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Article

Primordial Black Holes in the Pre-Inflationary Period,
the Probabilities of Their Occurrence Taking Into
Account Quantum-Gravitational Corrections, and
Some Cosmological Implications

Alexander Shalyt-Margolin *

Research Institute for Nuclear Problems,Belarusian State University, 11 Bobruiskaya str., Minsk 220040, Belarus;
a.shalyt@mail.ru; alexm@hep.by

Abstract: In the last decades the primordial black holes (pbhs) have attracted much attention of cosmologists 
and astrophysicists. This is associated with origination of such black holes in the early Universe as a result of a 
gravitational collapse of the high-density matter, making them natural ”detectors” of the processes involved. In 
inflationary cosmology of particular importance are pbhs originated during the pre-inflationary pe riod. And, 
since they are small and generated at the energies close to the Planck energies, for them we should take into 
consideration the quantum-gravitational corrections (qgcs). In turn, these corrections change (shift) the inflationary 
parameters. The paper presents a study of the above-mentioned shifts with regard to these corrections for different 
scenarios. It is shown that probabilities of occurrence of the pbhs under study with due regard for the given 
qgcs are rising as compared to the semiclassical consideration. Besides, high-energy deformations of Friedmann 
Equations created on the basis of these corrections have been derived for different patterns. Conclusion contains 
the general remarks concerning the above-mentioned qgcs for cosmological parameters and perturbations due to 
inflation; the steps for their investigation are outlined and the key problems of such a study are formulated.

Keywords: keyprimordial black holes; inflationary cosmology; quantum-gravitational corrections

PACS: 11.10.-z, 11.15.Ha, 12.38.Bx

1. Introduction

In this paper the inclusion of the quantum-gravitational corrections (qgcs) for primordial black
holes (pbhs) in the early Universe during the preinflationary era is studied. In [1] a semiclassical ap-
proximation was used to study the problem of scalar perturbations due to such pbhs. But, considering
that all the processes in this case are proceeding at very high energies E close to the Planckian E ≃ Ep,
the inclusion of qgcs for these black holes in this pattern is necessary. The paper presents an explicit
solution of this problem; specifically, it is shown how in this pattern the inclusion of qgcs changes
(”shifts”) the basic inflationary parameters.

The explicit and effective formulae for these ”shifts” have been derived in Section 3. Section
2 presents the instruments used to obtain the principal results. In Section 4 it is demonstrated that
inclusion of qgcs increases the occurrence probability for such (pbhs). In Section 5 the high-energy
deformations of Friedmann Equations on the basis of these qgcs are derived for different cases.

Finally in Section 6 (Conclusion) the general remarks are given for calculations of the indicated
qgcs in the case of perturbations on inflation; the steps for investigation of the cosmological parameters
corrections and cosmological perturbations due to these qgcs are enumerated; the problems of further
studies are formulated.

In what follows the normalization c = h̄ = 1 is used, for which we have G = l2
p.

As is known, the most common formation mechanism of primordial black holes (pbhs) in the
early Universe [2–4], is a gravitational collapse of the high-density matter [5]. In several works it
has been shown that (pbhs) in the early Universe may be responsible for its shifted cosmological
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parameters. We know a sufficiently accurate estimate of the mass pbh M(tM) formed in the period of
time t since the Big Bang [6–8]

M(tM) ≈ c3tM
G

≈ 1015
(

t
10−23 s

)
g. (1)

As seen, for small times close to the Planckian time tM = tp ≈ 10−43s, the mass of pbhs is close to
the Planck mass M(tM) ≈ 10−5g, necessitating in this case the inclusion of the quantum-gravitational
corrections qgcs. Though in the majority of works pbhs in the early Universe are studied by a
semiclassical approach. To illustrate, in [1] the scalar cosmological perturbations associated with
small-radius pbhs in the pre-inflationary era are studied precisely in the semiclassical approximation.
This paper is devoted to inclusion of qgcs in such cases.

Despite the fact that presently there is no self-consistent theory of quantum gravity, a consensus
is reached on correctness of some approaches to the theory, specifically, replacement of the Heisen-
berg Uncertainty Principle (HUP) by the Generalized Uncertainty Principle (GUP) on going to high
(Plancks)energies, used in this paper.

2. PBH with the Schwarzschild-de Sitter Metric in the Early Universe

It should be noted that Schwarzschild black holes in real physics (cosmology, astrophysics) are
idealized objects. As noted in (p.324, [10]): ”Spherically symmetric accretion onto a Schwarzschild
black hole is probably only of academic interest as a testing for theoretical ideas. It is of little relevance
for interpretations of the observations data. More realistic is the situation where a black hole moves
with respect to the interstellar gas...”

Nevertheless, black holes just of this type may arise and may be realistic in the early Universe.
In this case they are primordial black holes (pbhs). Most common mechanism for the formation of
pbhs is the high-density gravitation matter collapse generated by cosmological perturbations arising,
e.g., in the process of inflation (not necessarily) in the early Universe [5]. But the idea about the
formation of pbhs has been suggested much earlier than the first inflation models, specifically in [2]
and independently in [3] or [4].

During studies of the early Universe the Schwarzschild metric [10,11]

ds2 =

(
1 − 2MG

r

)
dt2 −

(
1 − 2MG

r

)−1
dr2 − r2dΩ2, (2)

for pbhs is replaced by the Schwarzschild-de Sitter (SdS) metric [1] that is associated with Schwarzschild
black holes with small mass M in the early Universe, in particular in pre-inflation epoch

ds2 = − f (r̃)dt2 +
dr̃2

f (r̃)
+ r̃2dΩ2 (3)

where f (r̃) = 1 − 2GM/r̃ − Λr̃2/3 = 1 − 2GM/r̃ − r̃2/L2, L =
√

3/Λ = H−1
0 , M - black hole mass, Λ

– cosmological constant, and L = H−1
0 is the Hubble radius.

In general, such a black hole may have two different horizons corresponding to two different
zeros f (r̃): event horizon of a black hole and cosmological horizon. This is just so in the case under
study when a value of M is small [12,13]. In the general case of L ≫ GM, for the event horizon radius
of a black hole having the metric (3), rH takes the following form (formula (9) in [14]):

rH ≃ 2GM
[

1 +
( rM

L

)2
]

, where rM = 2MG. (4)
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Then, due to the assumption concerning the initial smallness of Λ, we have L ≫ rM. In this case, to
a high accuracy, the condition rH = rM is fulfilled, i.e. for the considered (SdS) BH we can use the
formulae, given in the previous section for a Schwarzschild BH, to a great accuracy.

Remark 2.1.
Note that, because Λ is very small, the condition L ≫ GM and hence the formula of (4) are obviously valid

not only for black hole with the mass M ∝ mp but also for a much greater range of masses, i.e. for black holes
with the mass M ≫ mp, taking into account the condition L ≫ GM. In fact we obtain ordinary Schwarzschild
black holes (2) with small radius.

Specifically, for the energies on the order of Plank energies (quantum gravity scales) E ≃ Ep, the
Heisenberg Uncertainty Principle (HUP) [15]

(δX)(δP) ≥ h̄
2

, (5)

may be replaced by the Generalized Uncertainty Principle (GUP) [16]

(δX)(δP) ≥ h̄
2

〈
exp

(
α2l2

p

h̄2 P2

)〉
. (6)

Then there is a possibility for existence of Planck Schwarzschild black hole, and accordingly of a
Schwarzschild sphere (further referred to as ”minimal”) with the minimal mass M0 and the minimal
radius rmin (formula (20) in [16]) that is a theoretical minimal length rmin:

rmin = lmin = (δX)0 =

√
e
2

αlp, M0 =
α
√

e
2
√

2
mp, (7)

where α - model-dependent parameters on the order of 1, e - base of natural logarithms, and rmin ∝
lp, M0 ∝ mp.

In this case, due to GUP (6), the physics becomes nonlocal and the position of any point is
determined accurate to lmin. It is impossible to ignore this nonlocality at the energies close to the Planck
energy E ≈ Ep, i.e. at the scales l ∝ lp (equivalently we have l ∝ rmin = lmin).

Actually, [16] presents calculated values of the mass M and the radius R for Schwarzschild BH
with regard to the quantum-gravitational corrections within the scope of GUP (6).

With the use of the normalization G = l2
p adopted in [16], temperature of a Schwarzschild black

hole having the mass M (the radius R) [10] in a semi-classical approximation takes the form

TH =
1

8πGM . (8)

Within the scope of GUP (6),the temperature TH with regard to (qgc) is of the form ((23) in [16]))

TH,q =
1

8πMG
exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

=
1

8πMG
exp

(
−1

2
W
(
−1

e

(
A0

A

)))
, (9)

where A is the black hole horizon area of the given black hole,A0 = 4π(δX)2
0 is the black hole horizon

area of a minimal quantum black hole from formula (7) and W
(
− 1

e

(
M0
M

)2
)
= W

(
− 1

e

(
A0
A

))
– value

at the corresponding point of the Lambert W-function W(u) satisfying the equation (formulae (1.5) in
[17] and (9) in [16])

W(u)eW(u) = u. (10)

W(u) is the multifunction for complex variable u = x + yi. However, for real u = x,−1/e ≤ u <

0,W(u) is the single-valued continuous function having two branches denoted by W0(u) and W−1(u) ,
and for real u = x, u ≥ 0 there is only one branch W0(u) [17].
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Obviously, the quantum-gravitational correction qgc (9) presents a deformation (or more exactly,
the quantum deformation of a classical black-holes theory from the viewpoint of the paper [18] with the
deformation parameter A0/A):

A0

A =
4πr2

h
4πR2(A)

=
l2
min

R2(A)
, (11)

where rh = lmin is the horizon radius of minimal pbh from formula (7) and R(A) is the horizon radius
of the given black hole with the black hole horizon area A.

It should be noted that this deformation parameter

l2
min/R2(A)

.
= αR(A) (12)

has been introduced by the author in his earlier works [19–22], where he studied deformation of
quantum mechanics at Planck scales in terms of the deformed quantum mechanical density matrix.
In the Schwarzschild black hole case αR(A) = l2

minK – product of the minimal surface area l2
min by the

Gaussian curvature K = 1/R2(A) of the black-hole horizon surface [23] as indicated in [24,25].
It is clear that, for a great black hole having large mass M and great event horizon area A, the

deformation parameter 1
e

(
M0
M

)2
is vanishingly small and close to zero. Then a value of W

(
− 1

e

(
M0
M

)2
)

Is also close to W(0). As seen, W(0) = 0 is an obvious solution for the equation (10). We have

exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

≈ 1. (13)

So, a black hole with great mass M ≫ mp necessitates no consideration of qgcs.
But in the case of small black holes we have

exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

> 1. (14)

In formulae above it is assumed that M > M0, i.e. the black hole under study is not minimal (7).
We can rewrite the formula of (9) as follows:

TH,q =
1

8πMqG
,Mq = M exp

(
1
2

W

(
−1

e

(
M0

M

)2
))

;

Rq = 2MqG = R exp

(
1
2

W

(
−1

e

(
M0

M

)2
))

, (15)

where Mq and Rq are respectively the initial black-hole mass and event horizon radius considering
qgcs caused by GUP (6).

Remark 2.2
It is clear that the formula (15) with the substitution of M 7→ Mq is of the same form as formula

(8), in fact representing (9),i.e. in the formula for temperature of a black hole the inclusion of qgcs may
be realized in two ways with the same result: (a)the initial mass M remains unaltered and qgcs are
involved only in the formula for temperature, in this case (9); (b)qgcs are involved in the mass the
above-mentioned substitution takes place M 7→ Mq (formula(15)). Such ”duality” is absolutely right
in this case if a black hole is considered in the stationary state in the absence of accretion and radiation
processes. Just this case is also studied in the paper.
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A recent preprint [26] in the case (b) for the space-time dimension D ≥ 4, using approaches to
quantum gravity of the alternative GUP, gives a formula for the mass MQ of a black hole with a due
regard to qgc

MQ =

[
1 − η exp

(
−

πrD−2
0

GD

)]D−3

M. (16)

Here in terms of [26] r0 is the Schwarzschild radius of the primordial black hole with the mass M,GD-
gravitational constant in the dimension D, and η = [0, 1] is a parameter. In case under study this
parameter, as distinct from cosmology, has no relation to conformal time. Obviously, for η = 0 we
have a semiclassical approximation and, as noted in [26], the case when η = 1 corresponds to qgc as
predicted by a string theory.

3. Inflation Parameters Shifts Generated by QGC

To this end in cosmology, in particular inflationary, the metric (3) is conveniently described in
terms of the conformal time η [1]:

ds2 = a2(η)

{
− dη2 +

(
1 +

µ3η3

r3

)4/3[(1 − µ3η3/r3

1 + µ3η3/r3

)2

dr2 + r2dΩ2

]}
, (17)

where µ = (GMH0/2)1/3, H0 – de Sitter-Hubble parameter and scale factor, a – conformal time
function η:

a(η) = −1/(H0η), η < 0, (18)

where with the preceding notation M = M,A = A, ...
Here r satisfies the condition r0 < r < ∞ and a value of r0 = −µη in the reference frame of (17)

conforms to singularity of the back hole.
Due to (4), µ may be given as

µ = (rM H0/4)1/3, (19)

where rM is the radius of a black hole with the SdS Schwarzschild-de Sitter metric (3).
Remark 3.1.
In [1] in general only the case µ = const is considered and, as noted in [1],we can exclude only the

pattern with regard for radiation processes of pbh. Let us consider a much more general case: it is
supposed that, as the mass M of pbh may be changed due to absorption and radiation processes, the
corresponding change takes place for µ – in the general case we have (µ ̸= const) but µ is unaltered
with regard to qgcs, i.e. in formula (19) we have µ = (rM H0/4)1/3 = (rM,q H0,q/4)1/3, where rM,q, H0,q
- values of rM, H0, respectively, with due regard for qgcs.

Let us consider several scenarios.

3.1. The Stationary picture. From the start the primordial black hole with the mass M and the event horizon area
A is considered in the absence of absorption and radiation processes.

As µ = const and pbh is considered in the stationary state, then due to
Remark 2.2 with regard for qgcs, replacement rM 7→ rMq in this formula leads to replacement of

H0 → H0,q, due to Remark 3.1. meeting the condition

µ = (rM H0/4)1/3 = (rM,q H0,q/4)1/3. (20)

Here rM,q
.
= rMq = Rq = RMq from the general formula (15).

Based on the last formula and formulae (9),(12),(15), for M = M,A = A it directly follows that

H0,q = H0 exp
(
−1

2
W
(
−1

e
αR(A)

))
. (21)
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Because the potential energy of inflation V(ϕ0) is related to the initial Hubble parameter H0 by the
Friedmann equation H2

0 = V(ϕ0)/(3M2
p) = Λ/3,from (21) we can derive a shift for V(ϕ0) that is due

to quantum-gravitational corrections for the primordial Schwarzschild black hole with the mass M as
follows:

V(ϕ0) → V(ϕ0)q = Λq M2
p = 3M2

pH2
0,q =

= 3 exp
(
−W

(
−1

e
αR(A)

))
M2

p H2
0 , (22)

where Λ–effective cosmological constant and Λq is the same constant with regard to the above-
mentioned qgcs. Here we have used the normalization differing from that used in [27],where H2

0 =

8πΛ/3.
In a similar way we can find qgcs for all the remaining inflationary parameters, specifically for

the scale factor a(η) (18)

a(η) → a(η)q
.
= −1/(H0,qη) = −1/(H0 exp

(
−1

2
W
(
−1

e
αR(A)

))
η) =

= a(η) exp
(

1
2

W
(
−1

e
αR(A)

))
, η < 0, (23)

for the Hubble parameter H = a′(η)/a2(η) 7→ Hq(η) = a′(η)q/a2(η)q as well as for the parameters in
the mode of slow roll, e.g., for ϵ [27]:

(ϵ = − Ḣ
H2 ) 7→ (ϵq = −

˙H0,q

H2
0,q

), (24)

where, as usual, a prime in the next to last formula means differentiation with respect to η, while a
point in the last formula means differentiation with respect to t.

The condition ϵ ≪ 1 for slow roll in the inflationary scenario [27] due to (24) is transformed to the
condition ϵq ≪ 1 from the last formula that should be additionally established for estimation of the
boundary rMq .

3.2. The case of ”minimal” particle absorption by a black hole.

Let M be the initial mass of a black hole with the event horizon area A. In [28,29] a minimal
increment of the event horizon area for the black hole absorbing a particle with the energy E and with
the size R:(∆A)0 ≃ 4l2

p(ln 2)ER has been estimated. In quantum consideration we have R ∼ 2δX and
E ∼ δP.

However, in [28,29] the consideration is based on a semiclassical pattern, i.e. for small δP, when
GUP (6) goes to the well-known Heisenberg Uncertainty Principle HUP

(δX)(δP) ≥ h̄
2

, , (25)

which, on equality of the left and the right sides of the last formula, gives (∆A)0 ≃ 4l2
p(ln 2).

Such absorption leads to the increased mass of a black hole M 7→ M̃ = M + (∆M)0 and hence to
its increased event horizon area A and radius R(A):

M 7→ M̃ = M + (∆M)0,

A 7→ Ã = A + (∆A)0 ≃ 4πR2(A) + 4l2
p ln 2,

R(A) 7→ R(Ã) ≃
√

R2(A) + l2
pπ−1 ln 2. (26)
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It should be emphasized that the last formula of the pattern 3.2 has been obtained only for a semi-
classical approximation [28,29],i.e. at low energies E ≪ Ep. The boundaries of its correctness at high
energies E ≃ Ep are questionable.

Using the result from [28,29] in [16], an explicit expression has been obtained for qgcs at the
energies E ≃ Ep, represented in terms of (∆A)0,q, to the event horizon area of any Schwarzschild black
hole, provided GUP is valid (6), as follows: (formula (27) in [16]):

(∆A)0,q ≈ 4l2
p ln 2 exp

(
−1

2
W
(
−1

e
A0

A

))
, (27)

where A – event horizon area of the given Schwarzschild black hole.
Using the last formula for (26), we can derive its ”quantum” analog

M 7→ M̃q
.
= M + (∆M)0,q,

A 7→ Ãq = A + (∆A)0,q ≃ 4πR2(A) + 4l2
p ln 2 exp

(
−1

2
W
(
−1

e
A0

A

))
,

7→ R(Ãq) ≃

√
R2(A) + l2

pπ−1 ln 2 exp
(
−1

2
W
(
−1

e
A0

A

))
. (28)

Here (∆M)0,q = (R(Ãq)− R(A))/(2G).
Remark 3.2 It should be noted that in the presented ”minimal” variant of the absorption process the

cardinal difference of a semiclassical consideration from consideration with due regard for qgcs resides in the
fact that in the first case changes in all of the parameters of a black hole (its mass, event horizon area, radius, etc.)
are independent of its sizes, whereas in the second case they are dependent on its sizes.

Next it is assumed that the above-mentioned absorption of a particle by a black hole with the
mass M takes place before the beginning of inflation, and by the beginning of inflation the mass and
the radius of this black hole in a semiclassical pattern are given by M̃ and R(Ã) from the formula (26):

M 7→ M̃, R(A) 7→ R(Ã),

R(Ã) = 2GM̃. (29)

And consequently, with due regard for qgcs, they are given by M̃q, R(Ãq) form the formula (28):

M 7→ M̃q, R(A) 7→ R(Ãq),

R(Ãq) = 2GM̃q. (30)

Then, according to Remark 3.1, by the substitution at µ = const in the formula (20) for rM 7→
R(Ã), rMq 7→ R(Ãq) we obtain a shift of the inflatrionary parameters with regard to qgcs in the
minimal absorption process. In particular, due to formulae (20) and (12), for H0 we have

H0,q = H0
R(Ã)

R(Ãq)
= H0

√
R2(A) + l2

pπ−1 ln 2√
R2(A) + l2

pπ−1 ln 2 exp
(
− 1

2 W
(
− 1

e
A0
A

)) ==

= H0

√
R2(A) + l2

pπ−1 ln 2√
R2(A) + l2

pπ−1 ln 2 exp
(
− 1

2 W
(
− 1

e
A0
A

)) . (31)
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By the substitution of H0,q from the last formula into (22),(23),(24),... , we can find in the pattern
of 3.2 ”quantum” shifts for all the inflationary parameters, specifically for V(ϕ0)

V(ϕ0)q = Λq M2
p = 3M2

p H2
0,q = 3M2

p H2
0

R2(Ã)

R2(Ãq)
. (32)

As seen from the foregoing formulae and from (13), for massive black holes with a large area of event
horizon A ≫ l2

p, we have R(Ã)/R(Ãq) ≈ 1 that is not surprising. But when considering small black
holes in this pattern this quantity may be significant and should not be ignored.

Remark 3.3 It is obvious that, for massive black holes,”minimal” absorption considered in point 3.2 is
not a real physical process because a mass of the absorbed matter for them is always sufficiently great. At the
same time, for small pbhs in the preinflationary period this process is quite real. Besides, in this case any
absorption, in principle, may be represented as a chain of ”minimal” absorptions (may be ”expended into minimal
absorptions”).

3.3. Black Hole Evaporation and qgcs

Also, black holes are associated with the process of Hawking radiation (evaporation). The
primordial black holes are no exception. In the general case this process is considered only within the
scope of a semiclassical approximation (without consideration of the quantum-gravitational effects).
Because of this, it is assumed that a primordial black hole may be completely evaporated [10].

Still, in this pattern the situation is impossible due to the validity of GUP (6) and due to the
formation of a minimal (nonvanishing) Planckian remnant as a result of evaporation (7) [30].

We can compare the mass loss for a black hole in this process when using a semiclassical approxi-
mation and with due regard for qgcs.

Let M be the mass of a primordial black hole. Then a loss of mass as a result of evaporation,
according to the general formulae, takes the following form ([10],p.356):

dM
dt

∼ σT4
H AM, (33)

where TH - temperature of a black hole with the mass M,AM - surface area of the event horizon of this
hole AM = 4πr2

M, and σ = π2k4/(60h̄3c2) is the Stefan-Boltzmann constant.
Using this formula for the same black hole but with regard to qgcs, we can get the mass loss

[dM/dt]q in this case

[
dM
dt

]q ∼ σT4
H,q AM, (34)

where TH,q - temperature of a black hole with the same mass M, when taking into consideration qgcs
(9).

For all the foregoing formulae associated with a random black hole having the mass M, the
following estimate is correct ((10.1.19) in [10]):

−dM
dt

∼ b(
Mp

M )2(
Mp

tp
)2N, (35)

where b ≈ 2.59 × 10−6, and N is the number of the states and species of particles that are radiated. The
minus sign in the left part of the last formula denotes that the mass of a black hole diminishes as a
result of evaporation, i.e. we have dM/dt < 0.

Unfortunately, the last formula is hardly constructive as it is difficult to estimate the number N,
especially at high energies E ≃ Ep.

Nevertheless, using the terminology and symbols of this paper, and also the results from [16], the
formula (35) for the mass loss by a black hole with regard to qgcs may be written in a more precise and
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constructive form. If we take M = M (35), then, according to formula (45) in [16], within the scope of
GUP (6) we will have

dM
dt

= − γ1

M2l4
p

exp

(
−2W

(
−1

e

(
M0

M

)2
))

×

×
(

1 − 8γ2

eγ1

(
M0

M

)2
exp

(
−W

(
−1

e

(
M0

M

)2
)))

, (36)

where γ1 = π2

480 , γ2 = π2

16128 .
The minus sign in the right side of the last formula means the same as the minus sign in the left

side of formula (35).
Due to (12), formula (36) is of the following form:

dM
dt

= − γ1

M2l4
p

exp(−2W
(
−1

e
αr(M)

)
)×

×
(

1 − 8γ2

eγ1
αr(M) exp

(
−W

(
−1

e
αr(M)

)))
. (37)

We can expand the right sides of formulae (36) and (37) into a series in terms of the small parameter
e−1(M0/M)2 = e−1αr(M) (formula (46) in [16]) that, proceeding from the deformation parameter αr(M),
takes the form

dM
dt

= − γ1

M2l4
p

(
1 +

2
e

αr(M) +
4
e2

(
1 − 2γ2

eγ1

)
α2

r(M) +
25
3e3

(
1 − 72γ2

25eγ1

)
α3

r(M) + . . .
)

. (38)

Neglecting the last equation due to the time interval chosen, e.g., due to △t = tin f l − tM,where tin f l–
time of the inflation onset and tM– time during which the black hole under study has been formed,
formula (1), the mass loss for a black hole with regard to qgcs by the inflation onset time may be given
as

∆Evap,q M(tM, tin f l)
.
=

tin f l∫
tM

dM
dt

=

= −
tin f l∫
tM

γ1

M2l4
p

(
1 +

2
e

αr(M) +
4
e2

(
1 − 2γ2

eγ1

)
α2

r(M) +
25
3e3

(
1 − 72γ2

25eγ1

)
α3

r(M) + . . .
)

. (39)

With the use of formulae rM = R(A), M = R(A)/2G, the last formula may be written as

∆Evap,q M(tM, tin f l) =

tin f l∫
tM

(2G)−1 dR(A)

dt
=

= −
tin f l∫
tM

4G2γ1

R(A)2l4
p

(
1 +

2
e

αR(A) +
4
e2

(
1 − 2γ2

eγ1

)
α2

R(A) +
25
3e3

(
1 − 72γ2

25eγ1

)
α3

R(A) + ...
)

. (40)
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Since, according to the chosen normalization, G = l2
p, the last expression may take the form

∆Evap,q M(tM, tin f l) =

tin f l∫
tMq

(2G)−1 dR(A)

dt
=

= −
tin f l∫
tM

4γ1

R(A)2 ×

×
(

1 +
2
e

αR(A) +
4
e2

(
1 − 2γ2

eγ1

)
α2

R(A) +
25
3e3

(
1 − 72γ2

25eγ1

)
α3

R(A) + ...
)

. (41)

Next, we can determine the mass of a black hole after its evaporation until the inflation onset with
regard to qgcs

MEvap,q(tMq , tin f l)
.
= M + ∆Evap,q Mq(tMq , tin f l). (42)

In the pattern of a semiclassical approximation the above-mentioned formulae are greatly simplified
because in this case αR(A) = 0 due to the absence of a minimal black hole.

Then in a semiclassical pattern formula (42), with the use of the suggested formalism, takes the
following form:

MEvap(tM, tin f l)
.
= M + ∆Evap M(tM, tin f l), (43)

where

∆Evap M(tM, tin f l) =

tin f l∫
tM

dM
dt

= −
tin f l∫
tM

γ1

M2l4
p

. (44)

Accordingly, for the radii MEvap(tM, tin f l), MEvap,q we can get

r(MEvap) = 2GMEvap(tM, tin f l),

r(MEvap,q) = 2GMEvap,q(tM, tin f l). (45)

In accordance with Remark 3.3, we have

µEvap
.
= (rMEvap H0,Evap/4)1/3 = (rMEvap ,qH0,Evap,q/4)1/3;

H0,Evap,q =
rMEvap

rMEvap ,q
H0,Evap. (46)

The right side of the last line in formula (46) gives the ”quantum-gravitational shifts” (abbreviated as
qgs) of the de Sitter Hubble parameter H0 for black holes evaporation process.

Substituting H0,Evap,q from (46) into formulae (22)–(24) and so on, we can obtain qgsc for all
cosmological parameters in the inflationary scenario when a primordial black hole evaporates before
the inflation onset.

4. Quantum-Gravity Corrections for Appearance Probabilities PBHs in the Pre-Inflationary Era

For pbh with Schwarzschild-de Sitter SdS metric (3) in the pre-inflation epoch The problem of
estimating the probability of occurrence of these pbh.

This problem has been studied in [1] without due regard for qgc. Let us demonstrate that
consideration of qgc in this case makes the probability of arising pbh higher.
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Similar to [1], it is assumed that in pre-inflation period non-relativistic particles with the mass
m < Mp are dominant (Section 3 in [1]). For convenience, let us denote the Schwarzschild radius rM
by RS.

When denoting, in analogy with [1], by N(R, t) the number of particles in a comoving ball with the
physical radius R = R(t) and the volume VR at time t, in the case under study this number (formula
(3.9) in [1]) will have qgc N(R, t) 7→ N(R, t)q

(⟨N(R, t)⟩ =
m2

p H2R3

2m
) 7→ (⟨N(R, t)q⟩ =

m2
p H2

q R3

2m
). (47)

Here the first part of the last formula agrees with formula (3.9) in [1], whereas H, Hq in this case are in
agreement with H0, H0,q. And from (21) it follows that

⟨N(R, t)q⟩ = ⟨N(R, t)⟩ exp

(
−W

(
−1

e

(
M0

M

)2
))

. (48)

According to (15), it is necessary to replace the Schwarzschild radius RS by

RS,q = RS exp
(

1
2 W
(
− 1

e

(
M0
M

)2
))

.

Then from the general formula N(RS, t) = ⟨N(RS, t)⟩+ δN(RS, t), used because of the replace-
ment of RS 7→ RS,q, we obtain an analog of (3.12) from [1]

δN > δNcr,q
.
=

m2
pRS,q

2m
− ⟨N(RS, t)q⟩ =

m2
pRS,q

2m
[1 − (HRS)

2] =

=
m2

pRS

2m
[1 − (HRS)

2] exp

(
1
2

W

(
−1

e

(
M0

M

)2
))

= δNcr exp

(
1
2

W

(
−1

e

(
M0

M

)2
))

. (49)

In the last formula in square brackets we should have (HqRS,q)
2 instead of (HRS)

2 but, as we consider
the case µ = const, these quantities are coincident.

It should be noted that here the following condition is used:

HRS < 1, (50)

i.e. Schwarzschild radius RS less than Hubble radius, RS < RH = 1/H.

As we have exp
(

1
2 W
(
− 1

e

(
M0
M

)2
))

< 1, then

δNcr,q < δNcr. (51)

Considering that for the formation of a Schwarzschild black hole with the radius RS it is required that,
due to statistical fluctuations, the number of particles N(RS, t) with the mass m within the black hole
volume VRS = 4/3πR3

S be in agreement with the condition [1]

N(RS, t) > RS M2
p/(2m), (52)

which, according to qgs in the formula of (15), may be replaced by

N(RS,q, t) > RS,q M2
p/(2m) = exp

(
1
2

W

(
−1

e

(
M0

M

)2
))

RS M2
p/(2m). (53)

As follows from these expressions, with regard to qgc for the formation of pbh in the pre-inflation
period, the number of the corresponding particles may be lower than for a black hole without such
regard, leading to a higher probability of the formation.
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Such a conclusion may be made by comparison of this probability in a semi-classical consideration
(formula (3.13) in [1])

P
(
δN(RS, t) > δNcr(RS, t)

)
=
∫ ∞

δNcr
d(δN)P(δN) (54)

and with due regard for qgc

P
(
δN(RS,q, t) > δNcr(RS,q, t)

)
=
∫ ∞

δNcr,q
d(δN)P(δN). (55)

Considering that in the last two integrals the integrands take positive values and are the same, whereas
the integration domain in the second integral is wider due to (51), we have∫ ∞

δNcr,q
d(δN)P(δN) =

=
∫ δNcr

δNcr,q
d(δN)P(δN) +

∫ ∞

δNcr
d(δN)P(δN) >

∫ ∞

δNcr
d(δN)P(δN). (56)

As follows from the last three formulae, in the case under study the probability that the above-
mentioned pbh will be formed is higher with due regard for qgc.

It is interesting to find which changes should be expected in the pattern studied if the parameter
µ ceases to be constant and is shifted with regard to qgc of the black hole mass M 7→ Mq (15):
(µ = (GMH0/2)1/3) 7→ (µq = (GMq H0/2)1/3).

Note that in this case the general formula form Section 3 in [1] are also valid but for this pattern in
formula (49) there is substitution of HRS 7→ HRS,q:

δN > δNcr,q
.
=

m2
pRS,q

2m
− ⟨N(RS, t)q⟩ =

m2
pRS,q

2m
[1 − (HRS,q)

2] =

=

m2
pRS exp

(
1
2 W
(
− 1

e

(
M0
M

)2
))

2m
[1 − H2R2

S exp

(
W

(
−1

e

(
M0

M

)2
))

]. (57)

To understand variations in the probability of pbh arising as compared to the case when qgc are
neglected in the consideration, we compare the last expression with the corresponding quantity

δNcr =
m2

pRS
2m [1 − (HRS)

2].

Dividing the last expression and the right side (57) by the same positive number
m2

pRS
2m and

subtracting the second number from the first, we can obtain

δNcr − δNcr,q ∼ [1 − H2R2
S + H2R2

S exp

(
3
2

W

(
−1

e

(
M0

M

)2
))

−

− exp

(
1
2

W

(
−1

e

(
M0

M

)2
))

] (58)

with a positive proportionality factor.
To have a positive quantity in the right side (58), fulfillment of the following inequality is required:

1 − exp

(
1
2

W

(
−1

e

(
M0

M

)2
))

> R2
S H2[1 − exp

(
3
2

W

(
−1

e

(
M0

M

)2
))

]. (59)
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As from formula (10) it follows that W(u) < 0 for u < 0, we have 1 − exp
(

1
2 W
(
− 1

e

(
M0
M

)2
))

>

0, 1 − exp
(

3
2 W
(
− 1

e

(
M0
M

)2
))

> 0, from where it follows that (59) is equivalent to the inequality

(HRS)
2 <

1 − exp
(

1
2 W
(
− 1

e

(
M0
M

)2
))

1 − exp
(

3
2 W
(
− 1

e

(
M0
M

)2
)) =

=
1

1 + exp
(

1
2 W
(
− 1

e

(
M0
M

)2
))

+ exp
(

W
(
− 1

e

(
M0
M

)2
)) (60)

or

HRS <
1√

1 + exp
(

1
2 W
(
− 1

e

(
M0
M

)2
))

+ exp
(

W
(
− 1

e

(
M0
M

)2
)) . (61)

We need that in the case under study µ ̸= const the probability of pbh arising with regard to
qgc be higher than the same probability but without due regard for qgc. It is sufficient to replace the
condition HRS < 1 in formula (50) by the condition in formula (61).

Note that, due to smallness of RS, exp
(

1
2 W
(
− 1

e

(
M0
M

)2
))

, exp
(

W
(
− 1

e

(
M0
M

)2
))

are also small

and in the right side (61) the quantity is close to 1, i.e. the shorter the Schwarzschild radius of pbh,the
greater consideration of qgc increases the probability of pbh arising.

5. High Energy Deformations of Friedmann Equations

Based on the obtained results, it is inferred that there is the deformation (having a quantum-
gravitational character) of the Schwarzschild-de Sitter metric and Friedmann Equations due to qgsc.
Indeed, for example, for 3.1. (the stationary pattern) from formulae (15),(19),(18) we can derive

H0,q = H0 exp
(
−1

2
W
(
−1

e
αrM

))
,

a(η)q = a(η) exp
(

1
2

W
(
−1

e
αrM

))
. (62)

Substituting the expression a(η)q from the last formula for a into the Friedmann Equation ((2.4) in [27])

a′2

a4 =
8π

3
Gρ, (63)

we can obtain the Quantum Deformation (QD) [18] of the Friedmann Equation due to qgcs for pbh in
the early Universe

a′2q
a4

q
=

a′2

exp
(
−W

(
− 1

e αrM

))
a4

=
8π

3
Gρ (64)

or

a′2

a4 =
8π

3
Gρ exp

(
−W

(
−1

e
αrM

))
.
=

8π

3
Gρq,

ρq
.
= ρ exp

(
−W

(
−1

e
αrM

))
> ρ. (65)

The last line in (65) is associated with the fact that the Lambert W-function W(u) is negative for u < 0.
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Similarly, (ij)-components of the Einstein equations ((2.5) in [27])

2
a′′

a3 − a′2

a4 = −8π

3
Gp (66)

within the foregoing (QD) are replaced by

2
a′′q
a3

q
−

a′2q
a4

q
= −8π

3
Gp (67)

or

2
a′′

a3 − a′2

a4 = −8π

3
Gp exp

(
−W

(
−1

e
αrM

))
= −8π

3
Gpq,

pq
.
= p exp

(
−W

(
−1

e
αrM

))
> p. (68)

It should be noted that the equation of the covariant energy conservation for the homogeneous
background ((2.6) in [27])

ρ′ = −3
a′

a
(ρ + p) (69)

remains unaltered with replacement of ρ 7→ ρq, p 7→ pq.
So, in the pattern of 3.1 (the stationary pattern), taking into consideration of qgcs for pbhs in the

pre-inflationary era increases the initial values of the density ρ and of the pressure p in Friedmann
equations.

The above calculations are correct if, from the start, we assume that a black hole (i.e., its event-
horizon radius) is invariable until the onset of inflation. But such a situation is idealized because this
period is usually associated with the radiation and absorption processes

Then again for µ = const from formulae (19),(18) we have

H0,q = H0
rMorig

rMorig,q

,

a(η)q = a(η)
rMorig,q

rMorig

. (70)

Substituting the expression a(η)q from formula (70) in all formulae (64)–(69) we obtain analogues of
these formulae in the general case. In particular, for formula (64) we have

a′2q
a4

q
=

r2
Morig

r2
Morig,q

a′2

a4 =
8π

3
Gρ (71)

Or, equivalently,

a′2

a4 =
8π

3
Gρ

r2
Morig,q

r2
Morig

=
8π

3
Gρq

ρq
.
=

r2
Morig,q

r2
Morig

ρ. (72)
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In the same way as for formula (67), in this pattern for the general quantum deformation (ij)-
components of Einstein equations by substitution of the value for a(η)q from the formula (70) we
obtain

2
a′′q
a3

q
−

a′2q
a4

q
= −8π

3
Gp (73)

or

2
a′′

a3 − a′2

a4 = −8π

3
Gp

r2
Morig,q

r2
Morig

= −8π

3
Gpq,

pq
.
=

r2
Morig,q

r2
Morig

p. (74)

It is clear that, in this most general pattern, the covariant energy conservation for the homogeneous
background ((2.6) in [27])

ρ′ = −3
a′

a
(ρ + p) (75)

remains unaltered with replacement of ρ 7→ ρq, p 7→ pq.

6. Some Implications, Final Comments and Further Research

This paper demonstrates the way to calculate in the explicit form the quantum-gravitational
corrections for the basic cosmological parameters in the inflationary scenario which are due to pbhs
originating during the pre-inflationary period of time. As follows from the above-mentioned formu-
lae, for such black holes these corrections are especially great and may be significant for the basic
parameters of inflation. Because of this, they are important for studies of the processes in the very
early Universe. According to the results in [31],a local quantum field theory [32] has the upper ap-
plicability boundary Ẽ that is considerably lower than the Planck energy Ẽ ≪ Ep. It is clear that the
quantum-gravitational corrections are most significant within the energy range E, Ẽ < E ≤ Ep.

6.1. The Cosmological Perturbation Corrections Generated by QGCS for PBHS.General Remarks

It is known that inflationary cosmology is characterized by cosmological perturbations of different
nature (scalar, vector, tensor) [27,33,37], though vector perturbations are usually ignored as they die
out fast.

It is clear that, as qgcs for pbhs in the early Universe cause shifts of the inflationary parameters,
they inevitably lead to corrections of the cosmological perturbations on inflation.

Specifically, in the case of scalar cosmological perturbations consideration of the indicated qgcs
for the rest of the Einstein equations (formulae (2.74)–(2.76) in [27]) in case 3.1 (the stationary picture)
gives

∆Φ − 3
a′

a
Φ′ − 3

a′2

a2 Φ = 4πGa2 exp
(

W
(
−1

e
αR(A)

))
· δρtot;

Φ′ +
a′

a
Φ = −4πGa2 exp

(
W
(
−1

e
αR(A)

))
· [(ρ + p)υ]tot;

Φ′′ + 3
a′

a
Φ′ + (2

a′′

a
− a′2

a2 )Φ = 4πGa2 exp
(

W
(
−1

e
αR(A)

))
· δptot. (76)

Here in the right sides of all lines in the last formula the scale factor a is taken with regard to qgcs from
formula(23), i.e., a = a(η)q. In the left sides of these lines additional factors of the type
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exp
(
± 1

2 W
(
− 1

e αR(A)

))
, exp

(
±W

(
− 1

e αR(A)

))
, ... are cancelled out because they are independent

of η. This is so in the general case when taking in consideration qgcs for the pbhs formed in the
pre-inflationary era (for all types of the cosmological perturbations, not only for those of the scalar
type).

Remark 6.1
These qgcs are arising only in the expressions, where the total power of the scale factor a(η) and of any

its derivatives with respect to η,i.e. a′(η), a′′(η), ... is not equal to 0. In this case the corresponding qgcs is
calculated from formula (23).

According to this remark, under the linearized form of the gauge transformations (formulae (2.31)
in [27]), spatial components of the metric perturbation transform are retained due to inclusion of qgcs
([27],p.30):

h̃ij = hij − 2∂i∂jσ − a′

a
δijσ

′. (77)

And qgcs deform correspondingly the metric with scalar perturbations in the conformal Newtonian
gauge (formulae (2.69) in [27]):

{ds2 = a2(η)[(1 + 2Φ)dη2 − (1 + 2Ψ)dx2]} 7→ a2(η)q[(1 + 2Φ)dη2 − (1 + 2Ψ)dx2] =

= a2(η) exp
(

W
(
−1

e
αR(A)

)[
(1 + 2Φ)dη2 − (1 + 2Ψ)dx2]. (78)

6.2. Steps of Further Studies

Proceeding from the results of this paper, the following steps may be planned for further studies.
6.1 Based on the results of this paper, the following steps may be planned to study the corrections of

cosmological parameters and cosmological perturbations due to qgcs for pbhs in the pre-inflationary era:
6.1.1 pbhs having different masses M (different A), in fact for different values of exp

(
± 1

2 W
(
− 1

e αR(A)

))
from formula (23);

6.1.2 different inflationary models (chaotic inflation, new inflation and so on [37]);
6.1.3 comparison of the results obtained in 6.1.1 and 6.1.2 with the experimental data accumulated by space

observatories: (Planck Collaboration), (WMAP Collaboration) [34–36].
6.2 Elucidation, how far these ”shifts” are involved in the general approaches to qgcs for cosmo-

logical perturbations on inflation (for example, see [38]).
6.3 Applicability estimation of the obtained results for other (noninflationary) cosmological

models (e.g., bouncing cosmologies [39,40]). Conflicts of Interest: The author declares that there is no conflict

of interests regarding the publication of this work
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