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Abstract: Probabilistic modeling of net load forecast errors is an important approach for reserve decision-mak-
ing in power systems with a high penetration of renewable energy. However, existing probabilistic modeling 
methods face issues such as insufficient estimation accuracy in the small probability interval of the tails or 
increased complexity in probability decision-making problems. A probabilistic reserve decision-making 
method based on cumulative probability approximation is proposed. By using key points on the cumulative 
probability distribution curve of net load forecast error samples, this method enhances the fitting accuracy of 
the normal distribution model in the small probability interval of the tail, resulting in an optimal reserve out-
come with the desired comprehensive expected profit. Using relevant renewable energy output and load data 
from actual transmission networks in Belgium and Guangdong Province, China, the proposed method demon-
strates good practical value. 

Keywords: reserve decision; net load forecast error; cumulative probability distribution; normal distribution 
model; key points; small probability interval of the tail 

 

1. Introduction 
The demand for operating reserve capacity in power systems depends on the net load reserve 

capacity requirement and the contingency reserve capacity requirement [1]. The contingency reserve 
is generally determined based on the maximum unit generation capacity or the maximum DC import 
capacity, which is a fixed value independent of load power and renewable energy generation [2]. The 
net load reserve capacity requirement, on the other hand, depends on load forecast errors and renew-
able energy output forecast errors. The primary focus of operating reserve decisions lies in net load 
reserve decisions [3]. Historically, China has set operating reserve capacity based on deterministic 
criteria, typically ranging from 2% to 5% of the system’s peak load [4]. Deterministic criteria are based 
on load forecasts and renewable energy forecasts to formulate generation plans, with reserve deci-
sions being manually made. This leads to arbitrariness and blindness in the selection of reserve ca-
pacity. When the reserve capacity is too low, it becomes difficult to match the significant fluctuations 
in renewable energy output and load power, thus jeopardizing system security. Conversely, exces-
sive reserve capacity results in the wastage of reserve resources, affecting the economic efficiency of 
system operation [5]. 

With the continuous growth of electricity demand and the ongoing progress in renewable en-
ergy technologies, the integration of large-scale wind and solar power generation into the power sys-
tem has led to a significant increase in the penetration of renewable energy in the grid [6]. The large-
scale integration of wind and solar power generation increases the uncertainty of generation output, 
while the existing deterministic load reserve criteria lack enough theoretical support, resulting in 
overly conservative scenarios or risky decisions in practical applications [7]. Moreover, the combined 
uncertainties of renewable energy and load significantly increase the volatility of net load, making it 
difficult for traditional, experience-based reserve decisions to respond quickly and accurately. There 
is an urgent need for more precise and flexible reserve decision-making methods [8]. 
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At present, probabilistic modeling of renewable energy output forecast errors and load forecast 
errors serves as an important basis for analyzing the impact of forecast errors and controlling the 
consequences of these errors. The reserve decision for high-penetration renewable energy systems 
heavily depends on the accuracy of the net load forecast error probability model [9,10]. The normal 
distribution is a commonly used model for fitting renewable energy output forecast errors and load 
forecast errors [11]. For example, literature [12] adopts a normal distribution to fit the probabilistic 
model of wind power output forecast errors, thereby facilitating reserve decision-making and com-
paring it with traditional deterministic criteria. Literature [13] fits the forecast errors of load, wind 
power, and solar power by using normal distribution models to simplify the aggregation of the re-
spective probability density functions. However, normal distribution is typically used to ensure con-
sistency with the sample mean and standard deviation in practical applications and it lacks adequate 
precision in estimating the small probability intervals of both tails [14]. Furthermore, statistical results 
show that the forecast errors of renewable energy output do not strictly follow a normal distribution 
[15,16]. To improve the overall fitting accuracy of the probability model, some studies adopt other 
parametric distributions for probabilistic modeling of renewable energy output and load forecast er-
rors, such as the beta distribution [17], Laplace distribution [18], Cauchy distribution [19], Weibull 
distribution [20] and Gaussian mixture models (GMM) [21]. However, the above methods may in-
crease the complexity of the probabilistic decision problem and negatively impacts the efficiency of 
solving these problems, while the accuracy of fitting the small-probability regions remains difficult 
to guarantee [22]. 

Currently, commonly used probabilistic modeling methods focus on improving the overall fit-
ting accuracy of the probability model. However, for reserve decisions in power systems with a high 
penetration of renewable energy, no reserve is required when the net load does not exceed the fore-
cast. Hence, the reserve decision model is only related to the probability distribution of net load ex-
ceeding the forecasted value [23]. In addition, existing probabilistic reserve decisions are typically 
based on a certain confidence level to determine the reserve capacity. However, the selection of the 
confidence level lacks theoretical justification. For example, literature [24–26] all propose opportunity 
constraint approaches based on a certain confidence level, but none provide a theoretical basis for 
determining the confidence level. 

Therefore, this paper proposes a probabilistic reserve decision-making method based on cumu-
lative probability approximation for high-penetration renewable energy power systems. Compared 
with existing technologies, the advantages of the proposed technical solution are mainly reflected in 
the following aspects: 

1) The method comprehensively considers three factors: reserve cost, expected generation revenue from 
reserves, and expected loss due to load shedding. It provides optimal conditions for probabilistic 
reserve decisions and an iterative solving algorithm, achieving the optimal expected overall benefit 
in probabilistic reserve decision-making. 

2) The method determines the parameters of the net load forecast error’s normal distribution model 
based on the key factors influencing the optimality of reserve decisions. By employing cumulative 
probability approximation at key points, the accuracy of the probabilistic reserve decision results is 
enhanced. 

3) By selecting key points for cumulative probability approximation, the proposed method effectively 
improves the fitting accuracy of the cumulative probability in the small probability interval of the tail. 

The rest the paper is arranged as follows: Section 2 presents the procedures for the proposed 
method. Section 3 discusses the required data and the preprocessing operations. Section 4 plots the 
cumulative probability distribution curve of the samples. Section 5 performs probabilistic reserve 
decision modeling. Section 6 estimates the parameters of the normal distribution model for net load 
forecasting errors. Section 7 iteratively solves the reserve results. Section 8 provides a case analysis. 
Section 9 concludes the paper. 

2. Procedures for the Proposed Method 
The flowchart of probabilistic reserve decision method based on cumulative probability approx-

imation for high-penetration renewable energy power systems proposed in this paper is shown in 
Figure 1, which includes the following steps: 

1) Data loading and preprocessing; 
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2) Calculation of the cumulative probability distribution of historical net load forecast error sample 
data; 

3) Probabilistic reserve decision modeling based on the normal distribution probability model of net 
load forecast errors; 

4) Estimation of the normal distribution model parameters based on cumulative probability approxi-
mation at key points; 

5) Probabilistic reserve decision-making based on the normal distribution model of net load forecast 
errors. 

 

Figure 1. The flowchart of probabilistic reserve decision method. 

3. Data Loading and Preprocessing 
The data required for the reserve decision-making of high-penetration renewable energy power 

systems include:  
1) historical actual and forecasted data of renewable energy output;  
2) historical actual and forecasted data of load;  
3) unit cost of reserve capacity; 
4) unit revenue from increased power generation during reserve activation;  
5) unit cost of load shedding. 

Data preprocessing includes: 
1) subtracting the actual renewable energy output from the historical actual load data at the same time 

to obtain the actual net load values;  
2) subtracting the forecasted renewable energy output from the historical forecasted load data at the 

same time to obtain the forecasted net load values;  
3) subtracting the historical forecasted values from the historical actual net load values at the same time 

to obtain the net load forecast errors. 

4. Cumulative Probability Distribution Curve of the Net Load Forecast Errors 
The net load forecast errors are sorted in ascending order. Assuming the sorted net load forecast 

errors are 1 2, Nx x x , where N represents the number of samples. Each sample corresponds to a 

probability of భಿశభ. Therefore, the cumulative probabilities for 1 2, Nx x x  are ଵேାଵ, ଶேାଵ, , ேேାଵ, re-
spectively. Using the net load forecast errors as the abscissa (x-axis) and the sample cumulative prob-
ability as the ordinate (y-axis), the sample points are sequentially connected to form the sample cu-
mulative probability curve. Let γ(x) denote the sample cumulative probability function. 
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Figure 2. The cumulative probability distribution curve of net load forecast errors. 

5. Probabilistic Reserve Decision Model 
The objective of probabilistic reserve decision-making is to minimize the total cost, which is the 

sum of the reserve configuration cost and the expected cost of power shortage per unit time, after 
subtracting the revenue from reserve activation: 

( ) ( ) ( )R EDNS EDNS INC INCmin =J R C R C P R C P R+ −  (1) 

Where, CR represents the unit cost of reserve capacity, R represents the reserve decision capacity. 
CEDNS represents the unit cost of power shortage expectation, PEDNS(R) represents the power shortage 
expectation, which is a function of reserve capacity. CINC represents the unit benefit of additional gen-
eration when reserve capacity is dispatched, and PINC(R) represents the expected power generation 
of reserve capacity. 

The normal distribution is commonly used to describe the distribution of forecasting errors in 
renewable energy output and load prediction. Since the sum or difference of normal distributed ran-
dom variables also follows a normal distribution, the normal distribution can be used to model the 
net load forecast error. The probability density function of the normal distribution can be expressed 
as: 

( )
( )2

221| , e
2

x

x x
μ

σρ μ σ
πσ

 − −
 
 = − ∞ < < ∞，  (2) 

Here, x represents the random variable, which refers to the net load forecast error. μ denotes the mean 
of the normal distribution, and σ represents the standard deviation of the normal distribution, with 

0σ > . 
If the system’s net load forecast error exceeds the reserve capacity of the system, the portion of 

the load beyond the reserve capacity will be lost, and the system’s power shortage expectation is: 
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Where, R represents the decision reserve capacity. PEDNS(R) denotes the power shortage expectation, 
which is a function of the reserve capacity decision.  

2

2
( )xt μ

σ
−=  (4) 

xz μ
σ
−=  (5) 

Where ϕ(⋅) represents the probability density function of the standard normal distribution, and Φ(⋅) 
represents the cumulative distribution function of the standard normal distribution. 

The standard normal distribution refers to a normal distribution with a mean of zero and a 
standard deviation of one, and its probability density function is: 

( )
2

21 e
2

x

x xφ
π

 
−  
 = − ∞ < < ∞，  (6) 

The expected generation power of the decision reserve capacity consists of two parts: when the 
net load forecast error x is greater than zero but less than the decision reserve capacity R, the gener-
ation power of the reserve capacity is x; when the net load forecast error x exceeds the decision reserve 
capacity R, the generation power of the reserve capacity is R. Therefore, the expected energy genera-
tion of the decision reserve capacity per unit time is: 
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Where PINC(R) represents the expected generation power per unit time of the decision reserve capacity, 
which is a function of the decision reserve capacity. 

The necessary condition for the extremum of Equation (1) is: 

( ) ( ) ( )EDNS INC
R EDNS INC= =0
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+ −  (8) 
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By substituting Equations (9) and (10) into Equation (8), we obtain: 

( )
R EDNS EDNS INC

2= + =0
dJ R R R R RC C C C
dR

μ μ μ μφ
σ σ σ σ σ
−  − −        − + Φ − Φ − Φ −                

 (11) 

By rearranging Equation (9), we obtain: 
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( )
EDNS R INC
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=
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μ μφ
σ σ σμ
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(12) 

6. Parameter Estimation of the Normal Distribution Model by Using Key Points 
From Equation (12), we can find that the factors influencing the probabilistic reserve decision 

include the cumulative probability at a net load forecast error of 0, as well as the cumulative proba-
bility and probability density at a net load forecast error of R. 

Since the normal distribution has only two parameters, the mean and standard deviation, it has 
only two degrees of freedom. Therefore, the parameters of the normal distribution can be determined 
by the two points on the cumulative probability distribution curve. 

For actual power systems, R μ
σ
− Φ  

 
 is close to 1 and R μφ

σ
− 

 
 

 is a smaller positive number 

since CEDNS>>CINC and CEDNS>>CR. The key factors influencing the probabilistic reserve decision are the 
cumulative probability at a net load forecast error of 0 and at a net load prediction error of R. 

To improve the accuracy of the reserve decision as much as possible, the cumulative probabili-
ties of the normal distribution probability model for net load forecast errors at 0 and R are set to be 
equal to the corresponding sample cumulative probabilities at those positions, i.e.: 

( )= 0μ γ
σ

 Φ − 
 

 (13) 

Where ( )γ ∗  represents the cumulative probability function of net load forecast error. 

( )=R Rμ γ
σ
− Φ  

 
 (14) 

From Equations (12), (13) and (14) we have: 

( )
( )

( )
EDNS R INC

EDNS INC

2 0R RC C C
R

C C

μφ γ
σ σγ

 −  − + −    =
−

 
(15) 

Since R is a decision variable, it needs to be determined after the reserve decision and remains 
an unknown quantity at the time of parameter estimation for the normal distribution model. Consid-
ering that R μφ

σ
− 

 
 

 is a smaller positive number, the initial value of the decision variable R can be 

calculated according to Equation (16): 

( )( ) ( )
( )

0 EDNS R INC

EDNS INC

0
=
C C C

R
C C

γ
γ

− −
−

 (16) 

Where the superscript 0 indicates the initial value. 
The right end term of Equation (16) can be obtained from the original parameters and the sample 

data. Thus, R(0) can be obtained by linear interpolation of the sample cumulative probability curves. 
Comparison of Equation (15) and Equation (16) shows that: 

( ) ( )( )0R Rγ γ≥  (17) 

Since the sample cumulative probability curve is monotonically increasing: 

( )0R R≥  (18) 

Equation (18) shows that R(0) is a lower bound for the probabilistic reserve decision. 
By applying R(0) from the alternative expression (14) of R, we obtain: 
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( )
( )( )

0
0=R Rμ γ

σ
 −Φ   
 

 (19) 

It can be obtained from Equation (13) that: 

( )( )-1= 0μ γ
σ

− Φ  (20) 

It can be obtained from Equation (19) that: 

( )
( )( )( )

0
0-1=R Rμ γ

σ
− Φ  (21) 

By solving Equations (20) and (21) simultaneously, we obtain: 

( )

( )( )( ) ( )( )
0

0-1 -1
=

0
R

R
σ

γ γΦ − Φ
 (22) 

( ) ( )( )
( )( ) ( )( )( )

0 -1

0-1 -1

0
=

0

R

R

γ
μ

γ γ

Φ

Φ − Φ
 (23) 

The solution of Equations (22) and (23) requires the use of the cumulative probability curve of 
the standard normal distribution to obtain the quantiles from the cumulative probability. 

The cumulative probability table of the standard normal distribution can be obtained through 
numerical integration. The cumulative probability of the standard normal distribution possesses the 
following properties: 

( )0 =0.5Φ  (24) 

( ) ( )=1z zΦ − − Φ  (25) 

Due to (5) 0.9999997Φ ≈ , it is enough in practice to construct a cumulative probability table 
of the standard normal distribution for the range [0, 5]. For values exceeding 5, the cumulative prob-
ability can be approximated as 1, which meets the accuracy requirements for engineering applica-
tions. When constructing the cumulative probability table of the standard normal distribution via 
numerical integration, it is recommended to use a small integration step size (e.g., 0.0001) to ensure 
numerical accuracy. When using the table lookup method, linear interpolation can be applied be-
tween the data intervals to obtain the cumulative probability corresponding to a specified value. The 
integral formula for the cumulative probability within the range [0, 5] is as follows: 

( )
2

2

0

10.5 e
2

s
z

z ds
π

 
−  
 Φ = +   (26) 

The numerical integration formula for calculating the cumulative probability of the standard 
normal distribution is as follows: 

( ) ( ) ( ) ( )( 1)
( 1)

2
k z k z

k z k z z
φ φΔ + + Δ

Φ + Δ = Φ Δ + Δ  (27) 

Where zΔ  represents the integration step size and k denotes the number of integration steps. 

7. Probabilistic Reserve Decision-making 
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After determining the mean μ  and standard deviation σ  of the forecast error normal distri-
bution model, the reserve decision variable R can be obtained based on the optimality conditions of 
Equation (12). 

Since the right-hand side of Equation (12) contains the decision variable R, which poses chal-
lenges for direct numerical solution, an iterative method based on Equation (28) is constructed to 
solve this. 

( )

( ) ( )

EDNS R INC( 1)

EDNS INC

2

=

i i

i

R RC C C
R

C C

μ μφ
σ σ σμ

σ

+

  −  − + − Φ −      −   Φ   − 
 

(28) 

In the equation, the superscript i represents the iteration number. 
The solution of Equation (28) also requires the use of the standard normal distribution cumula-

tive probability table to obtain the quantile from the cumulative probability. 
If the deviation between two consecutive iteration results is smaller than the predefined allow-

able error, the iteration converges, and R(i+1) is taken as the probabilistic reserve decision result. The 
convergence criterion is set as follows: 

( 1) ( )i iR R ε+ − ≤  (29) 

Where ε  represents the allowable error. 

8. Case Analysis 

8.1. Case Test of Belgian transmission network 
Firstly, a case study analysis is conducted by using the relevant data from Belgian transmission 

network, published by the Elia Group [27]. The frequency distribution histogram of the net load fore-
cast errors for a specific year of this transmission network is shown in Figure 3. The cumulative prob-
ability distribution curve of the net load forecast errors is shown in Figure 4. 

 

Figure 3. Histogram of frequency distribution of net load forecast errors. 
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Figure 4. Cumulative probability distribution curve of net load forecast errors. 

It can be observed that situations where the net load significantly exceeds expectations (with net 
load forecast errors greater than 1000 MW) are concentrated in the tail cumulative probability of less 
than 2%. 

Let the unit cost of load shedding, CEDNS, be 1000 $/(MW·h) [28], the unit cost of reserve capacity, 
CR, be 20 $/(MW·h) [29], and the unit revenue from additional generation during reserve activation, 
CINC, be 5 $/(MW·h) [30]. According to Equation (16), it can be obtained: 

R(0)=1141.14MW  

Further, based on Equations (22) and (23), the parameters of the normal distribution probability 
model for net load forecast errors can be obtained: 

μ=228.19  

σ=428.53  

The iterative solution is carried out according to Equation (28), setting the permissible deviation 
of the results from two adjacent iterations to be 0.01. The programming is carried out on the MATLAB 
R2022b software platform, taking 0.3201 seconds. After 4 iterations, the result converges. The final 
reserve decision-making value was: 

R=1152.40MW  

It can be found that the final value R obtained for the reserve decision-making is larger than the 
initial value R(0), which is consistent with the conclusion in the theoretical derivation. 

We use two key points on the sample cumulative probability distribution curve to obtain the 
two key parameters of the net load forecast error normal distribution model: the mean (μ) and the 
standard deviation (σ). If the sample mean ( x ) and standard deviation (s) are directly taken as the 
parameters of the normal distribution model: 

1

1 N

i
i

x x
N =

=    

2

1

1 ( )
1

N

i
i

s x x
N =

= −
−    

The two obtained normal distribution models and the frequency distribution histogram of the 
net load forecast errors from Belgian transmission network, are plotted together, and the result is 
shown in Figure 5: 
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Figure 5. First comparison of two normal distribution models. 

The normal distribution obtained by using the method proposed in this paper is denoted as 
Model 1. The normal distribution obtained by using the sample mean and standard deviation is de-
noted as Model 2. From the Figure 5, it can be observed that Model 1 fits the small probability interval 
of the tail much more accurately than Model 2. Furthermore, when the normal distribution parame-
ters of Model 2 are directly substituted into the reserve decision-making iteration model, the obtained 
reserve decision result is 997.87 MW, indicating that the reserve result obtained by Model 2 is riskier. 

8.2. Case Test of Guangdong Power Grid in China 
The second case study analysis is conducted by using the relevant data from Guangdong Prov-

ince, China. All the parameter values are the same as those in Section 8.1.  
Model 1 (the normal distribution model obtained by using the method proposed in this paper, 

μ=1210.27, σ=2753.80) takes 4 iterations and 0.4967 seconds, yielding a reserve result of 7135.77 MW. 
Model 2 (the normal distribution obtained by using the sample mean and standard deviation) takes 
5 iterations and 0.3422 seconds, yielding a reserve result of 7758.21 MW. The two obtained normal 
distribution models and the frequency distribution histogram of net load forecasting errors from 
Guangdong Province, China, are plotted together, as shown in Figure 6.  

From the Figure 6, it can be observed that Model 1 fits the small probability interval of the tail 
much more accurately than Model 2. Additionally, the reserve decision result obtained by Model 2 is 
more conservative. 
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Figure 6. Second comparison of two normal distribution models. 

8.3. Result Analysis 
Based on the above, the probabilistic reserve decision-making method proposed in this paper 

has the following mathematical advantages: 
1) The normal distribution model obtained through fitting the key points provides a better fit for the 

small probability interval of the tail. 
2) Since the normal distribution is still used to fit the net load forecast error variable, compared to other 

parameter distributions, the method has a lower computational complexity and is easier to compute. 

9. Conclusion 
This paper proposes a probabilistic reserve decision-making method for high-penetration re-

newable energy power systems based on cumulative probability approximation. It comprehensively 
considers three factors: reserve cost, expected generation revenue from reserves, and expected loss 
due to load shedding. While using a normal distribution model to fit the net load forecast error vari-
able, the method improves the fitting accuracy in the small probability interval of the tail, demon-
strating good practical value. 

It is worth noting that this paper does not consider the limitations of transmission line capacity 
in the power system. Moreover, with the increasing frequency of extreme weather in recent years, 
the power grid is prone to N-k line failures during such events. Therefore, considering transmission 
line capacity and N-k line failures in reserve decision making will be a direction for future research. 
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