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Abstract: The concept of graphs with clique-width at most k was first introduced by Courcelle et al.to be the
graphs that can be characterized using k-expressions derived from graph operations that use k labels of
vertices. If the clique-width for some graph is bounded then a grand number of algorithmic problems, in
general NP-hard, can be solved in polynomial time when restricted to this graph. This important fact motivated
the researchers to prove that the clique-width of certain graphs is bounded. Following this research direction,
we prove in this paper that the clique-width of series-parallel digraphs is at most 6 and we present an 0(n)
time algorithm to construct a 6-expression for this class of digraphs. In another part, we present a linear time
recognition algorithm for a similar class of series-parallel digraphs and prove that the clique-width of this class
is at most 3.
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1. Introduction

Courcelle et al. in [1] characterized graphs with clique-width at most k as those graphs that can
be generated through expressions involving graph operations utilizing k vertex labels. Clique width
generalizes another significant graph parameter, tree-width, in the sense that any graph has a
bounded tree-width also has a bounded clique width [6]. The concept of clique width was established
in 1993 [1], and since then a large number of studies concerning this concept have been published.
The subjects in the literature that concern clique width have a theoretical or an algorithmic standpoint
and can be summarized by one of the following questions:

e  What is the complexity of computing the clique width?

e  When the clique width of a graph is unbounded?

e Is there a general algorithm to recognize a graph of bounded clique width?

e  Are there general algorithms to solve some optimization problems in a graph of bounded
clique width?

e  How to construct the clique width of a given graph?

The subject of complexity of computing the clique width has been resolved by Fellows et. al. in
[14]. They proved that the problem of determining the clique width of a graph is NP-complete in
general. The subject of determining the necessary and /or sufficient conditions to be the clique width
of a graph unbounded is till now an open question. This question is motivated from the fact that the
clique width for certain class of graphs can be unbounded, for example the class of (4k4, Cy, Cs, C;)-
free graphs and not chordal [8]. The subject of recognizing a class of graphs of bounded clique width
is resolved partially; for example, it is proved in [5] that any graph of clique width at most 3 can be
recognized in O(n®m) time. The subject of solving some optimization problems in a graph of
bounded clique width is the significance of these graph invariants. It stems from the fact that many
problems that are NP-hard in general admit polynomial-time solutions when restricted to graphs
with bounded clique width (see for example [2,3,15]). Among these problems are Hamiltonian path
or Hamiltonian cycle problems, computing the minimum size of a maximal matching and several
partition problems (partition into cliques or triangles or complete bipartite sub-graphs or perfect
matching's or forests) [16], computing the chromatic number and computing the minimum size of a
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dominating set of vertices or edges [4], computing the maximum size of a cut [7], finding vertex-
disjoint Paths [13]. The construction of the clique width for a given graph has been studied
extensively. For example, in [9], it is proved that the clique width of Cactus graphs is at most 4 and
the construction of 4-expression of these graphs can be done in polynomial time. Also in [10] it is
proved that the clique width of polygonal tree graphs can be done by constructing a 5-expression in
a polynomial time. Recently, the clique width for series parallel undirected graphs is studied in [12],
where it is proved that the clique width of these graphs is at most 5 and an 0(n?) algorithm is
presented to construct a 5-expression. Following this last direction of research, we prove that the
clique width of the famous class of series parallel directed graphs (digraphs) is at most 6 and we
propose an O(n) time algorithm to compute a 6-expression of this class. From other part, we
introduce a new definition of a similar class of series parallel digraphs and present for which a linear
time recognition algorithm. We prove that the clique width of this new class of digraphs is at most 3.

2. Preliminaries

A directed graph (or a digraph for short) ¢ = (V,E) is defined by two sets, V(G) or simply V is
the vertices set and E(G) or simply E is the arcs set. Every arc of E is an ordered pairs of vertices of
V. The number n indicates to the number of vertices of G and the number m indicates to the number
of edges of G.If (x,y) € E then x is called a predecessor of y and y is called a successor of x. The set
of all predecessors of a vertex x is denoted by N*(x), and the set of all successors of x is denoted by
N7~ (x)). The set of neighbors of x is the set N(x) = N*(x) U N~ (x). The number |[N*(x)| is called the
positive degree of x and denoted by d*(x), and the number |N~(x)| is called the negative degree of
x and denoted by d~(x), the degree of a vertex x is the number d(x) = |[N(x)|. A vertex x is called a
source if |[N*(x)| = 0 and is called a sink if [N~ (x)| = 0. Given a subset X of the vertices set V, the
sub-graph induced by X will be denoted by G[X]. A path of length k is a sequence of vertices
X1, %2,..., Xy such that any two consecutive vertices form an arc. A path xy,x,,..., x is called a circuit
if x;,= x, and k = 2. A directed acyclic graph denoted by DAG is a digraph with no circuit. A chain
of length k is a sequence of vertices xq, x5, ..., x, such that (x;, x;11) or (x;41,%;) isanarc. If x; = x
and k = 2 the chain is called a cycle. An arc (x,y) is called transitive arc if there is a path from x to
y of length at least 2. A bipartite graph ¢ = (B U W, E) is given by a set of black vertices B and a set
of white vertices W and a set of edges E S B X W. A graph G is called F-free where F is a set of
graphs when G does not contain an induced sub-graph isomorphic to a graph of F.

The clique width of a graph G is the smallest number of labels required to construct G using the
four operations listed below:

e  The operation i(v)) to create a new vertex v has the label i.

e  The operation G @ H to make a union of two disjoint labeled graphs ¢ and H.

e  The operation 7, ;(G) to add in the labeled graph G an edge (or an arc in case of digraphs)
from each vertex with label i to each vertex with label j (i # j).

e The operation p;,;(G) to change in the labeled graph G every label i to labelj.

Using these four operations, any graph may be defined by an algebraic expression. For
example, the graph G = (V,E) where V = {a,b,c,d} and E = {ab,, bc,cd, da, db} can be defined by
the following expression:

13,1 (d(3)D(P352(P21(12,3(3(c) (11,2 (2(b)D1(a)))))))
If an expression uses at most k different labels, it is referred to as a k-expression.
3. Clique Width of Series Parallel Digraphs (SP DAGs)

Series-parallel digraphs, or SP DAGs for short, are a class of directed graphs that play a
significant role in graph theory and find extensive applications in various real-world scenarios. It has
been defined by Tarjan et al. in [11] to be the digraph that can be constructed starting of the vertices
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set and recursively using two fundamental operations: series composition and parallel composition.
More precisely:
Definition 1: A SP DAG is defined recursively as follows:
A DAG containing only one vertex is a SP DAG.
If Gy = (Vy, Ey) and G, = (V,, E,) are two SP DAGs then the DAG constructed by each of the following
operations is also a SP DAG :
Parallel composition: G = GPG, = (V, UV,,E; U Ey).
Series composition: G = G,SG, = (V; UV,,E; UE, UT; X S,) where T, is the set of sink vertices of G, and
S, is the set of source vertices of G,.

A SP DAG G can be represented by a binary decomposition tree T(G) that reflects the
construction of G starting of its vertices using series and parallel operations as following:

e  The leaves correspond to the vertices of G.

e Let @ be Aninternal node and a, a; are respectively the left and right child of «, then «a is
labeled by P (resp. S)if Gla] = G[a1]PG[a,] (resp. Gla] = G[a;1]SG[a,]) where G[a;],i = 1,2
is the sub-graph of G induced by the set of vertices having «; as their least common ancestor.
Figure 1 illustrates an example of a SP DAG and its binary decomposition tree. It is worthy

mentioned that the two children of a S-node are ordered according to the series operation of that

node. Tarjan et. al. in [11] proved that the construction of T(G) when G isa SP DAG can be done in

O(n +m) time complexity. This binary decomposition tree of a SP DAG is the key of our computing

to its clique width.

Figure 1. A SP DAG and its decomposition binary tree.

Theorem 1: The clique width of a SP DAG G is at most 6.

Proof: Let a be an internal node of T(G) and ay, a, are respectively the left and right child of a.
We will construct a 6-expression of G[a] starting of a similar 6-expression of G[a;] and 6-expression
of G[a,] For i=12, we can partition the vertices set of G[a;] into at most four sets
S(oy), T(a;), X(e;) and Y(o;), where S(a;) is the set of non-isolated sources of G[a;], , T(o;) is the set
of non-isolated sinks of G[a;], X(a;) contains the set of isolated vertices of G[a;], and Y(q;) is the
set of vertices that are not sources, not sinks, and not isolated in G[o;]. We suppose that the label of
every vertex of S(a,) is 1, the label of every vertex of T(a;) is 2, the label of every vertex of X(a,)
is 1, and the label of every vertex of Y(a;) is 5.We express this in notation by
1(5(0(1)), Z(T(cxl)), 1(X(ay)) and 5(Y(ay)). Similarly, we suppose that the label of every vertex of
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S(a,) is 3, the label of every vertex of T(a,) is 4, the label of every vertex of X(«a,) is also 4, and the
label of every vertex of Y(a,) is 6. We can express the sub-graph G[oy] by H;@®H, where:
H; = G[1(S(ay))®5(Y(0y)) 2(T(ey))]
H, = G[l(X(a1))]
Similarly, we can express the sub-graph G[a,] by H;@®H, where:
H; = G[3(S(a) )®6(Y () 4(T(a1))]
H, = G[4(X(a2))]

Figure 2.a illustrates this decomposition of G[a;]. Without loss of generality, and for
simplification of reading, we represented in this Figure each set of S(a;),T(a;),X(a;) and Y(a;),i =
1,2, by a single vertex. To construct a 6-expression for G[a] we distinguish two cases according to
the type of a:

Suppose thata is a P-node. In this case, the set S(a;) U S(a;) is the set of non-isolated sources
of G[a], the set T(a;) UT(a,) is the set of non-isolated sinks of G[a], the set X(a;) U X(a,) is the
set of isolated vertices of G[a], and the set Y(a;) UY(a;) is the set of vertices that are not sources,
not sinks, and not isolated in G[a]. Hence, the expression t,;@®t,constructs G[a] using 6 labels
where:

t, = Hi®p3-1(Pe-s (P4—>2 (H3)))
t; = Hy®p41(Hy)

Figure 2.b, illustrate the construction of G[a] using the expressions t;and t,. Suppose that a
is a S-node. Since G[a] is connected, it does not contain isolated vertices. Since a;,a, are
respectively the left child and right child of a then, every vertex of X(a;) must be a sink in G[a,]
and every vertex of X(a,) must be a source in G[a,], thus every vertex of X(a;) would be a source
in Gla] and every vertex of X(a;) would be a sink in G[a]. Therefore, S(a;) U X(a,) is the set of
sources of G[a], the set X(a,) UT(a,) is the set of sinks of G[a], and the set Y(a;) UT(a;) VU
S(a,) UY(a,) is the set of vertices that are not sources, not sinks, and not isolated in G[a]. Hence,
the following ordered series of expressions constructs G[a] using 6 labels:

t1 = N34(p1o3(H)®H,), ty; = ny4(ty + Hy), t3 = P3—>6(Pe—>5(H3))'

ly = M2 (U3,6(t3®t2)) yts = P3—>1(Pe—>5(Pz—>5(P4—>2 (Q))))

Figure 2.cillustrate the construction of G[a] using the expressions t;,t;,t3,t, and ts. Now, by
traversing T(G) in post order and calculating a 6-expression for every internal node of T(G), we
conclude that the whole digraph G represented by the root of T(G) can be constructed by a 6-
expression. ©
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5(Y(a))

te = Glal = Gla.1SGla-1
2(T(a))

Figure 2. a) The sub-graphs G[a;] and G[a,], b) the construction of Gla] = G[a;]PG[a,], c) the
construction of G[a] = G[a;]SG[a;]

The construction a SP DAG by a 6-expression using the method described in the proof of
Theorem 1 can be translated into the Algorithm Construction a 6-expression of a SP DAG. In this
Algorithm, we define an empty expression, denoted by @, to be an expression of an empty set of
vertices. For any expression t, we consider that t®® = t, so 1;;(t®®) = n;;(t) and p;,;(tDO) =
pi-j(t). Our Algorithm associates with every node a of T(G) two expressions t;(a) and t,(a),
where t;(a) represents the construction of the sub-graph induced by the non-isolated vertices of
Gla] and t,(a) represents the construction of isolated vertices of G[a]. It may be at most one of
t;(a) and t,(a@) empty. The labels in the end of computing t;(a) or t,(a) represent implicitly
whether the corresponding vertices are non-isolated sources (labeled by 1), non-isolated sinks
(labeled by 2), isolated vertices (labeled by 1), or vertices that are not sources, not sinks and not
isolated in G[a] (labeled by 5). Initially, in step 1, every vertex is labeled by 1 since the sub-graph
induced by a leaf consists only of one isolated vertex that consider as a source. Step 2 determines the
left child a; and the right child a, of an internal node a. Step 3 constructs the expression t;(a)
and t,(a) for a P-node a to be respectively the disjoint union of t;(a;),t;(@,) and the disjoint
union of t,(a;),t,(a,). Steps 4 to 13 constructs the expressions t;(a) and t,(a) fora S-node a as
following: Step 5 changes the label of non- isolated sources of G[a,] from 1 to 3, the label of non-
isolated sinks from 2 to 4, and the other non-isolated vertices from 5 to 6; Step 6, changes the label of
isolated vertices of G[a,] from 1 to 4 as these vertices are sinks in G[a,]. Step 7 changes the label of
isolated vertices of G[a;] from 1to 3. The steps from 8 tol3 construct the expression t,(a) in the
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same way as in Figure 2.c. The expression t,(a) must be empty because of G[a] is connected. Since
the number of nodes in T(G) is 0(n) and every step can be done in O(1) time, the total time
complexity of this Algorithm is O(n).

Algorithm Construction a 6-expression of a SP DAG
Input: A binary decomposition tree T(G) of a SP DAG G
Output: A 6-expression of G.
Let a be anode on a post order traversal of T'(G)
If a isaleafthen t,(a) =0,t,(a) = 1(a)
Else let @; and a, be respectively the left and right children of «
if « isa P-node then t;(a) = t;(a1)®t(ay), ty(a) = t,(a)Dt,(ay)
else\\a isa S-node
t1(a2) = p153(Pso6(P2-4(t(@2))))
tr(az) = p1oa(ta(az))
tr(a1) = p1o3(tz(aq))
E; = 134(t2(a)®t;(az))
Ey = mp4(Ey + ti(aq))

Es = p3_e (P6—>5(t1(“2)))

©ooNO R WD RE

-
©

11. Ey =126 (03,6 (Es®F))

12. Es = p3-1(Psos(p2-5(Pasz2(Ed))))
13. t,(a) = Eg, ty(a@) =0

Figure 3. illustrates an example of the application of Algorithm Construction a 6-expression of a SP
DAG for the digraph G and its binary decomposition tree T(G) shown in Figure 1. The visited nodes
according to post order traversal of T(G) is defined by the symbols a;,1 < i < 9, written near every
internal node of T(G). Every line in Figure 3 shows the executed steps for constructing Gla;],1 <i <
9. The vertices of left and right children of @;,1 <i <9 are represented respectively by a black color
and a white color. The arrow and the number above it indicates the result of the corresponding step
of the Algorithm. The absence of a result for a specific step means that this step has no effect on the
construction.
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Figure 3. application of Algorithm Construction a 6-expression of a SP DAG for the digraph G in
Figure 1.

3. Similar Series Parallel Digraphs (SSP DAGs)

Definition 1: A SSPDA G is defined recursively as follows:

A DAG having a single vertex is a SSP.

If Gy = (V1,Ey) and G, = (V,, E) are two SSP DAGs then the DAG constructed by each of the following
operations is also a SSP:

Parallel composition:G = G;PG, = (V; UV,, E; UE,).

Series composition:G = G1SG, = (V; UV,, E; UE, US; X S,) where S; is the set of source vertices of G;,i =
1,2.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2024 d0i:10.20944/preprints202403.1498.v1

It is obvious that a SSP DAG is without transitive arcs. In the same way as in the class of SP
DAGs, a SSP DAG G can be represented by a binary decomposition tree T(G) that reflects the
construction of G starting of its vertices using series and parallel operations. Also as in the binary
decomposition tree of a SP DAG, the two children of a S-node are ordered according to the series
operation of that node. Figure 4 represents a SSP DAG ¢ and its binary decomposition tree T(G).

Figure 4. A SSP DAG and its binary decomposition tree.

The following theorem is the key of our recognition algorithm of SSP DAGs.
Theorem 2: Let G be a connected DAG without transitive arcs. G is a SSP if and only G is {Fy, F,}-free.

VWL

Proof: Suppose that Gis a SSPDAG and let’s show that Gis {F,, F,}-free.
Claim 1: Let y;,y¥, € V(G) such that N~ (y3) NN~ (y,) #@ then N~ (y;) SN (y,) or N~ (y,) S
N~ (y).
Proof: Since G is a SSP, every arc in G is created by a series operation. According to the series
operation, for any vertex y, all the arcs {(x,y)| x € N~(y)} are created by the same series operation.
So, if there is two vertices y;,y, such that N=(y;) NN~ (y,) # @ then if the two sets of arcs
{(x,y))|x € N"(y1)} and {(x,¥,)|x € N"(y,)} are created by the same series operation then
N~ (y1) = N~ (y;).Suppose that the set of arcs {(x,y;)| x € N~ (y1)} is created by a series operation
S; and the set of arcs {(x,y,)| x € N™(y,)} is created by a series operation S, where S; precedes
S,. Since N™(y1) N N~ (y,) # @, the vertex y, was a source during the operation S,, so N™(y;) €
N~ (y,). It S, precedes Sithen N™(y,) EN~(y,). &

By Claim 1, Gis F;-free.
Claim 2: Lety € V(G), for every x;,x, € N~ (y), N~ (x;) = N™(x;)
Proof: Let x € N~(x;). By the definition of the series operation, the arc (x,,y) has been created by a series
operation S, that precedes the series operation S, for which the arc (x, x,) has been created. Since the arcs
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(x1,¥), (x5, y) have been created by the same series operation S; then during the series operation S, there
was as sources x; and x,,therefore (x,x,) € E, this implies thatN ~(x;) = N (x,). m

By Claim 2, Gis F, -free suppose now G is a connected DAG without transitive arcs and {Fy, F,}-

free. Let’'s show that Gis SSP DAG. Let S be the set of all sources of Gand Q = G[V — S].

Claim 3: Every vertex of Q that is a successor of a vertex of S is a source of Q.

Proof: Let y be a vertex of Q that is not a source and a successor to a vertex x € S. Let z be a source in Q such
that z is an ancestor of y. Since G does not contain transitive arcs,(x,u) & E for every vertex u located on
the path going from z to y. Suppose that z is a predecessor of y. Since S is the set of all sources of G, there is
a source t € S such that (t,z) € E. Since G does not contain transitive arcs, the set {t,z,y,x} induces the
configuration F,, a contradiction. Suppose that z is not a predecessor of y, let u; be a predecessor of yin Q
and u, is a predecessor of u,. Since G does not contain transitive arcs then {x,y,u,u,} induces the
configuration F,, a contradiction. M

Let Cy,...,Cy be the connected components of Q and S’ is the set of sources of Q.

Claim 4: If a source x € S is a predecessor to a source y of some connected component C;,1 < i < k then x
is a predecessor to every source of C;.

Proof: Suppose the contrary, then there a sourcey' in C; such that (x,y") € E. Since y and y' are sources in
C; and G[C;] is connected there is a chain in G[C;] that connects y and y'. Without loss of generality, let z €
C; such that (y,z),(y',z) € E. Now the set {x,y',y,,z} induces the configuration F,, a contradiction. B

If k = 1 then by Claim 4,G[S U S'] is a bipartite complete. It is clear that G admit a series
decomposition into S and V(G) — S.

Suppose k = 2 and G[S U S'] is not abipartite complete. Since G is connected, G[S U S'] must
be also connected. We claim that there is a vertex y € S' such that for every x € S, (x,y) € E. Suppose
the contrary, then for every vertex y € S' there is avertex x € S such that (x,y) ¢ E. Let y;,y, € S’
and x;,x, € S such that (xy,y,), (x2,¥2) € E and (x4, ¥,), (x3,¥,) € E. Since G[S U S'] is connected,
there is a chain in G[S U S'] that connects (x;,y;) and (x,,y,). Without loss of generality, let x € S
such that (x,y,), (x,y,) € E, then {x,x,y;,x,,¥,} induces the configuration F;, a contradiction. Let
Y={yeS:Vx€eS, (x,y) €EEand Cy,...,C, be the connected components of Q@ that contain the
vertices of Y. Itis proved in Claim 4 that every source of every connected component C; (1 < i < 7)
is a successor of every source in S. Therefore G admit a series decomposition into V(G) — (Cy,...,C;)
and Cj,...,C,. It follows that we can always reduce G to its vertices set by a parallel decomposition
and a series decomposition, this implies that G is a SSP DAG. o

4. Recognition of SSP DAGs

We present in this section a linear Algorithm to recognize if an arbitrary DAG is SSP or not. We
will take into account the following sort of the vertex set for a DAG G.
Definition 3: Let G be a DAG and S is the set of sources of G, let Ay = S,A; = N*(4,), v Ay =
N*(A,-1). The sort p = {A;,...,Ap} is called a topologically sort of V(G).
Our Algorithm uses the following result:
Lemma 4: Let G be a DAG and let p = {A,,...,A,} be the topologically sort of V(G). Then G is a SSP
DAG if and only if the following conditions are verified:

a) Forevery (x,y) € E(G) thereis 1 <i<p—1 suchthat x € A,y € Ajy;

b) Forevery 2 <i<p, G[A;_1 UA;] isabipartite Fi-free graph;

c) Let C = (C;,Ciyq) be a connected component of G[A; U A1), 2<i<p—1 then for every

x,y €C, N~ (x) =N"(y).

Proof: We can remark that y € 4j,j > i+ 1 if and only if Gcontains a transitive arc or G contains
the configuration F,. The conditions a and b assure that G is F;-free, the conditions a and c assure
that Gis F,-free. o

The following Lemma provides a simple method for verifying the condition b of Lemma 4.
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Lemma 5: Let G = (B U W, E) be a bipartite DAG of depth one. G is Fy-free if and only if for every x,y €
W,N-(x) SN~ () or N-(x) nN~(y) = 0.

Proof: Obviously if G is F;-free then the conditions of Lemma must be verified. On the contrary, if one
of these conditions is verified then every connected component of G contains an isolated vertex or a
universal vertex. Therefore we can reduce G to its vertices set by a parallel and series
decomposition.e

The following Algorithm contains the procedures for detecting the conditions of Lemma 4. Step 1
tests whether G contains a transitive arc or the configuration F;. Step 2 tests whether G contains the
configuration F, or not. Step 3 tests whether ¢ contains between two consecutive levels of p the
configuration F; or not. Let's show that the time complexity of this algorithm is O(n +m). The
determination of p and testing whether every arc of G is located between two consecutive levels of
p requires O(n + m) time. The success of first step guarantees that the sets of edges E(G;),i =
1,...,p — 1, constitute a partition of E(G). Therefore, testing the inclusion relation of the vertices
N~(yj),j =1,..,r forevery Ay ={y1,...¥r}i = 1,...,p — 1, using the mark procedure described
in step 2, can be executed in time O(V(G;) + E(G;)), so the second step also requires O(n + m) time.
The non-empty sets Cj, ... C;, produced in step 2 are the input of step 3 for every G;,i = 1,...,p- 1.
Indeed C; U{N*(x):x € C;} are the connected components of G;,i = 1,...,p- 1. Now, to test the
condition ¢ of Lemma 4, it is enough to compare for every x € C;, the set N~ (x) with N~ (x;) where
x, is an arbitrary vertex of C;. This can be done in 0(V(G;) + E(G;)) time. Hence the total time
complexity of this Algorithm is O(n + m).

Algorithm Recognition of SSP DAG
Input: ADAG G = (V,E).
Output: The message “Success” ifG is SSP, otherwise® Failure”
Let p = {A4,...,A,}be the topologically sort of V().
Step 1
For every (x,y) € E(G) do
Ifx € A;andy € Aj withj > i + 1 then
Exit with the message “Failure”
End If
End For
Step 2
Let G; = G[A; UA4,],..,G,_y = G[A,_; UA,]
Forl<i<p-1
Let A;y1 = {1, ..., Vr} such that d=(y;) = - = d~(y,)
LetC, = =C,=0
Forl1<j<r
If there is a vertex x € N™(y;) that is marked by k # j then
If there is a vertex x € N™(y;) that is not marked by k then
Exit with failure message
End If
Else Mark every vertex in N™(y;) by j; ¢; = C; U N™(y;)
End If
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End For
Step 3
Let Cy, ... C, be the non-empty sets produced in step 2
For1<i<k
Let C; = {xq, ..., x5}
For2<j<s
If N~ (x;) # N~ (x;) then Exit with failure message
End For
End For

Return Success

5. Clique Width of SSP DAGs

The computation of clique width of SSP DAGs can be done in a similar way to the one we did
for computing the clique width of SP DAGs. The following theorem shows this computation.

Theorem 1: The clique width of a SSP DAG G is at most 3.
Proof: Let T(G) be a binary decomposition tree of a SSP DAG G.Let a be an internal node of T(G)
and a;, a, arerespectively the left and right children of a. We will construct a 3-expression of G[a]
starting of a similar 3-expression of G[a;] and 3-expression of G[a,] For i = 1,2, we can partition
the vertices set of G[a;] into at most two sets S(a;) and Y(a;), where S(a;) is the set of sources of
Gla;] and Y(a;) is the set of remaining vertices of G[a;]. We must point out here that if G[a;]
contains an isolated vertex then this vertex is considered as a source in G[a;]. We suppose that the
label of every vertex of S(a;) is 1 and the label of every vertex of Y(a,) is 2. Similarly, we suppose
that the label of every vertex of S(a,) is 3 and the label of every vertex of Y(a,) is 2. So we can
express the sub-graph G[a;] and G[a,] as:

Gla,] = G[1(S(a)®2(Y (a1))]

Glay] = G[3(S(a)®2(Y (a)]
Suppose that a isa P-node. The set S(a;) U S(a;) is the set of sources of G[a], and the set Y(a;) U
Y(a,) is the set of remaining vertices of G[a]. Hence, the expression t constructs G[a] using 3
labels where:

t = Gla;]®p3-1(Glaz])

Suppose that a is a S-node. By the definition of series operation, the set of sources of G[a] is the
set S(a;), and the set of remaining vertices of G[a] is the set S(a;) UY(a;) UY(a,). Hence the
expression tconstructs G[a] using 3 labels where:

t = p31(N1,3(Gla1]DGaz]))

6. Conclusion

We show in this paper that the clique width of a SP DAG G is at most 6 and the construction of
a 6-expression of Gcan be done in 0(n) time complexity using a binary decomposition treeT (G). On
other hand, we defined the class of digraphs SSP as a similar class of SP DAGs and proved that this
new class can be recognized in linear time complexity. We proved that the clique width of a SSP DAG
is at most 3. The construction of a 3-expression of a SSP DAG G requires to construct a binary
decomposition treeTG) that we believe to be done in linear time.
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