
Article Not peer-reviewed version

Physics-Informed Risk Analysis Of

Anthropogenic Seismicity

Reza Rahemi *

Posted Date: 20 May 2025

doi: 10.20944/preprints202504.2596.v5

Keywords: Bayesian; Geophysical Data Analysis; Seismicity; Data Assimilation; Anthropogenic Seismicity;

Complex Systems; Carbon Capture & Storage

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4422064


Article

Physics-Informed Risk Analysis Of Anthropogenic
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Scripps Institution Of Oceanography, La Jolla, CA 92037, USA; rrahemi@ucsd.edu

Abstract: Since 2001, after decades of a steady rate of magnitude ≥ 3 earthquakes in the United States,
the annual number of earthquakes has increased exponentially from approximately 20 events per year
in 2001 to up to 188 events per year in 2011. This increase is suspected to be human-induced. Modern
physics tools, such as Bayesian Data Analysis, can elucidate processes that trigger seismicity, both
anthropogenic and otherwise. This study introduces analytical methods and examines anthropogenic
processes, such as wastewater and CO2 injections, which can trigger seismicity. Statistical modeling of
fluid injection and extraction has been enabled using Bayesian inference. The San Andreas Fault (SAF)
and nearby lake fillings (e.g., Salton Sea) are analyzed as a complex system of interest. Results confirm
that Bayesian inference improves fault parameter estimation, aiding short-term seismic forecasting.
Implementing physics-informed data assimilation technologies discussed herein is recommended as a
policy strategy.

Keywords: Bayesian; geophysical data analysis; seismicity; data assimilation; anthropogenic seismicity;
complex systems, carbon capture & storage

1. Introduction
Anthropogenic activities induce seismicity, adding to the complexities geophysicists face in

understanding the physical processes causing earthquakes.In the case of seismicity caused by carbon
capture and storage (CCS), such quakes can threaten the integrity of seals, undermining costly CCS
operations. Deformation of Earth’s crust, which translates into earthquakes, involves many-body
problems, leading to the emergence of a complex system. As an alternative approach to earthquake
mechanics, Turcotte and Malamud have proposed that the tools of complexity rooted in statistical
physics are capable of describing faults as a self-organizing complex system [1]. The San Andreas
Fault (SAF) is an example of such a complex system in seismology, extending approximately 750 miles
across central California (Figure 1). Radiocarbon dating methods performed on this fault reveal the
history of at least 10 episodes of large earthquakes on average every 132 years, ranging from the year
671 to January 9 1857 (with an estimated magnitude of 8.25) [2]. The PDF, the empirical fit, and the
CDF for these events are plotted and shown in Figure 2.
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Figure 1. Creep rate data heatmap across the SAF, extending roughly 750 miles between (33◦N, 115.5◦W) and
(39◦N, 124.5◦W). InSAR and GPS dataset from Ref. [3]. The creep rate peaks between 35◦N and 37◦N, with a
maximum of 31 ± 3.5 mm/year at (36.01◦N, 120.57◦W).

The absence of large earthquake episodes since 1857 is explained by the theory that fault-zone
materials do not heal after deformation and lack the strength needed for more destructive movements
[4]. Analyzing tectonic fault behavior is a central problem in geophysics and seismology [5–7].
Probabilistic hazard assessments require data assimilation and careful geophysical data analysis,
extending beyond complexity tools alone. Modern computational approaches, such as Markov Chain
Monte Carlo (MCMC) and Bayesian inference, rooted in statistical physics, are used in this study to
analyze fault behaviors under external factors like hydrologic loads and anthropogenic activities (e.g.,
wastewater disposal and CO2-induced seismicity), which are known to trigger earthquakes [8], to
guide better policy recommendations.
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Figure 2. PDF (Probability Density Function) and CDF (Cumulative Density Function) for large earthquake events
associated with the SAF, using the datasets from Ref. [2]. The reduction in probability is explained using the
theory that the fault-zone material do not heal after each de-formation and they lack strength needed to cause
more destructive movements [4].

1.1. The Carbonate-Silicate Cycle
1.1.1. Earth

Walker et al. (1981) argued that atmospheric CO2 levels on Earth are controlled by the carbon-
ate–silicate geochemical cycle over geological timescales (Gyr) [9]. Silicate weathering also impacts the
Earth’s climate and carbon cycle [10], which is a key process for removing anthropogenic fossil fuel
emissions over the next 10–100 kyr without human intervention [11–14]. The Earth has been through
numerous extreme events. From Geomagnetic reversals to super-volcanic eruptions. These events are
rare, but have shaped Earth’s history profoundly. As an example, a geomagnetic reversal timeline is
plotted in figure 3.
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Figure 3. Geomagnetic reversal timeline. The last reversal happened around 0.78 MYrs ago, with the probability
of reversals decreasing with time.

1.1.2. Mars

On Mars, the carbonate-silicate cycle is less understood due to limited experimental verification,
which requires space missions for exploration (e.g., NASA’s Mariner 9 and Viking Missions). Never-
theless, the carbonate-silicate cycle, driven by an (H2, CO2) greenhouse gas, is proposed as the primary
mechanism for Mars’ warming, with cycles lasting up to 10 Myr, followed by extended glaciation
periods [15].

2. Bayesian Fault Analysis: SAF
Markov chain Monte Carlo (MCMC) has been widely used in Earth and Environmental sciences

[16–19] and even in Cosmology and Materials Science [20–22]. Liu et al. [23] demonstrated that
Bayesian inference can be applied to inverse modeling of contaminants, air quality, and source retrieval.
For example, after the Soviet Union’s Cosmos-954 satellite crashed in Canada on January 24, 1978,
enriched uranium levels in rain samples from Fayetteville, Arkansas, rose significantly [24].

This author will use Bayesian Inference and MCMC to determine fault parameters from geophysi-
cal data, given a geophysical model, improving our understanding of fault mechanisms which lead to
seismicity (for instance to study the relative motion of the American and Pacific plates across the SAF
system, as shown in figure 1). The model is validated against collected data, and the corresponding
root mean square errors (RMSEs) are calculated.

2.1. The Inverse Problem: Why MCMC?

An inverse problem in science is the process (or processes) of calculating from a set of observations
the causal factor(s) that produce(s) those observations [25].

d = [d1, d2, d3, ..., dN ]
T (1)

M = [M1, M2, M3, ..., MN ]
T (2)

That is to arrive at model parameters (The M Matrix), given data (The d Matrix). The complexity
of this task increases with the model complexity and uncertainty. Meaning regular fitting methods
would fail to produce satisfactory model parameters. Also, simple fittings do not use prior knowledge

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2025 doi:10.20944/preprints202504.2596.v5

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.2596.v5
http://creativecommons.org/licenses/by/4.0/


5 of 23

1 whereas MCMC as a tool in Bayesian Inference updates beliefs about model parameters based on
data [25,26].

Unlike frequentist approaches, which treat errors as measurement flaws, the Bayesian approach
views errors as a feature, aligning with the philosophy behind data assimilation applications.

2.2. Single Fault Model

The velocity function describing fault slip is given by [27]:

v(x) =
v0

π
tan−1

(
x − x0

D

)
, (3)

Where v0 is the fault slip rate, D is the locking depth,x0 is the fault location, and x is the spatial
coordinate.

The validity of this model when applied to the SAF, will be examined using Bayesian Inference
and will be compared to the values reported in the literature. Smaller earthquakes are explained
by the theory that fault-zone materials do not heal after deformation, lacking the strength for more
destructive movements [4].

2.3. Data

The creep rate GPS and InSAR data [3] is plotted and shown in figures 4 and 1. The creep rate
data, shown in Figures 4 and 1, are analyzed further in Figure 5.

Figure 4. Creep rate versus location visualized in a Cartopy projection. Raw datasets from Ref. [3]. The creep rate
peaks between 35◦N and 37◦N, with a maximum of 31 ± 3.5 mm/year at (36.01◦N, 120.57◦W).

1 Prior Knowledge, or simply the prior: Initial probability distribution assigned to a parameter or hypothesis before observing
new data
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Figure 5. Creep rate vs Latitude and the corresponding uncertainties. Distributions of the uncertainties are plotted
and shown in figure 7. Higher latitudes show a greater rate of uncertainty in creep rate.

2.4. Gaussian Processes: GPs

A Gaussian Processes-based model was fitted to the creep rate data (Figure 6).

Figure 6. Creep rate model with Gaussian process regression targeting creep rate and its uncertainties. Higher
creep rate uncertainties result in greater model uncertainty. Experimental improvements could enhance the
predictive model.

2.5. Line Of Sight Velocities (LOS)

The Line Of Sight (LOS) velocity data [28] is assumed to have a variance of 1.
Creep rate uncertainty as suggested in [3] is 1.2 ± 1 (mm/year). The distribution of this uncertainty

in measurement of the creep rate is shown in figure 7. The data is loaded from a file (available in the
GitHub repository for this project), assuming a two column structure separated by commas. First
column is assumed to be the x(positions) and the second is the velocities v(x). We also assume that
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the observational errors follow a Normal distribution, yj = v(xj) + ϵj, where ϵj ∼ N(0, σ2) and σ = 1,
with respect to the model equation in Equation 3.

Figure 7. Creep rate uncertainty distribution for the SAF based on high-resolution GPS and InSAR data from Ref.
[3]. A Gaussian fit yields a mean of 1.27 mm/year, but heavy tails suggest a Gamma fit may be more appropriate,
with a representative value of 0.9 ± 0.4 mm/year.

2.6. Two-Fault

The volocities are additive (superposition of two single-faults).

2.7. Defining Log-Likelihood and Log-Prior

We want to know how well the model fits the data.
For Gaussian errors, the likelihood, as described in [26,29], is:

p(yj|θ) =
Nj

∏
j=1

1√
2πσ2

exp

(
−
(yj − v(xj, θ))2

2σ2

)
. (4)

When taking the Log-Likelihhood, the product becomes a sum. Given σ = 1, it simplifies to

log p(yj|θ) = A(−1
2 ∑(yj − v(xj))

2) (5)

Where A is a constant throughout the MCMC process.

2.8. Bayesian Context

In Bayesian Context, the Posterior distribution of the parameters given the data p(θ|y) , which is
our goal, is given as:

p(θ|y) = p(y|θ)p(θ)
p(y)

(6)

p(y|θ) is the likelihood (How probable the observed data is under specific parameter values).
p(θ) is our initial beliefs about the parameters. p(y) is the Evidence, which is a normalizing constant,
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which can be ignored in MCMC since we are sampling ratios. So in order to find the posterior, we need
to compute the likelihood, which determines how well a given set of parameters θ explains the data y.

2.9. Log-Prior, Single Fault

We have a uniform prior, where p(θ) is a constant if within bounds, and if not, zero. So log prior
would be 0 if valid and −∞ if not. The purpose of this is to constrain parameter ranges. For instance,
v0 and D both range between 0 and 80 while x0 ranges from -50 to 50.

2.10. Random Walk Metropolis Sampler : Markov Chain Monte Carlo (MCMC)

p(θ|y) ∝ p(y|θ)p(θ) (7)

This algorithm implements the Metropolis-Hastings MCMC algorithm. Starting at an initial
guess, we propose a new point θ′ = θ + S · N(0, 1) with S being the step scale. We then compute the
log-posterior by taking the log of eq. 7, we arrive at:

log p(θ|y) ∝ log p(y|θ) + log p(θ) (8)

The outputs are chain of samples, log-posterior values and acceptance rate.

2.11. Applying MCMC: Single Fault Model Analysis

The mean and STD of v0, D, x0 are our posterior stats. The posterior distribution and correlations
are plotted in figure 8.

The MCMC model run over 30,000 samples burn-in of 5,000, step size 1.0:
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Figure 8. Posterior distribution and correlations for the single-fault model. The plot includes data and 100
random posterior model curves. Single-fault acceptance rate: 11%. Posterior means: [45.53, 36.05, 18.34]; standard
deviations: [0.61, 1.13, 0.35]. Velocities are in mm/year; depth and x are in km.

2.12. Posterior Samples VS Data

Plot of the posterior samples vs Data is shown in figure 11.

2.13. RMSE and the Two-Fault Model

The RMSE is defined as

RMSEi =

 1
Ns

Ny

∑
j=1

(
yj − v̂(xj, θi)

σj

)2
1/2

(9)

where yi are the Ny observations of the velocity, σj are the standard deviations of the model errors
and v̂(xj, θi) is the velocity at location xj, using parameters θi. The RMSE for single-fault model is
approximately 1.4. This is not disastrous, but not ideal either. To improve this, we consider a modified
version of this model, namely "Two-Fault" model and see if we can arrive at a better RMSE.

Single Fault Model Parameters are displayed in Table 1.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2025 doi:10.20944/preprints202504.2596.v5

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.2596.v5
http://creativecommons.org/licenses/by/4.0/


10 of 23

v0 45.5 ± 0.6
x0 18.3 ± 0.4
D 36 ± 1.1

Table 1. Single-fault model parameters with uncertainties. Velocities are in mm/year; depth and x are in km.

2.14. The Two-Fault Model

In this model, instead of one fault, we consider two faults. We start by two-fault velocity,
generalizing equation 3. , arriving at

v =
v10

π
arctan(

x − x01

D1
) +

v02

π
arctan(

x − x02

D2
) (10)

The MCMC analysis is similar to that of single-fault model. The Two Fault Model Parameters are
calculated and shown in table 2.

Figure 9. Triangle corner plot of two-fault model Parameters, obtained using the two-fault velocity model. The
velocities are in (mm/year), Depth and x are in (km).

It is noteworthy that there is a negative correlation between the two velocities v1
0 and v2

0 and these
are exclusively shown in figure 10.
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v01 23 ± 1
v02 14 ± 1
-x01 0.4 ± 0.8
x02 49 ± 1
D1 14 ± 1
D2 12 ± 1

Table 2. Two-fault model parameters with uncertainties. Velocities are in mm/year; depth and x are in km.

Figure 10. The negative correlation between the two velocities v1
0 and v2

0 are shown here. This suggests that the
velocity directions are opposite.

For model validation, posterior samples are directly compared to experimental data. The error
bars are not graphically displayed since they are relatively small and the points in figure 11 overlap in
representing the data and the corresponding uncertainty.
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Figure 11. Posterior Samples VS Experimental Data for the geophysical single-fault model. The model fits well,
but it is not ideal, given a relatively large RMSE of 1.4.

Although not very far from 1, the value of 1.4 for the RMSE is not ideal. Particularly around the
origin (see fig. 11), the deviation of data from model become more obvious.
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Figure 12. Two Fault Model Posterior VS Experimental Data. The RMSE is ≈ 1. The model fits data within
expected uncertainty.

Figure 13. Two-Fault Model RMSE distribution, which is centered around value of 1. This is expected, given the
background noise of around 1 mm/year.

Heavy tails in the RMSE usually hint at unexpected noise, systemic error or even model inade-
quacy.
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Figure 14. Two Fault Model RMSE distribution ≈ 1 (Left) VS Single Fault RMSE ≈ 1.4 (Right). This RMSE
compares closely to the background noise level, further strengthening the two-fault hypothesis.

2.15. Fault Analysis: Discussion

Markov Chain Monte Carlo is a powerful method for Data Analysis. In this study, it was used as
a tool in Inverse Problem, fitting model parameters to data. This geophysical model elegantly fit to
data of 200 points. Using a single-fault model, the parameters were obtained, however with a RMSE of
1.4, which was not ideal. Therefore a Two-fault model was examined, arriving at a RMSE of 1. Given
the expected variance as seen in figure (7), this RMSE is in a good agreement with the data. The ration
of this RMSE to the STD is given in eq. 11.

RMSE
σ

≈ 1.1 ± 0.5 (11)

These parameters and their error bars are plotted and presented in figure 15.
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Figure 15. Model Parameter Values and their corresponding uncertainties, within 95 % Confidence Interval. The
two-fault model is more appropriate, given the likelihood of San Jacinto Fault as a candidate for the influencing
system.

The RMSE is already improved to the level of background noise and this can be easily seen
comparing figures 7 and 14.

Having achieved a reasonable RMSE, one can further explore ways to reduce RMSE, given a
predictive model. One can use Kalman Gain to smooth such data:

K = Pn,n−1HT(HPn,n−1HT + Rn)
−1 (12)

Here, Kn is the Kalman Gain itself, Pn,n−1 is the prior estimate cov. matrix of the current state, H
is the observation matrix and Rn is the measurement noise cov. matrix. The non-linear Kalman Filter
(Unscented Kalman Filter)is used for systems with non-linearity.

This method, applied to the two-fault model, reduces the RMSE even further (RMSE ≈ 0.9). A
comparison is shown in figure 16.
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Figure 16. Noise reduction using Unscented Kalman Filter assuming a non-linear mechanism. The RMSE was
further reduced.

and all RMSE distributions have been plotted in 17.

Figure 17. The RMSE ≈ 1.4 for a single fault model was reduced to RMSE ≈ 1 using a two-fault model and was
further reduced using an unscented Kalman filter to RMSE ≈ 0.9. Reducing the RMSE further might result in
over-fitting.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2025 doi:10.20944/preprints202504.2596.v5

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.2596.v5
http://creativecommons.org/licenses/by/4.0/


17 of 23

This suggests that the SAF does not act in isolation and is influenced by other fault systems such
as San Jacinto fault (SJF) in southern California, which can contribute to the velocity field. The v(2)0 =

(14 ± 1) is consistent with the the SJF velocity rate of (11 ± 4) mm/yr reported by Rockwell et al. [30].

3. Anthropogenic Seismicity
Under load, soil deforms gradually at a variable rate, a phenomenon known as consolidation,

mathematically formulated by Biot in 1940 [31]. Hill et. al.[32] argue that stress perturbations in
the order of 0.5 MPa are sufficient to trigger seismicity. These perturbations are dominated by pore
pressure changes. They furthermore correlated the past 6 major earthquake events on the SAF with
high-stands of the ancient Lake Cahuilla, which its remnant is known today as the Salton Sea (shown
in figure 18). Using Finite Element Methods (FEM) to arrive at such correlations, their model seems to
be applicable to other regions where hydrologic loading is associated with seismicity, anthropogenic
or not.

Figure 18. Location of the Salton Sea relative to the southern end of the SAF (see Figure 1). The shadowed area
north of the lake represents the SAF. The Salton Sea formed in 1905 due to flooding from a failed irrigation project.

3.1. Seismic Risk Threshold

Higher pressures of fluid introductions are usually carried out over shorter periods of time and
lower pressures are carried out over a larger period of time. In other words, there is a tradeoff. When
examined as a complex system, this resembles a path which constraints the system’s evolution in
which soil consolidation undergoes dissipation.

A breakdown of these operations and their corresponding share of caused anthropogenic seismic-
ity can be found in figure 19.
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Figure 19. The share and recorded causes of anthropogenic earthquakes.Raw data can be found in Human
Induced Earthquake Database (Hiquake) [33]. Oil and Gas operations amount to ∼ 43% of seismic events induced
by humans.

3.2. Oil and Gas Operations

The probability of reservoir-seismicity to be widespread and deeper for a large reservoir is higher
than that of a small one [34]. Oil and gas extraction and fluid injections have caused elevated seismicity
in Texas, likely due to pore pressure changes [35].

It is noteworthy that the Los Angeles Oil Field produces about 3.5 barrels of oil per day and also
faster than 1 mm/year LOS movement on the fault [36]. The state of California is phasing out Oil
Drilling operations by 2045 citing climate change as the reason for this decision [37].

3.3. CCS & Wastewater

CO2 injection stimulates plate tectonics due to mechanical pressure exerted by the injected fluids.
In the past few years, as part of broader mitigation efforts, CO2 has been injected into the earth. It
is postulated that the injected CO2 stays underground for decades. The pressure excreted by this
gas can however threaten the integrity of the seals at injection sites. This requires further analysis
on the operations as well as more simulations which could shed light on anthropogenic seismicity
caused by geological injections. Zoback et. al. argue that in order to reduce the risk of seismicity from
such operations, the ∆p (pressure), as shown in my uncertainty relationship (??), should be limited.
Increasing pressure can also trigger an earthquake and as a result, threaten the integrity of the CCS
seals. A map of areas in the United States with active or potential CCS operations is shown in figure 20.
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Figure 20. Map of active or potential CCS operations in the United States, with Oklahoma particularly vulnerable.
CO2 pipelines and induced seismicity pose risks to communities and seal integrity. Adapted from [38].

3.4. Geothermal: The Brawley seismic zone (BSZ)

The Brawley seismic zone encompasses Salton Sea and the surronding area and is home to
Geothermal operations, most notably the Imperial Valley Geothermal Project. It has a ∼ 3000 MW
of geothermal capacity. It also provides a high level of battery-grade lithium for electric vehicles
(currently at ∼ 75,000 tons) [39]. Despite the strategic advantages, it has also introduced background
level seismicity to the region, particularly at the North Brawley Geothermal Field (NBGF) and at the
Salton Sea Geothermal Field (SSGF) [40]. .

3.5. Policy Error: The 1906 San Francisco Earthquake

In 1905, the Colorado River flooded the Salton Sink due to a failed irrigation project, forming
the Salton Sea. In 1906, San Francisco experienced a magnitude 7.9 earthquake, leaving over 3,000
casualties. Supported by paleo-seismic data, major SAF earthquakes are shown to be modulated by
ancient lake-fillings [32].

4. Sea Level Rise
Sea level rise (SLR), estimated at 1.75 ± 0.55 mm/year globally [41], increases water loads,

inducing pressure changes that can trigger seismicity. Figure 21 illustrates the correlation between
rising CO2 levels, sea level, and temperature anomalies from 1959 to 2020, highlighting the SLR [42–44].

The mechanism can be explained by the pore pressure p(x, t) in a poroelastic medium, induced
by hydrologic loads from sea level rise, satisfies the following diffusion equation derived from Biot’s
theory of poroelasticity, which is a diffusion PDE:

∂p
∂t

= Mκ∇2 p − αM
∂εv

∂t
(13)

This equation basically shows the relationship between pressure change as well as temporal and
spatial diffusion. p is the fluid pressure, M is the Biot modulus, κ = k

η is the Hydraulic conductivity,
with k being permeability and η the fluid viscosity. α is the Biot-Willis coefficient, ϵv = ∇.u is the
Volumetric strain where u is the solid displacement vector. ∇2 is the Laplacian operator.
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4.1. Relation to Seismicity

The pore pressure p alters the effective stress on faults, following Terzaghi’s principle:

σeff = σ − p, (14)

where σeff is the effective normal stress. An increase in p reduces σeff, which may trigger fault
failure under the Coulomb failure criterion:

τc ∝ µσeff, (15)

where τc is Critical shear stress, µ is Friction coefficient.

Figure 21. The correlation between variables of concern on Earth, over a few decades (1959-2020) with each data
point corresponding to one year, with CO2 as a hue, increasing every year. Higher CO2 concentrations (Filtered
annual data from Keeling et. al. [42]) are correlated with higher Sea Levels (As reported by Church 2011 and
University Of Hawaii Sea Level Center) [43,45] and higher temperature anomalies (Data from: Met Office H. C.
[44]).

For SLR, the slow loading rate (1.75 mm/year) induces small ∆p over large ∆t, resembling low-
pressure, long-timescale processes (e.g., CO2 injection in CCS). The product ∆p∆t ≥ R̄ indicates that
cumulative pore pressure changes can still meet or exceed R̄, potentially triggering seismicity in
critically stressed fault systems.

4.2. Seismicity Triggering

The pore pressure p from Equation (13) reduces the effective normal stress on faults, following
Terzaghi’s principle:

σeff = σ − p, (16)

where σeff is the effective stress. A decrease in σeff brings faults closer to failure under the Coulomb
criterion:

τc = µσeff + C, (17)

where τc is the critical shear stress, µ is the friction coefficient, and C is cohesion.
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5. Online Forecasting Models
Broccardo et al. [46] developed a Bayesian model based on a nonhomogeneous Poisson process

(NHPP) to forecast induced seismicity. A successful decision-making criterion emerging from such
model, would benefit the communities. Such forecasting models can also be used in other areas of
anthropogenic activities known to cause seismicity.

The probability of observing nh seismic events in the time window [t, t + h], given the observed
data D(t) up to time (t), P(Nh(t) = nh | D(t)), or simply Ξ, is:

Ξ =

∫
θ

[(∫ t+h
t λ(t′ | θ) dt′

)nh

nh!

exp
(
−
∫ t+h

t
λ(t′ | θ) dt′

)]
f ′′θ (θ | D(t)) dθ

(18)

Ξ represents the predictive probability of observing nh seismic events in a future time window
[t, t + h], given observed data D(t) . Here, Nh(t) is the number of events in the time window of
interest, λ(t′ | θ) is the time dependent seismicity rate which depends on model parameters θ and∫ t+h

t λ(t′ | θ) dt′ is the expectation value of the number of events in that interval. The first term is the
Poisson probability of observing nh events, given the rate.

The posterior distribution f ′′θ (θ | D(t)) updates the knowledge about θ, using D(t), and the
integral over θ takes into account the uncertainties by averaging.

6. Discussions & Policy Recommendations
Bayesian Inference certainly helps us better understand anthropogenic risks. Modern analysis

tools such as the MCMC are therefore certainly useful in shedding light on contemporary problems in
Earth Science and particularly inverse problems in geophysics.

Bayesian inference cannot compensate for missing data or poorly designed experiments. No data
analysis tool can generate information absent from the data. That said, Bayesian inference could be
used to better arrange for experimental setups to hunt for information that otherwise could not be
captured [47]. This approach can even further improve geophysics experiments which could contribute
to the understanding of Earth and planetary processes and anthropogenic risk factors in seismicity.
Given the complexity of the issue of induced seismicity, effective data assimilation and analysis as well
as up to date analysis tools and technologies are required to minimize the impact of activities which
would cause anthropogenic seismicity. Several guidelines, such as the ETH Zürich “Good-Practice
Guide for Managing Induced Seismicity in Deep Geothermal Energy Projects in Switzerland” [48],
exist. These should be updated to incorporate new physics-informed methods discussed herein.
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California, 2025.
27. Savage, J.C.; Burford, R.O. Geodetic determination of relative plate motion in central California. Journal of

Geophysical Research 1973, 78, 832–845.
28. IGPP. Instituge Of Geophysics and Planatary Physics; 2024.
29. MORZFELD, M. Geophysical Data Analysis SIOG223- Class Notes; 2024.
30. Rockwell, T.K.; Dawson, T.E.; Young Ben-Horin, J.; Seitz, G. A 21-event, 4,000-year history of surface ruptures

in the Anza seismic gap, San Jacinto Fault, and implications for long-term earthquake production on a major
plate boundary fault. Pure and Applied Geophysics 2015, 172, 1143–1165.

31. Biot, M.A. General theory of three-dimensional consolidation. Journal of applied physics 1941, 12, 155–164.
32. Hill, R.G.; Weingarten, M.; Rockwell, T.K.; Fialko, Y. Major southern San Andreas earthquakes modulated

by lake-filling events. Nature 2023, 618, 761–766.
33. Human-Induced Earthquake Database (HiQuake). Induced Earthquakes, 2025. Accessed: 2025-04-27.
34. Talwani, P. On the nature of reservoir-induced seismicity. Pure and applied Geophysics 1997, 150, 473–492.
35. Deng, F.; Dixon, T.H.; Xie, S. Surface deformation and induced seismicity due to fluid injection and oil and

gas extraction in western Texas. Journal of Geophysical Research: Solid Earth 2020, 125, e2019JB018962.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2025 doi:10.20944/preprints202504.2596.v5

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/https://doi.org/10.1016/j.earscirev.2020.103298
https://doi.org/https://doi.org/10.1016/j.earscirev.2020.103298
https://doi.org/10.1029/JC088iC06p03718
https://doi.org/10.20944/preprints202504.2596.v5
http://creativecommons.org/licenses/by/4.0/


23 of 23

36. Argus, D.F.; Heflin, M.B.; Peltzer, G.; Crampé, F.; Webb, F.H. Interseismic strain accumulation and anthro-
pogenic motion in metropolitan Los Angeles. Journal of Geophysical Research: Solid Earth 2005, 110.

37. Office of the Governor of California. California Moves to Prevent New Oil Drilling Near Communities,
Expand Health Protections, 2021. Accessed: 2025-05-12.

38. of the Interior, U.D. National Assessment of Geologic Carbon Dioxide Storage Resources-Data. Technical
report, 2013.

39. Los Angeles Times. Lithium will fuel the clean energy boom. This company may have a breakthrough. Los
Angeles Times.

40. Llenos, A.L.; Michael, A.J. Characterizing potentially induced earthquake rate changes in the Brawley
seismic zone, southern California. Bulletin of the Seismological Society of America 2016, 106, 2045–2062.

41. Melini, D.; Piersanti, A. Impact of global seismicity on sea level change assessment. Journal of Geophysical
Research: Solid Earth 2006, 111.

42. Keeling, C.D.; Piper, S.C.; Bacastow, R.B.; Wahlen, M.; Whorf, T.P.; Heimann, M.; Meijer, H.A. Exchanges of
atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects.
SIO Reference Series 01-06, Scripps Institution of Oceanography, San Diego, 2001.

43. Church, J.A.; White, N.J.; Konikow, L.F.; Domingues, C.M.; Cogley, J.G.; Rignot, E.; Gregory, J.M.; van den
Broeke, M.R.; Monaghan, A.J.; Velicogna, I. Revisiting the Earth’s sea-level and energy budgets from 1961 to
2008. Geophysical Research Letters 2011, 38.

44. Met Office Hadley Centre and Climatic Research Unit. HadCRUT5: Global historical surface temperature
anomalies dataset, 2025. Version HadCRUT.5.0.2.0, Accessed: 2025-04-27.

45. University of Hawaii Sea Level Center. UHSLC – University of Hawaii Sea Level Center, 2025. Accessed:
2025-04-27.

46. Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D. Hierarchical Bayesian modeling of
fluid-induced seismicity. Geophysical Research Letters 2017, 44, 11–357.

47. Von Toussaint, U. Bayesian inference in physics. Reviews of Modern Physics 2011, 83, 943–999.
48. Kraft, T.; Roth, P.; Ritz, V.; Antunes, V.; Toledo Zambrano, T.A.; Wiemer, S. Good-Practice Guide for Managing

Induced Seismicity in Deep Geothermal Energy Projects in Switzerland. Technical report, ETH Zurich, 2025.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2025 doi:10.20944/preprints202504.2596.v5

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.2596.v5
http://creativecommons.org/licenses/by/4.0/

