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Article 
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Abstract: In the last years, new numerical methods have been applied to weather data for water budget 

estimation. Geostatistics is one of the most powerful approaches, when it comes to studying spatially relevant 

natural phenomena, as it takes into account the spatial correlation among measurements over a specific study 

area and increases the reliability of the estimation by providing the associate uncertainty. In this study, we 

tested the feasibility of using a geostatistical method called Ordinary Kriging to provide a reliable estimation 

of the water budget of the Foro river basin (Periadriatic area, Central Italy), by comparing the obtained results 

with a more traditional yet robust approach based on the Thiessen polygon spatialization method, considered 

here as a reference. The spatial estimation with the selected geostatistical and traditional approaches was 

performed on the average monthly rainfall and temperatures derived from 33-year-long time series measured 

at the weather station of the regional monitoring network. To transform the spatial variables quantities of both 

rainfall and air temperature into actual runoff estimates that ideally represent the river discharge, we used both 

the Turc and Thornthwaite methods, considering variable Potential Infiltration Coefficients according to the 

hydrogeological complexes’ distribution. For the geostatistical method, the same procedure was applied to the 
95% confidence interval limits, to quantitatively assess the possible impact of the spatial uncertainty on the 

estimation of the river discharge. The results obtained by both methods, subsequently converted into monthly 

discharges, were compared to the average monthly discharges related to 33-year-long time series measured at 

different locations along the Foro river. The results obtained with the geostatistical approach proved to be in 

line with the ones from the traditional method. Additionally, using the rainfall and temperature values 

obtained with the Ordinary Kriging and the corresponding confidence interval limits, it was possible to 

quantify the uncertainty associated with the discharge values, making the estimates more reliable than the ones 

obtained with the traditional approach. However, the yearly distribution of river discharge obtained by both 

the geostatistical and traditional methods appeared to be dissimilar to the measured ones. In such anthropized 

and groundwater-dependent river basins, the surface water use as well as the regulatory effect of the alluvial 

aquifer regime may affect the river discharge variability over the year and then can account for similar 

discrepancies between the inflow and outflow water volumes. 

Keywords: water budget; Ordinary Kriging; alluvial basin 

 

1. Introduction 

The reliable estimation of the water budget at a river basin scale is crucial for proper water 

management practices and sustainable multi-purpose exploitation of water resources, especially 

considering the evident and increasing impact of climate change on water availability [1]. However, 

the quantification of available water resources connected to the direct rainfall recharge, as in river 

basins [2], is often affected by the problem of the spatial representativeness of the data (i.e., rainfall 

and temperature) collected in sparse weather stations across a hundreds-to-thousands-square-

kilometer areas, which are usually recorded as time series and then interpolated to obtain a spatial 

distribution [3]. As a matter of fact, the distribution of weather data is often not optimal according 

both from a spatial and an altimetric point of view [4]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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To overcome this limitation related to the spatial representativeness of discrete measurements 

from a sparse weather monitoring network, simple spatialization approaches, such as the 

triangulation to obtain isolines or the Thiessen method to obtain representative values within areas 

of influence of a single station, has traditionally been used [5,6]. However, even though they are quite 

robust, these approaches to the spatialization of rainfall and temperature data and then to the 

quantitative estimation of the water budget at a basin scale do not provide any reliable estimation of 

the uncertainty due to the inherent spatial variability of the meteorological phenomena, which cannot 

be physically measured by a sparse monitoring network. 

In the last decades, number of geostatistical methods have been developed and tested in several 

hydrogeological and environmental applications [7-9]. These geostatistical techniques are effective 

when it comes to studying spatially relevant natural phenomena, as they take advantage of the spatial 

correlation among measurements over a specific study area to provide reliable estimates of the 

variables of interests [10-13], additionally providing the quantification of the associated uncertainty 

[14,15]. 

In the present work, we aimed at testing the feasibility of using a stationary geostatistical 

technique to spatially estimate rainfall and temperatures to provide a reliable estimation of the Foro 

river regime over the average year. To this purpose, we compared the water budget estimation in 

terms of river discharge obtained from the spatialization of monthly rainfall and temperature with 

both the Ordinary Kriging and the Thiessen method. The original datasets were obtained by 

calculating the monthly average rainfall and temperature from 33-year-long time series (i.e., from 

1986 to 2019), collected by the Hydrographic Service of Abruzzo Region, at each weather station of 

its monitoring network. Since the objective of the study is to compare, in the Foro valley test area, the 

results obtained by applying the two techniques using only and exclusively the real data of the 

available monitoring network, neither virtual weather stations were used in the traditional method 

calculations to cover unmonitored areas (generally corresponding to altitudes greater than 1000 m 

a.s.l., above sea level), nor geostatistical correlations with altitude were performed in the geostatistical 

estimation process.  

As a comparison term, the flow rate of the Foro river monitored in the same statistical time 

interval in two monitoring stations located approximately in the middle and at the end of the river 

course was used, which are linked to an 87-km2 and a 232-km2 wide sub-basin, respectively.  

2. Materials and Methods 

2.1. Study Area 

The study area is the Foro alluvial river basin located in the Periadriatic area of the Abruzzo 

Region (Figure 1), which is mainly characterized by foredeep deposits and alluvial deposits of the 

main rivers [16,17].  
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Figure 1. Regional framework. 1. Fluvial alluvial deposits (Quaternary); 2. intramontane basins’ 
alluvial deposits (Quaternary); 3. Adriatic foredeep deposits (Plio – Pleistocene); 4. turbiditic deposits 

(Miocene – Pliocene); 5. carbonatic deposits (Up. Triassic – Oligocene); 6. main rivers; 7. Foro basin. 

Figure 2 shows the geological – hydrogeological framework in detail: in the South-Western part, 

at the highest altitudes, the basin is characterized by calcareous–marly deposits, while in the other 

portions by Plio–Pleistocene clays with sandy–gravelly levels, and Quaternary alluvial and 

continental deposits are present. 

The Foro basin is about 236 km2 wide, and from the altimetric point of view, it ranges between 

the sea level and about 2000 m a.s.l.. The most permeable complexes can be found in the SW portion 

and along the Foro riverbed, while the less permeable ones are observed in the middle part of the 

basin. 

Along the Foro river the anthropogenic factors are relevant, and a significant amount of water 

resources is exploited for drinking purpose and for fields’ irrigation. Besides, a hydroelectric plant 

can be found within the Foro basin, which takes from the river and then returns it downstream. 

This kind of plants can be found in almost all the catchments of the rivers of central Italy with 

Adriatic drainage [18,19] and in the Apennine intra–mountain basins [20]. 
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Figure 2. Foro valley study area and hydrogeological framework. 1. Continental detritus complex; 2. 

gravelly – sandy fluvial complex; 3. transitional sandy – gravelly complex; 4. marine sandy – gravelly 

complex (Mutignano formation); 5. marine clayey complex with sand and gravel (Mutignano 

formation); 6. calcareous complex (Orfento and Tre Grotte formations); 7. marly – calcareous complex 

(Bolognano formation); 8. flinty – calcareous complex (Santo Spirito formation); 9. Foro river; 10. Ponte 

Di Vacri sub–basin; 11. Molino Galasso sub–basin; 12. Thiessen polygon; 13. gauging station; 14. 

hydrometer. 

2.2. Meteorological Network 

The used rainfall and temperature datasets have been collected by the Hydrographic Service of 

Abruzzo Region database for a 33–years period, from 1986 to 2019. Table 1 summarizes the selected 

monitoring stations and their main features. 

In the traditional approach data from just 10 weather stations inside or immediately outside the 

Foro basin were used (Figure 2), while for the geostatistical analyses, data from the whole Abruzzo 

and Molise regions were used to estimate the spatial distribution of both rainfall and temperature 

(Figure 3).  

Eight out of ten of the stations considered in the traditional approach had both rainfall gauge 

and temperature sensor, while two of them (i.e., ASL and CLD) had just the rainfall measurement 

system. For the latter, monthly and annual temperatures were estimated using linear regression 

between temperature and elevation. As can be observed in the Altitude column in Table 1 and Figure 

2, weather stations are not homogeneously distributed and cannot be found at the altitudes over 1280 

m a.s.l., as well as between 700 and 1300 m a.s.l. 

Two hydrometers, Foro a Molino Galasso and Foro a Ponte di Vacri were considered inside the 

Foro basin, in order to define two sub–basins and compare measured discharge with calculated ones.  
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Figure 3. Abruzzo and Molise regional weather stations’ network. 1. Pluviometer; 2. Thermometer; 3. 

Pluvio–thermometer. 

Table 1. Gauging station selected and their annual mean features. The asterisk indicates stations 

where temperature has been obtained by regression lines. P: pluviometer; T: thermometer; H: 

hydrometer (see Fig. 2 for the location). 

Station name 
Station 

code 

Gauging 

station type 

Altitude 

(m a.s.l.) 

Mean annual 

P (mm) 

Mean annual 

T (°C) 

Mean annual 

discharge (m3/s) 

Alento a S. Leonardo ASL P 3 797  17.3*  

Ortona ORT P-T 75 726 16.2  

Chieti CHT P-T 278 768 15.8  

Casalincontrada CLD P 310 876  15.4*  

Fara F. Petri FFP P-T 313 925 15.3  

Orsogna ORS P-T 410 885 15.5  

Pretoro PTR P-T 550 1127 14.9  

Guardiagrele GRD P-T 551 912 14.3  

Pennapiedimonte PMN P-T 679 953 14.0  

Passo Lanciano PLA P-T 1280 1493 8.1  

Foro a Molino Galasso FMG H 8   2.8 

Foro a Ponte di Vacri FPV H 95   1.2 

2.3. Geostatistical Method 

To spatialize both rainfall and temperatures measured at the weather station of the regional 

monitoring network, we used the stationary technique called Ordinary Kriging (OK) [11,12,21]. OK 

estimates the target variable (z∗(𝐱0)) at each location of the selected spatial domain (𝐱0) through an 

unbiased and optimal estimator called the Best Linear Unbiased Estimator (BLUE), which is defined 

by the following equation: 
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z∗(𝐱0) =∑λiz(𝐱i)          with i = 1,… , NN
i=1  (1) 

In this equation, λi represent the weights assigned to the variable measurements (z(𝐱i)) within 

a certain distance called neighborhood (𝐱i). 
The unbiased OK estimator imposes the following condition to ensure that the estimated values 

are the most optimal and unbiased (i.e., E(z∗(𝐱0) − z(𝐱0)) = 0): ∑λii = 1 (2) 

This condition represents a constrain within the Kriging equation system (Eq. (3)), which 

consists of a set of N + 1 linear equations: 

{  
  ∑λiγ(𝐱i, 𝐱j) + μ = γ(𝐱i, 𝐱0)N
j=1∑λj = 1N
j=1                                       (3) 

In the OK equation system, μ is a Lagrangian multiplier, while γ(𝐱i, 𝐱j) and γ(𝐱i, 𝐱0) are the 

variograms related to pairs of measurements and to pairs of points that include the unsampled 

location (𝐱0). 

The variograms are described by a function that incorporates the spatial dependency of a given 

random variable of interest [15] and describes the relation between semi–variance ( γ(𝐡) ) and 

distance, in terms of a separation vector, or lag (𝐡). Variograms are defined by the equation (Eq. (4)) 

defined below: 

γ(𝐡) = 1N(𝐡) ∑[z(𝐱i) − z(𝐱i + 𝐡)]2          with i = 1,… , N(𝐡)N(𝐡)
i=1  (4) 

where, z(𝐱i) and z(𝐱i + 𝐡) are a pair of distinct measurements separated by a lag 𝐡 at a specific 

location within the spatial domain (𝐱i), and N(𝐡) is the number of pairs separated by the lag. 

To solve the OK linear equation system (Eq. (3)), the experimental variogram, (obtained from 

actual measurements, is fitted by a variogram model. 

In addition to the predicted value at each target location on the gridded domain, OK allows 

quantifying the uncertainty associated with the estimate, in terms of Kriging variance (σ2(𝐱0)): 
σ2(𝐱0) = μ +∑λiγ(𝐱i, 𝐱0)N

i=1  (5) 

It is important to highlight that the Kriging variance, as defined in Eq. (5), and the corresponding 

standard deviation can be used as a local measure of error [15] only when the variable of interest has 

a Gaussian statistical distribution, as the prediction may be non–linear and then not optimal to 

overcome this limitation, all the monthly rainfall and temperature data were transformed into 

standardized variable (i.e., mean equal to 0, and variance equal to 1) through the Gaussian 

Anamorphosis [14]. This function converts a Gaussian variable (Z = Φ(Y)) into a non–Gaussian one 

by fitting a polynomial expansion, as defined below: Φ(Y) =∑ΨiHi(Y) (6) 

In this equation, Hi(Y) are the Hermite polynomials, while Ψi are the Hermite coefficients. 

Once defined the Gaussian Anamorphosis function, it is possible to use its inverted version to 

transform a non–Gaussian variable into a standardized one (Eq. (7)), as follows: Y = Φ−1(Z) (7) 
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In this study, all the raw monthly rainfall and temperature data obtained from the 33–year–long 

time series collected over the whole regional monitoring network were previously transformed into 

standardized Gaussian variables, then used to fit the variogram model, and eventually interpolated 

across the entire Abruzzo region. Finally, the predictions were back transformed to obtain the 

monthly rainfall and temperature distributions within the selected domain through the Gaussian 

Anamorphosis function. Back–transformation was applied to 95% confidence interval limits (Lower 

Limit–LL, and Upper Limit–UL) maps as well, obtained by the following relation, to provide a 

quantification of the uncertainty associated to the rainfall and temperature estimates: Limits of 95% CI = z∗(𝐱) ± 1.96σ√n  (8) 

where, σ is the OK standard deviation, whereas n is the optimal number of measurement locations 

in the neighborhood. 

The rainfall and temperature values were estimated by OK through Eq. (1) on a grid (i.e., 

support) as large as the entire Abruzzo region, with cell size of 100x100 m, and then cut with a 

polygon corresponding to the Foro basin to compare the estimates at a catchment scale.  

All the geostatistics analyses in this study were preformed using the software Geovariances 

Isatis.neo 2021.07 (www.geovariances.com/en/software/isatis-neo-geostatistics-software/). 

2.4. Water Budget Estimation 

The water budget is traditionally defined as 

P = ETr + O (13) 

where P is the total rainfall related to a certain area, ETr is real evapotranspiration, O is outflow, 

defined as sum of run off (R), and infiltration (I) which is correlated to the potential infiltration 

coefficient (IR). 

In this work, rainfall and temperature were analyzed through two approaches, the traditional 

method based on the Thiessen polygons, and the geostatistical spatial estimation. 

For the first method, the ten thermo–pluviometric stations’ positions were considered to draw 

the Thiessen polygons (Figure 2); the corresponding rainfall and temperature data have been 

cumulated to a monthly and annual resolution, and then averaged to obtain datasets representative 

of the whole 33–year–long time series. 

In the second approach, the Ordinary Kriging was applied to rainfall and temperature data from 

gauging stations all over Abruzzo and Molise regions (Figure 3) for the same 33–years period, 

obtaining monthly and annual rainfall and temperature estimated spatial distribution. For each 

variable three maps have been carried out, one for the estimated values, and two for the relative 

errors identified as Upper (UL) and Lower (LL) Limits (Figure 5). 

In both approaches, the real evapotranspiration (ETr ) was calculated using the Turc, Turc 

modified [22] and the Thornthwaite and Mather [23] methods; mean real evapotranspiration values 

related to a statistically significant period (i.e., over at least 30 years) were provided from both 

methods and can be assumed as representative of the local meteoclimatic condition. 

The Turc method provides yearly ETr values through the following relation in Equation 14: ETr = P√(0.9 + P2L2) 
(14) 

where L is the evaporative potential of the atmosphere (300 + 25T + 0.05T3), and T is the mean 

yearly temperature of air (°C).  

The Turc modified is also based on Equation (14), but it considers L as defined by (300 +25TP + 0.05TP3), with TP = ∑ PiTI, and Pi and Ti the rainfall and air temperature values related to the 

ith month, respectively. 
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This method quantifies evapotranspiration not considering seasonal variation in the total 

amount of water returned to the atmosphere either to affect air temperature (i.e., evaporation), or for 

plant life and growth (i.e., transpiration).  

The Thornthwaite and Mather method [23] offers a more accurate estimation of the 

evapotranspiration, by calculating potential evapotranspiration in relation to the ith month (ETpi) 
through an exponential equation (Equation 15): ETpi = K [1.6 (10TiI )a] (15) 

where K = no.  of daylight hours12 no.  of hours in a day  is a corrective coefficient for the latitude; Ti  is the air temperature 

related to the ith month (in °C), and a = 0.49239 + 1792 ∙ 10−5I − 771 ∙ 10−7I2 + 675 ∙ 10−9I3 is the 

exponent of Equation (15), which is based on the yearly heat index I = ∑ (Ti8 )1.514 12i=1 . 

Monthly ETpi  values were compared with the residual water content within the shallower 

portion of the soil, where plant roots influence the water budget, to estimate the monthly 

evapotranspiration values (ETr). In this way, the yearly ETr value was estimated while considering 

the seasonal variability and the actual availability of water in the topsoil. 

After calculating the amount of water returning to the atmosphere, the outflow was calculated 

according to Equation (13). In order to quantify runoff and infiltration, Potential Infiltration 

Coefficients (IR) deriving from the most complete geological map of the study area [24] were 

considered. IR were assigned to every hydrogeological complex [25], according to the predominant 

lithotype. 

In both methods, Equations (16) and (17) have been used to calculate infiltration and runoff, 

respectively: I = IR ∙ (P − ETr) (16) R = (P − ETr) − I (17) 

In order to compare the calculated water budget with the discharge measured by the two 

hydrometers in Figure 2, two sub–basins have been considered and the relative run off estimated, as 

a reference for the conversion of runoff into river discharge equivalent. 

3. Results and Discussion 

3.1. Traditional Water Budget Method 

Based on the principles described in Section 2.4, Table 2 summarizes the results of the traditional 

approach to estimate the water budget: monthly and yearly runoff were calculated for both the sub–
basins, and then converted in m3/s to be compared with measured discharge. In general, the 

traditional water budget shows that about 65% of the inflows return to the atmosphere, while 35% is 

available for surface runoff and infiltration. 

Table 2. Monthly rainfall, evapotranspiration and run off values for the two sub basins (Figure 2) 

carried out with traditional method (see also the red line in Figure 7). 

  Ponte di Vacri sub–basin Molino Galasso sub–basin 

  
P 

[mm] 

Er 

[mm] 

Ep 

[mm] 
R [m3] 

R 

[m3/s] 

P 

[mm] 

Er 

[mm] 

Ep 

[mm] 
R [m3] 

R 

[m3/s] 

January 461 49 49 2669231 1.03 883 119 119 10254785 3.96 

February 429 49 49 2371163 0.92 758 123 123 7955704 3.07 

March 455 134 134 1583586 0.61 773 296 296 5291400 2.04 
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April 470 224 224 1213093 0.47 767 484 484 3321648 1.28 

May 337 415 415 13778 0.01 626 886 886 13778 0.01 

June 346 575 584 9468 0 609 1123 1245 9468 0 

July 290 380 702 0 0 514 614 1506 0 0 

August 250 282 646 0 0 446 478 1390 0 0 

September 498 377 395 234659 0.09 865 744 865 234659 0.09 

October 505 263 263 1128683 0.44 931 569 569 3641094 1.41 

November 592 132 132 2838663 1.1 1111 288 288 10930159 4.22 

December 610 55 55 3495049 1.35 1056 135 135 12265165 4.73  

3.2. Geostatistical Water Budget Estimation 

The geostatistical analyses were carried out for the twelve average monthly datasets available. 

In Figure 4, as an example, January fitted variogram models related to the Gaussian–transformed 

rainfall and temperature data are shown. 

  

Figure 4. Variogram (variance vs. distance) examples. To the left: rain data; to the right: temperature 

data, both for January. The numbers on the variogram curves indicate the number of pairs. 

In Figure 5, rainfall and temperature interpolations for January are shown, from left to right, 

Upper Limit, estimated values, and Lower Limit maps can be observed. Rainfall interpolations 

highlight rainfall distribution typical of this climatic area: more intense precipitation in the SW 

portion, nearby the mountainous reliefs, and lower in the alluvial valley area, towards the Adriatic 

see.  
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Figure 5. Geostatistical interpolations for 1986–2019 period in Foro a Molino Galasso sub–basin for 

January. A) Rainfall, from left to right: Upper Limit, estimation, and Lower Limit. B) Temperature, 

from left to right: Upper Limit, Estimation, and Lower Limit. 

An example of monthly outflow, infiltration, and runoff maps can be observed in Figure 6, 

related to Molino a Galasso sub–basin. As can be seen, the geostatistical method allows to obtain a 

more accurate estimation of the water budget terms all over the study area, with a resolution 

corresponding to the chosen cell size. As a result of the application of the water budget, the outflow 

(upper part in Figure 6) appears substantially connected to the distribution of precipitation and 

temperature, in turn essentially conditioned by the elevation and the orography. Instead, both runoff 

and infiltration maps reflect the lithologies of the area, which are directly correlated to the IR 

coefficient used in Equation (16) for the calculation. Accordingly, the two distributions appear 

complementary to each other. 
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Figure 6. From top to bottom, example of monthly outflow, infiltration and run off in Foro a Molino 

Galasso sub–basin. For each term (from left to right) Upper Limit, Estimation and Lower Limit maps 

are shown. 

A more intense infiltration, and consequently lower runoff, can be seen in the SW area of the 

sub–basin, where the IR is higher (i.e., about 80–90%), whereas infiltration is less intense in the central 

portion of the sub–basin. 

In order to compare runoff values obtained with the geostatistical method and the results in 

Table 2, the zonal statistics have been applied to each map. This GIS tool allowed obtaining statistical 

parameters, such as minimum, maximum, and mean values, as well as the sum of each pixel value 

for every raster map. This approach was applied to both sub–basin results. 

3.3. Comparison Between Traditional and Geostatistical Methods 

In Figure 7, water budget results from both methods are compared to each other and with direct 

discharge measures for each sub–basin. 

For the Ponte di Vacri station, there is a good correspondence between both the geostatistical and 

traditional method. On the other side, an underestimation is highlighted for the Molino Galasso 
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station, where the traditional method gives discharge values consistently lower than OK. Anyway, 

in both sub–basins estimated water budgets have the same trend, with a maximum during the wet 

season and zero value during the dry one. This last consideration derives from the fact that 

Thornthwaite's method, applied to groundwater–dependent areas, such as the one under study, does 

not consider the modulating effect of the soil and aquifers, which often affects the presence of outflow 

even during the dry season (a local occurrence of this phenomenon is reported in [26,27] In any case, 

the fact that OK also allowed estimating 95% confidence interval limits makes the results obtained 

with the geostatistical analysis more similar to the ones obtained through the traditional approach: 

at Ponte di Vacri, values from the traditional approach are almost always within the 95% confidence 

interval, whereas at Molino Galasso, they are close to the Lower Limit. 

The comparison between calculated and measured discharge shows some differences, a shifting 

probably caused by natural system delay (i.e., infiltration and groundwater flow) can be observed. 

During the dry season, a basal flux is evident in river discharge data, but this is not present in 

estimated values. This evidence may be connected to the presence of arenaceous and alluvial 

deposits, which usually host local–to–regional aquifers and provide constant water supply to the 

river even during the dry season [28]. Furthermore, because of calculation assumptions, only direct 

contribution (i.e. precipitation and temperatures) were considered in the estimation of the monthly 

river discharge, through both the geostatistical and traditional methods. 

Moreover, in Molino Galasso sub–basin hydrometer data are influenced by measure availability, 

because only four years were recorded. Despite this short monitoring period, measured discharge 

from January to April shows a good correspondence with discharge calculated with the geostatistical 

estimation data, and the shifting observed in Ponte di Vacri is less pronounced. This difference is 

probably because Ponte di Vacri sub–basin (Figure 2) is closer to the calcareous complex in the South–
West part of the basin, while the Molino Galasso one is located close to the Adriatic see, where the 

infiltration delay is less evident. 

(a) (b) 

Figure 7. Comparison between discharge values calculated with traditional and geostatistical 

methods and measured by hydrometers. a) Ponte di Vacri sub–basin; b) Molino Galasso sub–basin. 

The yearly runoff estimation for the two sub–basin and for the whole Foro river basin are shown 

in Table 3. For each method, the yearly water budget was calculated using Turc, and Turc modified 

and Thornthwaite and Mather approaches. 

The results obtained from both the traditional and geostatistical methods were compared to each 

other and with annual measured discharge, such as for monthly data. In this case, hydrometer 

measures were risen by 0.5 m3/s corresponding to the amount of water drawn annually for drinking 

purpose [29].  
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Table 3. Yearly runoff values for the two sub basins and for the whole basin calculated with 

traditional and geostatistical methods. Turc, Turc modified and Thornthwaite and Mather methods 

have been applied for evapotranspiration. 

Annual run off (m3/s) 

Ponte di Vacri sub–basin 

Traditional method Geostatistical method Hydrometer 

Turc Turc mod Thorn Turc Turc mod 

1.16 
0.36 0.39 0.49 

LL Estim UL LL Estim UL 

0.15 0.27 0.28 0.15 0.24 0.27 

Molino Galasso sub–basin 

Traditional method Geostatistical method Hydrometer 

Turc Turc mod Thorn Turc Turc mod 

2.81 
1.15 1.27 1.71 

LL Estim UL LL Estim UL 

1.24 2.06 2.44 1.39 2.24 2.27 

Foro basin 

Traditional method Geostatistical method 

  
Turc Turc mod Thorn Turc Turc mod 

1.16 1.28 1.91 
LL Estim UL LL Estim UL 

1.27 2.11 2.49 1.42 2.29 2.32 

In the Ponte di Vacri sub–basin, both methods underestimate the measured discharge. this 

evidence can be explained considering that subtracting discharge estimated with geostatistical 

method (about 0.3 m3/s) to measured one (1.1 m3/s), a 0.8 m3/s of surplus is obtained. Comparing this 

result with Molino Galasso one, the difference between measured and estimated is still 0.8 m3/s.  

This comparison thereby supports the hypothesis that 0.8 m3/s is an external contribution to 

estimated discharge; considering that literature data suggest, exactly for the carbonate aquifer in the 

southwestern side of the study area, an infiltration rate of 0.029 m3/s/km2 [27], a 27 km2 of external 

area adjacent to the considered catchment area of contribution needs to be added to the estimation. 

The situation described is very common in the carbonate aquifers of the Apennines [30]. 

Also in this case, the values estimated through a traditional approach either fall within the 95% 

confidence interval or are very close to one of the two interval limits. This evidence suggests that the 

geostatistical approach provides reliable estimates of the water budget, as it quantifies the 

uncertainty related to the fact that the measurement of both rainfall and temperature is discrete and 

that the monitoring network too sparse to be able to effectively describe the spatial variability 

meteorologic phenomena at a basin scale. Nevertheless, the data availability is one of the most critical 

factors for the application of geostatistical techniques, as these methods need an appropriate number 

of measures. Also, the traditional approach could benefit from a higher number of point data. The 

recent developments obtained with the use of weather RaDAR data are encouraging [4,31,32] and 

may represent a valuable additional source of information to be integrated into water budget 

estimation, especially through an advanced geostatistical approach (e.g, Multi–Collocated Co–
kriging, or Kriging with External Drift). The use of weather RaDAR data would allow estimating in 

a more reliable way the spatial distribution of rainfall, on a finer grid mesh and with a lower 

associated uncertainty. 

4. Conclusions 

At first sight, the traditional and geostatistical analysis of input data for water budget could not 

be more different. The traditional method is based only on point observations of rainfall and 

temperature values using a geometrical criterion to assign an areal value to each Thiessen polygon. 

On the other hand, the geostatistical method is built on spatial variability models (i.e., variograms) 
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and allows taking advantage of the spatial correlation among observations to provide reliable 

estimates and uncertainty quantification. 

The results compared in the graphs in Figure 7 show a similar trend: a most intense discharge 

during the wet season, with a maximum in December, and a slow decrease from January to May until 

reaching zero value during the dry season. The best correspondence between the two methods can 

be observed in Ponte di Vacri sub–basin. In Molino Galasso one, the discharge calculated with the 

traditional method is lower than geostatistical ones, during the wet season. However, the possibility 

to calculate also the 95% confidence interval limits with the Ordinary Kriging makes the results 

obtained with the two considered approaches more similar to each other. In fact, the values estimated 

through a traditional approach either fall within the 95% confidence interval or are very close to one 

of the two interval limits, suggesting that this geostatistical technique provides reliable estimates of 

the water budget. 

The comparison between the discharge values calculated with the two methods and the 

measured one appears more pronounced in the dry season. This is mainly due to the presence of 

local–to–regional arenaceous and/or alluvial aquifers, which provide a constant water supply to the 

whole hydro(geo)logical system. These discrepancies between monthly measured discharge and 

estimated values can be also explained by the water budget calculation method, this does not take 

into account additional inflows, such as the water from subtracted or added by the human activities, 

or the contribution from other aquifers. Moreover, the geomorphologic features are not considered 

in this work, but they can indeed influence infiltration and runoff. Infiltration was assumed as a net 

loss for river basin system, but it is a dynamic resource along a 30–years statistical period, especially 

in groundwater–dependent systems and in presence of river–aquifer hydraulic connection. 

The comparison between annual runoff obtained through estimation and measurement pointed 

out the presence of an external contribution of 0.8 m3/s, which may be related to the local carbonate 

aquifer in the southwestern side of the study area. In the calculated water budget, this additional 

inflow is likely related to a volume of water previously lost as infiltration and then returned with 

delay. In addition, even though the obtained results are encouraging, it is important to point out that 

the two methods had to overcome some issue such as inhomogeneous databases through time, the 

impact of human activities along the Foro river in terms of water utilization and partial return, as 

well as the non-overlapping between the hydrographic and hydrogeological catchments. 

In conclusion, the application of the Ordinary Kriging technique to rainfall and temperature 

measurements proved to provide reliable estimates of the water budget at a basin scale, very similar 

to the ones that can be obtained by the traditional approach. However, the geostatistical method is 

additionally able to quantify the uncertainty related to discreate measurements of both rainfall and 

temperature and to a sparse monitoring network. For both approaches, the data availability is one of 

the key factors, and the integration of other and more continuous source of data, such as the weather 

data, would be beneficial to estimate the water budget in a reliable way.  
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