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Abstract: Lualaba Province, located in the southeastern Democratic Republic of the Congo, consists
of five territories with varied dominant land uses: agriculture (Dilolo, Kapanga, and Musumba in
the west) and mining (Mutshatsha and Lubudi in the east). The province also includes protected
areas with significant governance challenges. The unique miombo woodlands of Lualaba are
threatened by deforestation, posing risks to biodiversity and local livelihoods that depend on these
woodlands for agriculture and forestry. To quantify the spatio-temporal dynamics of Lualaba’s
landscape, we utilized Landsat images from 1990 to 2024, supported by a Random Forest Classifier.
Landscape metrics were calculated at multiple hierarchical levels: province, territory, and protected
areas. Our provincial-level analysis revealed a pronounced deforestation trend, with miombo
woodland cover declining from 62,90 % to less than 25 % over the 34-year period. This trend was
characterized by the fragmentation and dissection of woodland patches and a decline in remaining
woodland fragments, due to their ongoing replacement by savannas, agriculture, and urbanization.
The average distance between miombo woodland patches increased significantly, indicating
heightened fragmentation and spatial isolation. Agricultural areas such as Sandoa and Kapanga
were particularly vulnerable to deforestation. On the other hand, the miombo forest cover in the
mining areas is still representative, with over 30% of the landscape covered. Notably, the reduction
in woodland cover within protected areas was substantial, with significant losses observed across
both agricultural and mining territories. The loss of miombo woodland cover in Lualaba and its
territories was accompanied by an increase in landscape patch diversity, as indicated by the
Shannon diversity index, suggesting a shift to more heterogeneous landscapes. These findings
underscore a complex deforestation pattern, highlighting the intense local impact on miombo
woodland cover loss. Urgent action is needed to implement land conservation policies, promote
sustainable agricultural practices, strengthen miombo woodland regulation enforcement, and
actively support protected areas. Involvement from both local and international stakeholders is
imperative to preserve the ecological richness and functionality of Lualaba Province’s miombo
woodland ecosystems.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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1. Introduction

Forests ecosystems, covering a third of the Earth, vary according to climate, terrain, soil, and
human activities [1]. They provide crucial services and goods such as timber, medicines, and non-
timber forest products essential for human well-being [2,3]. Based on their floristic composition,
structure, and geographic location, forests can be classified into temperate forests, boreal forests,
mangroves, mountain forests, humid tropical forests, and dry tropical forests [4]. Each forest types
exhibits unique characteristics in terms of biodiversity, productivity, and resilience to environmental
changes. Among these forest types, dry tropical forests are adapted to prolonged dry seasons,
evolving over time in response to climate and human activities [5]. Despite threats, they are essential
for local communities, providing habitats, resources, water regulation, and soil fertility [6]. They hold
cultural value for local peoples and promote ecotourism, thus supporting local economies [7].

Dry tropical forests cover approximately one-sixth of the Earth’s surface and half of Africa [8].
These ecosystems are among the most threatened, primarily due to human activities [9]. Among these
ecosystems, miombo woodlands, predominant in Southern Africa, are characterized by the
prevalence of species belonging to the genera Brachystegia, Julbernardia, and Isoberlinia of the
Caesalpionioideae subfamily [10]. They cover an area of 2 million km?, encompassing parts of Angola,
the Democratic Republic of the Congo (DR Congo), Malawi, Mozambique, Tanzania, Zambia, and
Zimbabwe [11]. This ecoregion is recognized as an important center of endemism, hosting over 8,500
plant species, with more than 4,000 being endemic [12]. These ecosystems play a vital role in
maintaining biodiversity and supporting the livelihoods of local populations [13].

If the miombo woodland covered nearly 23% of the total forest area in the DRC in 2000 [14], it
represented 95.2% of the total forest cover in the Katanga region that same year [15]. Over the period
from 2000 to 2010, the Katanga region experienced a loss of approximately 350,900 ha due to the
expansion of mining and subsistence activities (agriculture, collection of non-timber forest products,
charcoal production among other), supported by demographic explosion and rapid urbanization [16—
18]. In Katanga region, the Lualaba province exemplifies the decline of the miombo woodland [19].
For decades, Lualaba has been closely linked to mining, which has marked its history. The discovery
of valuable mineral resources attracted a significant workforce, leading to the rapid expansion of
mining settlements within the miombo woodland [20]. After the political independence of the DRC
in 1960, these settlements experienced rapid spatial expansion without adequate planning, severely
affecting the surrounding forests [21]. Subsequently, the increasing demand of land for agriculture
led to massive deforestation in surrounding rural areas, triggering a cycle of environmental
degradation [18,22]. The energy crisis, particularly the energy deficit associated with the rapid
expansion of settlements, also played a crucial role in this accelerated deforestation. Indeed, the
widespread use of charcoal as an energy source in urban areas intensified pressure on already fragile
forest resources [23]. This situation has endangered the biodiversity of the region, affected not only
forests but also protected areas.

Among these protected areas, Potapov et al. [14] findings revealed that the highest forest cover
loss was observed within hunting reserves close to Kolwezi, where forest cover loss within several
protected areas was close to 5% between 2000-2010. Indeed, most protected areas are small and are
trapped within a landscape dominated by agricultural or mining zones [24]. Consequently, due to
land saturation at the periphery, these protected areas are constantly degrading under pressure from
local populations, whose interests are generally not considered in management systems [19]. Finally,
the creation of the Lualaba Province in 2015 exacerbated these challenges since persistent population
growth continues to exert immense anthropogenic pressure on the remaining forest resources [18].

Monitoring deforestation in the Lualaba Province is of crucial importance as it allows for the
identification of deforestation pattern, understanding its evolution over time [25], and anticipating
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potential future issues. With precise data, policymakers can take appropriate measures for the
conservation and sustainable environmental management of forest ecosystems [26]. In this context,
remote sensing provides extensive coverage, ideal for tracking deforestation on a large scale in a
province. It also provides frequent data for continuous monitoring [27-30]. Concurrently, applying
landscape ecology analysis tools complements this by understanding the ecological processes
underlying spatio-temporal changes in landscapes, aiding in locating at-risk areas [31-33].
Hierarchical analysis of landscape dynamics, combining remote sensing and landscape ecology, is
essential from the provincial to local scale. It enables a nuanced understanding of spatial
heterogeneity, ecological processes, and anthropogenic impacts across scales. This approach supports
precise, scale-appropriate interventions in landscape management, conservation planning, and
sustainable development, ensuring more effective ecological and socio-economic outcomes.

The general objective is to quantify the multiscale spatio-temporal dynamics of forest ecosystems
within the Lualaba Province. We hypothesize that multiscale analysis of Landsat images combined
with a fine-scale landscape analysis approach will reveal significant trends in the spatial dynamics of
landscapes in the Lualaba Province between 1990 and 2023. We expect to observe an increase in
deforested and fragmented areas, as well as alteration of the spatial pattern and connectivity of forest
miombo woodland over time, notably at the fine scale, due to the impact of human activities (mining,
urbanization and agriculture).

2. Materials and Methods
2.1. Study Area

The Lualaba Province (7°38'14,80”-11°44'20,82” South et 21°44'43,19- 27°11'16,11” East) in the
southeastern part of the DRC, covering 121,309 km?, constitutes 5.2% of the national territory (Figure
1). It exhibits a diverse climate, featuring a warm temperate climate in the eastern sector (Mutshatsha
and Lubudi territories) and a more humid tropical climate in the western areas (Kapanga, Dilolo, and
Sandoa) [20]. The province experiences distinct rainy and dry seasons, spanning approximately five
months from April to May. Its annual rainfall is around 1600 mm for the northwest, compared to
nearly 1200 mm for the eastern part of the Province. The average annual temperature hovers around
25°C [20,22]. The primary vegetation in the Lualaba Province encompass dry dense forests, edaphic
dense forests, woodland, savannas, and aquatic environments [15,20]. The region’s soils are notably
diverse [34], with the prevalence of Ferralsols, Acrisols, and Arenosols. Named after the Congo River,
the Lualaba Province is characterized by plateaus, with various rivers like Lufupa, Kalule, Lulua,
Luao, Lubilanshi, Luashi, Dikulwe, Musonoi, and Mumonwezi playing pivotal roles in local life and
the economy. Recent data suggests a population of 4.3 million inhabitants (2021), with an average
household size of 6.1 and life expectancy at 58.2 years. In the Lualaba province, the poverty rate
stands at 83%, while the unemployment rate is 85%. Additionally, the annual population growth rate
is close to 4% [35]. The province’s mining sector, including both industrial and artisanal mining, has
flourished, fostering formal and informal activities like general trade, subsistence agriculture, and
informal commerce [36]. As for the employment sector breakdown, agriculture accounts for a
substantial 71.4%. Regarding access to modern healthcare services, only 15.4% of the population has
such access, and the electrification rate remains extremely low at just 1% [35]. The province is
composed of 5 territories, within which are located protected areas (Table 1).

Table 1. Brief description of each territory in the province of Lualaba (DRC), its surface area, the
economic activities of the population and the protected area.

A
Territory (k::i?) Population Description

Economic activities include mining (artisanal and industrial),
Lubudi 18939 387000 agriculture, and trade. The region is home to the rural municipality of
Fungurume and the historic city of Bunkeya. Additionally, the
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territory encompasses the Hunting Domain of Mulumbu (993.56
km?), and it is electrified with some paved roads.

Mining, agriculture, and commerce are key activities in this area,
which includes the city of Kolwezi, the capital of the Province. The
Mutshatsha 18859 1268500 territory is home to the Hunting Domain and Reserve of Basse Kando
(479.18 km?), as well as the Tshangalele Reserve (523.52 km?). The
territory is electrified and has some paved roads.
Agriculture and commerce thrive in this area. The territory, which
lacks electricity and paved roads, is home to the Lunda-Tshokwe
Hunting Domain (2345.27 km?) and the Mwene-Kay Reserve (531.33
km?).
Agriculture and commerce flourish in the territory, which is without
Kapanga 25509 1255600  electricity and paved roads. It is home to the Tshikamba Hunting
Domain (4857.21 km?).
Agriculture and commerce are prominent in this area, which includes
Dilolo 25648 623,500 the city of Kasaji. The territory, lacking electricity and paved roads, is
home to the Mwene Musoma Hunting Domain (1303.99 km?).

Sandoa 25337 765400
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Figure 1. Geographical map of the Lualaba Province in the DRC, detailing its five territories: key
agricultural zones (IV) Sandoa, (V) Kapanga, and (III) Dilolo, and major mining areas (I) Lubudi and
(I) Mutshatsha. The map also identifies seven protected areas within Lualaba Province: (a) Basse
Kando Hunting Domain (BKHD), (b) Lac Tshangalele Hunting Domain (LTHD), (c) Mulumbu
Hunting Domain (MHD), (f) Alunda and Tutshokwe Hunting Reserve (ATHR), (d) Mwene Kay
Hunting Domain (MKHD), (e) Mwene Musoma Hunting Domain (MMHD), and (g) Tshikamba
Hunting Reserve (THR).

2.2. Data

Landsat images with a 30-meter spatial resolution, covering the period from 1990 to 2024, were
used to map and quantify forest cover loss in Lualaba Province. The analysis, divided into intervals
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(1990-1995, 1995-2001, 2001-2006, 2006-2010, 2010-2015, 2015-2020, and 2020-2024), highlights long-
term trends and changes in landscape dynamics. The year 1990 marked the start of a political crisis,
leading to looting and infrastructure destruction. The years 1995 and 2001 framed the Congo wars,
causing significant population displacement to Lualaba. In 2006, The general elections in the DRC
could have negatively impacted landscape dynamics by intensifying land disputes, accelerating
deforestation, and disrupting conservation efforts due to political instability. The post-global
economic crisis (2010) led to mine closures and uncertainty before the 2011 elections. In 2015,
institutions were established in Kolwezi to govern the new Lualaba Province, and in 2020, there was
a political regime change. The year 2024 provided a snapshot of the most recent landscape conditions.
The selected Landsat images, captured during the dry season (June and July) to minimize cloud
cover, were chosen for clear visibility and precise land cover interpretation. These images,
representing surface reflectance data from Level 2 Collection 2 Tier 1 datasets, were selected based
on availability, quality (cloud-free, no streaks), and the study’s objectives [37]. Images from 1990,
1995, 2001, and 2006 were sourced from the Landsat 5 Thematic Mapper (TM) sensor, those from 2010
from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and those from 2015 and 2024 from the
Landsat 8 Operational Land Imager (OLI).

2.3. Classifications

The Landsat images were georeferenced to the UTM Zone 35S coordinate system, using the
WGS-84 reference ellipsoid, appropriate for the study area, and underwent extensive preprocessing.
Radiometric calibration was initially applied to correct sensor biases and account for atmospheric
effects, ensuring temporal consistency in readings [38,39]. Subsequently, geometric calibration
addressed distortions caused by satellite movements, ensuring accurate pixel representation of the
Earth’s surface [40]. Atmospheric correction was then performed to eliminate effects such as haze and
scattering, enhancing surface reflectance analysis [41]. Additional radiometric preprocessing was
conducted (for images from 2010 onward) to correct the spatial discontinuity that occurred in May
2003 following the Landsat 7 Scan Line Corrector (SLC) failure, which resulted in the loss of
approximately 22% of data in each image scene. To mitigate this limitation, a “gap mask” technique
was applied [42], effectively recovering missing data and ensuring the reliability and accuracy of
subsequent analyses.

For improved analysis, a false-color composite was carefully created by combining mid-infrared,
near-infrared, and red bands, allowing for clearer differentiation of vegetation types [43]. Land cover
units were identified and codified for each scene, and Regions of Interest (ROI) were defined on the
images based on field knowledge and GPS points (accuracy of 3 meters, model 64st). These ROIs
were strategically selected to avoid transitional areas, minimizing pixel mixing and enhancing result
accuracy. These ROIs were then used to build a training model for the Random Forest classifier under
Google Earth Engine (GEE) [44,45]. This method, which relies on multiple decision trees [45], allowed
for the classification of five land cover types, each represented by 200 ROIs. The land cover categories
include “forest,” encompassing dominant miombo patches, dense dry forest, and gallery forest;
“savanna,” characterized by low tree density and predominance of herbaceous cover; “agriculture,”
covering harvested, abandoned, or areas occupied by annual and off-season crops; “built-up areas
and bare soil,” including bare lands and residential areas with minimal vegetation; and finally, “other
land cover types” such as water bodies and unclassified areas. The extensive archives of remote
sensing data and GEE’s powerful cloud computing resources ensured consistency and
standardization of data collection procedures across different regions and datasets [44].

To evaluate the classification accuracy, were calculated using a sample of ground truth points,
randomly collected within each land cover class between 1990 and 2024 [46]. The samples were
stratified into 9 categories: 5 stable strata (forest, savanna, agriculture, built-up areas, and bare soil)
and 4 change strata (forest loss, savanna gain, agriculture gain, built-up area and bare soil gain).
Sample sizes were determined using Cochran’s method, with 1,000 points per period (1990-1995,
1995-2001, 2001-2006, 2006-2010, 2010-2015, 2015-2020, and 2020-2024) [47]. QGIS version 3.26.1 was
used to calculate the error matrix and measure accuracies: Overall Accuracy (OA), Producer’s
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Accuracy (PA), and User’s Accuracy (UA). The F1 score was also computed [48], which integrates PA
and UA, providing a single accuracy measure for classification. It was deemed more significant than
the kappa coefficient and OA [49,50]. Finally, land cover maps were produced using ArcGIS version
10.8.

2.4. Quantifying Spatio-Temporal Pattern Changes in Forest Ecosystems

A range of landscape metrics were computed using Fragstats software version 4.2 (Developed
by McGarigal, Amherst, MA, USA) to assess the influence of human activities on landscape structure
and spatial patterns across three distinct scales: Province, territory, and designated protected areas.
The calculation of class area, representing the proportional extent of specific land cover types within
the landscape, served to identify the landscape matrix [51,52]. Edge density, indicating the total
length of edge segments per hectare, was used to gauge landscape complexity. Higher edge density
points to a more complex land cover type with distinct boundaries, while lower edge density suggests
smoother boundaries [53]. The number of patches played a crucial role in assessing landscape
fragmentation, where a higher count indicated fragmentation and dispersed distribution [54]. Further
insights into spatial dispersion were gained through the average Euclidean distance to the nearest
neighbor, measuring the average distance between patches and their closest neighbors. Additionally,
the largest patch index, reflecting the size of the largest patch within a land cover type, was
considered. A higher index value indicates that a particular land cover type forms larger, more
connected patches, beneficial for species needing extensive habitats or connectivity between patches
for movement, migration, and genetic exchange [55]. The deforestation rate, derived from changes in
forest class area, provided insights into the intensity of human impacts on forest ecosystems [56]. The
Shannon index, commonly used to assess the spatial arrangement of patches, was also computed. A
Shannon value close to zero indicates a highly uniform distribution of patches, while a value closer
to 1 indicates a more dispersed distribution [53].

A decision tree approach was employed to identify the ecological processes driving observed
spatio-temporal dynamics [57]. From a diachronic analysis, reductions in patch number and class
area signify attrition, while an increase in class area alongside a decrease in patch number indicates
aggregation. Unchanged patch numbers with increased class area suggest enlargement, whereas
simultaneous growth in both metrics indicates the creation of new patches. Dissection is
characterized by decreased class area and increased patch number, often due to linear disruptions
with minimal area loss. Conversely, fragmentation involves an increase in patch number
accompanied by significant class area loss. Perforation occurs when reductions in class area lead to
an increased total perimeter, while patch shrinkage occurs when the total perimeter remains constant.
A consistent total perimeter with unchanging patch number and class area signals a shift, while
changes in the total perimeter suggest deformation. To distinguish between fragmentation and
dissection, the ratio of class area at different time points was analyzed. A ratio exceeding 0.75
indicated dominance of dissection, whereas a ratio equal to or below 0.75 indicated prevalent
fragmentation [58].

3. Results
3.1. Classification Accuracy and Mapping

The Overall Accuracy (OA) of the supervised classifications of Landsat images using the
Random Forest (RF) classifier exceeds 90% for each analyzed period, demonstrating the reliability in
distinguishing various land cover categories (Table 1). User's Accuracy (UA) and Producer’s
Accuracy (PA), ranging from 90% to 100%, attest to the high quality of the classifications, with
minimal errors in class identification. The high F1 score values for both UA and PA further confirm
the excellent performance of the RF classifier.
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Table 1. Evaluation of the accuracy of land cover change maps from 1990 to 2024, based on the
supervised classification of Landsat images using the Random Forest classifier. FR: Forest; SV:
Savanna; AG: Agriculture; BBS: Built-up & Bare Soil; OT: Other Land Cover; UA: User’s Accuracy;
PA: Producer’s Accuracy. The change in the “OT” category was not assessed due to its relative
stability throughout all periods. The F1 score is calculated as the harmonic mean of the UA and PA.
1990-1995 FR SV AG BBS OT FRLoss SV Gain AG Gain BBS Gain
PA [%] 99.00 94.42 98.99 98.00 100 96.04 98.04 97.98 95.06
UA [%] 99.01 100 98.00 97.09 9897  99.00 99.01 98.98 100
F1 [%] 99.00 97.13 98.49 97.54  99.48 97.50 98.52 98.48 97.47
Overall accuracy [%] 95.60
1995-2001 FR SV AG BBS OT FRLoss SV Gain AG Gain OT Gain
PA [%] 93.58 100 98.05 100 100 100 95.88 100 100
UA [%] 97.14 100 99.01 99.03  96.08 96.3 89.42 99.03 96.08
F1 [%] 95.33 100.00 98.53 99.51  98.00 98.12 92.54 99.51 98.00
Overall accuracy [%] 98.40
2001-2006 FR SV AG BBS OT FRLoss SV Gain AG Gain OT Gain
PA [%] 97.02 100 96.04 98.04 97.98 95.06 100 98.9796 93.578
UA [%] 99.02  98.97 99 99.01  98.98 100 99.0196  96.0396 97.1429
F1 [%] 98.01 99.48 97.50 98.52  98.48 97.47 99.51 97.49 95.33
Overall accuracy [%] 96.61
2006-2010 FR SV AG BBS OT FRLoss SV Gain AG Gain OT Gain
PA [%] 98.06 99.03 100 98.04 100 100 99.03 97.8 97.35
UA [%] 98.54 100 99 100 98.02 100 100 100 99.1
F1[%] 98.30 99.51 99.50 99.01 99.00  100.00 99.51 98.89 98.22
Overall accuracy [%] 98.30
2010-2015 FR SV AG BBS OT FRLoss SV Gain AG Gain OT Gain
PA [%] 98 96 98.11 98.1 100 100 98.04 97.98 97.06
UA [%] 97.09 98.06 99.05 99.04  98.99 95.1 99.01 98.98 100
F1 [%] 97.54 97.02 98.58 98.57  99.49 97.49 98.52 98.48 98.51
Overall accuracy [%] 98.91
2015-2020 FR SV AG BBS OT FRLoss SV Gain AG Gain OT Gain
PA [%] 99.09 100 98.97 93.58 100 98.05 100 98.06 93.58
UA [%] 100 99.02 96.04 97.14 100 99.01 97.06 98.06 97.14
F1 [%] 99.54 99.51 97.48 95.33 100.00 98.53 98.51 98.06 95.33
Overall accuracy [%] 97.51
2020-2024 FR SV AG BBS OT FRLoss SV Gain AG Gain OT Gain
PA [%] 100 98.04 100 100 100 100 100 100 98.08
UA [%] 100 100 98.02 100 98.02 100 100 99.06 98.08
F1 [%] 100.00 99.01 99.00 100.00 99.00  100.00  100.00 99.53 98.08

Overall accuracy [%] 98.45

The visual analysis of land cover maps (Figure 2) reveals a gradual and ongoing regression of
forested areas in the Lualaba province. This forest decline is particularly pronounced along a west-
east gradient, where previously forested areas are progressively being replaced by anthropogenic
land cover classes, especially savannas, whose expansion is both rapid and striking. This
phenomenon highlights the increasing pressures exerted by human activities on natural ecosystems.
Nevertheless, despite this widespread trend of deforestation, forest fragments persist in the
southeastern part of the province, indicating the resilience of certain forested areas in the face of
anthropogenic expansion.
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Figure 2. Spatial mapping of land cover dynamics in the Lualaba province landscape from 1990 to
2024, utilizing supervised classification of Landsat images with the Random Forest classifier. The land
cover classes are denoted as follows: FR (Forest), SV (Savanna), AG (Agriculture), BBS (Built-up &
Bare Soil), and Other land cover. Intermediate dates not displayed on this map did not exhibit
significant perceptible changes in the landscape.

3.2. Landscape Composition Dynamics
3.2.1. Composition Dynamics in Lualaba Province and Its Territories

The multi-scale landscape analysis from 1990 to 2024 reveals significant dynamics across the five
territories of Lualaba province (Figure 3). Overall, forest cover has notably decreased, dropping from
62.90% in 1990 to 24.59% in 2024, with an average annual deforestation rate of -1.2 at the provincial
level (A). Simultaneously, savannas have expanded considerably, increasing from 36.47% to 75.97%,
while agricultural land and built-up areas have slightly risen to 1.78% and 1.09%, respectively.
Similar trends are observed in Lubudi territory (B), where forest cover has significantly decreased
from 85.11% to 32.05%, accompanied by an expansion of savannas from 14.66% to 63.69%.
Agricultural lands and built-up areas have also modestly increased. In Mutshatsha territory (C),
deforestation is even more pronounced, with forest cover declining from 84.52% to 32.81%. During
the same period, savannas expanded from 13.75% to 65.00%, and agricultural lands and built-up
areas saw a slight increase. In Dilolo territory (D), forest cover has decreased from 71.14% to 27.17%,
while savannas have continued their expansion, reaching 69.68% in 2024. Agricultural lands
increased to 2.76%, while built-up areas remain limited. Additionally, in Sandoa territory (E), forest
cover has significantly declined from 52.56% to 12.80%, with a concomitant increase in savannas from
47.11% to 85.19%. Agricultural lands and built-up areas have shown little change, reaching 1.38% and
0.56%, respectively. Finally, in Kapanga territory (F), forest cover has drastically decreased from
49.66% to 5.57%, while savannas have experienced substantial expansion, reaching 92.55% in 2024.
In this territory, agricultural lands and built-up areas occupy less space in 2024.

Moreover, the global analysis of landscape diversity indices in Lualaba province indicates
generally stable diversity with notable variations (Figure 4). From 1990 to 1995, diversity is
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homogeneous and high. However, from 2001 onwards, some territories exhibit a temporary increase,
but diversity decreases in several areas from 2015, particularly in Kapanga. By 2024, diversity is low
in Kapanga but stable in other territories, reflecting changes in landscape management and
environmental conditions.
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Figure 3. Landscape composition evolution in Lualaba province (A) (DRC) and their territories: (B)
Lubudi, (C) Mutshatsha, (D) Dilolo, (E) Sandoa et (F) Kapanga from 1990 to 2024. FR (Forest), SV
(Savanna), AG (Agriculture), and BBS (Built-up & Bare Soil). The total landscape proportion in
Lualaba province ant for each territory does not sum to 100 % as other land cover classes were
excluded from the analyses due to their relatively stable nature.
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Figure 4. Dynamics of landscape diversity in Lualaba province (DRC) and its territories (Lubudi,
Mutshatsha, Dilolo, Kapanga and Sandoa). The overall landscape of Lualaba province has remained
relatively stable between 1990 and 2024, though with notable variations during this period.

3.2.2. Dynamics of Land Cover Composition within Protected Areas in Lualaba Province

The analysis of land use data within the seven protected areas of Lualaba province from 1990 to
2024 highlights concerning deforestation and significant conversion of forests into savannas (Figure
5). The Basse Kando Hunting Domain (A) saw its forest cover drop from 78.51% in 1990 to just 4.35%
in 2024. This loss was particularly pronounced after 2010, with a parallel increase in savannas from
20.87% to 78.27%. Simultaneously, built-up areas and bare soils expanded, reaching 15.11% in 2024.
Similarly, the Lac Tshangalele Hunting Domain (B) experienced a significant reduction in forests,
decreasing from 39.07% in 1990 to 2.18% in 2024. This decline accelerated after 2006, while savannas
more than doubled, covering 57.11%. The growth of built-up areas reflects an intensification of
human activities. Furthermore, the Mulumbu Hunting Domain (C) saw its forest cover decrease by
nearly 50%, from 62.78% in 1990 to 13.09% in 2024. This reduction was particularly marked between
2010 and 2020, with savannas expanding to cover 85.99%, becoming the dominant land cover.
Similarly, the Alunda and Tutshokwe Hunting Reserve (D) recorded a significant decline in forest
cover, dropping from 51.64% in 1990 to 7.12% in 2024. Savannas nearly doubled, representing 91.46%
in 2024, illustrating a massive forest conversion. The Mwene Kay Hunting Domain (E) also suffered
a major loss in forest cover, decreasing from 64.86% in 1990 to 15.89% in 2024. This reduction was
accompanied by an increase in savannas, which covered 82.73% of the area in 2024. Similarly, the
Mwene Musoma Hunting Domain (F) recorded a notable reduction in its forests, from 48.74% in 1990
to 9.26% in 2024. Savannas nearly doubled, reaching 90.28%, indicating a significant loss of forest
biodiversity. Finally, the Tshikamba Hunting Reserve (G) shows a similar trend, with forest cover
declining from 38.44% in 1990 to 7.53% in 2024. Savannas increased to 90.59%, while built-up areas
and bare soils experienced slight expansion.
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Figure 5. Landscape composition evolution in Protected areas in Lualaba province from 1990 to 2024:
The Basse Kando Hunting Domain (A); the Lac Tshangalele Hunting Domain (B); the Mulumbu
Hunting Domain (C); the Alunda and Tutshokwe Hunting Reserve (D); The Mwene Kay Hunting
Domain (E); the Mwene Musoma Hunting Domain (F); the Tshikamba Hunting Reserve (G). FR
(Forest), SV (Savanna), AG (Agriculture) and BBS (Built-up & Bare Soil). The total landscape
proportion for each Protected area does not sum to 100 % as other land cover classes were excluded
from the analyses due to their relatively stable nature.

The analysis of landscape diversity within Lualaba’s protected areas reveals distinct trends
(Figure 6). The Basse Kando Hunting Domain (BKHD) and the Mulumbu Hunting Domain (MHD)
show an increase in landscape diversity. Conversely, the Alunda and Tutshokwe Hunting Reserve
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(ATHR), the Mwene Musoma Hunting Domain (MMHD), and the Mwene Kay Hunting Domain
(MKHD) exhibit a significant reduction in diversity, indicating landscape degradation or conversion.
The Lac Tshangalele Hunting Domain (LTHD) maintains high and stable diversity, while the
Tshikamba Hunting Reserve (THR) shows declines and fluctuations, indicating potential
management challenges for habitats. These results underscore the significant variations in landscape
management and condition within the protected areas.
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Figure 6. Dynamics of landscape diversity in the protected areas of Lualaba Province between 1990
and 2024. The protected areas have experienced variations in landscape homogeneity and
heterogeneity over this period. Basse Kando Hunting Domain (BKHD), Lac Tshangalele Hunting
Domain (LTHD), Mulumbu Hunting Domain (MHD), Alunda and Tutshokwe Hunting Reserve
(ATHR), Mwene Kay Hunting Domain (MKHD), Mwene Musoma Hunting Domain (MMHD), and
Tshikamba Hunting Reserve (THR).

3.4. Analysis of the Spatial Pattern Dynamics

Applying the decision tree model of Bogaert et al. [57] (Figure 7, Panels A & B), our analysis
reveals that, except for Lubudi and Mutshatsha, the forest in the Lualaba Province experienced an
attrition process from 1990 to 1995, characterized by a decrease in class area (CA) followed by a
reduction in the number of patches (PN). Lubudi and Mutshatsha, on the other hand, underwent
dissection (ratio 0.95>0.75) due to a decline in CA coupled with an increase in PN. From 1995 to 2001,
forest attrition continued in Lualaba province, while dissection (ratio 0.87>0.75) was observed in
Mutshatsha, Dilolo, and Sandoa. Concurrently, Kapanga faced fragmentation (ratio 0.72<0.75) due to
reduced CA and increased PN, whereas Lubudi territory experienced aggregation, with a decrease
in PN followed by an increase in CA. Between 2001 and 2006, dissection (ratio 0.84>0.75) prevailed
across Lualaba province, except in Kapanga, where fragmentation (ratio 0.62<0.75) occurred because
of increased PN and decreased CA. During 2006-2010, dissection (ratio 0.90>0.75) persisted in
Lualaba, Mutshatsha, Dilolo, and Sandoa, while Lubudi was marked by fragmentation (ratio
0.62<0.75) and Kapanga by aggregation.

From 2010 to 2015, attrition impacted forest land cover in the entire province, as well as in
Lubudi, Sandoa, and Kapanga, linked to decreases in both CA and PN. In Dilolo and Mutshatsha,
dissection (ratio 0.82>0.75) was observed, driven by increased PN and decreased CA. Between 2015
and 2020, suppression was identified in Lualaba and Dilolo, while Lubudi and Kapanga experienced
fragmentation (ratio 0.59<0.75), and Mutshatsha faced dissection due to decreased CA and increased
PN. Finally, from 2020 to 2024, suppression affected Lualaba and Kapanga, Mutshatsha experienced
fragmentation (ratio 0.68<0.75), and Dilolo underwent dissection (ratio 0.90>0.75), with Lubudi and
Sandoa showing aggregation due to slight increases in CA followed by reductions in PN.
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Figure 7. Dynamics of Forest Spatial Patterns (1990-2024). Panel A displays the class area (CA, in km?)
of forests, with absolute values calculated by dividing the total forest area for each year by the sum
of forest areas across all studied years. Panel B illustrates the patch number (PN, also in absolute
values) of forest patches across the landscapes of Lualaba Province and its territories from 1990 to
2024. The variations in CA and PN during this period enabled the identification of spatial
transformation processes, which were analyzed using the decision tree algorithm developed by
Bogaert et al. [57]. Panel C shows the evolution of the Largest Patch Index (LPI, in %), which indicates
the proportion of the landscape occupied by the largest forest patch. Panel D depicts Edge Density
(ED, in m/ha), reflecting the amount of edge habitat in relation to forest area. Finally, Panel E presents
the Mean Euclidean Nearest-Neighbor Distance (ENN, in meters), which measures the average
distance between the nearest neighboring patches, providing insights into forest connectivity.

Between 1990 and 2024, the Lualaba Province and its territories witnessed a dramatic decline in
forest cover, with the largest patch of forest plummeting from 53.1% in 1990 to just 3.98% in 2024
(Figure 7, Panel C), highlighting massive and concerning deforestation. Territories like Lubudi and
Mutshatsha exhibited similar trends, with significant declines noted especially after 2001. Dilolo,
Sandoa, and Kapanga have nearly lost all their forests, reaching the value of the largest patch near-
zero by 2024, indicating rapid and alarming degradation. In parallel, edge density (ED) in the
province exhibited fluctuations (Figure 7, Panel D). Overall, ED showed a general trend of reduced
forest degradation, peaking at 55.51 in 2010. Lubudi saw an initial increase in ED up to 2010 (55.95),
followed by a slight decrease, reflecting initial fragmentation followed by stabilization. Mutshatsha’s
ED rose significantly from 21.80 in 1990 to 55.90 in 2020, then slightly declined, indicating substantial
mid-period fragmentation. Dilolo followed a similar trend, with an increase until 2010 (56.50) and a
slight decrease thereafter. Sandoa exhibited high and stable ED until 2010, then a marked decrease,
signifying reduced degradation. Kapanga experienced a continuous decline in ED from 54.07 in 1990
to 17.42 in 2024, suggesting progressive loss of degradation.
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Additionally, the average distance between forest fragments increased from 230.53 meters in
1990 to 254.47 meters in 2024, reflecting growing forest fragmentation at the provincial level (Figure
7, Panel E). Lubudi’s distance remained relatively stable, from 244.72 meters in 1990 to 244.17 meters
in 2024, indicating consistent fragmentation. In Mutshatsha, the average distance rose from 232.21
meters in 1990 to 242.18 meters in 2024, signaling increased fragmentation. Dilolo’s distance slightly
increased from 225.03 meters in 1990 to 237.57 meters in 2024, showing moderate fragmentation.
Sandoa experienced a notable distance increase, from 226.57 meters in 1990 to 258.56 meters in 2024.
Kapanga saw a significant rise from 224.12 meters in 1990 to 289.88 meters in 2024, illustrating
heightened fragmentation with larger gaps between forest fragments.

Furthermore, our results reveal a complex evolution of spatial forest transformation processes
within protected areas in the Lualaba Province from 1990 to 2024 (Figure 8, Panels A & B). Between
1990 and 1995, forests in the MKHD and THR experienced an aggregation process, characterized by
an increase in CA followed by a decrease in PN. Conversely, other protected areas showed an increase
in PN and a decrease in CA, indicating a shift to dissection for ATHR and MMHD (ratio 0.79 > 0.75)
and fragmentation (ratio 0.59 < 0.75) for BKHD, LTHD, and MHD. In the subsequent period, from
1995 to 2001, a notable change occurred in THR, where forests underwent fragmentation (ratio 0.69 <
0.75), driven by a decrease in CA combined with an increase in PN. Concurrently, forests in LTHD,
MHD, and MKHD experienced dissection (ratio 0.79 > 0.75), while ATHR, BKHD, and MMHD
observed the creation of forest patches, marked by a simultaneous increase in CA and PN.
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Figure 8. Dynamics of Forest Spatial Patterns (1990-2024). Panel A displays the class area (CA, in km?)
of forests, with absolute values calculated by dividing the total forest area for each year by the sum
of forest areas across all studied years. Panel B illustrates the patch number (PN, also in ab-solute
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values) of forest patches across the landscapes of Lualaba Province and its territories from 1990 to
2024. The variations in CA and PN during this period enabled the identification of spatial
transformation processes, which were analyzed using the decision tree algorithm developed by
Bogaert et al. [57]. Panel C shows the evolution of the Largest Patch Index (LPI, in %), which indicates
the proportion of the landscape occupied by the largest forest patch. Panel D depicts Edge Density
(ED, in m/ha), reflecting the amount of edge habitat in relation to forest area. Finally, Panel E presents
the Mean Euclidean Nearest-Neighbor Distance (ENN, in meters), which measures the average
distance between the nearest neighboring patches, providing insights into forest connectivity. Basse
Kando Hunting Domain (BKHD), Lac Tshangalele Hunting Domain (LTHD), Mulumbu Hunting
Domain (MHD), Alunda and Tutshokwe Hunting Reserve (ATHR), Mwene Kay Hunting Domain
(MKHD), Mwene Musoma Hunting Domain (MMHD), and Tshikamba Hunting Reserve (THR).

From 2001 to 2006, dissection dominated across all studied protected areas (ratio 0.83 > 0.75),
except for BKHD and MHD, which experienced fragmentation (ratio 0.56 < 0.75). These
transformations resulted from an increase in PN followed by a decrease in CA, a recurrent pattern
continuing to shape forest ecosystems. The period from 2006 to 2010 introduced a creation of the
forest’s patches in LTHD and MHD, due to a concurrent increase in CA and PN. Simultaneously,
attrition was observed in ATHR and THR, marked by decreases in both CA and PN. However,
MKHD and MMHD were characterized by fragmentation (ratio 0.58 < 0.75), while BKHD showed a
dissection process (ratio 0.85 > 0.75), both characterized by an increase in PN. Between 2010 and 2015
in THR, forest aggregation was observed resulted from a decrease in PN followed by an increase in
CA. whereas other protected areas (ATHR, BKHD, LTHD, MHD, MKHD & MMHD) experienced
attrition of forest patches resulted from an increase in PN and CA, enhancing the diversity of forest
dynamics. Between 2015 and 2020, fragmentation (ratio 0.30 < 0.75) was noted in ATHR, BKHD, THR,
and LTHD due to increased PN and decreased CA. Meanwhile, MHD and MMHD experienced
dissection of forest patches (ratio 0.84 > 0.75), and MKHD underwent attrition resulted from an
increase in PN followed by a decrease in CA, illustrating the complexity of spatial interactions in
these zones. Finally, from 2020 to 2024, attrition of forest patches dominated in ATHR, BKHD, and
MHD, while THR faced fragmentation (ratio 0.30 < 0.75) since resulted from an increase in PN
followed by a decrease in CA. MKHD and MMHD saw a spatial creation process, and LTHD
experienced aggregation, concluding this analysis of forest transformations with an illustration of
varied and dynamic spatial trends in protected areas.

From 1990 to 2024, large forest patches within protected areas drastically diminished, with the
largest patches index dropping to nearly zero in ATHR, BKHD, MMHD, and THR, with less
pronounced declines in MKHD and LTHD (Figure 8, Panel C). MHD showed a slight recovery after
2010 but remains at very low levels. Concurrently, the high Edge Density (ED) reflects increased
forest fragmentation over time. Despite initially high ED values, both ATHR and MMHD experienced
a decrease in ED, whereas BKHD exhibited a significant rise until 2010, followed by a slight decline.
LTHD, on the other hand, maintained relatively stable ED with a slight upward trend (Figure 8, Panel
D). MHD and MKHD showed fluctuations but generally followed an increasing trend in ED, while
THR displayed a continuous rise, indicating ongoing fragmentation. This pattern is further
supported by the Mean Euclidean Nearest-Neighbor Distance (ENN) between forest patches, which
was relatively consistent in 1990 but progressively increased in subsequent years (Figure 8, Panel E).
By 2024, ATHR and LTHD showed the greatest distances between forest patches, signaling increased
fragmentation, while BKHD, MKHD, and THR also exhibited notable increases. These trends
underscore the intensifying fragmentation of forests, emphasizing the urgent need for conservation
measures to protect and restore remaining forest habitats.

4. Discussion
4.1. Methodology

This study utilized multiscale analysis with Landsat images and various landscape metrics—
such as class area, patch number, and edge density—to gain insights into deforestation dynamics


https://doi.org/10.20944/preprints202409.0072.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2024 d0i:10.20944/preprints202409.0072.v1

16

[59]. Employing multiple metrics is crucial for a comprehensive understanding of deforestation, as a
single metric alone is insufficient due to the complex nature of deforestation involving numerous
factors [60,61]. The study incorporated a decision tree to analyze and interpret these metrics, helping
differentiate between anthropogenic and natural land cover transformations and linking observed
changes to their causes. To address the temporal sensitivity of spatial transformation processes, the
study refined the temporal resolution to 5 to 6 years [57,62,63].

Although Landsat images have a 30-meter resolution, they are effective for regional-scale
analysis, offering valuable insights into land cover trends and changes over time [14,64]. Landsat’s
capacity to detect vegetation changes at this scale allows for mapping and quantifying the impacts of
human activities on forest ecosystems, which is vital for management and conservation [65].
Additionally, the free access to Landsat data makes it a valuable tool for monitoring landscape
dynamics, particularly in areas with limited surveillance resources [66,67].

The study focused on key land cover classes such as agriculture, urbanization, savannas, and
forests to understand landscape transformation dynamics and their impact on deforestation.
However, combining grassland and wooded savannas, which represent distinct ecosystems, may
have limitations. Despite this, merging these categories was justified for capturing general
deforestation trends at a regional scale, while acknowledging the potential for finer-scale analyses in
future studies. Moreover, the literature indicates that these two land uses are generally of
anthropogenic origin, with their significance in the landscape increasing alongside human activities
[20,68].

4.2. Anthropogenic Pressures and Extent of the Hierarchical Changes in the Spatio-Temporal Pattern of
Deforestation in Lualaba Province

Our results indicate significant expansion of savannas, agricultural fields, and urban areas in
Lualaba Province, driven by abundant natural resources like fertile soils and mineral-rich deposits,
including copper and cobalt [36]. These resources have attracted investments in agriculture and
mining, leading to the growth of these sectors [18,69]. Similar patterns were observed in southern
central Angola [70]. Additionally, improved road networks have facilitated access to rural areas,
further promoting agriculture and mining [14] and stimulating urbanization by enabling rural
populations to migrate to urban centers for employment and services [18]. In Mekelle, Ethiopia, a
favorable investment climate has similarly driven rural-to-urban migration, increasing demand for
urban land [71]. The growing national and international demand for rosewood and mining products
has fueled expansion in these sectors [69,72,73].

The need to expand agricultural land to meet rising food demands has led to the conversion of
forests into maize and cassava fields, as observed in the Katangense copperbelt [18,74]. Both large-
and small-scale mining operations have also contributed to deforestation for mining infrastructure
and extraction [14]. Unplanned urban expansion has converted forest lands into residential,
commercial, and industrial zones, leading to habitat fragmentation and loss. In the Lubumbashi
plain, Cabala et al. [68] reported the conversion of 177.5 km? of forest to bare soil and settlements
between 2005 and 2011. Economic challenges have forced populations to build makeshift housing in
forest-adjacent areas with limited infrastructure, often prioritizing immediate survival over resource
sustainability.

Our results show that the extent of deforestation is linked to the socio-economic and political
context of the province. The period of socio-political instability in the DRC (1990-2001) was marked
by several factors that had a significant impact on agriculture, urbanization, and consequently
reduced the extent of deforestation [66]. Indeed, political instability created an environment of
insecurity and farmers faced challenges accessing land, agricultural inputs, and markets, leading in
disorganization of agricultural production systems. Barima et al. [75] found that there was minimal
growth in cocoa cultivation during a period of political turmoil in Ivory Coast, leading to a reduced
rate of deforestation. Additionally, limited investments in urban infrastructure due to precarious
political situations slowed down the development of urban areas in the Lualaba province, echoing
the results found by Useni et al. [76] in the city of Lubumbashi. Basic services such as electricity were
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inadequate, discouraging new populations from settling in urban centers [77]. Regarding
deforestation, political instability limited economic activities such as large-scale logging,
consequently foreign investments in this sector decreased [78], confirming the findings at the national
level, which showed that the deforestation rate halved when comparing the period of political crisis
(0,08% from 1990-2000) and the post-crisis period (0.16 from 2000-2010) [79].

However, the liberalization of the mining sector in 2002 has generally led to an increase in large-
scale mining operations, particularly for minerals like copper and cobalt. The rise in the quantity and
size of mining sites has caused fragmentation of vegetation in the Lualaba province [19]. But, a trend
in the decrease of deforestation extent was observed during the period following the global financial
crisis (2008). Indeed, a reduction in mining activity was linked to a decrease in demand for forest
lands for mining infrastructures, potentially leading to a decline in the deforestation rate. Globally,
during the financial crisis period, deforestation rates in Asia, Africa, and Europe decreased by 83 %.,
43 %, and 22 %, respectively [80]. Additionally, the establishment of the new province in 2015
increased the deforestation rate, particularly due to the infrastructural development, urbanization,
and expansion of economic activities that added additional pressure on forest resources [18]. In a new
province where the majority of the population is poor and access to electricity is low, the exploitation
of forest resources for charcoal production has become an excellent refuge sector [77]. It's also worth
noting that charcoal is an essential energy source for cooking and heating [81], and therefore its
constant demand by households in the province’s main urban areas ensures a certain economic
stability for producers [68]. Yet, the carbonization yield remains low in the region [82].

Our findings revealed that deforestation occurs through the fragmentation of forest patches,
confirming the results of previous studies [16,18]. Indeed, forests ecosystems are generally
fragmented into smaller patches by roads and infrastructure development, expanding agricultural
areas, and urban zones [83]. This fragmentation can lead to a simplification of the shapes of residual
fragments as intact areas of natural forests become increasingly scarce [84]. As anthropogenic
pressure intensifies while forest resources are becoming scarce [85], the remnant forest patches
subsequently disappear, as found in the Lufira Biosphere Lufira [24]. Conversely, savanna patches
merge into the landscape due to factors such as extensive agricultural practices, charcoal production
and bushfires [17]. Indeed, agricultural activities whether preceded by charcoal production or not
and bushfires can gradually transform forest areas into savannas [86,87]. The exploitation of forest
resources for charcoal production can lead to the conversion of forests into savannas due to intensive
tree cutting for charcoal, resulting in reduced forest cover [88]. The expansion of agricultural fields
typically involves creating new patches rather than enlarging existing ones due to increasing land
demand. As soil fertility declines, farmers shift to new plots, continually creating cultivated areas and
exerting ongoing pressure on forest resources [89]. The ongoing decline in tree abundance facilitates
light penetration, promoting the growth of herbaceous species [90]. This often leads to the formation
of savannas, explaining their increasing presence in the landscapes of Lualaba Province. Malaisse [20]
supports this trend, noting that savannas are anthropogenic in the region, expanding in tandem with
landscape disturbance levels.

In the context of uncontrolled urbanization, acquiring new land often proves simpler and more
cost-effective than densifying existing urban areas. Densification typically necessitates complex land
regularization processes and substantial infrastructure investments, making it a less attractive option
for rapid urban expansion [91]. This phenomenon is especially prevalent in regions with minimal
urban development, such as the DR Congo. In these areas, urban growth is frequently concentrated
around mining sites, where construction on bare soil is relatively straightforward [21]. However, this
practice can exacerbate human exposure to environmental hazards, including trace metals, which are
commonly present in the soils around mining operations [92]. Consequently, uncontrolled urban
expansion not only contributes to inefficient land use but also poses significant health risks to the
population.

Deforestation is generally more severe in areas practicing shifting cultivation compared to
mining regions. Shifting cultivation, or slash-and-burn agriculture, is a traditional practice in DR
Congo involving the periodic cutting and burning of forest plots for crop cultivation, leading to
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temporary and recurrent deforestation [93,94]. This can result in land degradation and pressure on
protected areas due to inadequate monitoring [24,67,95]. Agricultural areas are more accessible and
less regulated than mining zones, which are managed with stricter environmental controls and
regulations [69]. Consequently, agricultural lands are more prone to deforestation driven by local
economic interests [96]. Despite their protected status, forest cover in these areas declines due to poor
management, demographic pressure, and illegal activities [95]. Corruption and enforcement
challenges exacerbate this issue. Studies in the DR Congo, Zambia, Ghana, and Burkina Faso confirm
that agriculture is a leading cause of deforestation [97-99].

Deforestation rates in this study significantly exceed the national average of 0.4% per year. The
rate in Lualaba province is higher due to intensified logging, agricultural and mining expansion,
illegal activities, and weak forest governance. Despite national conservation efforts, local factors
contribute to higher deforestation in provinces like Lualaba. Deforestation varies with spatial scale:
protected areas face intense pressure from subsistence agriculture, artisanal mining, and fuelwood
collection, compounded by outdated monitoring resources [100]. This situation mirrors issues in
Kasenga [101], Butembo [102], and Zambia [103], leading to severe deforestation in areas like the
Lufira Biosphere Reserve [24]. At larger scales, commercial agriculture and mining drive
deforestation, though conservation measures at provincial or national levels can mitigate these effects
[19,104,105].

The results indicate that, regardless of the scale of analysis, the density of forest edges increases,
including the average distance between neighboring patches, alongside a decrease in the size of the
largest forest patch. This trend is primarily driven by habitat fragmentation, often resulting from
urban expansion, agriculture, and mining activities [54,55]. As new edges are created, the number
and density of forest fragments increase, while the size of continuous forest areas decreases. On one
hand, forest fragmentation can enhance habitat diversity by creating various microenvironments
along the edges. But generally, it has significant negative effects: the loss of continuous habitat can
threaten biodiversity by isolating species populations and disrupting migration corridors [84].
Additionally, edges may be more susceptible to disturbances such as storms and invasions by exotic
species [106]. The consequences of this fragmentation include a reduction in the resilience of forest
ecosystems to climate and environmental changes. Furthermore, the decline in large forest patches
limits the ability of ecosystems to provide essential services such as climate regulation, biodiversity
conservation, and carbon storage [55,84].

4.3. Implications for the Conservation of Landscape and Forest Ecosystems in Lualaba

Agriculture-oriented territories are highly susceptible to deforestation, even in protected areas.
To address this, policies must promote sustainable land management, including reforestation and
ecosystem restoration with indigenous species, as well as financial incentives for sustainable
agriculture. Efforts to increase carbon stocks through forest restoration could potentially restore 700
million hectares globally in the next 50 years [107]. For instance, the agroforestry project near
Lubumbashi has successfully planted 350 hectares of degraded land with Acacia auriculiformis [108].
Local governments should establish buffer zones around protected areas to curb agricultural
expansion while encouraging environmentally friendly farming practices. Integrated territorial
planning is crucial to prevent inappropriate land conversion for urban or agricultural use. This
requires collaboration among local authorities, farmers, urban planners, and ecologists to create
balanced development strategies.

Collaborative management between state wildlife agencies and NGOs can attract investment
and enhance protected area performance [109]. Additionally, agricultural reserves with regulated
and sustainable practices can help mitigate deforestation from intensive agriculture. These reserves
must be managed collaboratively, addressing limitations of current land allocation models controlled
solely by local customary authorities [73].

For extremely poor populations, adopting sustainable agricultural practices is crucial.
Techniques such as agroforestry, crop rotation, and water conservation can enhance productivity and
minimize deforestation. For instance, on the Batéké plateau in Kinshasa, 8000 hectares of Acacia
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auriculiformis plantations produce 8000 to 12,000 tons of charcoal annually, along with 10,000 tons of
cassava, 1200 tons of maize, and 6 tons of honey [110]. Improving agricultural practices through the
use of adapted seeds, integrated pest management, and crop diversification can reduce forest
pressure and support ecosystem preservation. For example, using improved maize varieties and
recycled human waste in Lubumbashi has enhanced crop growth and nutrition, leading to higher
maize yields compared to inorganic fertilizers. Creating corridors with native species, like the
Ambositra-Vondrozo Corridor in Madagascar, can also improve ecological connectivity. This
corridor, spanning 200 km and covering 1,352 km?, links two major national parks, Ranomafana and
Andringitra, facilitating species movement and genetic flow between forest patches [111].

Local communities must be actively engaged in natural resource conservation to combat
deforestation effectively. The lack of local involvement in forest conservation efforts has been a major
factor in deforestation in the Lubumbashi region [85]. In contrast, strong community participation
has facilitated forest regeneration in Burundi’s Bururi region [112]. To promote sustainable practices,
awareness programs, environmental education, and capacity-building initiatives are essential [113].
Although governance challenges can complicate these efforts, partnerships with international
organizations and NGOs can provide necessary financial and technical support [114,115]. Media
campaigns and targeted educational programs can further raise environmental awareness [116].

Strengthening environmental legislation and ensuring rigorous enforcement of regulations are
crucial for protecting sensitive forest areas and curbing unsustainable activities [117]. This includes
enhancing monitoring within protected areas, implementing strict access and land use measures, and
imposing penalties for illegal deforestation. For example, in the Forest Reserve of Bururi, forest area
increased due to restrictions on human activities, reduced agricultural disruptions, and more forest
rangers [112]. Addressing poor governance and corruption requires robust transparency and
accountability mechanisms to ensure effective monitoring and management within protected areas
[118,119].

5. Conclusion

Our study utilized a methodological approach that integrated remote sensing techniques with
landscape analysis methods. This allowed us to confirm a notable increase in deforested and
fragmented areas within the Lualaba province. These changes were attributed to the expansion of
anthropogenic activities such as mining, urbanization, and agriculture, which have significantly
altered the structure and connectivity of forest ecosystems over time. The findings from our study
clearly demonstrated that deforestation, characterized by the fragmentation of forest patches
followed by attrition, is primarily influenced by the expansion of savannas, agricultural practices,
and urban development. Of particular concern is the vulnerability of agricultural territories to this
phenomenon, even including their designated protected areas which were found to be impacted as
well. Despite the valuable insights gained, our study did encounter limitations. These included the
spatial resolution of remote sensing data and the lack of socio-economic surveys, which could have
provided a more comprehensive understanding of long-term trends, and the intricate nature of
human-environment interactions, which adds complexity to the analysis. Despite, our results
unveiled a complex pattern of deforestation, with a significant impact observed at the local scale. This
emphasizes the critical need for immediate actions to preserve the remaining forest ecosystems in the
Lualaba region through the implementation of land conservation policies, adoption of sustainable
agricultural practices, and the enforcement of stricter forest regulations. Collaborative actions are
necessary to safeguard the ecological richness and functionality of the forest ecosystems within the
Lualaba province for future generations.
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