
Article Not peer-reviewed version

The Clique Width of Two Classes of

Series-Parallel Digraphs

Ruzayn Quaddoura *

Posted Date: 26 March 2024

doi: 10.20944/preprints202403.1498.v1

Keywords: Series parallel digraphs; Clique-width; Complexity

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Article

The Clique Width of Two Classes of Series-Parallel
Digraphs

Ruzayn Quaddoura

Department of Computer Science, Zarqa University, Jordan; ruzayn@zu.edu.jo

Abstract: The concept of graphs with clique-width at most 𝑘 was first introduced by Courcelle et al.to be the

graphs that can be characterized using k-expressions derived from graph operations that use k labels of

vertices. If the clique-width for some graph is bounded then a grand number of algorithmic problems, in

general NP-hard, can be solved in polynomial time when restricted to this graph. This important fact motivated

the researchers to prove that the clique-width of certain graphs is bounded. Following this research direction,

we prove in this paper that the clique-width of series-parallel digraphs is at most 6 and we present an 𝑂(𝑛)

time algorithm to construct a 6-expression for this class of digraphs. In another part, we present a linear time

recognition algorithm for a similar class of series-parallel digraphs and prove that the clique-width of this class

is at most 3.

Keywords: series parallel digraphs; clique width; complexity

1. Introduction

Courcelle et al. in [1] characterized graphs with clique-width at most k as those graphs that can

be generated through expressions involving graph operations utilizing 𝑘 vertex labels. Clique width

generalizes another significant graph parameter, tree-width, in the sense that any graph has a

bounded tree-width also has a bounded clique width [6]. The concept of clique width was established

in 1993 [1], and since then a large number of studies concerning this concept have been published.

The subjects in the literature that concern clique width have a theoretical or an algorithmic standpoint

and can be summarized by one of the following questions:

• What is the complexity of computing the clique width?

• When the clique width of a graph is unbounded?

• Is there a general algorithm to recognize a graph of bounded clique width?

• Are there general algorithms to solve some optimization problems in a graph of bounded

clique width?

• How to construct the clique width of a given graph?

The subject of complexity of computing the clique width has been resolved by Fellows et. al. in

[14]. They proved that the problem of determining the clique width of a graph is NP-complete in

general. The subject of determining the necessary and /or sufficient conditions to be the clique width

of a graph unbounded is till now an open question. This question is motivated from the fact that the

clique width for certain class of graphs can be unbounded, for example the class of (4𝑘1, 𝐶4, 𝐶5, 𝐶7)-

free graphs and not chordal [8]. The subject of recognizing a class of graphs of bounded clique width

is resolved partially; for example, it is proved in [5] that any graph of clique width at most 3 can be

recognized in 𝑂(𝑛2𝑚) time. The subject of solving some optimization problems in a graph of

bounded clique width is the significance of these graph invariants. It stems from the fact that many

problems that are NP-hard in general admit polynomial-time solutions when restricted to graphs

with bounded clique width (see for example [2,3,15]). Among these problems are Hamiltonian path

or Hamiltonian cycle problems, computing the minimum size of a maximal matching and several

partition problems (partition into cliques or triangles or complete bipartite sub-graphs or perfect

matching's or forests) [16], computing the chromatic number and computing the minimum size of a

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

 2

dominating set of vertices or edges [4], computing the maximum size of a cut [7], finding vertex-

disjoint Paths [13]. The construction of the clique width for a given graph has been studied

extensively. For example, in [9], it is proved that the clique width of Cactus graphs is at most 4 and

the construction of 4-expression of these graphs can be done in polynomial time. Also in [10] it is

proved that the clique width of polygonal tree graphs can be done by constructing a 5-expression in

a polynomial time. Recently, the clique width for series parallel undirected graphs is studied in [12],

where it is proved that the clique width of these graphs is at most 5 and an 𝑂(𝑛2) algorithm is

presented to construct a 5-expression. Following this last direction of research, we prove that the

clique width of the famous class of series parallel directed graphs (digraphs) is at most 6 and we

propose an 𝑂(𝑛) time algorithm to compute a 6-expression of this class. From other part, we

introduce a new definition of a similar class of series parallel digraphs and present for which a linear

time recognition algorithm. We prove that the clique width of this new class of digraphs is at most 3.

2. Preliminaries

A directed graph (or a digraph for short) 𝐺 = (𝑉, 𝐸) is defined by two sets, 𝑉(𝐺) or simply 𝑉 is

the vertices set and 𝐸(𝐺) or simply 𝐸 is the arcs set. Every arc of 𝐸 is an ordered pairs of vertices of

𝑉. The number 𝑛 indicates to the number of vertices of 𝐺 and the number 𝑚 indicates to the number

of edges of 𝐺.If (𝑥, 𝑦) ∈ 𝐸 then 𝑥 is called a predecessor of 𝑦 and 𝑦 is called a successor of 𝑥. The set

of all predecessors of a vertex 𝑥 is denoted by 𝑁+(𝑥), and the set of all successors of 𝑥 is denoted by

𝑁−(𝑥)). The set of neighbors of 𝑥 is the set 𝑁(𝑥) = 𝑁+(𝑥) ∪ 𝑁−(𝑥). The number |𝑁+(𝑥)| is called the

positive degree of 𝑥 and denoted by 𝑑+(𝑥), and the number |𝑁−(𝑥)| is called the negative degree of

𝑥 and denoted by 𝑑−(𝑥), the degree of a vertex x is the number 𝑑(𝑥) = |𝑁(𝑥)|. A vertex 𝑥 is called a

source if |𝑁+(𝑥)| = 0 and is called a sink if |𝑁−(𝑥)| = 0. Given a subset 𝑋 of the vertices set 𝑉, the

sub-graph induced by 𝑋 will be denoted by 𝐺[𝑋] . A path of length 𝑘 is a sequence of vertices

𝑥1, 𝑥2, . . . , 𝑥𝑘 such that any two consecutive vertices form an arc. A path 𝑥1, 𝑥2, . . . , 𝑥𝑘 is called a circuit

if 𝑥1, = 𝑥𝑘 and 𝑘 ≥ 2. A directed acyclic graph denoted by DAG is a digraph with no circuit. A chain

of length 𝑘 is a sequence of vertices 𝑥1, 𝑥2, . . . , 𝑥𝑘 such that (𝑥𝑖 , 𝑥𝑖+1) or (𝑥𝑖+1, 𝑥𝑖) is an arc. If 𝑥1 = 𝑥𝑘

and 𝑘 ≥ 2 the chain is called a cycle. An arc (𝑥, 𝑦) is called transitive arc if there is a path from 𝑥 to

𝑦 of length at least 2. A bipartite graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸) is given by a set of black vertices 𝐵 and a set

of white vertices 𝑊 and a set of edges 𝐸 ⊆ 𝐵 × 𝑊. A graph 𝐺 is called 𝐹-free where 𝐹 is a set of

graphs when 𝐺 does not contain an induced sub-graph isomorphic to a graph of 𝐹.

The clique width of a graph G is the smallest number of labels required to construct 𝐺 using the

four operations listed below:

• The operation 𝑖(𝑣)) to create a new vertex 𝑣 has the label 𝑖.

• The operation 𝐺 ⨁ 𝐻 to make a union of two disjoint labeled graphs 𝐺 and 𝐻.

• The operation 𝜂𝑖,𝑗(𝐺) to add in the labeled graph 𝐺 an edge (or an arc in case of digraphs)

from each vertex with label 𝑖 to each vertex with label 𝑗 (𝑖 ≠ 𝑗).

• The operation 𝜌𝑖→𝑗(𝐺) to change in the labeled graph 𝐺 every label 𝑖 to label𝑗.

Using these four operations, any graph may be defined by an algebraic expression. For

example, the graph 𝐺 = (𝑉, 𝐸) where 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝐸 = {𝑎𝑏, , 𝑏𝑐, 𝑐𝑑, 𝑑𝑎, 𝑑𝑏} can be defined by

the following expression:

𝜂3,1(𝑑(3)⨁(𝜌3→2(𝜌2→1(𝜂2,3(3(𝑐)(𝜂1,2(2(𝑏)⨁1(𝑎)))))))

If an expression uses at most k different labels, it is referred to as a k-expression.

3. Clique Width of Series Parallel Digraphs (SP DAGs)

Series-parallel digraphs, or SP DAGs for short, are a class of directed graphs that play a

significant role in graph theory and find extensive applications in various real-world scenarios. It has

been defined by Tarjan et al. in [11] to be the digraph that can be constructed starting of the vertices

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 3

set and recursively using two fundamental operations: series composition and parallel composition.

More precisely:

Definition 1: A SP DAG is defined recursively as follows:

A DAG containing only one vertex is a SP DAG.

If 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are two SP DAGs then the DAG constructed by each of the following

operations is also a SP DAG :

Parallel composition: 𝐺 = 𝐺1𝑃𝐺2 = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2).

Series composition: 𝐺 = 𝐺1𝑆𝐺2 = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2 ∪ 𝑇1 × 𝑆2) where 𝑇1 is the set of sink vertices of 𝐺1 and

𝑆2 is the set of source vertices of 𝐺2.

A SP DAG 𝐺 can be represented by a binary decomposition tree 𝑇(𝐺) that reflects the

construction of 𝐺 starting of its vertices using series and parallel operations as following:

• The leaves correspond to the vertices of 𝐺.

• Let 𝛼 be An internal node and 𝛼1, 𝛼1 are respectively the left and right child of 𝛼, then 𝛼 is

labeled by 𝑃 (resp. 𝑆) if 𝐺[𝛼] = 𝐺[𝛼1]𝑃𝐺[𝛼2] (resp. 𝐺[𝛼] = 𝐺[𝛼1]𝑆𝐺[𝛼2]) where 𝐺[𝛼𝑖], 𝑖 = 1,2

is the sub-graph of 𝐺 induced by the set of vertices having 𝛼𝑖 as their least common ancestor.

Figure 1 illustrates an example of a SP DAG and its binary decomposition tree. It is worthy

mentioned that the two children of a 𝑆-node are ordered according to the series operation of that

node. Tarjan et. al. in [11] proved that the construction of 𝑇(𝐺) when 𝐺 is a SP DAG can be done in

𝑂(𝑛 + 𝑚) time complexity. This binary decomposition tree of a SP DAG is the key of our computing

to its clique width.

Figure 1. A SP DAG and its decomposition binary tree.

Theorem 1: The clique width of a SP DAG 𝐆 is at most 6.

Proof: Let α be an internal node of T(G) and α1, α2 are respectively the left and right child of α.

We will construct a 6-expression of G[α] starting of a similar 6-expression of G[α1] and 6-expression

of G[α2] For i = 1,2 , we can partition the vertices set of G[αi] into at most four sets

S(αi), T(αi), X(αi) and Y(αi), where S(αi) is the set of non-isolated sources of G[αi], , T(αi) is the set

of non-isolated sinks of G[αi], X(αi) contains the set of isolated vertices of G[αi], and Y(αi) is the

set of vertices that are not sources, not sinks, and not isolated in G[αi]. We suppose that the label of

every vertex of S(α1) is 1, the label of every vertex of T(α1) is 2, the label of every vertex of X(α1)

is 1, and the label of every vertex of Y(α1) is 5.We express this in notation by

1(S(α1)), 2(T(α1)), 1(X(α1)) and 5(Y(α1)). Similarly, we suppose that the label of every vertex of

𝑑

𝑐

𝑒

𝑏 𝑎

𝑖

ℎ 𝑔 𝑓

𝑗

𝑃

𝛼7

𝑎

𝑒

𝑑

𝑐

𝑏

𝛼9

𝛼8

𝑗

𝛼5

𝛼6

𝑓 𝑔

ℎ

𝑖

𝑆

𝑆

𝑃

𝑆

𝛼1

𝛼2

𝛼3

𝑃

𝑆

𝑆

𝑃

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 4

S(α2) is 3, the label of every vertex of T(α2) is 4, the label of every vertex of X(α2) is also 4, and the

label of every vertex of Y(α2) is 6. We can express the sub-graph G[α1] by H1⨁H2 where:

H1 = G[1(S(α1))⨁5(Y(α1))⨁ 2(T(α1))]

H2 = G[1(X(α1))]

Similarly, we can express the sub-graph G[α2] by H3⨁H4 where:

H3 = G[3(S(α2))⨁6(Y(α2))⨁ 4(T(α2))]

H4 = G[4(X(α2))]

Figure 2.a illustrates this decomposition of 𝐺[𝛼𝑖] . Without loss of generality, and for

simplification of reading, we represented in this Figure each set of 𝑆(𝛼𝑖), 𝑇(𝛼𝑖), 𝑋(𝛼𝑖) and 𝑌(𝛼𝑖),𝑖 =

1,2, by a single vertex. To construct a 6-expression for 𝐺[𝛼] we distinguish two cases according to

the type of 𝛼:

Suppose that𝛼 is a 𝑃-node. In this case, the set 𝑆(𝛼1) ∪ 𝑆(𝛼2) is the set of non-isolated sources

of 𝐺[𝛼], the set 𝑇(𝛼1) ∪ 𝑇(𝛼2) is the set of non-isolated sinks of 𝐺[𝛼], the set 𝑋(𝛼1) ∪ 𝑋(𝛼2) is the

set of isolated vertices of 𝐺[𝛼], and the set 𝑌(𝛼1) ∪ 𝑌(𝛼2) is the set of vertices that are not sources,

not sinks, and not isolated in 𝐺[𝛼] . Hence, the expression 𝑡1⨁𝑡2 constructs 𝐺[𝛼] using 6 labels

where:

𝑡1 = 𝐻1⨁𝜌3→1(𝜌6→5(𝜌4→2(𝐻3)))

𝑡2 = 𝐻2⨁𝜌4→1(𝐻4)

Figure 2.b, illustrate the construction of 𝐺[𝛼] using the expressions 𝑡1and 𝑡2. Suppose that 𝛼

is a 𝑆 -node. Since 𝐺[𝛼] is connected, it does not contain isolated vertices. Since 𝛼1, 𝛼2 are

respectively the left child and right child of 𝛼 then, every vertex of 𝑋(𝛼1) must be a sink in 𝐺[𝛼1]

and every vertex of 𝑋(𝛼2) must be a source in 𝐺[𝛼2], thus every vertex of 𝑋(𝛼1) would be a source

in 𝐺[𝛼] and every vertex of 𝑋(𝛼2) would be a sink in 𝐺[𝛼]. Therefore, 𝑆(𝛼1) ∪ 𝑋(𝛼1) is the set of

sources of 𝐺[𝛼] , the set 𝑋(𝛼2) ∪ 𝑇(𝛼2) is the set of sinks of 𝐺[𝛼] , and the set 𝑌(𝛼1) ∪ 𝑇(𝛼1) ∪

𝑆(𝛼2) ∪ 𝑌(𝛼2) is the set of vertices that are not sources, not sinks, and not isolated in 𝐺[𝛼]. Hence,

the following ordered series of expressions constructs 𝐺[𝛼] using 6 labels:

𝑡1 = 𝜂3,4(𝜌1→3(𝐻2)⨁𝐻4), 𝑡2 = 𝜂2,4(𝑡1 + 𝐻1), 𝑡3 = 𝜌3→6(𝜌6→5(𝐻3)),

𝑡4 = 𝜂2,6 (𝜂3,6(𝑡3⨁𝑡2)) , 𝑡5 = 𝜌3→1(𝜌6→5(𝜌2→5(𝜌4→2(𝑡4))))

Figure 2.c illustrate the construction of 𝐺[𝛼] using the expressions 𝑡1, 𝑡2, 𝑡3, 𝑡4 and 𝑡5. Now, by

traversing 𝑇(𝐺) in post order and calculating a 6-expression for every internal node of 𝑇(𝐺), we

conclude that the whole digraph 𝐺 represented by the root of 𝑇(𝐺) can be constructed by a 6-

expression.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 5

Figure 2. a) The sub-graphs 𝐺[𝛼1] and 𝐺[𝛼2], b) the construction of 𝐺[𝛼] = 𝐺[𝛼1]𝑃𝐺[𝛼2] , c) the

construction of 𝐺[𝛼] = 𝐺[𝛼1]𝑆𝐺[𝛼2]

The construction a SP DAG by a 6-expression using the method described in the proof of

Theorem 1 can be translated into the Algorithm Construction a 6-expression of a SP DAG. In this

Algorithm, we define an empty expression, denoted by ∅, to be an expression of an empty set of

vertices. For any expression 𝑡, we consider that 𝑡⨁∅ = 𝑡, so 𝜂𝑖,𝑗(𝑡⨁∅) = 𝜂𝑖,𝑗(𝑡) and 𝜌𝑖→𝑗(𝑡⨁∅) =

𝜌𝑖→𝑗(𝑡). Our Algorithm associates with every node 𝛼 of 𝑇(𝐺) two expressions 𝑡1(𝛼) and 𝑡2(𝛼),

where 𝑡1(𝛼) represents the construction of the sub-graph induced by the non-isolated vertices of

𝐺[𝛼] and 𝑡2(𝛼) represents the construction of isolated vertices of 𝐺[𝛼]. It may be at most one of

𝑡1(𝛼) and 𝑡2(𝛼) empty. The labels in the end of computing 𝑡1(𝛼) or 𝑡2(𝛼) represent implicitly

whether the corresponding vertices are non-isolated sources (labeled by 1), non-isolated sinks

(labeled by 2), isolated vertices (labeled by 1), or vertices that are not sources, not sinks and not

isolated in 𝐺[𝛼] (labeled by 5). Initially, in step 1, every vertex is labeled by 1 since the sub-graph

induced by a leaf consists only of one isolated vertex that consider as a source. Step 2 determines the

left child 𝛼1 and the right child 𝛼2 of an internal node 𝛼. Step 3 constructs the expression 𝑡1(𝛼)

and 𝑡2(𝛼) for a 𝑃-node 𝛼 to be respectively the disjoint union of 𝑡1(𝛼1), 𝑡1(𝛼2) and the disjoint

union of 𝑡2(𝛼1), 𝑡2(𝛼2). Steps 4 to 13 constructs the expressions 𝑡1(𝛼) and 𝑡2(𝛼) for a 𝑆-node 𝛼 as

following: Step 5 changes the label of non- isolated sources of 𝐺[𝛼2] from 1 to 3, the label of non-

isolated sinks from 2 to 4, and the other non-isolated vertices from 5 to 6; Step 6, changes the label of

isolated vertices of 𝐺[𝛼2] from 1 to 4 as these vertices are sinks in 𝐺[𝛼2]. Step 7 changes the label of

isolated vertices of 𝐺[𝛼1] from 1 to 3. The steps from 8 to13 construct the expression 𝑡1(𝛼) in the

b)

c)

2(𝑇(𝛼1))

𝐻2

1(𝑋(𝛼1))

𝐻1

1(𝑆(𝛼1))

5(𝑌(𝛼1))

4(𝑇(𝛼2))

𝐻4

4(𝑋(𝛼2))

𝐻3

3(𝑆(𝛼2))

6(𝑌(𝛼2))

𝐺[𝛼1] 𝐺[𝛼2] 𝑡1⨁𝑡2 = 𝐺[𝛼] = 𝐺[𝛼1]𝑃𝐺[𝛼2]

𝑡1

1(𝑋(𝛼))

𝑡2

2(𝑇((𝛼))

1(𝑆(𝛼))

5(𝑌(𝛼))

𝑡1

4(𝑋(𝛼2))

3(𝑋(𝛼1))

𝑡2

2(𝑇(𝛼1))

1(𝑆(𝛼1))

5(𝑌(𝛼1))

4(𝑋(𝛼2))

3(𝑋(𝛼1))

4(𝑇(𝛼2))

6(𝑆(𝛼2))

5(𝑌(𝛼2))

𝑡3

𝑡4

2(𝑇(𝛼1))

1(𝑆(𝛼1))

5(𝑌(𝛼1))

4(𝑋(𝛼2))

3(𝑋(𝛼1))

4(𝑇(𝛼2))

6(𝑆(𝛼2))

5(𝑌(𝛼2))

5(𝑇(𝛼))

1(𝑆(𝛼))

5(𝑌(𝛼))

2(𝑋(𝛼))

1(𝑋(𝛼))

2(𝑇(𝛼))

5(𝑆(𝛼))

5(𝑌(𝛼))

𝑡5 = 𝐺[𝛼] = 𝐺[𝛼1]𝑆𝐺[𝛼2]

a)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 6

same way as in Figure 2.c. The expression 𝑡2(𝛼) must be empty because of 𝐺[𝛼] is connected. Since

the number of nodes in 𝑇(𝐺) is 𝑂(𝑛) and every step can be done in 𝑂(1) time, the total time

complexity of this Algorithm is 𝑂(𝑛).

Algorithm Construction a 6-expression of a SP DAG

Input: A binary decomposition tree 𝑇(𝐺) of a SP DAG 𝐺

Output: A 6-expression of 𝐺.

Let 𝛼 be a node on a post order traversal of 𝑇(𝐺)

1. If 𝛼 is a leaf then 𝑡1(𝛼) = ∅, 𝑡2(𝛼) = 1(𝛼)

2. Else let 𝛼1 and 𝛼2 be respectively the left and right children of 𝛼

3. if 𝛼 is a 𝑃-node then 𝑡1(𝛼) = 𝑡1(𝛼1)⨁𝑡1(𝛼2), 𝑡2(𝛼) = 𝑡2(𝛼1)⨁𝑡2(𝛼2)

4. else\\𝛼 is a 𝑆-node

5. 𝑡1(𝛼2) = 𝜌1→3(𝜌5→6(𝜌2→4(𝑡1(𝛼2))))

6. 𝑡2(𝛼2) = 𝜌1→4(𝑡2(𝛼2))

7. 𝑡2(𝛼1) = 𝜌1→3(𝑡2(𝛼1))

8. 𝐸1 = 𝜂3,4(𝑡2(𝛼1)⨁𝑡2(𝛼2))

9. 𝐸2 = 𝜂2,4(𝐸1 + 𝑡1(𝛼1))

10. 𝐸3 = 𝜌3→6 (𝜌6→5(𝑡1(𝛼2)))

11. 𝐸4 = 𝜂2,6 (𝜂3,6(𝐸3⨁𝐸2))

12. 𝐸5 = 𝜌3→1(𝜌6→5(𝜌2→5(𝜌4→2(𝐸4))))

13. 𝑡1(𝛼) = 𝐸5, 𝑡2(𝛼) = ∅

Figure 3. illustrates an example of the application of Algorithm Construction a 6-expression of a SP

DAG for the digraph 𝐺 and its binary decomposition tree 𝑇(𝐺) shown in Figure 1. The visited nodes

according to post order traversal of 𝑇(𝐺) is defined by the symbols 𝛼𝑖 , 1 ≤ 𝑖 ≤ 9, written near every

internal node of 𝑇(𝐺). Every line in Figure 3 shows the executed steps for constructing 𝐺[𝛼𝑖], 1 ≤ 𝑖 ≤

9. The vertices of left and right children of 𝛼𝑖 , 1 ≤ 𝑖 ≤ 9 are represented respectively by a black color

and a white color. The arrow and the number above it indicates the result of the corresponding step

of the Algorithm. The absence of a result for a specific step means that this step has no effect on the

construction.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 7

Figure 3. application of Algorithm Construction a 6-expression of a SP DAG for the digraph 𝐺 in

Figure 1.

3. Similar Series Parallel Digraphs (SSP DAGs)

Definition 1: A SSPDA G is defined recursively as follows:

A DAG having a single vertex is a SSP.

If 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are two SSP DAGs then the DAG constructed by each of the following

operations is also a SSP:

Parallel composition:𝐺 = 𝐺1𝑃𝐺2 = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2).

Series composition:𝐺 = 𝐺1𝑆𝐺2 = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2 ∪ 𝑆1 × 𝑆2) where 𝑆𝑖 is the set of source vertices of 𝐺𝑖, 𝑖 =

1,2.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 8

It is obvious that a SSP DAG is without transitive arcs. In the same way as in the class of SP

DAGs, a SSP DAG 𝐺 can be represented by a binary decomposition tree 𝑇(𝐺) that reflects the

construction of 𝐺 starting of its vertices using series and parallel operations. Also as in the binary

decomposition tree of a SP DAG, the two children of a 𝑆-node are ordered according to the series

operation of that node. Figure 4 represents a SSP DAG 𝐺 and its binary decomposition tree 𝑇(𝐺).

Figure 4. A SSP DAG and its binary decomposition tree.

The following theorem is the key of our recognition algorithm of SSP DAGs.

Theorem 2: Let G be a connected DAG without transitive arcs. 𝐺 is a SSP if and only 𝐺 is {𝐹1, 𝐹2}-free.

Proof: Suppose that Gis a SSPDAG and let’s show that Gis {F1, F2}-free.

Claim 1: Let 𝑦1, 𝑦2 ∈ 𝑉(𝐺) such that 𝑁−(𝑦1) ∩ 𝑁−(𝑦2) ≠ ∅ then 𝑁−(𝑦1) ⊆ 𝑁−(𝑦2) or 𝑁−(𝑦2) ⊆

𝑁−(𝑦1).

Proof: Since G is a SSP, every arc in G is created by a series operation. According to the series

operation, for any vertex 𝑦, all the arcs {(𝑥, 𝑦)| 𝑥 ∈ 𝑁−(𝑦)} are created by the same series operation.

So, if there is two vertices 𝑦1, 𝑦2 such that 𝑁−(𝑦1) ∩ 𝑁−(𝑦2) ≠ ∅ then if the two sets of arcs

{(𝑥, 𝑦1)| 𝑥 ∈ 𝑁−(𝑦1)} and {(𝑥, 𝑦2)| 𝑥 ∈ 𝑁−(𝑦2)} are created by the same series operation then

𝑁−(𝑦1) = 𝑁−(𝑦2).Suppose that the set of arcs {(𝑥, 𝑦1)| 𝑥 ∈ 𝑁−(𝑦1)} is created by a series operation

𝑆1 and the set of arcs {(𝑥, 𝑦2)| 𝑥 ∈ 𝑁−(𝑦2)} is created by a series operation 𝑆2 where 𝑆1 precedes

𝑆2. Since 𝑁−(𝑦1) ∩ 𝑁−(𝑦2) ≠ ∅, the vertex 𝑦2 was a source during the operation 𝑆2, so 𝑁−(𝑦1) ⊆

𝑁−(𝑦2). If 𝑆2 precedes 𝑆1then 𝑁−(𝑦2) ⊆ 𝑁−(𝑦1). ■

By Claim 1, 𝐺is 𝐹1-free.

Claim 2: Let𝑦 ∈ 𝑉(𝐺), for every 𝑥1, 𝑥2 ∈ 𝑁−(𝑦), 𝑁−(𝑥1) = 𝑁−(𝑥2)

Proof: Let 𝑥 ∈ 𝑁−(𝑥1). By the definition of the series operation, the arc (𝑥1, 𝑦) has been created by a series

operation 𝑆1 that precedes the series operation 𝑆2 for which the arc (𝑥, 𝑥1) has been created. Since the arcs

𝑗 𝑖

𝑔

𝑓

𝑒 𝑑

𝑐 𝑏 𝑎

𝑐

𝑙 𝑘

𝑔 𝑓 𝑏

𝑗 𝑒 ℎ 𝑑

𝑖

𝑎

𝑆 𝑆

𝑆

𝑆

𝑃

𝑆

𝑆

𝑃

𝑆 𝑆

𝑆

𝐹1 𝐹2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 9

(𝑥1, 𝑦), (𝑥2, 𝑦) have been created by the same series operation 𝑆1 then during the series operation 𝑆2 there

was as sources 𝑥1 and 𝑥2,therefore (𝑥, 𝑥2) ∈ 𝐸, this implies that𝑁−(𝑥1) = 𝑁−(𝑥2). ■
By Claim 2, 𝐺is 𝐹2 -free suppose now 𝐺 is a connected DAG without transitive arcs and {𝐹1, 𝐹2}-

free. Let’s show that 𝐺is SSP DAG. Let 𝑆 be the set of all sources of 𝐺and 𝑄 = 𝐺[𝑉 − 𝑆].

Claim 3: Every vertex of 𝑄 that is a successor of a vertex of 𝑆 is a source of 𝑄.

Proof: Let 𝑦 be a vertex of 𝑄 that is not a source and a successor to a vertex 𝑥 ∈ 𝑆. Let 𝑧 be a source in 𝑄 such

that 𝑧 is an ancestor of 𝑦. Since 𝐺 does not contain transitive arcs,(𝑥, 𝑢) ∉ 𝐸 for every vertex 𝑢 located on

the path going from 𝑧 to 𝑦. Suppose that 𝑧 is a predecessor of 𝑦. Since 𝑆 is the set of all sources of 𝐺, there is

a source 𝑡 ∈ 𝑆 such that (𝑡, 𝑧) ∈ 𝐸. Since 𝐺 does not contain transitive arcs, the set {𝑡, 𝑧, 𝑦, 𝑥} induces the

configuration 𝐹2, a contradiction. Suppose that 𝑧 is not a predecessor of 𝑦, let 𝑢1 be a predecessor of 𝑦in 𝑄

and 𝑢2 is a predecessor of 𝑢1 . Since 𝐺 does not contain transitive arcs then {𝑥, 𝑦, 𝑢1, 𝑢2} induces the

configuration 𝐹2, a contradiction. ■

Let 𝐶1, . . . , 𝐶𝑘 be the connected components of 𝑄 and 𝑆′ is the set of sources of 𝑄.

Claim 4: If a source 𝑥 ∈ 𝑆 is a predecessor to a source 𝑦 of some connected component 𝐶𝑖 , 1 ≤ 𝑖 ≤ 𝑘 then 𝑥

is a predecessor to every source of 𝐶𝑖.

Proof: Suppose the contrary, then there a source𝑦′ in 𝐶𝑖 such that (𝑥, 𝑦′) ∉ 𝐸. Since 𝑦 and 𝑦′ are sources in

𝐶𝑖 and 𝐺[𝐶𝑖] is connected there is a chain in 𝐺[𝐶𝑖] that connects 𝑦 and 𝑦′. Without loss of generality, let 𝑧 ∈

𝐶𝑖 such that (𝑦, 𝑧), (𝑦′, 𝑧) ∈ 𝐸. Now the set {𝑥, 𝑦′, 𝑦, , 𝑧} induces the configuration 𝐹2, a contradiction. ■

If 𝑘 = 1 then by Claim 4,𝐺[𝑆 ∪ 𝑆′] is a bipartite complete. It is clear that 𝐺 admit a series

decomposition into 𝑆 and 𝑉(𝐺) − 𝑆.

Suppose 𝑘 ≥ 2 and 𝐺[𝑆 ∪ 𝑆′] is not abipartite complete. Since 𝐺 is connected, 𝐺[𝑆 ∪ 𝑆′] must

be also connected. We claim that there is a vertex 𝑦 ∈ 𝑆' such that for every 𝑥 ∈ 𝑆, (𝑥, 𝑦) ∈ 𝐸. Suppose

the contrary, then for every vertex 𝑦 ∈ 𝑆' there is avertex 𝑥 ∈ 𝑆 such that (𝑥, 𝑦) ∉ 𝐸. Let 𝑦1, 𝑦2 ∈ 𝑆′

and 𝑥1, 𝑥2 ∈ 𝑆 such that (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝐸 and (𝑥1, 𝑦2), (𝑥2, 𝑦1) ∉ 𝐸 . Since 𝐺[𝑆 ∪ 𝑆′] is connected,

there is a chain in 𝐺[𝑆 ∪ 𝑆′] that connects (𝑥1, 𝑦1) and (𝑥2, 𝑦2). Without loss of generality, let 𝑥 ∈ 𝑆

such that (𝑥, 𝑦1), (𝑥, 𝑦2) ∈ 𝐸, then {𝑥, 𝑥1, 𝑦1, 𝑥2, 𝑦2} induces the configuration 𝐹1, a contradiction. Let

𝑌 = {𝑦 ∈ 𝑆′: ∀ 𝑥 ∈ 𝑆, (𝑥, 𝑦) ∈ 𝐸 and 𝐶1, . . . , 𝐶𝑟 be the connected components of 𝑄 that contain the

vertices of 𝑌. It is proved in Claim 4 that every source of every connected component 𝐶𝑖 (1 ≤ 𝑖 ≤ 𝑟)

is a successor of every source in 𝑆. Therefore 𝐺 admit a series decomposition into 𝑉(𝐺) − (𝐶1, . . . , 𝐶𝑟)

and 𝐶1, . . . , 𝐶𝑟. It follows that we can always reduce 𝐺 to its vertices set by a parallel decomposition

and a series decomposition, this implies that 𝐺 is a SSP DAG.

4. Recognition of SSP DAGs

We present in this section a linear Algorithm to recognize if an arbitrary DAG is SSP or not. We

will take into account the following sort of the vertex set for a DAG 𝐺.

Definition 3: Let 𝐺 be a DAG and 𝑆 is the set of sources of 𝐺 , let 𝐴1 = 𝑆, 𝐴2 = 𝑁+(𝐴1), … , 𝐴𝑝 =

𝑁+(𝐴𝑝−1). The sort 𝜌 = {𝐴1, . . . , 𝐴𝑝} is called a topologically sort of 𝑉(𝐺).

Our Algorithm uses the following result:

Lemma 4: Let 𝐺 be a DAG and let 𝜌 = {𝐴1, . . . , 𝐴𝑝} be the topologically sort of 𝑉(𝐺). Then 𝐺 is a SSP

DAG if and only if the following conditions are verified:

a) For every (𝑥, 𝑦) ∈ 𝐸(𝐺) there is 1 ≤ 𝑖 ≤ 𝑝 − 1 such that 𝑥 ∈ 𝐴𝑖, 𝑦 ∈ 𝐴𝑖+1;

b) For every 2 ≤ 𝑖 ≤ 𝑝, 𝐺[𝐴𝑖−1 ∪ 𝐴𝑖] is a bipartite 𝐹1-free graph;

c) Let 𝐶 = (𝐶𝑖 , 𝐶𝑖+1) be a connected component of 𝐺[𝐴𝑖 ∪ 𝐴𝑖+1], 2 ≤ 𝑖 ≤ 𝑝 − 1 then for every

𝑥, 𝑦 ∈ 𝐶𝑖 , 𝑁−(𝑥) = 𝑁−(𝑦).

Proof: We can remark that 𝑦 ∈ 𝐴𝑗 , 𝑗 > 𝑖 + 1 if and only if 𝐺contains a transitive arc or 𝐺 contains

the configuration 𝐹2. The conditions a and b assure that 𝐺 is 𝐹1-free, the conditions a and c assure

that 𝐺is 𝐹2-free.

The following Lemma provides a simple method for verifying the condition b of Lemma 4.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 10

Lemma 5: Let 𝐺 = (𝐵 ∪ 𝑊, 𝐸) be a bipartite DAG of depth one. 𝐺 is 𝐹1-free if and only if for every 𝑥, 𝑦 ∈

𝑊, 𝑁−(𝑥) ⊆ 𝑁−(𝑦) or 𝑁−(𝑥) ∩ 𝑁−(𝑦) = ∅.

Proof: Obviously if 𝐺 is 𝐹1-free then the conditions of Lemma must be verified. On the contrary, if one

of these conditions is verified then every connected component of 𝐺 contains an isolated vertex or a

universal vertex. Therefore we can reduce 𝐺 to its vertices set by a parallel and series

decomposition.

The following Algorithm contains the procedures for detecting the conditions of Lemma 4. Step 1

tests whether 𝐺 contains a transitive arc or the configuration 𝐹1. Step 2 tests whether 𝐺 contains the

configuration 𝐹2 or not. Step 3 tests whether 𝐺 contains between two consecutive levels of 𝜌 the

configuration 𝐹1 or not. Let’s show that the time complexity of this algorithm is 𝑂(𝑛 + 𝑚). The

determination of 𝜌 and testing whether every arc of 𝐺 is located between two consecutive levels of

𝜌 requires 𝑂(𝑛 + 𝑚) time. The success of first step guarantees that the sets of edges 𝐸(𝐺𝑖), 𝑖 =

 1, . . . , 𝑝 − 1, constitute a partition of 𝐸(𝐺). Therefore, testing the inclusion relation of the vertices

𝑁−(𝑦𝑗), 𝑗 = 1, … , 𝑟 for every 𝐴𝑖+1 = {𝑦1, … , 𝑦𝑟}, 𝑖 = 1, . . . , 𝑝 − 1, using the mark procedure described

in step 2, can be executed in time 𝑂(𝑉(𝐺𝑖) + 𝐸(𝐺𝑖)), so the second step also requires 𝑂(𝑛 + 𝑚) time.

The non-empty sets 𝐶1, … 𝐶𝑘 produced in step 2 are the input of step 3 for every 𝐺𝑖 , 𝑖 = 1, . . . , 𝑝 – 1.

Indeed 𝐶𝑖 ∪ {𝑁+(𝑥): 𝑥 ∈ 𝐶𝑖} are the connected components of 𝐺𝑖 , 𝑖 = 1, . . . , 𝑝 – 1. Now, to test the

condition c of Lemma 4, it is enough to compare for every 𝑥 ∈ 𝐶𝑖, the set 𝑁−(𝑥) with 𝑁−(𝑥1) where

𝑥1 is an arbitrary vertex of 𝐶𝑖 . This can be done in 𝑂(𝑉(𝐺𝑖) + 𝐸(𝐺𝑖)) time. Hence the total time

complexity of this Algorithm is 𝑂(𝑛 + 𝑚).

Algorithm Recognition of SSP DAG

Input: A DAG 𝐺 = (𝑉, 𝐸).

Output: The message “Success” if𝐺 is SSP, otherwise“’ Failure”

Let 𝜌 = {𝐴1, . . . , 𝐴𝑝}be the topologically sort of 𝑉(𝐺).

Step 1

For every (𝑥, 𝑦) ∈ 𝐸(𝐺) do

If 𝑥 ∈ 𝐴𝑖 and 𝑦 ∈ 𝐴𝑗 with 𝑗 > 𝑖 + 1 then

Exit with the message “Failure”

End If

End For

Step 2

Let 𝐺1 = 𝐺[𝐴1 ∪ 𝐴2], … , 𝐺𝑝−1 = 𝐺[𝐴𝑝−1 ∪ 𝐴𝑝]

For 1 ≤ 𝑖 ≤ 𝑝 − 1

 Let 𝐴𝑖+1 = {𝑦1 , … , 𝑦𝑟} such that 𝑑−(𝑦1) ≥ ⋯ ≥ 𝑑−(𝑦𝑟)

 Let 𝐶1 = ⋯ = 𝐶𝑟 = ∅

 For 1 ≤ 𝑗 ≤ 𝑟

 If there is a vertex 𝑥 ∈ 𝑁−(𝑦𝑗) that is marked by 𝑘 ≠ 𝑗 then

 If there is a vertex 𝑥 ∈ 𝑁−(𝑦𝑗) that is not marked by 𝑘 then

 Exit with failure message

 End If

 Else Mark every vertex in 𝑁−(𝑦𝑗) by 𝑗; 𝐶𝑗 = 𝐶𝑗 ∪ 𝑁−(𝑦𝑗)

 End If

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 11

 End For

Step 3

Let 𝐶1, … 𝐶𝑘 be the non-empty sets produced in step 2

For 1 ≤ 𝑖 ≤ 𝑘

 Let 𝐶𝑖 = {𝑥1, … , 𝑥𝑠}

 For 2 ≤ 𝑗 ≤ 𝑠

 If 𝑁−(𝑥𝑗) ≠ 𝑁−(𝑥1) then Exit with failure message

 End For

End For

Return Success

5. Clique Width of SSP DAGs

The computation of clique width of SSP DAGs can be done in a similar way to the one we did

for computing the clique width of SP DAGs. The following theorem shows this computation.

Theorem 1: The clique width of a SSP DAG 𝐺 is at most 3.

Proof: Let 𝑇(𝐺) be a binary decomposition tree of a SSP DAG 𝐺. Let 𝛼 be an internal node of 𝑇(𝐺)

and 𝛼1, 𝛼2 are respectively the left and right children of 𝛼. We will construct a 3-expression of 𝐺[𝛼]

starting of a similar 3-expression of 𝐺[𝛼1] and 3-expression of 𝐺[𝛼2] For 𝑖 = 1,2, we can partition

the vertices set of 𝐺[𝛼𝑖] into at most two sets 𝑆(𝛼𝑖) and 𝑌(𝛼𝑖), where 𝑆(𝛼𝑖) is the set of sources of

𝐺[𝛼𝑖] and 𝑌(𝛼𝑖) is the set of remaining vertices of 𝐺[𝛼𝑖]. We must point out here that if 𝐺[𝛼𝑖]

contains an isolated vertex then this vertex is considered as a source in 𝐺[𝛼𝑖]. We suppose that the

label of every vertex of 𝑆(𝛼1) is 1 and the label of every vertex of 𝑌(𝛼1) is 2. Similarly, we suppose

that the label of every vertex of 𝑆(𝛼2) is 3 and the label of every vertex of 𝑌(𝛼2) is 2. So we can

express the sub-graph 𝐺[𝛼1] and 𝐺[𝛼2] as:

𝐺[𝛼1] = 𝐺[1(𝑆(𝛼1)⨁2(𝑌(𝛼1))]

𝐺[𝛼2] = 𝐺[3(𝑆(𝛼1)⨁2(𝑌(𝛼1))]

Suppose that 𝛼 is a 𝑃-node. The set 𝑆(𝛼1) ∪ 𝑆(𝛼2) is the set of sources of 𝐺[𝛼], and the set 𝑌(𝛼1) ∪

𝑌(𝛼2) is the set of remaining vertices of 𝐺[𝛼]. Hence, the expression 𝑡 constructs 𝐺[𝛼] using 3

labels where:

𝑡 = 𝐺[𝛼1]⨁𝜌3→1(𝐺[𝛼2])

Suppose that 𝛼 is a 𝑆-node. By the definition of series operation, the set of sources of 𝐺[𝛼] is the

set 𝑆(𝛼1), and the set of remaining vertices of 𝐺[𝛼] is the set 𝑆(𝛼2) ∪ 𝑌(𝛼1) ∪ 𝑌(𝛼2). Hence the

expression 𝑡constructs 𝐺[𝛼] using 3 labels where:

𝑡 = 𝜌3→1(𝜂1,3(𝐺[𝛼1]⨁𝐺[𝛼2]))

6. Conclusion

We show in this paper that the clique width of a SP DAG 𝐺 is at most 6 and the construction of

a 6-expression of 𝐺can be done in 𝑂(𝑛) time complexity using a binary decomposition tree𝑇(𝐺). On

other hand, we defined the class of digraphs SSP as a similar class of SP DAGs and proved that this

new class can be recognized in linear time complexity. We proved that the clique width of a SSP DAG

is at most 3. The construction of a 3-expression of a SSP DAG 𝐺 requires to construct a binary

decomposition tree𝑇𝐺) that we believe to be done in linear time.

References

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

 12

1. B. Courcelle, J. Engelfriet, G. Rozenberg. Handle-rewriting hypergraph grammars, Journal of Computer

and System Sciences 46 (1993) 218-270.

2. B. Courcelle, J.A. Makowsky, U. Rotics. Linear time solvable optimization problems on graphs of

bounded clique width, Theory of Computing Systems 33 (2000) 125-150.

3. B. Courcelle. The expression of graph properties and graph transformations in monadic second-order logic,

in: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, World Sci. Publishing,

River Edge, NJ, 1997, pp. 313_400.

4. D. Kobler, U. Rotics. Edge dominating set and colorings on graphs with fixed clique width, Discrete

Applied Mathematics 126 (2003) 197-221.

5. D.G. Corneil, M. Habibb , J.M. Lanlignel, B. Reedd, U. Rotics. Polynomial-time recognition of clique width

≤ 3 graphs, Discrete Applied MathematicsVolume 160, Issue 6, April 2012, pp 834-865.

6. D.G. Corneil, U. Rotics. On the relationship between clique-width and treewidth, SIAM Journal on

Computing 34 (2005) 825_847.

7. E. Wanke. k-NLC graphs and polynomial algorithms, Discrete Applied Mathematics 54 (1994) 251_266.

8. I. Penev. On the clique width of (4k1,C4,C5,C7)-free graphs. Discrete Applied Mathematics, Vol. 285, (2020)

pp. 688–690.

9. J. L. Gonzalez-Ruiz, J. R Marcial-Romero, J. Hernandez-Servın. Computing the clique width of cactus

graphs. Electronic Notes in Theoretical Computer Science, Vol. 328, (2016)pp. 47–57.

10. J. L. Gonzalez-Ruiz, J. R. Marcial-Romero, J. A. Hernandez, G. De Ita. Computing the clique width of

polygonal tree graphs, Advances in Soft Computing, Springer International Publishing, Cham, (2017) pp.

449–459.

11. J. Valdes, R. E. Tarjan, and E. L. Lawler. The Recognition of Series Parallel Digraphs, SIAM Journal on

ComputingVol. 11, Iss. 2 (1982), 298-313.

12. M. A. López-Medina, J. Leonardo González-Ruiz, J. Raymundo Marcial-Romero, J. A. Hernández.

Computing the Clique-Width on Series-Parallel Graphs, Computación y Sistemas, Vol 26, No 2 (2022)

13. M. Kurt, M. Berberler, and O. Ugurlu. A New Algorithm for Finding Vertex-Disjoint Paths. The

International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015.

14. M. R. Fellows, F. A. Rosamond, U. Rotics, S. Szeider. Clique-width is NP-complete, SIAM Journal on

Discrete Mathematics, Vol. 23, No. 2, (2009)pp. 909–939.

15. S.i. Oum, P. Seymour. Approximating clique width and branch-width, Journal of Combinatorial Theory

Series B 94 (2006) 514-528.

16. W. Espelage, F. Gurski, E. Wanke. How to solve NP-hard graph problems on clique width bounded graphs

in polynomial time, Lecture Notes in Computer Science 2204 (2001) 117_128.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 doi:10.20944/preprints202403.1498.v1

