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Abstract: Lualaba Province, located in the southeastern Democratic Republic of the Congo, consists 

of five territories with varied dominant land uses: agriculture (Dilolo, Kapanga, and Musumba in 

the west) and mining (Mutshatsha and Lubudi in the east). The province also includes protected 

areas with  significant  governance  challenges.  The  unique miombo woodlands  of  Lualaba  are 

threatened by deforestation, posing risks to biodiversity and local livelihoods that depend on these 

woodlands  for  agriculture  and  forestry. To quantify  the  spatio‐temporal dynamics of Lualaba’s 

landscape, we utilized Landsat images from 1990 to 2024, supported by a Random Forest Classifier. 

Landscape metrics were calculated at multiple hierarchical levels: province, territory, and protected 

areas.  Our  provincial‐level  analysis  revealed  a  pronounced  deforestation  trend, with miombo 

woodland cover declining from 62,90 % to less than 25 % over the 34‐year period. This trend was 

characterized by the fragmentation and dissection of woodland patches and a decline in remaining 

woodland fragments, due to their ongoing replacement by savannas, agriculture, and urbanization. 

The  average  distance  between  miombo  woodland  patches  increased  significantly,  indicating 

heightened  fragmentation and spatial  isolation. Agricultural areas such as Sandoa and Kapanga 

were particularly vulnerable to deforestation. On the other hand, the miombo forest cover in the 

mining areas is still representative, with over 30% of the landscape covered. Notably, the reduction 

in woodland cover within protected areas was substantial, with significant losses observed across 

both agricultural and mining  territories. The  loss of miombo woodland cover  in Lualaba and  its 

territories was  accompanied  by  an  increase  in  landscape  patch  diversity,  as  indicated  by  the 

Shannon  diversity  index,  suggesting  a  shift  to more  heterogeneous  landscapes.  These  findings 

underscore  a  complex  deforestation  pattern,  highlighting  the  intense  local  impact  on miombo 

woodland cover  loss. Urgent action  is needed  to  implement  land conservation policies, promote 

sustainable  agricultural  practices,  strengthen  miombo  woodland  regulation  enforcement,  and 

actively  support protected  areas.  Involvement  from both  local  and  international  stakeholders  is 

imperative  to preserve  the  ecological  richness  and  functionality  of Lualaba Province’s miombo 

woodland ecosystems. 
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1. Introduction 

Forests ecosystems, covering a third of the Earth, vary according to climate, terrain, soil, and 

human activities [1]. They provide crucial services and goods such as timber, medicines, and non‐

timber  forest products  essential  for human well‐being  [2,3]. Based on  their  floristic  composition, 

structure, and geographic  location,  forests  can be  classified  into  temperate  forests, boreal  forests, 

mangroves, mountain forests, humid tropical forests, and dry tropical forests [4]. Each forest types 

exhibits unique characteristics in terms of biodiversity, productivity, and resilience to environmental 

changes. Among  these  forest  types,  dry  tropical  forests  are  adapted  to  prolonged  dry  seasons, 

evolving over time in response to climate and human activities [5]. Despite threats, they are essential 

for local communities, providing habitats, resources, water regulation, and soil fertility [6]. They hold 

cultural value for local peoples and promote ecotourism, thus supporting local economies [7]. 

Dry tropical forests cover approximately one‐sixth of the Earth’s surface and half of Africa [8]. 

These ecosystems are among the most threatened, primarily due to human activities [9]. Among these 

ecosystems,  miombo  woodlands,  predominant  in  Southern  Africa,  are  characterized  by  the 

prevalence  of  species  belonging  to  the  genera  Brachystegia,  Julbernardia,  and  Isoberlinia  of  the 

Caesalpionioideae subfamily [10]. They cover an area of 2 million km², encompassing parts of Angola, 

the Democratic Republic of the Congo (DR Congo), Malawi, Mozambique, Tanzania, Zambia, and 

Zimbabwe [11]. This ecoregion is recognized as an important center of endemism, hosting over 8,500 

plant  species, with more  than  4,000  being  endemic  [12].  These  ecosystems  play  a  vital  role  in 

maintaining biodiversity and supporting the livelihoods of local populations [13]. 

If the miombo woodland covered nearly 23% of the total forest area in the DRC in 2000 [14], it 

represented 95.2% of the total forest cover in the Katanga region that same year [15]. Over the period 

from 2000  to 2010,  the Katanga region experienced a  loss of approximately 350,900 ha due  to  the 

expansion of mining and subsistence activities (agriculture, collection of non‐timber forest products, 

charcoal production among other), supported by demographic explosion and rapid urbanization [16–

18]. In Katanga region, the Lualaba province exemplifies the decline of the miombo woodland [19]. 

For decades, Lualaba has been closely linked to mining, which has marked its history. The discovery 

of valuable mineral  resources attracted a significant workforce,  leading  to  the  rapid expansion of 

mining settlements within the miombo woodland [20]. After the political independence of the DRC 

in 1960, these settlements experienced rapid spatial expansion without adequate planning, severely 

affecting the surrounding forests [21]. Subsequently, the increasing demand of land for agriculture 

led  to  massive  deforestation  in  surrounding  rural  areas,  triggering  a  cycle  of  environmental 

degradation  [18,22].  The  energy  crisis,  particularly  the  energy  deficit  associated with  the  rapid 

expansion of  settlements,  also played  a  crucial  role  in  this  accelerated deforestation.  Indeed,  the 

widespread use of charcoal as an energy source in urban areas intensified pressure on already fragile 

forest resources [23]. This situation has endangered the biodiversity of the region, affected not only 

forests but also protected areas. 

Among these protected areas, Potapov et al. [14] findings revealed that the highest forest cover 

loss was observed within hunting reserves close to Kolwezi, where forest cover loss within several 

protected areas was close to 5% between 2000‐2010. Indeed, most protected areas are small and are 

trapped within a landscape dominated by agricultural or mining zones [24]. Consequently, due to 

land saturation at the periphery, these protected areas are constantly degrading under pressure from 

local populations, whose interests are generally not considered in management systems [19]. Finally, 

the creation of the Lualaba Province in 2015 exacerbated these challenges since persistent population 

growth continues to exert immense anthropogenic pressure on the remaining forest resources [18]. 

Monitoring deforestation in the Lualaba Province is of crucial importance as it allows for the 

identification of deforestation pattern, understanding its evolution over time [25], and anticipating 
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potential  future  issues. With  precise  data,  policymakers  can  take  appropriate measures  for  the 

conservation and sustainable environmental management of forest ecosystems [26]. In this context, 

remote sensing provides extensive coverage,  ideal  for  tracking deforestation on a  large scale  in a 

province. It also provides frequent data for continuous monitoring [27–30]. Concurrently, applying 

landscape  ecology  analysis  tools  complements  this  by  understanding  the  ecological  processes 

underlying  spatio‐temporal  changes  in  landscapes,  aiding  in  locating  at‐risk  areas  [31–33]. 

Hierarchical analysis of landscape dynamics, combining remote sensing and landscape ecology, is 

essential  from  the  provincial  to  local  scale.  It  enables  a  nuanced  understanding  of  spatial 

heterogeneity, ecological processes, and anthropogenic impacts across scales. This approach supports 

precise,  scale‐appropriate  interventions  in  landscape  management,  conservation  planning,  and 

sustainable development, ensuring more effective ecological and socio‐economic outcomes. 

The general objective is to quantify the multiscale spatio‐temporal dynamics of forest ecosystems 

within the Lualaba Province. We hypothesize that multiscale analysis of Landsat images combined 

with a fine‐scale landscape analysis approach will reveal significant trends in the spatial dynamics of 

landscapes  in  the Lualaba Province between 1990 and 2023. We expect  to observe an  increase  in 

deforested and fragmented areas, as well as alteration of the spatial pattern and connectivity of forest 

miombo woodland over time, notably at the fine scale, due to the impact of human activities (mining, 

urbanization and agriculture). 

2. Materials and Methods 

2.1. Study Area 

The Lualaba Province  (7°38′14,80”‐11°44′20,82” South et 21°44′43,19‐ 27°11′16,11” East)  in  the 

southeastern part of the DRC, covering 121,309 km², constitutes 5.2% of the national territory (Figure 

1). It exhibits a diverse climate, featuring a warm temperate climate in the eastern sector (Mutshatsha 

and Lubudi territories) and a more humid tropical climate in the western areas (Kapanga, Dilolo, and 

Sandoa) [20]. The province experiences distinct rainy and dry seasons, spanning approximately five 

months from April to May. Its annual rainfall  is around 1600 mm for the northwest, compared to 

nearly 1200 mm for the eastern part of the Province. The average annual temperature hovers around 

25°C [20,22]. The primary vegetation in the Lualaba Province encompass dry dense forests, edaphic 

dense forests, woodland, savannas, and aquatic environments [15,20]. The region’s soils are notably 

diverse [34], with the prevalence of Ferralsols, Acrisols, and Arenosols. Named after the Congo River, 

the Lualaba Province  is characterized by plateaus, with various rivers  like Lufupa, Kalule, Lulua, 

Luao, Lubilanshi, Luashi, Dikulwe, Musonoi, and Mumonwezi playing pivotal roles in local life and 

the economy. Recent data suggests a population of 4.3 million inhabitants (2021), with an average 

household size of 6.1 and  life expectancy at 58.2 years.  In  the Lualaba province,  the poverty  rate 

stands at 83%, while the unemployment rate is 85%. Additionally, the annual population growth rate 

is close to 4% [35]. The province’s mining sector, including both industrial and artisanal mining, has 

flourished, fostering formal and informal activities  like general trade, subsistence agriculture, and 

informal  commerce  [36].  As  for  the  employment  sector  breakdown,  agriculture  accounts  for  a 

substantial 71.4%. Regarding access to modern healthcare services, only 15.4% of the population has 

such  access,  and  the  electrification  rate  remains  extremely  low  at  just  1%  [35].  The  province  is 

composed of 5 territories, within which are located protected areas (Table 1). 

Table 1. Brief description of each  territory  in  the province of Lualaba  (DRC),  its surface area,  the 

economic activities of the population and the protected area. 

Territory 
Area 

(km²) 
Population  Description 

Lubudi  18939  387000 

Economic activities include mining (artisanal and industrial), 

agriculture, and trade. The region is home to the rural municipality of 

Fungurume and the historic city of Bunkeya. Additionally, the 
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territory encompasses the Hunting Domain of Mulumbu (993.56 

km²), and it is electrified with some paved roads. 

Mutshatsha 18859  1268500 

Mining, agriculture, and commerce are key activities in this area, 

which includes the city of Kolwezi, the capital of the Province. The 

territory is home to the Hunting Domain and Reserve of Basse Kando 

(479.18 km²), as well as the Tshangalele Reserve (523.52 km²). The 

territory is electrified and has some paved roads. 

Sandoa  25337  765400 

Agriculture and commerce thrive in this area. The territory, which 

lacks electricity and paved roads, is home to the Lunda‐Tshokwe 

Hunting Domain (2345.27 km²) and the Mwene‐Kay Reserve (531.33 

km²). 

Kapanga  25509  1255600 

Agriculture and commerce flourish in the territory, which is without 

electricity and paved roads. It is home to the Tshikamba Hunting 

Domain (4857.21 km²). 

Dilolo  25648  623,500 

Agriculture and commerce are prominent in this area, which includes 

the city of Kasaji. The territory, lacking electricity and paved roads, is 

home to the Mwene Musoma Hunting Domain (1303.99 km²). 

 

Figure 1. Geographical map of  the Lualaba Province  in  the DRC, detailing  its  five  territories: key 

agricultural zones (IV) Sandoa, (V) Kapanga, and (III) Dilolo, and major mining areas (I) Lubudi and 

(II) Mutshatsha. The map also  identifies seven protected areas within Lualaba Province:  (a) Basse 

Kando  Hunting  Domain  (BKHD),  (b)  Lac  Tshangalele Hunting  Domain  (LTHD),  (c) Mulumbu 

Hunting Domain  (MHD),  (f) Alunda  and Tutshokwe Hunting Reserve  (ATHR),  (d) Mwene Kay 

Hunting Domain  (MKHD),  (e) Mwene Musoma Hunting Domain  (MMHD),  and  (g)  Tshikamba 

Hunting Reserve (THR). 

2.2. Data 

Landsat images with a 30‐meter spatial resolution, covering the period from 1990 to 2024, were 

used to map and quantify forest cover loss in Lualaba Province. The analysis, divided into intervals 
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(1990‐1995, 1995‐2001, 2001‐2006, 2006‐2010, 2010‐2015, 2015‐2020, and 2020‐2024), highlights long‐

term trends and changes in landscape dynamics. The year 1990 marked the start of a political crisis, 

leading to looting and infrastructure destruction. The years 1995 and 2001 framed the Congo wars, 

causing significant population displacement to Lualaba. In 2006, The general elections in the DRC 

could  have  negatively  impacted  landscape  dynamics  by  intensifying  land  disputes,  accelerating 

deforestation,  and  disrupting  conservation  efforts  due  to  political  instability.  The  post‐global 

economic  crisis  (2010)  led  to mine  closures  and  uncertainty  before  the  2011  elections.  In  2015, 

institutions were established in Kolwezi to govern the new Lualaba Province, and in 2020, there was 

a political regime change. The year 2024 provided a snapshot of the most recent landscape conditions. 

The  selected Landsat  images,  captured during  the dry  season  (June and  July)  to minimize  cloud 

cover,  were  chosen  for  clear  visibility  and  precise  land  cover  interpretation.  These  images, 

representing surface reflectance data from Level 2 Collection 2 Tier 1 datasets, were selected based 

on availability, quality  (cloud‐free, no streaks), and  the study’s objectives  [37].  Images  from 1990, 

1995, 2001, and 2006 were sourced from the Landsat 5 Thematic Mapper (TM) sensor, those from 2010 

from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and those from 2015 and 2024 from the 

Landsat 8 Operational Land Imager (OLI). 

2.3. Classifications 

The Landsat  images were georeferenced  to  the UTM Zone 35S coordinate system, using  the 

WGS‐84 reference ellipsoid, appropriate for the study area, and underwent extensive preprocessing. 

Radiometric calibration was  initially applied  to correct sensor biases and account  for atmospheric 

effects,  ensuring  temporal  consistency  in  readings  [38,39].  Subsequently,  geometric  calibration 

addressed distortions caused by satellite movements, ensuring accurate pixel representation of the 

Earth’s surface [40]. Atmospheric correction was then performed to eliminate effects such as haze and 

scattering,  enhancing  surface  reflectance  analysis  [41]. Additional  radiometric preprocessing was 

conducted (for images from 2010 onward) to correct the spatial discontinuity that occurred in May 

2003  following  the  Landsat  7  Scan  Line  Corrector  (SLC)  failure, which  resulted  in  the  loss  of 

approximately 22% of data in each image scene. To mitigate this limitation, a “gap mask” technique 

was applied  [42], effectively recovering missing data and ensuring  the reliability and accuracy of 

subsequent analyses. 

For improved analysis, a false‐color composite was carefully created by combining mid‐infrared, 

near‐infrared, and red bands, allowing for clearer differentiation of vegetation types [43]. Land cover 

units were identified and codified for each scene, and Regions of Interest (ROI) were defined on the 

images based on  field knowledge and GPS points  (accuracy of 3 meters, model 64st). These ROIs 

were strategically selected to avoid transitional areas, minimizing pixel mixing and enhancing result 

accuracy. These ROIs were then used to build a training model for the Random Forest classifier under 

Google Earth Engine (GEE) [44,45]. This method, which relies on multiple decision trees [45], allowed 

for the classification of five land cover types, each represented by 200 ROIs. The land cover categories 

include  “forest,”  encompassing  dominant miombo  patches,  dense dry  forest,  and  gallery  forest; 

“savanna,” characterized by low tree density and predominance of herbaceous cover; “agriculture,” 

covering harvested, abandoned, or areas occupied by annual and off‐season crops; “built‐up areas 

and bare soil,” including bare lands and residential areas with minimal vegetation; and finally, “other 

land  cover  types”  such as water bodies and unclassified areas. The  extensive archives of  remote 

sensing  data  and  GEE’s  powerful  cloud  computing  resources  ensured  consistency  and 

standardization of data collection procedures across different regions and datasets [44]. 

To evaluate the classification accuracy, were calculated using a sample of ground truth points, 

randomly  collected within  each  land  cover  class between  1990  and  2024  [46]. The  samples were 

stratified into 9 categories: 5 stable strata (forest, savanna, agriculture, built‐up areas, and bare soil) 

and 4 change strata  (forest  loss, savanna gain, agriculture gain, built‐up area and bare soil gain). 

Sample sizes were determined using Cochran’s method, with 1,000 points per period  (1990‐1995, 

1995‐2001, 2001‐2006, 2006‐2010, 2010‐2015, 2015‐2020, and 2020‐2024) [47]. QGIS version 3.26.1 was 

used  to  calculate  the  error matrix  and measure  accuracies:  Overall  Accuracy  (OA),  Producer’s 
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Accuracy (PA), and User’s Accuracy (UA). The F1 score was also computed [48], which integrates PA 

and UA, providing a single accuracy measure for classification. It was deemed more significant than 

the kappa coefficient and OA [49,50]. Finally, land cover maps were produced using ArcGIS version 

10.8. 

2.4. Quantifying Spatio‐Temporal Pattern Changes in Forest Ecosystems 

A range of landscape metrics were computed using Fragstats software version 4.2 (Developed 

by McGarigal, Amherst, MA, USA) to assess the influence of human activities on landscape structure 

and spatial patterns across three distinct scales: Province, territory, and designated protected areas. 

The calculation of class area, representing the proportional extent of specific land cover types within 

the  landscape,  served  to  identify  the  landscape matrix  [51,52]. Edge density,  indicating  the  total 

length of edge segments per hectare, was used to gauge landscape complexity. Higher edge density 

points to a more complex land cover type with distinct boundaries, while lower edge density suggests 

smoother  boundaries  [53].  The  number  of  patches  played  a  crucial  role  in  assessing  landscape 

fragmentation, where a higher count indicated fragmentation and dispersed distribution [54]. Further 

insights into spatial dispersion were gained through the average Euclidean distance to the nearest 

neighbor, measuring the average distance between patches and their closest neighbors. Additionally, 

the  largest  patch  index,  reflecting  the  size  of  the  largest  patch within  a  land  cover  type, was 

considered. A higher  index  value  indicates  that  a particular  land  cover  type  forms  larger, more 

connected patches, beneficial for species needing extensive habitats or connectivity between patches 

for movement, migration, and genetic exchange [55]. The deforestation rate, derived from changes in 

forest class area, provided insights into the intensity of human impacts on forest ecosystems [56]. The 

Shannon index, commonly used to assess the spatial arrangement of patches, was also computed. A 

Shannon value close to zero indicates a highly uniform distribution of patches, while a value closer 

to 1 indicates a more dispersed distribution [53]. 

A decision tree approach was employed to identify the ecological processes driving observed 

spatio‐temporal dynamics  [57]. From a diachronic analysis, reductions  in patch number and class 

area signify attrition, while an increase in class area alongside a decrease in patch number indicates 

aggregation. Unchanged patch numbers with  increased  class  area  suggest  enlargement, whereas 

simultaneous  growth  in  both  metrics  indicates  the  creation  of  new  patches.  Dissection  is 

characterized by decreased class area and increased patch number, often due to linear disruptions 

with  minimal  area  loss.  Conversely,  fragmentation  involves  an  increase  in  patch  number 

accompanied by significant class area loss. Perforation occurs when reductions in class area lead to 

an increased total perimeter, while patch shrinkage occurs when the total perimeter remains constant. 

A  consistent  total perimeter with unchanging patch number and  class area  signals a  shift, while 

changes  in  the  total  perimeter  suggest  deformation.  To  distinguish  between  fragmentation  and 

dissection,  the  ratio  of  class  area  at  different  time  points was  analyzed. A  ratio  exceeding  0.75 

indicated  dominance  of  dissection, whereas  a  ratio  equal  to  or  below  0.75  indicated  prevalent 

fragmentation [58]. 

3. Results 

3.1. Classification Accuracy and Mapping 

The  Overall  Accuracy  (OA)  of  the  supervised  classifications  of  Landsat  images  using  the 

Random Forest (RF) classifier exceeds 90% for each analyzed period, demonstrating the reliability in 

distinguishing  various  land  cover  categories  (Table  1).  User’s  Accuracy  (UA)  and  Producer’s 

Accuracy  (PA),  ranging  from  90%  to  100%,  attest  to  the  high  quality  of  the  classifications, with 

minimal errors in class identification. The high F1 score values for both UA and PA further confirm 

the excellent performance of the RF classifier. 
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Table  1. Evaluation of  the  accuracy of  land  cover  change maps  from  1990  to  2024, based on  the 

supervised  classification  of  Landsat  images  using  the  Random  Forest  classifier.  FR:  Forest;  SV: 

Savanna; AG: Agriculture; BBS: Built‐up & Bare Soil; OT: Other Land Cover; UA: User’s Accuracy; 

PA: Producer’s Accuracy. The  change  in  the  “OT”  category was  not  assessed due  to  its  relative 

stability throughout all periods. The F1 score is calculated as the harmonic mean of the UA and PA. 

1990‐1995  FR    SV    AG    BBS    OT    FR Loss  SV Gain  AG Gain  BBS Gain 

PA [%]  99.00  94.42  98.99  98.00  100  96.04  98.04  97.98  95.06 

UA [%]  99.01  100  98.00  97.09  98.97  99.00  99.01  98.98  100 

F1 [%]  99.00  97.13  98.49  97.54  99.48  97.50  98.52  98.48  97.47 

Overall accuracy [%]  95.60                          

1995‐2001  FR    SV    AG    BBS    OT    FR Loss  SV Gain  AG Gain  OT Gain 

PA [%]  93.58  100  98.05  100  100  100  95.88  100  100 

UA [%]  97.14  100  99.01  99.03  96.08  96.3  89.42  99.03  96.08 

F1 [%]  95.33  100.00  98.53  99.51  98.00  98.12  92.54  99.51  98.00 

Overall accuracy [%]  98.40                        

2001‐2006  FR    SV    AG    BBS    OT    FR Loss  SV Gain  AG Gain  OT Gain 

PA [%]  97.02  100  96.04  98.04  97.98  95.06  100  98.9796  93.578 

UA [%]  99.02  98.97  99  99.01  98.98  100  99.0196  96.0396  97.1429 

F1 [%]  98.01  99.48  97.50  98.52  98.48  97.47  99.51  97.49  95.33 

Overall accuracy [%]  96.61                          

2006‐2010  FR    SV    AG    BBS    OT    FR Loss  SV Gain  AG Gain  OT Gain 

PA [%]  98.06  99.03  100  98.04  100  100  99.03  97.8  97.35 

UA [%]  98.54  100  99  100  98.02  100  100  100  99.1 

F1 [%]  98.30  99.51  99.50  99.01  99.00  100.00  99.51  98.89  98.22 

Overall accuracy [%]  98.30                          

2010‐2015  FR    SV    AG  BBS    OT    FR Loss  SV Gain  AG Gain  OT Gain 

PA [%]  98  96  98.11  98.1  100  100  98.04  97.98  97.06 

UA [%]  97.09  98.06  99.05  99.04  98.99  95.1  99.01  98.98  100 

F1 [%]  97.54  97.02  98.58  98.57  99.49  97.49  98.52  98.48  98.51 

Overall accuracy [%]  98.91                          

2015‐2020  FR    SV    AG    BBS    OT    FR Loss  SV Gain  AG Gain  OT Gain 

PA [%]  99.09  100  98.97  93.58  100  98.05  100  98.06  93.58 

UA [%]  100  99.02  96.04  97.14  100  99.01  97.06  98.06  97.14 

F1 [%]  99.54  99.51  97.48  95.33  100.00  98.53  98.51  98.06  95.33 

Overall accuracy [%]  97.51                        

2020‐2024  FR    SV    AG  BBS    OT    FR Loss  SV Gain  AG Gain  OT Gain 

PA [%]  100  98.04  100  100  100  100  100  100  98.08 

UA [%]  100  100  98.02  100  98.02  100  100  99.06  98.08 

F1 [%]  100.00  99.01  99.00  100.00  99.00  100.00  100.00  99.53  98.08 

Overall accuracy [%]  98.45                        

The visual analysis of land cover maps (Figure 2) reveals a gradual and ongoing regression of 

forested areas in the Lualaba province. This forest decline is particularly pronounced along a west‐

east gradient, where previously  forested areas are progressively being replaced by anthropogenic 

land  cover  classes,  especially  savannas,  whose  expansion  is  both  rapid  and  striking.  This 

phenomenon highlights the increasing pressures exerted by human activities on natural ecosystems. 

Nevertheless,  despite  this  widespread  trend  of  deforestation,  forest  fragments  persist  in  the 

southeastern part of  the province,  indicating  the  resilience of certain  forested areas  in  the  face of 

anthropogenic expansion. 
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Figure 2. Spatial mapping of land cover dynamics in the Lualaba province landscape from 1990 to 

2024, utilizing supervised classification of Landsat images with the Random Forest classifier. The land 

cover classes are denoted as follows: FR (Forest), SV (Savanna), AG (Agriculture), BBS (Built‐up & 

Bare  Soil),  and Other  land  cover.  Intermediate  dates  not  displayed  on  this map  did  not  exhibit 

significant perceptible changes in the landscape. 

3.2. Landscape Composition Dynamics 

3.2.1. Composition Dynamics in Lualaba Province and Its Territories 

The multi‐scale landscape analysis from 1990 to 2024 reveals significant dynamics across the five 

territories of Lualaba province (Figure 3). Overall, forest cover has notably decreased, dropping from 

62.90% in 1990 to 24.59% in 2024, with an average annual deforestation rate of ‐1.2 at the provincial 

level (A). Simultaneously, savannas have expanded considerably, increasing from 36.47% to 75.97%, 

while  agricultural  land  and  built‐up  areas  have  slightly  risen  to  1.78%  and  1.09%,  respectively. 

Similar trends are observed in Lubudi territory (B), where forest cover has significantly decreased 

from  85.11%  to  32.05%,  accompanied  by  an  expansion  of  savannas  from  14.66%  to  63.69%. 

Agricultural  lands  and built‐up  areas have  also modestly  increased.  In Mutshatsha  territory  (C), 

deforestation is even more pronounced, with forest cover declining from 84.52% to 32.81%. During 

the same period, savannas expanded  from 13.75%  to 65.00%, and agricultural  lands and built‐up 

areas saw a slight increase. In Dilolo territory (D), forest cover has decreased from 71.14% to 27.17%, 

while  savannas  have  continued  their  expansion,  reaching  69.68%  in  2024.  Agricultural  lands 

increased to 2.76%, while built‐up areas remain limited. Additionally, in Sandoa territory (E), forest 

cover has significantly declined from 52.56% to 12.80%, with a concomitant increase in savannas from 

47.11% to 85.19%. Agricultural lands and built‐up areas have shown little change, reaching 1.38% and 

0.56%,  respectively. Finally,  in Kapanga  territory  (F),  forest  cover has drastically decreased  from 

49.66% to 5.57%, while savannas have experienced substantial expansion, reaching 92.55% in 2024. 

In this territory, agricultural lands and built‐up areas occupy less space in 2024. 

Moreover,  the  global  analysis  of  landscape  diversity  indices  in  Lualaba  province  indicates 

generally  stable  diversity  with  notable  variations  (Figure  4).  From  1990  to  1995,  diversity  is 
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homogeneous and high. However, from 2001 onwards, some territories exhibit a temporary increase, 

but diversity decreases in several areas from 2015, particularly in Kapanga. By 2024, diversity is low 

in  Kapanga  but  stable  in  other  territories,  reflecting  changes  in  landscape  management  and 

environmental conditions. 

 

Figure 3. Landscape composition evolution in Lualaba province (A) (DRC) and their territories: (B) 

Lubudi,  (C) Mutshatsha,  (D) Dilolo,  (E) Sandoa et  (F) Kapanga  from 1990  to 2024. FR  (Forest), SV 

(Savanna), AG  (Agriculture),  and  BBS  (Built‐up &  Bare  Soil).  The  total  landscape  proportion  in 

Lualaba province  ant  for  each  territory does not  sum  to  100 %  as  other  land  cover  classes were 

excluded from the analyses due to their relatively stable nature. 
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Figure 4. Dynamics of  landscape diversity  in Lualaba province  (DRC) and  its  territories  (Lubudi, 

Mutshatsha, Dilolo, Kapanga and Sandoa). The overall landscape of Lualaba province has remained 

relatively stable between 1990 and 2024, though with notable variations during this period. 

3.2.2. Dynamics of Land Cover Composition within Protected Areas in Lualaba Province 

The analysis of land use data within the seven protected areas of Lualaba province from 1990 to 

2024 highlights concerning deforestation and significant conversion of forests into savannas (Figure 

5). The Basse Kando Hunting Domain (A) saw its forest cover drop from 78.51% in 1990 to just 4.35% 

in 2024. This loss was particularly pronounced after 2010, with a parallel increase in savannas from 

20.87% to 78.27%. Simultaneously, built‐up areas and bare soils expanded, reaching 15.11% in 2024. 

Similarly,  the Lac Tshangalele Hunting Domain  (B) experienced a significant reduction  in  forests, 

decreasing from 39.07% in 1990 to 2.18% in 2024. This decline accelerated after 2006, while savannas 

more  than  doubled,  covering  57.11%. The  growth  of  built‐up  areas  reflects  an  intensification  of 

human activities. Furthermore, the Mulumbu Hunting Domain (C) saw its forest cover decrease by 

nearly 50%, from 62.78% in 1990 to 13.09% in 2024. This reduction was particularly marked between 

2010  and  2020, with  savannas  expanding  to  cover  85.99%,  becoming  the  dominant  land  cover. 

Similarly, the Alunda and Tutshokwe Hunting Reserve (D) recorded a significant decline in forest 

cover, dropping from 51.64% in 1990 to 7.12% in 2024. Savannas nearly doubled, representing 91.46% 

in 2024, illustrating a massive forest conversion. The Mwene Kay Hunting Domain (E) also suffered 

a major loss in forest cover, decreasing from 64.86% in 1990 to 15.89% in 2024. This reduction was 

accompanied by an increase  in savannas, which covered 82.73% of the area  in 2024. Similarly, the 

Mwene Musoma Hunting Domain (F) recorded a notable reduction in its forests, from 48.74% in 1990 

to 9.26%  in 2024. Savannas nearly doubled, reaching 90.28%,  indicating a significant  loss of forest 

biodiversity. Finally, the Tshikamba Hunting Reserve (G) shows a similar trend, with forest cover 

declining from 38.44% in 1990 to 7.53% in 2024. Savannas increased to 90.59%, while built‐up areas 

and bare soils experienced slight expansion. 
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Figure 5. Landscape composition evolution in Protected areas in Lualaba province from 1990 to 2024: 

The Basse Kando Hunting Domain  (A);  the Lac Tshangalele Hunting Domain  (B);  the Mulumbu 

Hunting Domain  (C);  the Alunda and Tutshokwe Hunting Reserve  (D); The Mwene Kay Hunting 

Domain  (E);  the Mwene Musoma Hunting Domain  (F);  the Tshikamba Hunting Reserve  (G).  FR 

(Forest),  SV  (Savanna),  AG  (Agriculture)  and  BBS  (Built‐up  &  Bare  Soil).  The  total  landscape 

proportion for each Protected area does not sum to 100 % as other land cover classes were excluded 

from the analyses due to their relatively stable nature. 

The  analysis  of  landscape diversity within Lualaba’s protected  areas  reveals distinct  trends 

(Figure 6). The Basse Kando Hunting Domain (BKHD) and the Mulumbu Hunting Domain (MHD) 

show an increase in landscape diversity. Conversely, the Alunda and Tutshokwe Hunting Reserve 
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(ATHR),  the Mwene Musoma Hunting Domain  (MMHD), and  the Mwene Kay Hunting Domain 

(MKHD) exhibit a significant reduction in diversity, indicating landscape degradation or conversion. 

The  Lac  Tshangalele  Hunting  Domain  (LTHD)  maintains  high  and  stable  diversity,  while  the 

Tshikamba  Hunting  Reserve  (THR)  shows  declines  and  fluctuations,  indicating  potential 

management challenges for habitats. These results underscore the significant variations in landscape 

management and condition within the protected areas. 

 

Figure 6. Dynamics of landscape diversity in the protected areas of Lualaba Province between 1990 

and  2024.  The  protected  areas  have  experienced  variations  in  landscape  homogeneity  and 

heterogeneity over  this period. Basse Kando Hunting Domain  (BKHD), Lac Tshangalele Hunting 

Domain  (LTHD), Mulumbu Hunting Domain  (MHD), Alunda  and  Tutshokwe Hunting  Reserve 

(ATHR), Mwene Kay Hunting Domain (MKHD), Mwene Musoma Hunting Domain (MMHD), and 

Tshikamba Hunting Reserve (THR). 

3.4. Analysis of the Spatial Pattern Dynamics 

Applying the decision tree model of Bogaert et al. [57] (Figure 7, Panels A & B), our analysis 

reveals that, except for Lubudi and Mutshatsha, the forest in the Lualaba Province experienced an 

attrition process  from 1990  to 1995, characterized by a decrease  in class area  (CA)  followed by a 

reduction  in  the number of patches  (PN). Lubudi and Mutshatsha, on  the other hand, underwent 

dissection (ratio 0.95>0.75) due to a decline in CA coupled with an increase in PN. From 1995 to 2001, 

forest attrition  continued  in Lualaba province, while dissection  (ratio 0.87>0.75) was observed  in 

Mutshatsha, Dilolo, and Sandoa. Concurrently, Kapanga faced fragmentation (ratio 0.72<0.75) due to 

reduced CA and increased PN, whereas Lubudi territory experienced aggregation, with a decrease 

in PN followed by an increase in CA. Between 2001 and 2006, dissection (ratio 0.84>0.75) prevailed 

across Lualaba province, except in Kapanga, where fragmentation (ratio 0.62<0.75) occurred because 

of  increased  PN  and  decreased  CA.  During  2006‐2010,  dissection  (ratio  0.90>0.75)  persisted  in 

Lualaba,  Mutshatsha,  Dilolo,  and  Sandoa,  while  Lubudi  was  marked  by  fragmentation  (ratio 

0.62<0.75) and Kapanga by aggregation. 

From 2010  to  2015, attrition  impacted  forest  land  cover  in  the  entire province,  as well as  in 

Lubudi, Sandoa, and Kapanga, linked to decreases in both CA and PN. In Dilolo and Mutshatsha, 

dissection (ratio 0.82>0.75) was observed, driven by increased PN and decreased CA. Between 2015 

and 2020, suppression was identified in Lualaba and Dilolo, while Lubudi and Kapanga experienced 

fragmentation (ratio 0.59<0.75), and Mutshatsha faced dissection due to decreased CA and increased 

PN. Finally, from 2020 to 2024, suppression affected Lualaba and Kapanga, Mutshatsha experienced 

fragmentation (ratio 0.68<0.75), and Dilolo underwent dissection (ratio 0.90>0.75), with Lubudi and 

Sandoa showing aggregation due to slight increases in CA followed by reductions in PN. 
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Figure 7. Dynamics of Forest Spatial Patterns (1990‐2024). Panel A displays the class area (CA, in km²) 

of forests, with absolute values calculated by dividing the total forest area for each year by the sum 

of  forest areas across all studied years. Panel B  illustrates  the patch number  (PN, also  in absolute 

values) of forest patches across the  landscapes of Lualaba Province and its territories from 1990 to 

2024.  The  variations  in  CA  and  PN  during  this  period  enabled  the  identification  of  spatial 

transformation  processes, which were  analyzed  using  the  decision  tree  algorithm  developed  by 

Bogaert et al. [57]. Panel C shows the evolution of the Largest Patch Index (LPI, in %), which indicates 

the proportion of the landscape occupied by the largest forest patch. Panel D depicts Edge Density 

(ED, in m/ha), reflecting the amount of edge habitat in relation to forest area. Finally, Panel E presents 

the Mean  Euclidean Nearest‐Neighbor Distance  (ENN,  in meters), which measures  the  average 

distance between the nearest neighboring patches, providing insights into forest connectivity. 

Between 1990 and 2024, the Lualaba Province and its territories witnessed a dramatic decline in 

forest cover, with the largest patch of forest plummeting from 53.1% in 1990 to  just 3.98% in 2024 

(Figure 7, Panel C), highlighting massive and concerning deforestation. Territories like Lubudi and 

Mutshatsha  exhibited  similar  trends, with  significant declines noted  especially after 2001. Dilolo, 

Sandoa, and Kapanga have nearly lost all their forests, reaching the value of the largest patch near‐

zero  by  2024,  indicating  rapid  and  alarming  degradation.  In  parallel,  edge  density  (ED)  in  the 

province exhibited fluctuations (Figure 7, Panel D). Overall, ED showed a general trend of reduced 

forest degradation, peaking at 55.51 in 2010. Lubudi saw an initial increase in ED up to 2010 (55.95), 

followed by a slight decrease, reflecting initial fragmentation followed by stabilization. Mutshatsha’s 

ED rose significantly from 21.80 in 1990 to 55.90 in 2020, then slightly declined, indicating substantial 

mid‐period fragmentation. Dilolo followed a similar trend, with an increase until 2010 (56.50) and a 

slight decrease thereafter. Sandoa exhibited high and stable ED until 2010, then a marked decrease, 

signifying reduced degradation. Kapanga experienced a continuous decline in ED from 54.07 in 1990 

to 17.42 in 2024, suggesting progressive loss of degradation. 
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Additionally,  the average distance between  forest  fragments  increased  from 230.53 meters  in 

1990 to 254.47 meters in 2024, reflecting growing forest fragmentation at the provincial level (Figure 

7, Panel E). Lubudi’s distance remained relatively stable, from 244.72 meters in 1990 to 244.17 meters 

in 2024, indicating consistent fragmentation. In Mutshatsha, the average distance rose from 232.21 

meters in 1990 to 242.18 meters in 2024, signaling increased fragmentation. Dilolo’s distance slightly 

increased  from 225.03 meters  in 1990  to 237.57 meters  in 2024, showing moderate  fragmentation. 

Sandoa experienced a notable distance increase, from 226.57 meters in 1990 to 258.56 meters in 2024. 

Kapanga  saw  a  significant  rise  from  224.12 meters  in  1990  to  289.88 meters  in  2024,  illustrating 

heightened fragmentation with larger gaps between forest fragments. 

Furthermore, our results reveal a complex evolution of spatial forest transformation processes 

within protected areas in the Lualaba Province from 1990 to 2024 (Figure 8, Panels A & B). Between 

1990 and 1995, forests in the MKHD and THR experienced an aggregation process, characterized by 

an increase in CA followed by a decrease in PN. Conversely, other protected areas showed an increase 

in PN and a decrease in CA, indicating a shift to dissection for ATHR and MMHD (ratio 0.79 > 0.75) 

and fragmentation (ratio 0.59 < 0.75) for BKHD, LTHD, and MHD. In the subsequent period, from 

1995 to 2001, a notable change occurred in THR, where forests underwent fragmentation (ratio 0.69 < 

0.75), driven by a decrease in CA combined with an increase in PN. Concurrently, forests in LTHD, 

MHD,  and MKHD  experienced  dissection  (ratio  0.79  >  0.75), while ATHR,  BKHD,  and MMHD 

observed the creation of forest patches, marked by a simultaneous increase in CA and PN. 

 

Figure 8. Dynamics of Forest Spatial Patterns (1990‐2024). Panel A displays the class area (CA, in km²) 

of forests, with absolute values calculated by dividing the total forest area for each year by the sum 

of forest areas across all studied years. Panel B  illustrates the patch number (PN, also  in ab‐solute 
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values) of forest patches across the  landscapes of Lualaba Province and its territories from 1990 to 

2024.  The  variations  in  CA  and  PN  during  this  period  enabled  the  identification  of  spatial 

transformation  processes, which were  analyzed  using  the  decision  tree  algorithm  developed  by 

Bogaert et al. [57]. Panel C shows the evolution of the Largest Patch Index (LPI, in %), which indicates 

the proportion of the landscape occupied by the largest forest patch. Panel D depicts Edge Density 

(ED, in m/ha), reflecting the amount of edge habitat in relation to forest area. Finally, Panel E presents 

the Mean  Euclidean Nearest‐Neighbor Distance  (ENN,  in meters), which measures  the  average 

distance between the nearest neighboring patches, providing insights into forest connectivity. Basse 

Kando Hunting Domain  (BKHD), Lac Tshangalele Hunting Domain  (LTHD), Mulumbu Hunting 

Domain  (MHD), Alunda and Tutshokwe Hunting Reserve (ATHR), Mwene Kay Hunting Domain 

(MKHD), Mwene Musoma Hunting Domain (MMHD), and Tshikamba Hunting Reserve (THR). 

From 2001 to 2006, dissection dominated across all studied protected areas (ratio 0.83 > 0.75), 

except  for  BKHD  and  MHD,  which  experienced  fragmentation  (ratio  0.56  <  0.75).  These 

transformations resulted from an increase in PN followed by a decrease in CA, a recurrent pattern 

continuing  to shape  forest ecosystems. The period  from 2006  to 2010  introduced a creation of  the 

forest’s patches  in LTHD and MHD, due to a concurrent increase in CA and PN. Simultaneously, 

attrition was observed  in ATHR  and THR, marked by decreases  in both CA  and PN. However, 

MKHD and MMHD were characterized by fragmentation (ratio 0.58 < 0.75), while BKHD showed a 

dissection process (ratio 0.85 > 0.75), both characterized by an increase in PN. Between 2010 and 2015 

in THR, forest aggregation was observed resulted from a decrease in PN followed by an increase in 

CA. whereas other protected areas  (ATHR, BKHD, LTHD, MHD, MKHD & MMHD) experienced 

attrition of forest patches resulted from an increase in PN and CA, enhancing the diversity of forest 

dynamics. Between 2015 and 2020, fragmentation (ratio 0.30 < 0.75) was noted in ATHR, BKHD, THR, 

and LTHD due  to  increased PN  and decreased CA. Meanwhile, MHD  and MMHD  experienced 

dissection  of  forest patches  (ratio  0.84  >  0.75),  and MKHD underwent  attrition  resulted  from  an 

increase  in PN  followed by a decrease  in CA,  illustrating  the complexity of spatial  interactions  in 

these zones. Finally, from 2020 to 2024, attrition of forest patches dominated in ATHR, BKHD, and 

MHD, while THR  faced  fragmentation  (ratio  0.30  <  0.75)  since  resulted  from  an  increase  in  PN 

followed  by  a  decrease  in  CA. MKHD  and MMHD  saw  a  spatial  creation  process,  and  LTHD 

experienced aggregation, concluding  this analysis of  forest transformations with an  illustration of 

varied and dynamic spatial trends in protected areas. 

From 1990 to 2024, large forest patches within protected areas drastically diminished, with the 

largest  patches  index  dropping  to  nearly  zero  in  ATHR,  BKHD, MMHD,  and  THR, with  less 

pronounced declines in MKHD and LTHD (Figure 8, Panel C). MHD showed a slight recovery after 

2010 but  remains at very  low  levels. Concurrently,  the high Edge Density  (ED)  reflects  increased 

forest fragmentation over time. Despite initially high ED values, both ATHR and MMHD experienced 

a decrease in ED, whereas BKHD exhibited a significant rise until 2010, followed by a slight decline. 

LTHD, on the other hand, maintained relatively stable ED with a slight upward trend (Figure 8, Panel 

D). MHD and MKHD showed fluctuations but generally followed an increasing trend in ED, while 

THR  displayed  a  continuous  rise,  indicating  ongoing  fragmentation.  This  pattern  is  further 

supported by the Mean Euclidean Nearest‐Neighbor Distance (ENN) between forest patches, which 

was relatively consistent in 1990 but progressively increased in subsequent years (Figure 8, Panel E). 

By 2024, ATHR and LTHD showed the greatest distances between forest patches, signaling increased 

fragmentation,  while  BKHD, MKHD,  and  THR  also  exhibited  notable  increases.  These  trends 

underscore the intensifying fragmentation of forests, emphasizing the urgent need for conservation 

measures to protect and restore remaining forest habitats. 

4. Discussion 

4.1. Methodology 

This study utilized multiscale analysis with Landsat  images and various landscape metrics—

such as class area, patch number, and edge density—to gain  insights  into deforestation dynamics 
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[59]. Employing multiple metrics is crucial for a comprehensive understanding of deforestation, as a 

single metric alone  is  insufficient due to  the complex nature of deforestation  involving numerous 

factors [60,61]. The study incorporated a decision tree to analyze and interpret these metrics, helping 

differentiate between anthropogenic and natural  land cover transformations and  linking observed 

changes to their causes. To address the temporal sensitivity of spatial transformation processes, the 

study refined the temporal resolution to 5 to 6 years [57,62,63]. 

Although  Landsat  images  have  a  30‐meter  resolution,  they  are  effective  for  regional‐scale 

analysis, offering valuable insights into land cover trends and changes over time [14,64]. Landsat’s 

capacity to detect vegetation changes at this scale allows for mapping and quantifying the impacts of 

human  activities  on  forest  ecosystems,  which  is  vital  for  management  and  conservation  [65]. 

Additionally,  the  free  access  to Landsat data makes  it  a  valuable  tool  for monitoring  landscape 

dynamics, particularly in areas with limited surveillance resources [66,67]. 

The study focused on key land cover classes such as agriculture, urbanization, savannas, and 

forests  to  understand  landscape  transformation  dynamics  and  their  impact  on  deforestation. 

However, combining grassland and wooded  savannas, which  represent distinct ecosystems, may 

have  limitations.  Despite  this,  merging  these  categories  was  justified  for  capturing  general 

deforestation trends at a regional scale, while acknowledging the potential for finer‐scale analyses in 

future  studies.  Moreover,  the  literature  indicates  that  these  two  land  uses  are  generally  of 

anthropogenic origin, with their significance in the landscape increasing alongside human activities 

[20,68]. 

4.2. Anthropogenic Pressures and Extent of the Hierarchical Changes in the Spatio‐Temporal Pattern of 

Deforestation in Lualaba Province 

Our results  indicate significant expansion of savannas, agricultural fields, and urban areas  in 

Lualaba Province, driven by abundant natural resources like fertile soils and mineral‐rich deposits, 

including  copper  and  cobalt  [36]. These  resources have  attracted  investments  in  agriculture  and 

mining, leading to the growth of these sectors [18,69]. Similar patterns were observed in southern 

central Angola  [70]. Additionally,  improved  road networks have  facilitated access  to  rural areas, 

further  promoting  agriculture  and mining  [14]  and  stimulating  urbanization  by  enabling  rural 

populations to migrate to urban centers for employment and services [18]. In Mekelle, Ethiopia, a 

favorable investment climate has similarly driven rural‐to‐urban migration, increasing demand for 

urban land [71]. The growing national and international demand for rosewood and mining products 

has fueled expansion in these sectors [69,72,73]. 

The need to expand agricultural land to meet rising food demands has led to the conversion of 

forests into maize and cassava fields, as observed in the Katangense copperbelt [18,74]. Both large‐ 

and small‐scale mining operations have also contributed to deforestation for mining infrastructure 

and  extraction  [14].  Unplanned  urban  expansion  has  converted  forest  lands  into  residential, 

commercial,  and  industrial  zones,  leading  to habitat  fragmentation  and  loss.  In  the Lubumbashi 

plain, Cabala et al. [68] reported the conversion of 177.5 km² of forest to bare soil and settlements 

between 2005 and 2011. Economic challenges have forced populations to build makeshift housing in 

forest‐adjacent areas with limited infrastructure, often prioritizing immediate survival over resource 

sustainability. 

Our results show that the extent of deforestation is linked to the socio‐economic and political 

context of the province. The period of socio‐political instability in the DRC (1990‐2001) was marked 

by  several  factors  that  had  a  significant  impact  on  agriculture,  urbanization,  and  consequently 

reduced  the  extent  of  deforestation  [66].  Indeed,  political  instability  created  an  environment  of 

insecurity and farmers faced challenges accessing land, agricultural inputs, and markets, leading in 

disorganization of agricultural production systems. Barima et al. [75] found that there was minimal 

growth in cocoa cultivation during a period of political turmoil in Ivory Coast, leading to a reduced 

rate of deforestation. Additionally,  limited  investments  in urban  infrastructure due  to precarious 

political situations slowed down the development of urban areas in the Lualaba province, echoing 

the results found by Useni et al. [76] in the city of Lubumbashi. Basic services such as electricity were 
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inadequate,  discouraging  new  populations  from  settling  in  urban  centers  [77].  Regarding 

deforestation,  political  instability  limited  economic  activities  such  as  large‐scale  logging, 

consequently foreign investments in this sector decreased [78], confirming the findings at the national 

level, which showed that the deforestation rate halved when comparing the period of political crisis 

(0,08% from 1990‐2000) and the post‐crisis period (0.16 from 2000‐2010) [79]. 

However, the liberalization of the mining sector in 2002 has generally led to an increase in large‐

scale mining operations, particularly for minerals like copper and cobalt. The rise in the quantity and 

size of mining sites has caused fragmentation of vegetation in the Lualaba province [19]. But, a trend 

in the decrease of deforestation extent was observed during the period following the global financial 

crisis (2008). Indeed, a reduction in mining activity was  linked to a decrease in demand for forest 

lands for mining infrastructures, potentially leading to a decline in the deforestation rate. Globally, 

during the financial crisis period, deforestation rates in Asia, Africa, and Europe decreased by 83 %., 

43 %,  and  22 %,  respectively  [80]. Additionally,  the  establishment  of  the  new  province  in  2015 

increased the deforestation rate, particularly due to the infrastructural development, urbanization, 

and expansion of economic activities that added additional pressure on forest resources [18]. In a new 

province where the majority of the population is poor and access to electricity is low, the exploitation 

of forest resources for charcoal production has become an excellent refuge sector [77]. It’s also worth 

noting  that  charcoal  is an  essential  energy  source  for  cooking and heating  [81], and  therefore  its 

constant demand  by households  in  the province’s main urban  areas  ensures  a  certain  economic 

stability for producers [68]. Yet, the carbonization yield remains low in the region [82]. 

Our  findings  revealed  that deforestation occurs  through  the  fragmentation of  forest patches, 

confirming  the  results  of  previous  studies  [16,18].  Indeed,  forests  ecosystems  are  generally 

fragmented into smaller patches by roads and infrastructure development, expanding agricultural 

areas, and urban zones [83]. This fragmentation can lead to a simplification of the shapes of residual 

fragments  as  intact  areas  of  natural  forests  become  increasingly  scarce  [84].  As  anthropogenic 

pressure  intensifies while  forest  resources  are  becoming  scarce  [85],  the  remnant  forest  patches 

subsequently disappear, as found in the Lufira Biosphere Lufira [24]. Conversely, savanna patches 

merge into the landscape due to factors such as extensive agricultural practices, charcoal production 

and bushfires [17]. Indeed, agricultural activities whether preceded by charcoal production or not 

and bushfires can gradually transform forest areas into savannas [86,87]. The exploitation of forest 

resources for charcoal production can lead to the conversion of forests into savannas due to intensive 

tree cutting for charcoal, resulting in reduced forest cover [88]. The expansion of agricultural fields 

typically involves creating new patches rather than enlarging existing ones due to increasing land 

demand. As soil fertility declines, farmers shift to new plots, continually creating cultivated areas and 

exerting ongoing pressure on forest resources [89]. The ongoing decline in tree abundance facilitates 

light penetration, promoting the growth of herbaceous species [90]. This often leads to the formation 

of savannas, explaining their increasing presence in the landscapes of Lualaba Province. Malaisse [20] 

supports this trend, noting that savannas are anthropogenic in the region, expanding in tandem with 

landscape disturbance levels. 

In the context of uncontrolled urbanization, acquiring new land often proves simpler and more 

cost‐effective than densifying existing urban areas. Densification typically necessitates complex land 

regularization processes and substantial infrastructure investments, making it a less attractive option 

for rapid urban expansion  [91]. This phenomenon  is especially prevalent in regions with minimal 

urban development, such as the DR Congo. In these areas, urban growth is frequently concentrated 

around mining sites, where construction on bare soil is relatively straightforward [21]. However, this 

practice can exacerbate human exposure to environmental hazards, including trace metals, which are 

commonly present  in  the  soils around mining operations  [92]. Consequently, uncontrolled urban 

expansion not only contributes to  inefficient land use but also poses significant health risks to the 

population. 

Deforestation  is  generally more  severe  in  areas  practicing  shifting  cultivation  compared  to 

mining  regions. Shifting  cultivation, or  slash‐and‐burn agriculture,  is a  traditional practice  in DR 

Congo  involving  the periodic  cutting and burning of  forest plots  for  crop  cultivation,  leading  to 
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temporary and recurrent deforestation [93,94]. This can result in land degradation and pressure on 

protected areas due to inadequate monitoring [24,67,95]. Agricultural areas are more accessible and 

less  regulated  than mining  zones, which  are managed with  stricter  environmental  controls  and 

regulations  [69]. Consequently, agricultural  lands are more prone  to deforestation driven by  local 

economic interests [96]. Despite their protected status, forest cover in these areas declines due to poor 

management,  demographic  pressure,  and  illegal  activities  [95].  Corruption  and  enforcement 

challenges exacerbate this issue. Studies in the DR Congo, Zambia, Ghana, and Burkina Faso confirm 

that agriculture is a leading cause of deforestation [97–99]. 

Deforestation rates in this study significantly exceed the national average of 0.4% per year. The 

rate  in Lualaba province  is higher due  to  intensified  logging, agricultural and mining expansion, 

illegal  activities,  and weak  forest  governance. Despite national  conservation  efforts,  local  factors 

contribute to higher deforestation in provinces like Lualaba. Deforestation varies with spatial scale: 

protected areas face intense pressure from subsistence agriculture, artisanal mining, and fuelwood 

collection,  compounded by outdated monitoring  resources  [100]. This  situation mirrors  issues  in 

Kasenga  [101], Butembo  [102], and Zambia  [103],  leading  to severe deforestation  in areas  like  the 

Lufira  Biosphere  Reserve  [24].  At  larger  scales,  commercial  agriculture  and  mining  drive 

deforestation, though conservation measures at provincial or national levels can mitigate these effects 

[19,104,105]. 

The results indicate that, regardless of the scale of analysis, the density of forest edges increases, 

including the average distance between neighboring patches, alongside a decrease in the size of the 

largest  forest patch. This  trend  is primarily driven by habitat  fragmentation, often resulting  from 

urban expansion, agriculture, and mining activities [54,55]. As new edges are created, the number 

and density of forest fragments increase, while the size of continuous forest areas decreases. On one 

hand,  forest  fragmentation  can  enhance habitat diversity by  creating various microenvironments 

along the edges. But generally, it has significant negative effects: the loss of continuous habitat can 

threaten  biodiversity  by  isolating  species  populations  and  disrupting migration  corridors  [84]. 

Additionally, edges may be more susceptible to disturbances such as storms and invasions by exotic 

species [106]. The consequences of this fragmentation include a reduction in the resilience of forest 

ecosystems to climate and environmental changes. Furthermore, the decline in large forest patches 

limits the ability of ecosystems to provide essential services such as climate regulation, biodiversity 

conservation, and carbon storage [55,84]. 

4.3. Implications for the Conservation of Landscape and Forest Ecosystems in Lualaba 

Agriculture‐oriented territories are highly susceptible to deforestation, even in protected areas. 

To address this, policies must promote sustainable  land management, including reforestation and 

ecosystem  restoration  with  indigenous  species,  as  well  as  financial  incentives  for  sustainable 

agriculture. Efforts to increase carbon stocks through forest restoration could potentially restore 700 

million  hectares  globally  in  the  next  50  years  [107].  For  instance,  the  agroforestry  project  near 

Lubumbashi has successfully planted 350 hectares of degraded land with Acacia auriculiformis [108]. 

Local  governments  should  establish  buffer  zones  around  protected  areas  to  curb  agricultural 

expansion  while  encouraging  environmentally  friendly  farming  practices.  Integrated  territorial 

planning  is  crucial  to  prevent  inappropriate  land  conversion  for  urban  or  agricultural use. This 

requires  collaboration  among  local  authorities,  farmers, urban  planners,  and  ecologists  to  create 

balanced development strategies. 

Collaborative management between state wildlife agencies and NGOs can attract  investment 

and enhance protected area performance  [109]. Additionally, agricultural  reserves with  regulated 

and sustainable practices can help mitigate deforestation from intensive agriculture. These reserves 

must be managed collaboratively, addressing limitations of current land allocation models controlled 

solely by local customary authorities [73]. 

For  extremely  poor  populations,  adopting  sustainable  agricultural  practices  is  crucial. 

Techniques such as agroforestry, crop rotation, and water conservation can enhance productivity and 

minimize deforestation.  For  instance, on  the Batéké plateau  in Kinshasa,  8000 hectares  of Acacia 
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auriculiformis plantations produce 8000 to 12,000 tons of charcoal annually, along with 10,000 tons of 

cassava, 1200 tons of maize, and 6 tons of honey [110]. Improving agricultural practices through the 

use  of  adapted  seeds,  integrated  pest management,  and  crop  diversification  can  reduce  forest 

pressure  and  support  ecosystem preservation. For  example, using  improved maize varieties and 

recycled human waste  in Lubumbashi has enhanced crop growth and nutrition, leading to higher 

maize  yields  compared  to  inorganic  fertilizers.  Creating  corridors with  native  species,  like  the 

Ambositra‐Vondrozo  Corridor  in  Madagascar,  can  also  improve  ecological  connectivity.  This 

corridor, spanning 200 km and covering 1,352 km², links two major national parks, Ranomafana and 

Andringitra, facilitating species movement and genetic flow between forest patches [111]. 

Local  communities  must  be  actively  engaged  in  natural  resource  conservation  to  combat 

deforestation effectively. The lack of local involvement in forest conservation efforts has been a major 

factor in deforestation in the Lubumbashi region [85]. In contrast, strong community participation 

has facilitated forest regeneration in Burundi’s Bururi region [112]. To promote sustainable practices, 

awareness programs, environmental education, and capacity‐building initiatives are essential [113]. 

Although  governance  challenges  can  complicate  these  efforts,  partnerships  with  international 

organizations  and NGOs  can provide necessary  financial  and  technical  support  [114,115]. Media 

campaigns and targeted educational programs can further raise environmental awareness [116]. 

Strengthening environmental legislation and ensuring rigorous enforcement of regulations are 

crucial for protecting sensitive forest areas and curbing unsustainable activities [117]. This includes 

enhancing monitoring within protected areas, implementing strict access and land use measures, and 

imposing penalties for illegal deforestation. For example, in the Forest Reserve of Bururi, forest area 

increased due to restrictions on human activities, reduced agricultural disruptions, and more forest 

rangers  [112].  Addressing  poor  governance  and  corruption  requires  robust  transparency  and 

accountability mechanisms to ensure effective monitoring and management within protected areas 

[118,119]. 

5. Conclusion 

Our study utilized a methodological approach that integrated remote sensing techniques with 

landscape  analysis methods.  This  allowed  us  to  confirm  a  notable  increase  in  deforested  and 

fragmented areas within the Lualaba province. These changes were attributed to the expansion of 

anthropogenic  activities  such  as mining,  urbanization,  and  agriculture, which  have  significantly 

altered the structure and connectivity of forest ecosystems over time. The findings from our study 

clearly  demonstrated  that  deforestation,  characterized  by  the  fragmentation  of  forest  patches 

followed by attrition,  is primarily  influenced by the expansion of savannas, agricultural practices, 

and urban development. Of particular concern is the vulnerability of agricultural territories to this 

phenomenon, even including their designated protected areas which were found to be impacted as 

well. Despite the valuable insights gained, our study did encounter limitations. These included the 

spatial resolution of remote sensing data and the lack of socio‐economic surveys, which could have 

provided  a more  comprehensive  understanding  of  long‐term  trends,  and  the  intricate  nature  of 

human‐environment  interactions,  which  adds  complexity  to  the  analysis.  Despite,  our  results 

unveiled a complex pattern of deforestation, with a significant impact observed at the local scale. This 

emphasizes the critical need for immediate actions to preserve the remaining forest ecosystems in the 

Lualaba region through the  implementation of land conservation policies, adoption of sustainable 

agricultural practices, and  the enforcement of stricter  forest  regulations. Collaborative actions are 

necessary to safeguard the ecological richness and functionality of the forest ecosystems within the 

Lualaba province for future generations. 
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