/n), ρl,i = ρ(tl + ik/n), σl,i = σ(tl + ik/n),

αn,l,i =
1
4 nµσ2

l,i − 1
4 λρl,i, βn,l,i = −1 − 1

2 nµσ2
l,i − 1

2n krl,i,

γn,l,i =
1
4 nµσ2

l,i +
1
4 λρl,i, δn,l,i = −1 + 1

2 nµσ2
l,i +

1
2n krl,i,

and W±m
l,i,j = Ûm(tl,i, x±j ). The matrix equation on the fine grids then becomes

An,l−1,i−1W±m
l−1,i−1 = Bn,l−1,iW

±m
l−1,i + w±

l−1,i, n ≥ i ≥ 1, (2.25a)

where

W±m
l−1,i = ⟨W±m

l−1,i,1, W±m
l−1,i,2, . . . , W±m

l−1,i,n±−1⟩
T ,

w±
l−1,i =


−αn,l−1,iW±m

l−1,i,0 − αn,l−1,i−1W±m
l−1,i−1,0

0
...
0

−γn,l−1,iW±m
l−1,i,n± − γn,l−1,i−1W±m

l−1,i−1,n±

, (2.25b)
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are (n± − 1)-column vectors and An,l−1,i, Bn,l−1,i are (n± − 1)× (n± − 1) tridiagonal Toeplitz matrices:

An,l−1,i =


βn,l−1,i γn,l−1,i
αn,l−1,i βn,l−1,i γn,l−1,i

. . . . . . . . .
αn,l−1,i βn,l−1,i γn,l−1,i

αn,l−1,i βn,l−1,i

, (2.25c)

Bn,l−1,i =


δn,l−1,i −γn,l−1,i
−αn,l−1,i δn,l−1,i −γn,l−1,i

. . . . . . . . .
−αn,l−1,i δn,l−1,i −γn,l−1,i

−αn,l−1,i δn,l−1,i

. (2.25d)

Note that, in (2.25b),

W±m
l−1,i,0 = Ûm

l−1,q±1
+

i
n
(Ûm

l,q±1
− Ûm

l−1,q±1
), (2.26a)

W±m
l−1,i,n± = Ûm

l−1,q±2
+

i
n
(Ûm

l,q±2
− Ûm

l−1,q±2
), (2.26b)

are boundary conditions linearly interpolated (in time) from coarse grid solutions Ûm
l−1, Ûm

l at q±1 and
q±2 . After solving for W±m

l−1,0 from (2.25a), we set

Ûm(tl−1, Zj) = Ûm
l−1,j, 0 ≤ j ≤ 2P, j /∈

{
q±1 + 1, q±1 + 2, . . . , q±2 − 1

}
, (2.27a)

and

Ûm(tl−1, x±j ) = W±m
l−1,0,j, 1 ≤ j ≤ n± − 1. (2.27b)

Since Zq±1 +j = x±nj for 0 ≤ j ≤ q±2 − q±1 , equation (2.27) completes the definition of Ûm(tl−1, Z) for

Z ∈ Gh. We then repeat this process for l = lm, lm − 1, . . . , lm−1 + 1 to obtain Ûm(Tm−1, Z) for Z ∈ Gh.
By (2.23b), V(Tm, eZ)− Ûm(Tm, Z) is piecewise linear in eZ, meaning V(t, eZ)− Ûm(t, Z) is the

sum of values of four binary options. It follows from Lemma 2.1 that

V(Tm−1, eZ) = Ûm(Tm−1, Z) + f̃−m ϕa
m(e

Z, K−
m ,−1) + g̃−mϕb

m(e
Z, K−

m ,−1) (2.28)

+ f̃+m ϕa
m(e

Z, K+
m , 1) + g̃+mϕb

m(e
Z, K+

m , 1), ln(K−
m−1) < Z < ln(K+

m−1),

where
f̃±m = a±m − f±m , g̃±m = b±m + f±m K±

m − g±m .

Then we repeat this process for m − 1.
We summarize the adaptive mesh refinement procedure as follows:

1: Construct a fine grid for [q−1 , q−2 ] and a similar one for [q+1 , q+2 ] by dividing each interval of size h
into n equal parts

2: for m = M − 1 downto 1 do

3: Compute f±m , g±m using (2.22)
4: Solve (2.23) numerically for one time step (with step size k) on coarse grid
5: Solve (2.23) numerically for n time steps (with step size k/n) on fine grids, using (2.26) as

boundary conditions
6: Combine numerical solutions on coarse and fine grids to obtain Ûm(Tm−1, Z)
7: Compute Ym(Tm−1, Z), the smooth part of V(Tm−1, eZ), using (2.28)
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8: end for
9: Obtain option value V(T0, S0) = V(T0, eZP)

3. Results

3.1. Convergence Study

To study the convergence properties of the proposed method, either with or without mesh
adaptation, we first apply the original and the analytically modified C-N method to the following five
options:

• Option I: A cash-or-nothing call option with final payoff:

V(TM, S) =

{
0, S < K+

M

b+M, S ≥ K+
M

.

• Option II: An asset-or-nothing call option with final payoff:

V(TM, S) =

{
0, S < K+

M

a+MS, S ≥ K+
M

.

• Option III: A vanilla call option with final payoff:

V(TM, S) =

{
0, S < K+

M

a+M(S − K+
M), S ≥ K+

M

.

• Option IV: An exotic call option with final payoff:

V(TM, S) =

{
0, S < K+

M

a+M(S − K+
M)2, S ≥ K+

M

.

We remark that this option does not have a counterpart in real-life financial applications. It is
designed here solely to test the convergence properties of the proposed method.

These four options are standard options without discretely monitored structures, and for all cases we
set

r = 0.02, q = 0, σ = 0.2,

T0 = 0, TM = 1, S0 = 1.1, K+
M = 1.2, a+M = b+M = 100.

Note also that the final payoffs of the above four options have increasingly higher degree of smoothness
(discontinuous, discontinuous, C0, and C1, respectively). The fifth option, on the other hand, is a
discretely monitored option:

• Option V: A double-barrier knock-out option with different monitoring frequencies for the two
barriers. Assume there are 250 business days in a year, and the option will expire one year from
the valuation date which we denote as day 0. The spot price of the underlying asset at day 0 is
1.1. The upper barrier level is 1.2, and its observation dates are {15, 36, 57, 78, 99, 120, 141, 162,
183, 204, 225, 246}, resembling a monthly monitoring structure. The lower barrier is monitored
daily, and the barrier level is 0.9. We further assume that the notional value of the option is 100,
that the payoff at maturity is 10% of the notional value, namely 10, and that

r = 0.02, q = 0, σ = 0.2.
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In practice, this type of barrier structure is common for snowball options and their variants. Note
that the lower barrier of a snowball option is a knock-in barrier, but the option can be priced as the
difference between an up-and-out barrier option and a double-barrier knock-out option using PDE
methods. Tables 1–8 present results from convergence studies of the four standard options (I-IV) priced
using the original C-N method. Since our purpose here is to examine numerically the relationship
between convergence rates and smoothness of terminal conditions, the analytically modified C-N
method is not used which otherwise would produce (almost) exact pricing results for the first three
options (I-III). All four options are priced on the interval2

I0 := [S0e−6σ, S0e6σ] ≈ [0.33131363, 3.65212862],

with a time step k = (TM − T0)/N = 1/N and a mesh size h = k, where N ranges from 10 to 5,120.
For the first three options, exact option values are available from analytical formulas, while for the
fourth option, the option value is estimated on a finer grid with N = 10, 240. For each numerical
approximation v0,j to V0,j := V(T0, S0e(j−P)h) calculated at T0 on the computational grid, two types of
errors are defined:

L2-error =
( 2P

∑
j=0

|v0,j − V0,j|2h
)1/2

,

L∞-error = max
j=0,1,...,2P

|v0,j − V0,j|.

The numerical order of an error (L2 or L∞) ϵN calculated on a grid of size N is estimated using the
formula:

pN =
ln(ϵN/2/ϵN)

ln 2
.

Table 1. Unmodified C-N on a cash-or-nothing call option.

Time steps N L2-error L2-order L∞-error L∞-order

10 5.8171 × 100 − 9.8610 × 100 −
20 2.9073 × 100 1.0006 4.8658 × 100 1.0191
40 1.4550 × 100 0.9986 2.4428 × 100 0.9941
80 7.2763 × 10−1 0.9997 1.2224 × 100 0.9988

160 3.6379 × 10−1 1.0001 6.1104 × 10−1 1.0004
320 1.8189 × 10−1 1.0000 3.0550 × 10−1 1.0001
640 9.0947 × 10−2 1.0000 1.5275 × 10−1 1.0000

1280 4.5473 × 10−2 1.0000 7.6376 × 10−2 1.0000
2560 2.2737 × 10−2 1.0000 3.8188 × 10−2 1.0000
5120 1.1368 × 10−2 1.0000 1.9094 × 10−2 1.0000

Exact option value at S0: 32.5191.

2 Note that the actual computational domain is [ln(S0)− 6σ, ln(S0) + 6σ].
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Table 2. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding strike
price; refinement ratio: 10% of grid points; refinement factor: 2) on a cash-or-nothing call option.

Time steps N L2-error L2-order L∞-error L∞-order

10 3.1317 × 100 − 5.2137 × 100 −
20 1.4875 × 100 1.0741 2.4860 × 100 1.0685
40 7.2892 × 10−1 1.0290 1.2223 × 100 1.0242
80 3.6387 × 10−1 1.0023 6.1124 × 10−1 0.9998
160 1.8189 × 10−1 1.0003 3.0551 × 10−1 1.0005
320 9.0947 × 10−2 1.0000 1.5275 × 10−1 1.0000
640 4.5473 × 10−2 1.0000 7.6376 × 10−2 1.0000

1280 2.2737 × 10−2 1.0000 3.8188 × 10−2 1.0000
2560 1.1368 × 10−2 1.0000 1.9094 × 10−2 1.0000
5120 5.6842 × 10−3 1.0000 9.5470 × 10−3 1.0000

Exact option value at S0: 32.5191.

Table 3. Unmodified C-N on an asset-or-nothing call option.

Time steps N L2-error L2-order L∞-error L∞-order

10 6.9281 × 100 − 1.1685 × 101 −
20 3.4987 × 100 0.9856 5.8427 × 100 0.9999
40 1.7599 × 100 0.9913 2.9519 × 100 0.9850
80 8.7137 × 10−1 1.0142 1.4632 × 100 1.0125

160 4.3621 × 10−1 0.9983 7.3249 × 10−1 0.9982
320 2.1824 × 10−1 0.9991 3.6650 × 10−1 0.9990
640 1.0915 × 10−1 0.9995 1.8332 × 10−1 0.9995

1280 5.4586 × 10−2 0.9998 9.1678 × 10−2 0.9997
2560 2.7285 × 10−2 1.0004 4.5825 × 10−2 1.0004
5120 1.3643 × 10−2 0.9999 2.2914 × 10−2 0.9999

Exact option value at S0: 44.7791.

Table 4. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding strike
price; refinement ratio: 10% of grid points; refinement factor: 2) on an asset-or-nothing call option.

Time steps N L2-error L2-order L∞-error L∞-order

10 3.7822 × 100 − 6.2695 × 100 −
20 1.8067 × 100 1.0659 3.0115 × 100 1.0579
40 8.7547 × 10−1 1.0452 1.4660 × 100 1.0386
80 4.3694 × 10−1 1.0026 7.3348 × 10−1 0.9991
160 2.1841 × 10−1 1.0004 3.6672 × 10−1 1.0001
320 1.0920 × 10−1 1.0000 1.8338 × 10−1 0.9998
640 5.4600 × 10−2 1.0000 9.1696 × 10−2 0.9999

1280 2.7289 × 10−2 1.0006 4.5831 × 10−2 1.0005
2560 1.3644 × 10−2 1.0000 2.2916 × 10−2 1.0000
5120 6.8213 × 10−3 1.0002 1.1457 × 10−2 1.0001

Exact option value at S0: 44.7791.
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Table 5. Unmodified C-N on a vanilla call option.

Time steps N L2-error L2-order L∞-error L∞-order

10 7.9800 × 10−2 − 1.6636 × 10−1 −
20 1.0897 × 10−2 2.8725 1.5701 × 10−2 3.4054
40 3.3141 × 10−3 1.7172 5.0951 × 10−3 1.6237
80 1.9199 × 10−3 0.7876 3.7769 × 10−3 0.4319
160 3.9259 × 10−4 2.2900 7.8586 × 10−4 2.2649
320 6.3321 × 10−5 2.6323 1.2798 × 10−4 2.6184
640 1.0403 × 10−5 2.6057 1.6422 × 10−5 2.9622

1280 2.8782 × 10−6 1.8537 4.5740 × 10−6 1.8441
2560 6.5587 × 10−7 2.1337 9.9775 × 10−7 2.1967
5120 2.0410 × 10−7 1.6841 3.1296 × 10−7 1.6727

Exact option value at S0: 5.75609968.

Table 6. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding strike
price; refinement ratio: 10% of grid points; refinement factor: 2) on a vanilla call option.

Time steps N L2-error L2-order L∞-error L∞-order

10 3.2530 × 10−2 − 4.6209 × 10−2 −
20 1.2858 × 10−2 1.3391 1.6971 × 10−2 1.4451
40 2.2103 × 10−3 2.5404 3.4654 × 10−3 2.2920
80 5.9012 × 10−4 1.9052 9.1791 × 10−4 1.9166
160 1.7804 × 10−4 1.7288 2.6539 × 10−4 1.7902
320 5.9818 × 10−5 1.5736 8.2063 × 10−5 1.6933
640 1.7355 × 10−5 1.7852 2.3272 × 10−5 1.8181

1280 4.5091 × 10−6 1.9444 6.1307 × 10−6 1.9245
2560 1.4927 × 10−6 1.5949 1.9607 × 10−6 1.6447
5120 3.0864 × 10−7 2.2739 4.3884 × 10−7 2.1596

Exact option value at S0: 5.75609968.

Table 7. Unmodified C-N on an exotic call option with quadratic payoff.

Time steps N L2-error L2-order L∞-error L∞-order

10 2.8546 × 10−1 − 5.3502 × 10−1 −
20 7.1561 × 10−2 1.9961 1.3917 × 10−1 1.9428
40 1.7810 × 10−2 2.0065 3.4844 × 10−2 1.9978
80 4.4342 × 10−3 2.0059 8.7139 × 10−3 1.9995
160 1.1058 × 10−3 2.0035 2.1799 × 10−3 1.9990
320 2.7600 × 10−4 2.0024 5.4472 × 10−4 2.0007
640 6.8835 × 10−5 2.0034 1.3591 × 10−4 2.0028

1280 1.7084 × 10−5 2.0105 3.3713 × 10−5 2.0113
2560 4.1531 × 10−6 2.0404 8.1676 × 10−6 2.0453
5120 9.0598 × 10−7 2.1967 1.7631 × 10−6 2.2118

Estimated option value at S0: 1.80238666.
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Table 8. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding strike
price; refinement ratio: 10% of grid points; refinement factor: 2) on an exotic call option with quadratic
payoff.

Time steps N L2-error L2-order L∞-error L∞-order

10 2.8384 × 10−1 − 5.3502 × 10−1 −
20 7.1193 × 10−2 1.9953 1.3917 × 10−1 1.9428
40 1.7723 × 10−2 2.0061 3.4844 × 10−2 1.9978
80 4.4128 × 10−3 2.0059 8.7139 × 10−3 1.9995
160 1.1009 × 10−3 2.0030 2.1799 × 10−3 1.9990
320 2.7493 × 10−4 2.0016 5.4472 × 10−4 2.0007
640 6.8627 × 10−5 2.0022 1.3591 × 10−4 2.0028

1280 1.7053 × 10−5 2.0087 3.3713 × 10−5 2.0113
2560 4.1528 × 10−6 2.0379 8.1676 × 10−6 2.0453
5120 9.0774 × 10−7 2.1937 1.7631 × 10−6 2.2118

Estimated option value at S0: 1.80238670.

It can be observed from these tables that:

• For the first two options (I-II), the C-N method converges at only first order due to the discon-
tinuity at S = K+

M contained in the terminal conditions. On the other hand, mesh adaptation
around the discontinuity S = K+

M, where option prices are expected to undergo the most rapid
variation, helps reduce the error by a factor of n where n = 2 here is the refinement factor.

• For the next two options (III-IV), the C-N method converges at a higher order due to the
improved smoothness of the terminal condition at S = K+

M. The precise relationship between the
convergence rate and the smoothness of the terminal condition is the subject of a future research,
but these examples seem to suggest that a C1 terminal condition is already sufficient to restore
the second-order accuracy of the C-N method (see Remark 3.2).

• When mesh adaptation is applied to the third option, the error first improves by roughly a
factor of n = 2 up until N = 160, after which no significant improvement in error is observed
(Table 6). This is due to the fact that the terminal condition in this case has a higher degree of
smoothness at S = K+

M (i.e., C0), as a result of which the largest error on a sufficiently fine grid
does not concentrate around S = K+

M, and hence is not captured by the adaptive mesh which
surrounds the strike price S = K+

M. Similar observations apply to the fourth option, whose
terminal condition has an even higher degree of smoothness at S = K+

M (i.e., C1) and for which
no improvement in error is observed for the adaptive mesh calculation at all.

• Despite these observations, the mesh adaptation technique still turns out to be useful when
applied to discretely monitored options with high monitoring frequencies, where errors near
the barriers caused by the non-smoothness of the terminal conditions dominate the calculations
(Section 3.1, 3.3).

Remark 3.1. Since the terminal conditions V(TM, S) for the first two options contain a discontinuity at
S = K+

M and since the C-N method, with or without analytical modifications, is non-dissipative, the
following modification is needed in discrete approximations vN,j to V(TM, S) so that the convergence
of vN,j to V(TM, S) in a suitable weak sense (e.g., in the sense of Hs for some s > 0), and hence the
convergence of v0,j to V(T0, S), can be ensured: let j0 be chosen such that

ln(S0) + (j0 − P)h ≤ ln(K+
M) < ln(S0) + (j0 + 1 − P)h,

or equivalently, such that

j0 ≤ P +
1
h

ln
(

K+
M

S0

)
=: δ0 < j0 + 1.
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Then for the first option, we set

vN,j =


0, j < j0
b+M, j > j0
b+M(j0 + 1 − δ0), j = j0

,

and for the second option, we set

vN,j =


0, j < j0
a+MS0e(j−P)h, j > j0
1
2 a+M

[
S0e(j0+1−P)h + K+

M
]
(j0 + 1 − δ0), j = j0

.

For the next two options, the terminal conditions V(TM, S) are continuous throughout I0 and hence
such modification is not needed. One may simply take

vN,j = V(TM, S0e(j−P)h).

For dissipative schemes such as FTCS and TR-BDF2, the above modification is not needed either.

Remark 3.2. We have carried out a preliminary error analysis for the proposed method and found that
the convergence rate corresponding to a discontinuous, C0, and C1 terminal condition is 1/3, 1, and
5/3, respectively. However, these results are likely suboptimal because they didn’t make full use of the
dissipation properties of the Black-Scholes PDE.

Tables 9–14 present results from convergence studies of the discretely monitored option (V) priced
using both the original and the analytically modified C-N methods. To examine more closely the
relationship between the convergence rate and the smoothness of the terminal conditions, we further
distinguish between the following two cases for the analytically modified C-N method:

• A C0-modification at the barriers:

Um(Tm, Z) =


V(Tm, eZ), ln(K−

m) < Z < ln(K+
m)

Ṽ−
m , Z ≤ ln(K−

m)

Ṽ+
m , Z ≥ ln(K+

m)

,

which is (2.12b) with Ṽ+
S,m = Ṽ−

S,m = 0 and which is only continuous at the barriers.
• A C1-modification at the barriers:

Um(Tm, Z) =


V(Tm, eZ), ln(K−

m) < Z < ln(K+
m)

Ṽ−
S,m(e

Z − K−
m) + Ṽ−

m , Z ≤ ln(K−
m)

Ṽ+
S,m(e

Z − K+
m) + Ṽ+

m , Z ≥ ln(K+
m)

,

which is just (2.12b) and is continuously differentiable at the barriers.

For all three methods, namely, original C-N and analytically modified C-N with C0- and C1-modifications,
the option is priced on the same interval as in the previous cases:

I0 := [S0e−6σ, S0e6σ] ≈ [0.33131363, 3.65212862].

The calculations are advanced with a time step k = 1/N0, i.e., with N0 time steps per business day,
and with a mesh size h = k where N0 ranges from 1 to 64. Since the exact option values V(T0, S) are
not available, reference values V0,j against which all numerical approximations v0,j are compared are
calculated on a uniform fine grid using the analytically modified C-N method with a C1-modification
at the barriers and with N0 = 128 time steps per business day.
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Table 9. Unmodified C-N on a discretely monitored option.

Time steps
per day N0

L2-error L2-order L∞-error L∞-order

1 3.6069 × 10−2 − 7.7073 × 10−2 −
2 2.9071 × 10−2 0.3112 1.0085 × 10−1 −0.3879
4 1.3482 × 10−2 1.1085 5.5888 × 10−2 0.8515
8 7.4259 × 10−3 0.8604 7.8729 × 10−2 −0.4944

16 3.4649 × 10−3 1.0997 4.5890 × 10−2 0.7787
32 2.0030 × 10−3 0.7907 7.1400 × 10−2 −0.6377
64 9.7519 × 10−4 1.0384 4.3468 × 10−2 0.7160

Reference option value at S0: 1.83652751.

Table 10. Unmodified C-N with mesh adaptation (refinement region: grid points surrounding barriers;
refinement ratio: 10% of grid points; refinement factor: 2) on a discretely monitored option.

Time steps
per day N0

L2-error L2-order L∞-error L∞-order

1 2.9450 × 10−2 − 1.0086 × 10−1 −
2 1.3587 × 10−2 1.1161 5.5891 × 10−2 0.8516
4 7.2129 × 10−3 0.9135 1.5366 × 10−2 1.8628
8 3.5757 × 10−3 1.0123 4.5890 × 10−2 −1.5784

16 1.8192 × 10−3 0.9749 1.4147 × 10−2 1.6977
32 1.0506 × 10−3 0.7922 4.3468 × 10−2 −1.6195
64 4.5819 × 10−4 1.1972 1.5059 × 10−2 1.5293

Reference option value at S0: 1.83652751.

Table 11. Modified C-N (order of modification: C0) on a discretely monitored option.

Time steps
per day N0

L2-error L2-order L∞-error L∞-order

1 9.1679 × 10−4 − 1.0413 × 10−2 −
2 5.1266 × 10−4 0.8386 8.4570 × 10−3 0.3002
4 1.4637 × 10−4 1.8084 2.5410 × 10−3 1.7347
8 6.3903 × 10−5 1.1957 2.2136 × 10−3 0.1990

16 1.7888 × 10−5 1.8369 7.1738 × 10−4 1.6256
32 7.8390 × 10−6 1.1902 5.4218 × 10−4 0.4040
64 2.2096 × 10−6 1.8269 2.0286 × 10−4 1.4183

Reference option value at S0: 1.83652751.

Table 12. Modified C-N (order of modification: C0) with mesh adaptation (refinement region: grid
points surrounding barriers; refinement ratio: 10% of grid points; refinement factor: 2) on a discretely
monitored option.

Time steps
per day N0

L2-error L2-order L∞-error L∞-order

1 6.0032 × 10−4 − 8.4504 × 10−3 −
2 1.2291 × 10−4 2.2881 2.0014 × 10−3 2.0780
4 5.0400 × 10−5 1.2862 1.3139 × 10−3 0.6072
8 1.3808 × 10−5 1.8679 4.9008 × 10−4 1.4227

16 6.3195 × 10−6 1.1276 3.2296 × 10−4 0.6017
32 1.3910 × 10−6 2.1837 9.1382 × 10−5 1.8214
64 8.1619 × 10−7 0.7691 7.7478 × 10−5 0.2381

Reference option value at S0: 1.83652751.
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Table 13. Modified C-N (order of modification: C1) on a discretely monitored option.

Time steps
per day N0

L2-error L2-order L∞-error L∞-order

1 3.4536 × 10−4 − 1.6624 × 10−3 −
2 4.8800 × 10−5 2.8232 3.9060 × 10−4 2.0895
4 1.0948 × 10−5 2.1561 1.4502 × 10−4 1.4294
8 2.8768 × 10−6 1.9282 2.8341 × 10−5 2.3553

16 8.0608 × 10−7 1.8355 8.4779 × 10−6 1.7411
32 2.0010 × 10−7 2.0102 1.8274 × 10−6 2.2140
64 4.2000 × 10−8 2.2523 4.8192 × 10−7 1.9229

Reference option value at S0: 1.83652751.

Table 14. Modified C-N (order of modification: C1) with mesh adaptation (refinement region: grid
points surrounding barriers; refinement ratio: 15% of grid points; refinement factor: 2) on a discretely
monitored option.

Time steps
per day N0

L2-error L2-order L∞-error L∞-order

1 4.8584 × 10−5 − 3.9005 × 10−4 −
2 1.2210 × 10−5 1.9925 1.4489 × 10−4 1.4288
4 3.0740 × 10−6 1.9899 2.8372 × 10−5 2.3524
8 8.6209 × 10−7 1.8342 8.4697 × 10−6 1.7441

16 2.1269 × 10−7 2.0191 1.8294 × 10−6 2.2110
32 4.5269 × 10−8 2.2322 4.8141 × 10−7 1.9260
64 9.7158 × 10−10 5.5421 3.4793 × 10−9 7.1123

Reference option value at S0: 1.83652751.

It can be observed from these tables that:

• For the original C-N method, the numerical approximations v0,j converge to the reference values
V0,j in L2 at an average rate of roughly 1 but do not converge in L∞ at all (Table 9). This reduced
convergence rate or even lack of convergence is clearly a consequence of the discontinuities at
the barriers contained in the terminal conditions. On the other hand, mesh adaptation around
the barriers, where option prices are expected to undergo the most rapid variation, helps reduce
the error by a factor of n where n = 2 here is the refinement factor (Table 10).

• For the analytically modified C-N method, with either C0- or C1-modifications, the numerical
approximations v0,j converge to the reference values V0,j in both L2 and L∞ and do so at a higher
rate due to the improved smoothness of the terminal conditions at the barriers. More specifically,
with C0-modifications, v0,j converge to V0,j in L2 at an average rate of roughly 3/2 and in L∞ at
an average rate of roughly 1 (Table 11), while with C1-modifications, the convergence in both
L2 and L∞ has an average rate of roughly 2 (Table 13). In other words, these examples seem
to suggest that a C1-modification to the terminal conditions is already sufficient to restore the
second-order accuracy of the C-N method.

• When mesh adaptation is applied with C0-modifications, both the L2- and L∞-errors improve
by roughly a factor of n3/2 = 23/2 ≈ 2.8284 for all N0, demonstrating the effectiveness of the
adaptive mesh (Table 12).

• When mesh adaptation is applied with C1-modifications, the numerical approximations v0,j
calculated on the finest grid with N0 = 64 are almost identical with the reference values V0,j
calculated on the uniform fine grid with N0 = 128, as suggested by the unusually small errors (last
row, Table 14). On the other hand, for numerical approximations v0,j calculated on coarser grids
with N0 ≤ 32, both the L2- and L∞-errors improve by roughly a factor of n2 = 22 = 4 for all N0

when mesh adaptation is enabled. This provides another strong evidence for the effectiveness of
the adaptive mesh, especially on discretely monitored options with high monitoring frequencies.
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• We remark that for mesh adaptation applied with C1-modifications, a sufficiently large area
around the barriers needs to be refined in order for the adaptive mesh to be effective, in view
of the improved smoothness of the terminal conditions near the barriers. Indeed, when the
refinement ratio in Table 14 was reduced from 15% to 10%, meaning only the (2P + 1)× 10%
grid points around each barrier are refined, the resulting adaptive mesh was only able to
produce marginal improvement in error for N0 ≤ 4 and was not able to produce any meaningful
improvement in error at all for all larger N0. This is not an issue when mesh adaptation is applied
with C0-modifications or with no analytical modifications, where the errors near the barriers
caused by the non-smoothness of the terminal conditions dominate the calculations.

3.2. Comparison with other Numerical Methods

To assess the efficacy and efficiency of the proposed method on options with discretely monitored
structures, we next apply other popular, (formally) second-order numerical methods such as C-N with
Rannacher time-stepping (CN-RAN) and trapezoidal rule with second-order backward differentiation
formula (TR-BDF2) to the discretely monitored option introduced in the previous section. Both
methods (CN-RAN and TR-BDF2) have been applied to the four standard options introduced above,
and their convergence properties have been found to be very similar to those of the original C-N
method (Tables 1, 3, 5 and 7).

Tables 15 and 16 present results from convergence studies of the discretely monitored option
priced using the CN-RAN and the TR-BDF2 methods. It can be observed from these tables that:

• Both methods exhibit very similar convergence behaviors and converge in both L2 and L∞ at an
average rate of roughly 1. This shows, in particular, that both methods lose their second-order
accuracy when applied to problems containing discontinuities.

• For a given time step k and mesh size h, both methods produce results that are more accurate
than the original C-N method (Table 9) but less accurate than the analytically modified C-N
method (Tables 11 and 13).

Table 15. CN-RAN (with the first two C-N steps after each monitoring point replaced by four half-step
FTCS steps) on a discretely monitored option.

Time steps
per day N0

L2-error L2-order L∞-error L∞-order

1 5.7654 × 10−2 − 1.2330 × 10−1 −
2 2.7923 × 10−2 1.0460 5.9944 × 10−2 1.0405
4 1.2227 × 10−2 1.1914 2.6136 × 10−2 1.1976
8 5.6326 × 10−3 1.1181 1.2007 × 10−2 1.1222

16 2.7276 × 10−3 1.0462 5.8052 × 10−3 1.0485
32 1.3349 × 10−3 1.0309 2.8390 × 10−3 1.0319
64 6.6204 × 10−4 1.0118 1.4074 × 10−3 1.0124

Reference option value at S0: 1.83652751.

Table 16. TR-BDF2 (with α = 2 −
√

2) on a discretely monitored option.

Time steps
per day N0

L2-error L2-order L∞-error L∞-order

1 4.1522 × 10−2 − 8.7929 × 10−2 −
2 2.1859 × 10−2 0.9256 4.6308 × 10−2 0.9251
4 1.0773 × 10−2 1.0208 2.2860 × 10−2 1.0184
8 5.2753 × 10−3 1.0301 1.1204 × 10−2 1.0289

16 2.6388 × 10−3 0.9994 5.6054 × 10−3 0.9991
32 1.3128 × 10−3 1.0072 2.7893 × 10−3 1.0069
64 6.5650 × 10−4 0.9997 1.3950 × 10−3 0.9997

Reference option value at S0: 1.83652751.
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As a more direct comparison of the different numerical methods studied in the literature (including
in this work) and commonly used in practice, we list in Table 17 the pricing results of the following
five methods applied to the discretely monitored option introduced in the previous section:

• Analytically modified C-N with a C1-modification (CN-C1).
• C-N with Rannacher time-stepping (CN-RAN).
• Trapezoidal rule with second-order backward differentiation formula (TR-BDF2).
• Forward-time centered-space (or implicit Euler) (FTCS).
• Monte-Carlo simulations (MC).

Table 17. Comparison of different methods on a discretely monitored option.

Time steps CN-C1 CN-RAN

per day N0 V(T0, S0) error CPU time V(T0, S0) error CPU time

1 6.7233 × 10−4 0.5618 1.1520 × 10−1 0.1195
2 3.1867 × 10−5 0.6440 5.5935 × 10−2 0.2298
4 1.9737 × 10−5 0.8517 2.4723 × 10−2 0.3972
8 6.3714 × 10−6 1.4262 1.1473 × 10−2 0.8562

16 1.8043 × 10−6 2.8770 5.5642 × 10−3 2.1088
32 4.5282 × 10−7 7.3977 2.7281 × 10−3 8.5549
64 9.4676 × 10−8 23.4999 1.3534 × 10−3 46.2784

Reference option value at S0: 1.83652751.

Time steps TR-BDF2 FTCS

per day N0 V(T0, S0) error CPU time V(T0, S0) error CPU time

1 8.5771 × 10−2 0.1145 1.3770 × 10−1 0.0648
2 4.4429 × 10−2 0.2203 6.7278 × 10−2 0.1141
4 2.1929 × 10−2 0.4887 3.3502 × 10−2 0.2415
8 1.0782 × 10−2 1.2014 1.6546 × 10−2 0.5837

16 5.3920 × 10−3 3.8852 8.2700 × 10−3 1.6694
32 2.6851 × 10−3 19.8665 4.1230 × 10−3 5.1475
64 1.3427 × 10−3 96.9560 2.0614 × 10−3 21.6645

Reference option value at S0: 1.83652751.

Number MC

of paths V(T0, S0) error CPU time

40000 2.6953 × 10−2 13.1037
60000 5.6742 × 10−3 17.2020
80000 6.3685 × 10−3 22.7554

100000 3.2074 × 10−3 28.0916
120000 1.6717 × 10−3 33.6178
140000 3.2980 × 10−4 38.8197
160000 3.2803 × 10−3 44.4004

Reference option value at S0: 1.83652751.

For each method, the (pointwise) error of the option value at S0, together with the CPU time (in
seconds)3 used to obtain the pricing result, are shown for different time steps N0. Each CPU time is
measured by running the corresponding code 5 times and dividing the total CPU time by 5. It can be
observed from the table that for a given level of accuracy, the CN-C1 method requires the least amount
of CPU time while all other four methods typically require significantly more CPU time. As a specific
example, consider the accuracy level of 2 × 10−3. A more refined study shows that to achieve this level
of accuracy, the CN-C1 method requires less than 0.5618 seconds while the other four methods require

• 16.7132 seconds (CN-RAN),

3 The code is developed in Python and is run on a personal computer.
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• 36.1549 seconds (TR-BDF2),
• 22.8074 seconds (FTCS), and
• 26.4529 seconds (MC),

respectively (Table 18). This confirms the efficiency of the CN-C1 method.

Table 18. CPU time (in seconds) required to achieve an accuracy level of 2 × 10−3 by different methods
on a discretely monitored option.

Time steps CN-C1 Time steps CN-RAN

per day N0 V(T0, S0) error CPU time per day N0 V(T0, S0) error CPU time

1 6.7233 × 10−4 0.5618 43 2.0210 × 10−3 16.2035
− − − 44 1.9749 × 10−3 17.3225
− − − 43.4555∗ 2.0000 × 10−3 16.7132∗

Reference option value at S0: 1.83652751.
∗: Estimates obtained from linear interpolation.

Time steps TR-BDF2 Time steps FTCS

per day N0 V(T0, S0) error CPU time per day N0 V(T0, S0) error CPU time

42 2.0449 × 10−3 34.4220 65 2.0309 × 10−3 21.8704
43 1.9971 × 10−3 36.2668 66 1.9978 × 10−3 22.8741

42.9393∗ 2.0000 × 10−3 36.1549∗ 65.9335∗ 2.0000 × 10−3 22.8074∗

Reference option value at S0: 1.83652751.
∗: Estimates obtained from linear interpolation.

Number MC

of paths V(T0, S0) error CPU time

108300 2.1369 × 10−3 26.7155
108400 1.6615 × 10−3 25.8035

108328.80∗ 2.0000 × 10−3 26.4529∗

Reference option value at S0: 1.83652751.
∗: Estimates obtained from linear interpolation.

Remark 3.3. It may appear from these results that MC is even more efficient that the TR-BDF2 method.
The reality is that, if higher accuracy is demanded (higher than 2 × 10−3), then the TR-BDF2 method
will definitely outperform MC, even though it is relatively slow compared with other finite difference
methods considered here.

3.3. Effectiveness of Adaptive Mesh Refinement

We also demonstrate the effectiveness of the mesh adaptation technique by applying the CN-C1
method to the discretely monitored option introduced in the previous sections, both with and without
mesh adaptation. The result shows that, with a mesh refinement factor of n = 8, an adaptive mesh
calculation with N0 time steps per business day is able to achieve an accuracy level comparable to that
of a uniform grid calculation with 8N0 time steps per business day, with a more than 60% save in CPU
time (Table 19). This confirms the efficiency of the mesh adaptation technique.
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Table 19. Comparison of CN-C1 with and without mesh adaptation (refinement region: grid points
surrounding barriers; refinement ratio: 15% of grid points; refinement factor: 8) on a discretely
monitored option.

Uniform grid with Adaptive mesh with Save in
N0 8N0 time steps per day N0 time steps per day CPU time

V(T0, S0) error CPU time τ0 V(T0, S0) error CPU time τ1 (τ0 − τ1)/τ0

1 6.3714 × 10−6 1.4262 1.3181 × 10−5 0.5203 63.52%
2 1.8043 × 10−6 2.8770 3.6323 × 10−6 1.0140 64.75%
4 4.5282 × 10−7 7.3977 9.2715 × 10−7 2.6514 64.16%
8 9.4676 × 10−8 23.4999 2.1480 × 10−7 7.7067 67.21%

Reference option value at S0: 1.83652751.

3.4. Approximations to Derivatives

It is well known that finite difference methods applied to options with non-smooth terminal
conditions tend to produce poor approximations to option Greeks such as Delta ∆ and Gamma Γ. In
fact, as demonstrated in [11], when the original C-N method is applied to a European call option, the
discrete approximations to ∆ and Γ both fail to converge, and the discrete approximation to Γ even
grows unboundedly when the computational grid is refined. To examine the quality of the discrete
approximations to option Greeks produced by the proposed method, we calculate ∆ and Γ for the
discretely monitored option introduced in the previous section, using the formulas

∆0,j ≈
V0,j+1 − V0,j−1

2hSj
,

Γ0,j ≈
V0,j+1 − 2V0,j + V0,j−1

h2S2
j

−
V0,j+1 − V0,j−1

2hS2
j

,

where V0,j are the same reference option values calculated on a uniform fine grid using the CN-C1
method with N0 = 128 time steps per business day. The approximated Greeks are shown in Figures
2 and 3 together with the option values, where it can be seen that while the discrete approximation
to ∆ is free of oscillations, the discrete approximation to Γ contains a small amount of oscillations
near the lower barrier 0.9 which is monitored daily. These oscillations are likely consequences of the
O(h2) errors introduced by the linear interpolation approximations to V, ∂V/∂S at the barriers (see
(2.17)) which have been significantly amplified by the high-frequency monitoring at the lower barrier.
To remove these high-wavenumber oscillations, we replace the first C-N step after each monitoring
point by two half-step dissipative steps such as FTCS (implicit Euler) steps and apply the resulting
method, coded CN-C1-RAN1, again to the discretely monitored option introduced in the previous
section. The results (Figure 4) demonstrate the effectiveness of the modified method in the elimination
of high-wavenumber oscillations and also confirm the second-order convergence of both the option
value V and option Greeks ∆, Γ in both L2 and L∞ (Table 20).
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Figure 2. Option values V (top) and Delta ∆ (bottom) estimated using the CN-C1 method on a uniform
fine grid with N0 = 128 time steps per day.

Figure 3. Option Gamma Γ (top) estimated using the CN-C1 method on a uniform fine grid with
N0 = 128 time steps per day and a closeup of the Γ plot (bottom).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 November 2024 doi:10.20944/preprints202411.2426.v1

https://doi.org/10.20944/preprints202411.2426.v1


26 of 28

Figure 4. Option Gamma Γ (top) estimated using the CN-C1-RAN1 method on a uniform fine grid
with N0 = 128 time steps per day and a closeup of the Γ plot (bottom).

Table 20. CN-C1-RAN1 on a discretely monitored option.

Time steps V

per day N0 L2-error L2-order L∞-error L∞-order

1 4.9821 × 10−3 − 1.1748 × 10−2 −
2 1.2441 × 10−3 2.0017 2.9359 × 10−3 2.0006
4 3.1037 × 10−4 2.0031 7.3259 × 10−4 2.0027
8 7.6925 × 10−5 2.0124 1.8167 × 10−4 2.0117
16 1.9033 × 10−5 2.0150 4.4944 × 10−5 2.0151
32 4.5273 × 10−6 2.0718 1.0692 × 10−5 2.0716
64 9.0650 × 10−7 2.3203 2.1407 × 10−6 2.3203

Reference option value at S0: 1.83652817.

Time steps ∆

per day N0 L2-error L2-order L∞-error L∞-order

1 5.7753 × 10−2 − 2.9170 × 10−1 −
2 1.3173 × 10−2 2.1323 6.8630 × 10−2 2.0876
4 3.2319 × 10−3 2.0272 1.5790 × 10−2 2.1198
8 8.0164 × 10−4 2.0113 3.8938 × 10−3 2.0198
16 1.9799 × 10−4 2.0175 9.6006 × 10−4 2.0200
32 4.7122 × 10−5 2.0710 2.2842 × 10−4 2.0714
64 9.4293 × 10−6 2.3212 4.5697 × 10−5 2.3215

Reference option Delta at S0: −7.15943969.

Time steps Γ

per day N0 L2-error L2-order L∞-error L∞-order

1 5.2142 × 100 − 4.5269 × 101 −
2 1.0219 × 100 2.3512 7.7774 × 100 2.5411
4 2.1477 × 10−1 2.2504 1.7798 × 100 2.1275
8 4.9782 × 10−2 2.1091 4.9207 × 10−1 1.8548
16 1.1808 × 10−2 2.0758 1.2036 × 10−1 2.0316
32 2.7632 × 10−3 2.0954 3.1979 × 10−2 1.9121
64 5.5058 × 10−4 2.3273 6.8740 × 10−3 2.2179

Reference option Gamma at S0: −135.82019205.

Remark 3.4. When applied with mesh adaptation, the CN-C1-RAN1 method produces option Greeks
∆, Γ converging at reduced convergence rates, most likely due to the small mismatches among different
parts of Ûm(tl−1, Zj) introduced by the direct transfer of the fine grid solutions W±m

l−1,0 to coarse grid
(see (2.27)). While this issue may be addressed using, say, a high-order smoothing operator, we decide
not to pursue this direction further but instead recommend the readers to consider CN-C1-RAN1
(without mesh adaptation) if accurate approximation to option Greeks is important and to consider
CN-C1 (with or without mesh adaptation) if option Greeks are not needed or not important.
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4. Discussion

We have introduced an analytical modification for finite difference methods used in the pricing of
discretely monitored options in the Black-Scholes framework. The modified finite difference methods
can be used to price single and double barrier options, autocallable structured products, and snowball
options. We have demonstrated the efficacy and efficiency of the proposed method on the traditional
Crank-Nicolson scheme which, in its analytically modified form CN-C1 or CN-C1-RAN1, is capable of
producing much more accurate pricing results with much lower CPU cost than other popular option
pricing methods such as CN-RAN, TR-BDF2, and Monte-Carlo simulations. We have also introduced a
mesh adaptation technique for the analytically modified Crank-Nicolson method, which is capable of
achieving an accuracy level comparable to that of a uniform fine grid calculation with a more than 60%
improvement in computational speed. We strongly believe that the proposed method and the related
ideas will prove a valuable tool for practitioners working with the aforementioned types of options.

This work can be extended in several directions. First, it is desirable to carry out a rigorous
error analysis and obtain a precise quantification of the relationship between convergence rates and
smoothness of terminal conditions for the proposed method. We have done some preliminary analysis
along this direction (Remark 3.2) and the full analysis is currently a work in progress. Second, the
proposed method has assumed a volatility that is independent of the asset price S, which may be
too restrictive in some practical situations. It is desirable to relax this assumption and apply similar
analytical modifications to option pricing problems with variable (in S) volatility. This is the subject of
a current research and the results will be reported in a forthcoming paper.
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