Pre prints.org

Review Not peer-reviewed version

Transforming Sleep Monitoring: Review
of Wearable and Remote Devices
Advancing Toward Home
Polysomnography and Their Role in
Predicting Neurological Disorders

Diana Vitazkova - , Helena Kosnacova , Daniela Turonova, Erik Foltan , Martin Jagelka , Martin Berki,
Michal Micjan , Ondrej Kokavec , Filip Gerhat , Erik Vavrinsky i

Posted Date: 31 December 2024
doi: 10.20944/preprints202412.2554 v1

Keywords: human sleep monitoring; polysomnography; home environment; respiration;
photoplethysmography; neurodegenerative diseases

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/3340548
https://sciprofiles.com/profile/834717
https://sciprofiles.com/profile/3379856
https://sciprofiles.com/profile/1918660
https://sciprofiles.com/profile/4131186
https://sciprofiles.com/profile/832207

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 December 2024 d0i:10.20944/preprints202412.2554.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Review

Transforming Sleep Monitoring: Review of Wearable
and Remote Devices Advancing Toward Home
Polysomnography and Their Role in Predicting
Neurological Disorders

Diana Vitazkova *, Helena Kosnacova !, Daniela Turonova?, Erik Foltan !, Martin Jagelka?,
Martin Berki?!, Michal Micjan !, Ondrej Kokavec?, Filip Gerhat'and Erik Vavrinsky *

1 Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology, Ilkovicova 3, 81219 Bratislava, Slovakia

2 Department of Psychology, Faculty of Arts of Comenius University, Comenius University, Gondova 2, 81102 Bratislava,
Slovakia

* Correspondence: diana.vitazkova@stuba.sk (D.V.); erik.vavrinsky@stuba.sk (E.V.)

Abstract: This paper explores the progressive era of sleep monitoring, focusing on wearable and
remote devices, moving towards the concept of home polysomnography. We begin by examining the
basic physiology of sleep, establishing a theoretical foundation for understanding sleep stages and
associated changes in physiological variables. The review then moves on to analyse specific cutting-
edge devices and technologies, emphasizing their practical applications, user comfort, and accuracy.
Attention is also given to the ability of these devices to predict neurological disorders, particularly
Alzheimer’s and Parkinson’s disease. The paper highlights the integration of hardware innovations,
targeted sleep parameters, and partially advanced algorithms, illustrating how these elements
converge to provide reliable information on sleep health status. By bridging the gap between clinical
diagnosis and real-world applicability, this review aims to clarify the role of modern sleep monitoring
tools in improving personalized healthcare and proactive disease management.
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1. Introduction

Sleep is an integral part of human life, representing a fundamental physiological process
essential for physical recovery, emotional balance, and the maintenance of cognitive functions [1].

The study of sleep and related disorders is the subject of a specialized medical field called sleep
medicine. Sleep medicine is considered a young field, the emergence of which is closely related to
progress in electrophysiological methods that enable the monitoring of various parameters suitable
for sleep evaluation [2,3]. Global sleep disorders, including chronic sleep deprivation, insomnia,
obstructive sleep apnoea (OSA), and circadian rhythm disorders have become a global epidemic,
threatening the health and well-being of a large portion of the population [4]. These conditions are
often underdiagnosed, poorly managed, and untreated. The most widespread sleep disorder, with
symptoms affecting 30% of adults worldwide, is chronic insomnia [5]. As a result of poor sleep
quality, cognitive functions, memory problems or the effectiveness of the immune system are
impaired, which can leave individuals vulnerable to infections. Chronic insufficient sleep has been
also linked to a higher risk of mortality. Recent studies indicate that increasing nightly sleep duration
in individuals who regularly experience insufficient sleep may offer notable health benefits [6].

Diagnosis of sleep disorders is traditionally conducted in specialized sleep laboratories, which
are usually part of pulmonary, psychiatric, neurological, or paediatric clinics. The standard sleep
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examination performed in clinical settings is known as polysomnography (PSG), which is an
overnight diagnostic procedure with a robust system [7-9] and specialized software that enables the
recording and analysis of biosignals [10]. For comprehensive sleep assessments, PSG remains the
gold standard among all sleep examinations. The advantage of PSG lies in its precise and
comprehensive measurement of physiological parameters, offering valuable insights into the overall
sleep patterns and issues of an individual. During overnight video-polysomnography, patients are
monitored under medical supervision, with numerous sensors attached to the body. The PSG
configuration includes simultaneous recording of electrocardiography (ECG), electrooculography
(EOQG), electroencephalography (EEG), electromyography (EMG), respiration, abdominal and
thoracic respiratory effort, snoring, heart rate (HR), blood oxygen saturation (S5pOz), body position,
and all body movements. The examination is monitored using an infrared (IR) camera to capture
pathological movements during sleep [10,11].

This process requires specialized expertise for polysomnographic montage and subsequent
biosignals processing, and it is both time-consuming and expensive. The sleep quality in patients
undergoing polysomnography is often disrupted by the discomfort caused by the multitude of wires
and sensors attached to the body, limiting natural movement during sleep. The number of
individuals with sleep disorders is growing, which significantly affects waiting times for PSG
examinations. This increase is closely associated with the rising prevalence of OSA, a condition for
which obesity is a major risk factor. With obesity now recognized as a global health crisis, the
challenges related to addressing these issues are becoming more urgent [12]. In this context, another
challenge arises in the availability of diagnostic testing. For example, waiting times for PSG in our
country, Slovakia, typically range from six months to 1.5 years. This situation may result in delayed
diagnosis and subsequent management of OSA patients, which could have negative health
consequences.

The increasing prevalence of sleep disorders, combined with lengthy waiting times and high
costs associated with traditional sleep diagnostics, has driven interest in developing wearable sleep
monitoring devices. Home PSG represents a promising alternative to traditional diagnostic methods,
as it enables non-invasive, more comfortable, less intrusive and long-term sleep monitoring in the
patient's natural environment. Reduced costs are also a significant benefit, as the application of
wearable devices is easier and does not require medical supervision. Home PSG is transforming sleep
monitoring by bridging the gap between clinical diagnosis and patient convenience. This tool refines
detailed assessments of sleep architecture and temporal changes, enabling early detection, more
accurate risk assessment, and targeted disease management which relieves the pressure on sleep
laboratories and healthcare professionals. Thanks to advances in new technologies, wireless
communication and artificial intelligence, wearable devices are becoming increasingly sophisticated
and widely available, allowing for detailed assessment of temporal changes in sleep architecture as
well as obtaining earlier detection and more accurate and effective diagnostics, potentially leading to
a revolution in the field of sleep medicine. Studies have shown that home PSG can provide reliable,
high-quality results comparable to those obtained in laboratory settings [13-15].

The importance of home polysomnographic monitoring is evident in its potential to facilitate
early detection and diagnosis of neurological disorders, where subtle disruptions in sleep patterns
often serve as critical early indicators. Neurodegenerative pathologies such as Alzheimer's disease
(AD) and Parkinson's disease (PD) represent another increasing burden on the healthcare system,
and therefore it is appropriate to search for early symptoms that would help treat the diseases before
the onset of their clinical symptoms. Many studies indicate cognitive, behavioural, sensory and motor
changes preceding clinical manifestations of these diseases. Therefore, monitoring using mobile and
wearable technologies in the home environment again seems ideal [16]. Sleep abnormalities often
occur in neurodegenerative diseases. However, whether this is a suitable parameter for early
diagnosis or whether they appear later in the course of the disease is still under investigation. Sleep
and neurodegeneration have a bidirectional relationship, as sleep-regulating centres are affected by
diseases, and sleep is also associated with the acceleration and worsening of diseases because proteins


https://doi.org/10.20944/preprints202412.2554.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 December 2024 d0i:10.20944/preprints202412.2554.v1

3 of 52

are not removed during sleep and oxidative stress increases [17]. AD and PD are progressive and the
two most common neurodegenerative disorders. As the number of elderly people in the population
increases, the number of cases of these diseases, which have a prevalence that correlates with older
age, is also increasing. AD and PD currently do not have effective treatments, available therapies only
alleviate symptoms and slow their progression. They are usually diagnosed after these symptoms
appear, and early diagnosis is essential for starting treatment as soon as possible. Patients have
impaired thinking and motor skills, but sleep disorders such as insomnia, hypersomnia and excessive
daytime sleepiness have also been found in them. This may stem from damage to the centres in the
brain that control sleep cycles and where neurotoxic forms of amyloid (3-peptide, tau and a-synuclein
accumulate in these diseases [18,19]. For example, treatment of sleep-controlling signalling pathways
in animal models has been shown to slow the progression of AD and PD. However, sleep
disturbances are associated with these diseases and may be predictive of disease progression [20-23].
Studies suggest that early detection of certain sleep patterns may help identify individuals at higher
risk of dementia [17,18].

The increasing focus on sleep disorders as early markers of neurological disorders underscores
the urgent need for accessible and reliable diagnostic tools. This review explores the potential of
wearable and remote devices to advance home polysomnography, paving the way for early detection
of neurodegenerative disorders based on home monitoring and improving patient outcomes by
initiating treatment as early as possible.

As can be seen from the introduction, the motivation to write this review is high. However,
deciding which studies and devices to include is more difficult. Essentially, the analysis of any
physiological variable during sleep can qualify as sleep monitoring. Therefore, we focused on
selecting wearable and remote devices that offer added value, have unique features, and ultimately
contribute to the development of home PSG. The article is structured into two main chapters. Chapter
2, “Physiology of Sleep”, provides an overview of sleep stages, physiological changes during the
night, and how these changes can be affected by neurological diseases. We believe that this theoretical
foundation is essential, as any progressive sleep monitoring device must build on top of it. Chapter
3, “Actual state of Technological Evolution” focuses on the current state of sleep monitoring research
and highlights the most promising devices. It starts with basic systems, categorized by the main
physiological parameter. In the second subsection, we shift our focus on advanced multisensors,
quasi “PSG” products. Each subsection is supplemented with summary technical tables and the
chapter ends with a section on how some of these devices are applied in research and prediction of
neurological disorders. The article finally concludes with a short discussion that touches future
direction of our research and interesting aspects that could not be discussed in detail in the main text,
followed by an overall conclusion.

2. Physiology of Sleep
2.1. Sleep Phases

Sleep is divided into two phases: non-rapid eye movement (NREM) and rapid eye movement
(REM). Individual sleep phases can be mostly distinguished through different patterns of brain
activity, eye movements, and chin muscle tone. NREM sleep comprises most of the sleep and consists
of three stages: falling asleep (NREM 1) which is the state between wakefulness and light sleep, light
sleep (NREM 2), and deep sleep (NREM 3). These stages are characterized by synchronized
electroencephalogram (EEG) activity with specific markers, such as K-complexes and/or sleep
spindles. During NREM sleep, activity of the brain and muscles is decreased, allowing the body to
relax and recover. In contrast, REM sleep is identified by typical rapid eye movements, intense brain
activity, a desynchronized EEG, frequent dreaming, and muscle atonia, except the muscles
controlling breathing and eye movements [24].

In healthy adults, the sleep NREM and REM phases alternate, repeating 4 to 6 times throughout
the night during uninterrupted sleep. A complete sleep cycle for adults lasts approximately 90 to 110
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minutes. About 75% of sleep time is spent in the NREM phase, mainly in light sleep. The first REM
sleep phase is the shortest and occurs before midnight. It gradually lengthens as sleep continues and
the longest REM phase occurs in the early morning. Deep sleep shortens as the night progresses [25].
The recommended sleep length for adult people is 7 to 9 hours [26]. The duration of each sleep stage
changes with age. Unlike in children and adults, sleep cycles in newborns are shorter. Their sleep
consists of quiet (like NREM), active (like REM), and indeterminate sleep (transitional sleep) [27].
Newborns typically sleep for 16 - 18 hours, with the longest uninterrupted sleep episodes lasting 2.5
- 4 hours [25]. As individuals age, changes occur in the distribution of time spent in various sleep
stages. It turns out that sleep cycles lengthen, with quiet sleep increasing, active sleep decreasing, and
time spent in transitional sleep becoming less represented [28]. Typical physiological values for
healthy adults are presented in Table 1.

Table 1. Basic PSG parameters of adults and their physiological values [5].

Sleep parameter Duration !
Sleep onset latency <30 min
NREM 1 3-5%
NREM 2 45 -55%
NREM 3 10 -20%
REM 20 -25%
REM sleep latency 60 - 100 min
Wakefulness after sleep onset 1-5%
Sleep efficiency >85%

! In minutes or % of sleep duration.

2.2. Physiological Changes During Sleep

Building on the previous chapter, we begin our review of physiological changes during sleep
with the most reliable indicator of sleep stages: the EEG, which is often monitored using shared
electrodes with the EOG. Together with chin EMG, these signals provide a detailed understanding
of sleep architecture. Next, we discuss heart rate (HR) and heart rate variability (HRV), which are
among the most assessed physiology in wearable sleep monitoring devices. We then turn to body
movement, with a particular focus on leg movements, followed by respiration—a critical
physiological variable with strong associations with sleep and breathing disorders. Finally, we
examine temperature and blood pressure, which also show distinct and significant variations across
sleep stages.

2.2.1. Electroencephalography, Electrooculography and Electromyography

Each stage of the sleep cycle has clinical and electrophysiological characteristics. In a relaxed
wakeful state with closed eyes, EEG activity presents with higher frequencies compared to sleep,
typically in the alpha wave range (8-13 Hz) and with low amplitude. During non-relaxed
wakefulness, beta waves with a frequency of 14 — 30 Hz are commonly observed [29]. EOG signals
are particularly effective in differentiating REM sleep from non-REM stages because REM is
characterized by rapid, jerky eye movements, whereas non-REM stages show slower or minimal eye
activity. This makes EOG a useful tool for identifying these stages with high precision [30,31]. The
shape of EOG signals during non-relaxed wakefulness varies depending on the activity (e.g., reading,
blinking, or eye rolling). Chin muscle EMG shows sustained tonic activity with high amplitude, while
respiration remains irregular [32].

Sleep stage NREM 1, also called theta sleep, is characterized by low amplitude and mixed
frequency activity, where theta waves dominate (4 — 7 Hz) on the EEG [29]. In this stage, the alpha
rhythm dissipates, and vertex sharp waves, lasting up to 0.5 seconds, become visible. Slow,
conjugated eye movements (SEM) can be observed via EOG during NREM 1. Chin EMG shows a
lower amplitude of tonic activity compared to the wake state, but it is still high [32].

d0i:10.20944/preprints202412.2554.v1
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Light sleep, or NREM 2, also known as spindle or sigma sleep, is marked by theta waves (4 -7
Hz) with low to moderate amplitude [29]. This stage is distinguished by the presence of sleep spindles
and/or K-complexes in the EEG. Sleep spindles are brief bursts of high-frequency activity (11 - 16 Hz)
with a spindle-shaped appearance, while K-complexes are sharp, long-lasting delta waves (~1
second), known as the largest and most noticeable brain waves. K-complexes are important for
maintaining sleep and consolidating memory. This sleep stage typically lasts about 25 minutes during
the first sleep cycle, with duration increasing in subsequent cycles, eventually comprising around
45% of total sleep. Bruxism (involuntary teeth grinding or jaw clenching) may occur in this stage [25].

Sleep stage NREM 3 is often referred to as slow-wave sleep. Slow delta waves (0.5 — 3.5 Hz) with
high amplitude, at least 75 puV, particularly in the frontal leads have occurred. Delta waves take more
than 20% of the time of each EEG epoch during this stage. Eye movement is absent, and EMG of chin
muscle shows lower activity compared to NREM stage 2, with minimal motor manifestations. The
arousal threshold is higher compared to other sleep stages [29]. Deep sleep plays a vital role in the
body's recovery, especially during periods of illness or growth. Metabolic rate reaches its lowest point
[33].

REM sleep, or paradoxical sleep, is distinguished by desynchronized EEG activity, where
sawtooth waves (2 — 4 Hz) with moderate amplitude appear in small clusters. They occur
simultaneously with rapid eye movements, characteristic of phasic REM sleep. Another key feature
is continuous chin muscle atonia, occasionally interrupted by brief muscle twitches. Respiration is
irregular, and emotionally charged dreams occur [24]. REM sleep is important for brain development,
learning, memory consolidation, and emotional processing [34,35].

Recent studies have also shown that single-channel EOG can be a reliable alternative to the more
complex and intrusive EEG for sleep monitoring. For example, a deep-learning approach using EOG
signals achieved comparable accuracy to EEG in classifying sleep stages, demonstrating its potential
for home-based and clinical sleep monitoring [36,37]. This makes EOG especially valuable for
diagnosing disorders like REM sleep behaviour disorder (RBD), insomnia, or circadian rhythm
disruptions, as these often manifest in altered sleep-stage dynamics detectable via EOG. Additionally,
EOG is more user-friendly and less invasive than EEG. Techniques like attaching electrodes to a sleep
mask enable easy data collection, which is practical for long-term monitoring. In disorders like RBD,
where abnormal muscle and eye movements occur during REM sleep, EOG can help detect these
irregularities early, aiding in diagnosis and treatment strategies.

2.2.2. Hear Rate and Heart Rate Variability

Another non-invasive method for sleep stage classification, which is associated with a wide
range of sleep disorders, is HR and its variations in the form of HRV. HR and HRYV are distinct yet
complementary markers that provide critical insights into the autonomic nervous system (ANS) and
its regulation during sleep. Each metric plays a unique role in understanding sleep architecture and
related disorders. HR directly reflects cardiac activity and is particularly valuable for identifying
transitions between sleep stages [38]. During NREM sleep, parasympathetic activity predominates,
leading to a gradual reduction in HR. These physiological changes support cardiovascular recovery,
metabolic conservation, and overall restorative processes. As sleep progresses from lighter NREM
stages (e.g., NREM 1) to deeper ones, parasympathetic (PNS) tone increases while sympathetic (SNS)
tone decreases. This shift leads to reductions in heart rate, lessening the burden on cardiac output
and inducing autonomic stability [39]. Upon entering REM sleep, there is a shift to SNS dominance,
accompanied by abrupt increases in HR [40]. These changes are closely linked to the vivid dreaming
and heightened brain activity typical of REM sleep. The autonomic shifts observed during sleep
suggest that these transitions serve essential autonomic-related functions. In conditions such as OSA,
severe episodes are marked by elevated HR and sympathetic overactivation, especially during REM
sleep. This overactivation contributes to fragmented sleep and significant cardiovascular stress [41].
HRYV on the other hand offers insights into the dynamic balance between the SNS and PNS branches
of the ANS [42]. HRV provides deeper insight into the quality of autonomic regulation during sleep.
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Higher HRV during sleep, reflecting PNS dominance, is associated with better sleep quality and
efficient restorative processes [43]. Lower HRV suggests autonomic imbalance and is linked to sleep
disturbances such as insomnia, fragmented sleep, and increased stress vulnerability. In healthy
individuals, HRV follows a predictable pattern across sleep stages. It is higher during NREM sleep
when PNS activity supports recovery and restorative sleep, and lower during REM sleep, which
involves increased SNS activity [44,45].

Although HR and HRYV are separate metrics, their combined use in sleep research enhances our
ability to understand sleep disorders and autonomic regulation. HR captures immediate
cardiovascular responses, while HRV offers a more nuanced understanding of autonomic flexibility
and adaptation. Together, they provide comprehensive insights into the complex relationship
between sleep, ANS function, and associated pathological conditions like OSA and
neurodegenerative diseases.

2.2.3. Body Movement

Tracking body movement during sleep is a non-invasive method for assessing sleep patterns,
autonomic regulation, and overall sleep quality [46]. Movement patterns, including large body
movements (LMM), vary notably across sleep stages. According to Ibrahim et al. [47], LMMs are more
frequent but shorter during REM sleep compared to NREM sleep, with the lowest occurrence
observed in NREM 3. The authors also noted that men exhibit higher LMM indices than women, and
while the overall prevalence of LMMs remains stable with age, their likelihood of causing
awakenings increases over time. In contrast, Gori et al. [48] found that body movements, including
LMMs, decrease significantly in elderly individuals compared to younger subjects, suggesting a
gradual reduction across the lifespan. Unlike younger adults, whose sleep-related body movements
predominantly occur during REM sleep, elderly individuals showed no preferential association with
specific sleep stages. These findings may reflect age-related changes in the interaction between motor
cortex control and subcortical circuits. This discrepancy may arise from differences in study
populations or methodologies.

LMM indices also correlate with sleep fragmentation, highlighting their potential as markers of
sleep quality and restlessness. These fluctuations are valuable for detecting disruptions such as
apnoea or nocturnal awakenings, which are associated with poor sleep quality, reduced efficiency,
and daytime impairment [49]. Body movement also reflects autonomic regulation, with reduced
movement indicating parasympathetic dominance during deep NREM sleep, and increased
movement signalling sympathetic activation during REM sleep [39].

2.2.4. Respiration

As mentioned in the introduction, many people worldwide suffer from sleep disorders that can
lead to deterioration in their quality of life. These disorders can disrupt sleep patterns (depth and
duration), and manifest in various symptoms such as difficulty falling asleep, snoring, awakenings
during sleep, or more serious health complications. Insomnia and sleep-related breathing disorders
are the most common diseases among all sleep disorders. For that reason, measuring respiratory
activity is crucial for assessing sleep quality, as deviations in normal respiratory patterns can be
indicative of various sleep disorders and overall sleep efficiency (SE). Normal respiratory rates (RR)
at rest typically range between 12 and 20 breaths per minute (rpm) in adults [50], however, this rate
generally decreases during sleep [51]. Accurate monitoring of RR during sleep can help identify
issues such as OSA, central sleep apnoea (CSA), hypoventilation and hypoxemia, or other respiratory
dysfunctions, all of which significantly affect sleep quality [52]. Breathing disorders may involve
interrupted breathing during sleep, caused by pauses or reduced airflow. Although frequently
underestimated, sleep-related breathing disorders pose a serious threat to individual health.

One of the most frequently occurring sleep disorder is sleep apnoea, affecting 9 - 38% of the
global population [2]. OSA alone is estimated to affect up to one billion people worldwide,
predominantly in the age range of 30 to 69 years. Its prevalence continues to rise, primarily due to


https://doi.org/10.20944/preprints202412.2554.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 December 2024 d0i:10.20944/preprints202412.2554.v1

7 of 52

the global increase in obesity, a major risk factor for OSA [53]. Historically, the male-to-female ratio
for OSA prevalence was around 4:1, but it is now believed that many women with OSA have been
underdiagnosed [54]. The epidemiology of CSA has been studied in less detail. CSA is estimated to
affect 5% to 10% of individuals with sleep-related breathing disorders [55]. Untreated OSA, which is
associated with rhythm disturbances, serves as an independent predictor of both systemic and
pulmonary hypertension and more than doubles the risk of heart failure. Such patients have elevated
incidences of ischemic heart disease and stroke, and OSA contributes to metabolic disorders by
affecting endocrine regulation [5]. Common symptoms include intermittent snoring, breath-holding,
frequent awakenings with gasping, nocturia, excessive daytime sleepiness, unrefreshing sleep,
morning fatigue, and issues with concentration. Furthermore, sleep apnoea can impact driving safety,
as sleep interruptions may lead to microsleeps or impaired reaction times, increasing the risk of
accidents on the road. Therefore, early diagnosis is important for patient safety and well-being [29].

In the context of sleep-related breathing disorders, the following terms are often encountered:
Apnoea is defined as a respiratory event lasting more than 10 seconds with a reduction in airflow
amplitude of 290%. A hypopnoeic respiratory event is defined as an event lasting more than 10
seconds with a reduction in airflow amplitude of 230%, associated with a desaturation of at least 3%
and/or an arousal (a brief period of wakefulness lasting 3—-15 seconds) [56]. Desaturation refers to a
drop in oxygen saturation by at least 3%, or 4% in some cases. It is recorded by pulse oximetry and is
commonly associated with apnoeic and hypopnoeic events. Desaturation can also be present in
patients with hypoventilation [32]. The number of desaturations per hour of sleep is expressed by the
oxygen desaturation index (ODI). The severity of obstructive sleep apnoea/hypopnoea syndrome in
adults is classified using the apnoea-hypopnoea index (AHI), which represents the number of
respiratory episodes per hour of sleep (Table 2) [5].

Individual respiratory events are categorized based on the presence or absence of respiratory
effort, which is usually detected through respiratory belts placed around the thorax and abdomen.
Obstructive sleep apnoea/hypopnoea is characterized by an obstruction in the upper airways and
involves preserved respiratory effort. In contrast, central sleep apnoea/hypopnoea is caused by
malfunction in the central nervous system, defined as a respiratory event with no respiratory effort.
Mixed sleep apnoea/hypopnoea is identified as a respiratory event with an initial absence of
respiratory effort, followed by the recovery of effort during the event’s duration [10,56].

Table 2. Classification of sleep-disordered breathing severity in adults [5,57].

Classification of severity of sleep-related breathing disorders AHI?
Without sleep — related breathing disorders <5
Mild severity 5> AHI<15
Moderate severity 15> AHI <30
Severe severity >30

! Apnoea-hypopnoea index.

2.2.5. Body Temperature

During the day, skin body temperature tends to fluctuate slightly between 1 and 2 °C. The
temperature reaches its lowest values in the morning and its highest values in the early evening. This
is the so-called circadian rhythm, which is influenced by melatonin [58]. During sleep, the core body
temperature (CBT) may be 0.4 - 0.6 °C lower than during the day. Body temperature starts to fall just
before the onset of sleep, which prepares the body for night sleep [59]. The extent of the decrease in
CBT just before sleep corresponds to the onset and quality of sleep. A decrease in CBT is also observed
during the duration of sleep, with the lowest temperature being reached in NREM 3 sleep [60]. In
contrast, body temperature increases during REM sleep [61]. By manipulation of the body
temperature, it is even possible to increase sleep quality [62-64], or initiate NREM sleep [65].

2.2.6. Blood Pressure
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During healthy sleep, there is a physiological decrease in systemic BP compared to wakefulness.

This nocturnal decrease is referred to as "dipping" and is attributable in part to a reduction in SNS
activity. NREM is linked with stabilization of BP in healthy individuals, and as it shifts from NREM
1 to NREM 3, there is approximately 5-14% reduction in arterial BP and peripheral vascular

resistance.

Blood pressure in REM sleep is then about 5% higher compared to NREM sleep. A decrease of
10% to 20% in average nocturnal BP (both systolic and diastolic) compared to average daytime BP is

considered normal. Conversely, the absence of nocturnal dipping is referred to as a <10% reduction

in nocturnal BP [61]. Reduced nocturnal BP dip is a strong, independent predictor of cardiovascular

risk [66]. There is a sharp rise in BP during waking. Pulmonary arterial pressure rises slightly during

sleep. Its mean value is 18/8 mmHg during wakefulness and 23/12 mmHg during sleep. [61].

To provide clarity, following previous sections we have compiled a concise overview of the key

physiological changes during sleep in Table 3.

Table 3. Physiological changes during individual sleep stages [25,29,32,61,67].

NREM 1 NREM 2 NREM 3 REM
Typical theta waves (4 — Desynchronized
7 Hz) with low to EEG activity with
medium amplitude. . sawtooth waves of
h
Characterized by Presence of sleep Characterized by 2-4Hzand
. . slow delta waves
LAMEF 1 activity spindles (short bursts of (05 - 3.5 Hz) with moderate
with predominant 11 -16 Hz) and K- ! ’ amplitude,

theta waves (4 -7
Hz). Alpha

complexes (sharp delta
waves lasting 1 s), which

high amplitudes
of at least 75 pV in

appearing in small
clusters in frontal

EEG frontal leads.
activity dissipates, = play key roles in sleep rontal feads leads. Dream
) ) Delta waves .
and typical vertex maintenance and _ activity occurs
. constitute more . .
sharp waves memory consolidation. o with an emotional
. . than 20% of the
lasting up to 0.5 s Phase duration about . undertone. REM
.. . duration of an .
are visible. 25 minutes and sleep consolidates
. EEG epoch.
lengthens with each memory traces
cycle, comprising about and strengthens
45% of TST?2. memory.
Slight decrease Decrease of 5 - 8% Decrease of 5 - 8%
HR compared to compared to compared to Irregular.
wakefulness. wakefulness. wakefulness.
Overall HRV HRYV peaks, LF Significant
increases, LF Overall HRV increases, components are at  decrease in HRV,
component LF component decreases, their lowest, LF component
HRV  decreases, LF/HF LEF/HF ratio decreases, LE/HF ratio increases, LF/HF
ratio decreases, HF component increases. decreases, HF ratio increases, HF
HF component components are at component
increases. its highest. decreases.
Slower rate Ra.te equal or
higher than
compared to Slower rate compared to
RR Slow and regular. wakefulness,
wakefulness, wakefulness, regular. .
reeular breathing
gtar. becomes shallow.
More significant
Decrease . Increase of
compared to Decrease of 5 — 14% decrease than in approximately 5%
BP P compared to NREM 2, 5 -14% PP yo%n
wakefulness, less compared to
wakefulness. lower than
pronounced than NREM sleep.

wakefulness.
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in NREM 2 and
NREM 3.
Decrease Increase
Decrease compared to Largest
CBT compared to compared to
wakefulness. temperature drop.

wakefulness. NREM sleep.

!Low mixed frequency, 2 Total sleep time.

2.3. Altered Sleep Physiology in Neurological Diseases

The relationship between sleep and neurodegenerative diseases is not yet well-understood, but
it is certain that they are closely related. Sleep disorders are common in these diseases, and it is being
investigated how this fact can be used to slow cognitive decline and for early diagnosis. Diseases
such as AD and PD begin before they manifest as either movement disorders (PD) or forgetfulness
(AD), and the search for symptoms that occur in the early stages is very important to improve the
quality of life of patients [68-70].

The conventional diagnosis of PD has traditionally been recognized as a movement disorder
based on motor features such as bradykinesia, rigidity, and tremor. Nonmotor symptoms have
become increasingly important in recent years, as they frequently result in hospitalization and
increase the cost of patient care and may be an earlier indicator of the disease than movement
problems. Sleep disorders certainly have clinical significance. Insomnia, daytime sleepiness, restless
legs syndrome, and RBD affect more than 90% of PD patients and worsen over the course of the
disease, also, OSA is frequent in PD [69,71]. For example, a finding in the brains of people with PD is
the loss of dopaminergic neurons in the substantia nigra, and RBD could serve as an early sign of
changes in dopaminergic neurotransmission [72]. In fact, many patients with RBD who have been
monitored have developed a neurodegenerative disorder [73]. PSG analyses demonstrate a beneficial
role of NREM 3 [69,74] and suggest that REM sleep may help maintain neuronal homeostasis because
its disruption leads to neurodegeneration [75]. Determining the exact changes in PSG in PD patients
and controls is not straightforward, as the study groups are highly heterogeneous in different studies,
and age or sex can have varying effects. Sleep duration in middle-aged adults is a predictor of age at
diagnosis of PD disease, and short duration (< 7 hours) is associated with a younger age at diagnosis
of PD [76]. Chronic short sleep duration (< 7 hours per day) reduces the brain's ability to clear the
accumulation of toxins and proteins, which may contribute to PD as well as AD. The study by Tanaka
et al. provides insight into the number of turns during sleep and thus, reduced sleep activity could
be an early indicator of PD (specifically, less than 6 turns per night) [77]. Reduced turning frequency
may precede muscle weakness. Specifically, PSG studies have been conducted by Yong et al. [78],
who used PSG to investigate sleep disorders in PD and conducted one of the largest case-control
studies involving overnight polysomnographic evaluations of 56 PD patients and 68 healthy controls.
The analysis showed that patients had shorter sleep time, lower sleep efficiency, and increased REM
latency.

Tracking body movements during sleep is crucial for diagnosing and monitoring sleep disorders
such as periodic limb movement syndrome (PLMS) and restless legs syndrome (RLS), and for
evaluating patients with neurodegenerative conditions like PD and AD. In patients with PD and AD,
symptoms such as restless sleep, movements during sleep, and repetitive leg movements often
indicate sleep-related disorders. Monitoring these movements can not only aid in early diagnosis but
also serve as a tool for assessing the effectiveness of therapeutic interventions aimed at improving
sleep quality [17,79].

Monitoring EMG activity during sleep can detect subtle muscle activity that often precedes overt
physical movements, facilitating early diagnosis of RBD [80]. This is particularly important because
RBD is strongly associated with neurodegenerative disorders, especially PD. Studies indicate that a
significant proportion of individuals diagnosed with idiopathic RBD go on to develop PD or other
synucleinopathies, such as dementia with Lewy bodies or multiple system atrophy, over time [81-
83]. Identifying RBD early through EMG monitoring allows for closer neurological follow-up and


https://doi.org/10.20944/preprints202412.2554.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 December 2024 d0i:10.20944/preprints202412.2554.v1

10 of 52

may provide a critical window for early interventions, potentially slowing the progression or
mitigating the impact of associated neurodegenerative conditions. Especially with automatic
identification from data from polysomnography and EMG, this identification can be faster and free
from manual scoring bias [84].

In AD patients, the disease causes the accumulation of amyloid-8 protein, which aggregates into
plaques, and later tau protein, which leads to atrophy of key brain regions. It has been found that
insufficient deep sleep is associated with early symptoms, and in older people who sleep poorly,
increased amounts of tau protein are found. PSG studies of sleep changes in AD have suggested, but
not fully demonstrated, a relationship between sleep disturbances and AD. Overall, studies show
that better sleep is associated with lower risk or slower progression of AD [85]. Ju et al. [22] found
that A deposition in preclinical AD before the onset of cognitive impairment was associated with
poorer sleep quality, and frequent napping was also associated with amyloid deposition, but no
changes in sleep quantity were found. Patients experience significant reductions in total sleep time
(TST), sleep efficiency, and percentage of slow-wave sleep (SWS) and REM sleep, and, conversely,
increases in sleep latency, wake time after sleep onset, and number of awakenings. Reduced SWS and
REM significantly correlate with the severity of cognitive impairment in patients [86]. Disrupted SWS
activity significantly increased amyloid-f protein levels. REM sleep helps maintain neuronal
homeostasis in the brain, and its disruption negatively affects neurogenesis, and its loss likely leads
to neurodegeneration and increased tau protein levels. [87,88]. Changes in EEG components and
sleep spindles have also been observed. It has been found that insufficient deep sleep is associated
with early symptoms, and that increased amounts of tau protein are found in older people who sleep
poorly [89]. Pulver et al. [90] show that EEG recording is important for early diagnosis of AD because
neural circuits associated with memory generate oscillatory events including theta bursts (TB), sleep
spindles (SP), and slow waves (SW), and in AD there are changes in these events, with reduced TB
spectral power in SW-TB connections and lower accuracy in SW-SP connections compared to
amyloid-negative individuals. Disturbed nighttime sleep, characterized by restless and subsequent
daytime fatigue may signal a future diagnosis of AD. Roh et al. [91,92] reported that after the
formation of amyloid-§ plaques in a mouse model, the sleep-wake cycle is disrupted, and after their
removal, the cycle returns to normal, demonstrating a link between neurodegeneration and sleep.
The plaques are present in the brain long before symptoms appear. Gaeta et al. [93] conducted a PSG
study in patients with mild to moderate AD, also testing cerebrospinal fluid (CSF) and blood samples
for biomarkers. They used a multimodal Machine learning (ML) approach. The results showed that
multimodal ML can help predict the outcome of CSF biomarkers in early AD, the impact of
hypoxemia on higher CSF Amyloid levels, and hypopnoea and apnoea events associated with levels
of pathological AD markers and cognitive decline. Tao et al. [94] used baseline PSG data from mild-
to-moderate AD patients and older healthy controls, with AD patients showing a lower percentage
of time spent in slow-wave sleep (and a correspondingly higher percentage of time spent in lighter
NREM 1 sleep), lower spindles per minute of NREM 2 sleep, and lower absolute EEG power during
NREM sleep, particularly in the low-frequency bands.

Neurological disorders, including synucleinopathies, disrupt the balance of the ANS, leading to
reduced HRV and atypical sleep patterns. These reductions are often associated with degeneration
in brain regions responsible for autonomic regulation, such as the brainstem and cortical areas. HRV
analysis during sleep can provide valuable insights into biomarkers for disease progression,
therapeutic targets, and mechanisms underlying autonomic dysfunction. It may also serve as an early
indicator of complications in neurodegenerative diseases.

In PD, impaired HRV has been associated with disease severity, the duration of motor
symptoms, and the dosage of dopaminergic medications [95,96]. Devos et al. [97], also observed
progressive nocturnal cardiac dysregulation as PD advances. Specifically, the more advanced the PD,
the lower the high-frequency (HF) HRV components and the higher the low-frequency/high-
frequency (LF/HF) ratio. This pattern indicates diminished vagal output and increased
sympathovagal balance during sleep. HRV patterns also appear to distinguish PD patients with RBD
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from those without it, supporting HRV’s potential as a digital biomarker [98]. In AD, studies [99,100]
indicate reduced parasympathetic activity, reflected in low HF-HRV during SWS, particularly in
older adults at risk for dementia. This reduction is most pronounced in individuals with amnestic
mild cognitive impairment (MCI), a precursor to AD. These findings suggest that parasympathetic
activity during SWS might serve as an early biomarker of neurodegeneration, providing peripheral
evidence of underlying pathological processes [100]. Both AD and PD are characterized by reduced
HRV during sleep, but their underlying mechanisms differ. These distinctions highlight the role of
HRYV as a non-invasive tool for understanding the pathophysiology of neurodegenerative diseases,
particularly during REM and non-REM sleep stages.

There are multiple sleep disorders associated with neurodegeneration, and accurate diagnosis
can be challenging, but the use of home PSG is able to capture these diverse symptoms, and
appropriate algorithms would be able to detect specific disorders [70]. However, there is also
heterogeneity among studies, and thus further research is needed to identify specific early markers
of neurodegenerative diseases to ensure high patient coverage. Overall, several studies of PSG have
been conducted on AD and PD patients and indicate the suitability of PSG for monitoring patients
with neurodegeneration and early manifestations of these diseases. The specific factors are in the
research phase, but they hold great promise for early detection of diseases and early treatment.

3. Actual State of Technological Evolution

The field of sleep monitoring devices has evolved significantly due to technological advances
and the growing consumer demand for accessible health insights (Figure 1). This chapter
systematically reviews these technologies, starting with the most widespread and progressing to
more specialized approaches, reflecting their current role in the emerging field of sleep monitoring.
Each section highlights the unique capabilities, limitations, and advances of these devices,
highlighting their impact on consumer health and clinical diagnostics.

Overall, the chapter is structured into three subchapters. The first focuses on basic devices that
rely primarily on a limited range of physiological parameters, offering a simple approach to sleep
monitoring (Table 4). The second subchapter explores more advanced systems, which utilize multiple
physiological parameters and can be considered as variants or extensions of traditional PSG
technology (Table 5). Finally, the third subchapter delves into research applications specifically
targeting neurological disorders, often employing devices described in the previous sections.
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Figure 1. Sleep monitoring devices: (a) ePPG—own designed multisensor with PPG, temperature and movement
sensors for sleep analysis [10]; (b) SleepActa actigraphic monitor with Dormi algorithm [101]; (c) UMindSleep
EEG based sleep tracker. Reprinted from ref. [102]; (d) Airgo chestbelt for sleep respiration disorders monitoring.
Reprinted from ref. [103]; (e) Withing sleep analyser based on BCG placed under bed mattress. Reprinted from
ref. [104]; (f) Wearable apnoea detection device. Reprinted from ref. [105]; (g) Somnofy—radar system for
contactless analysis of sleep stage and RR. Reprinted from ref. [106]; (h) Flexible humidity sensor in facemask
for sleep apnoea monitoring. Reprinted from ref. [107]; (i) Modular respiratory polygraphy device
SOMNOtouchTM Resp. Reprinted from ref. [108]; (j) Wireless PSG device SOMNO HD. Reprinted from ref.
[109]; (k) Wireless wearable sleep monitoring patches. Reprinted from ref. [110]; (I) Advanced wearable
headband and wrist device WPSG-I. Reprinted from ref. [111].
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3.1. Basic Sleep Monitoring Devices
3.1.1. PPG-Based Devices

Photoplethysmography (PPG) is a non-invasive method based on optical measurement of
volume changes in the blood circulation and has the great advantages of being simple and
inexpensive. PPG signals can be sensed and recorded from various body positions such as the wrist,
finger, ear, nose, forehead, arm, neck, etc [77,112-117]. It uses a light source (LED) and a
photodetector (PD) to record volume changes in blood circulation related to variations in light
absorption, thus providing information about HR, pulse oximetry values, and enabling the
monitoring of various cardiovascular diseases. The incorporation of this method is very popular on
hands [118], mainly in smart watches like Apple watch 10 (Apple Inc., Cupertino, CA, USA), Xiaomi
Mi Band 9 (Xiaomi, Beijing, China), FitBit Sense 2 (Google Inc., Mountain View, CA, USA) [118-123],
smart rings (Oura Ring (Oura Health, Oulu, Finland), O: Ring (Wellue, Shenyhen, China), RingConn
Gen 2 (RingConn LLC, Wilmington, DE, USA) [124-126] and various other multi-sensor devices for
measuring human physiology that are also suitable for continuous measurement [127]. The use of
PPG sensors for sleep monitoring is interesting for its ability to capture the modulation of the
autonomic nervous system during sleep. The combination of PPG with accelerometery helps to
construct hypnograms in sleep and detect sleep-disordered breathing (SDB) [128]. The combination
with other sensors also seems interesting to obtain results, for example, in conjunction with brain
activity. Using PPG and the developed algorithm, it is possible to detect the onset of sleepiness
approximately 9 minutes before sleep onset by analysing the change in the LE/HF parameter [129] or
sleep stage in conjunction with body movements. The use of PPG for sleep monitoring is suitable for
home long-term monitoring of insomnia, circadian rhythm sleep disorders, treated SDB, OSA
[128,130,131].

One of the most precise PPG-based sleep trackers currently available is the Oura Ring
Generation 3 and 4. Using ML algorithms and a dataset of over 1,200 PSG-validated recordings, the
Oura Ring achieves 79% agreement with PSG [132], approaching the reliability of human experts,
which is 83% [133] and 88% [134], respectively, in sleep stage scoring. The Oura Ring uses HR and
movement data to classify sleep into light, deep, REM, and wake stages. Its IR PPG sensors allow for
deeper tissue monitoring, providing more accurate physiological measurements, such as HRV,
compared to devices which rely on green light for more superficial signal capture. While IR light is
more prone to movement artifacts, the Oura Ring compensates for this by integrating movement
data. Green light, commonly used in other devices, offers a better signal-to-noise ratio [135], but lacks
the depth of IR light, making it less effective for certain physiological assessments. The Oura Ring 4
features an 18-path multi-wavelength PPG system that improves accuracy. In contrast, the Oura Ring
3 uses a single/dual-wavelength PPG system, which is effective but less precise particularly in
challenging conditions like movement or skin tone variations. Additionally, the Oura Ring features
a negative temperature coefficient (NTC) sensor to directly monitor nighttime skin temperature.
Although this data is not used for sleep stage classification, it provides valuable insights into recovery
and illness. A study published in [136] supports the Oura Ring's accuracy in sleep tracking compared
to other methods. A study [137] validated the accuracy of Oura's Sleep Staging Algorithm 2.0,
showing its measurements closely matched PSG, with sleep staging accuracy ranging from 75.5% for
light sleep to 90.6% for REM sleep. Tisyakorn et al. [138] screened for moderate to severe OSA with
an Oz ring [124]. The study included 190 participants with an AHI of 50.4 and compared it with
standard PSG. The optimal cutoff for 11% ODI was 1.25 events/hour lasting 20 s. He achieved a
sensitivity of 87.30% and a specificity of 78.70%. The area under the receiver operating characteristic
curve for identifying OSA was 0.91. The SVM (Support vector machine) model demonstrated a high
sensitivity of 97% in screening moderate to severe OSA but had a low specificity of 50%.

Another device is the WHOOP 4.0 (Whoop, Boston, MA, USA). WHOOP's PPG system includes
three green LEDs, which enhance the accuracy of heart rate measurements, one red LED for SpO:
monitoring, and one IR LED for tracking HRV. WHOQOP also uses PPG data to estimate RR and
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calculate HRV. In addition to PPG, WHOOP 4.0 integrates data from multiple sensors, including a
3D accelerometer and gyroscope that detect movement and body orientation. These sensors,
combined with PPG data (HR, HRYV, resting HR, and RR), offer a more detailed analysis of sleep
patterns and stages. Like the Oura Ring, WHOOP features a temperature sensor, though it does not
use NTC technology. Instead, WHOOP monitors ambient and skin temperature, primarily for
assessing stress and recovery, rather than sleep stage classification. Although WHOOP 4.0 has not
yet been extensively validated in peer-reviewed studies, a study published in [139] supports the
accuracy of WHOOP 3.0 in classifying sleep stages. WHOOP claims that the 4.0 model offers a 10%
improvement in accuracy compared to the 3.0, largely due to enhancements in sensor technology,
including the addition of SpO2 and skin temperature sensors [140]. Among PPG-based sleep trackers,
such as the Samsung Galaxy, Apple Watch, Garmin, Xiaomi Mi Band 5, and Google's Pixel Watch,
Fitbit stands out as one of the most well-validated options, particularly the Sense 2 and Charge 5
[141]. These models use advanced algorithms based on HR and movement data (via accelerometer)
to classify sleep into a simpler three-stage system: Light, Deep, and REM sleep. While Fitbit tracks
HRYV, it does not use HRV directly for sleep stage classification. Instead, HRV contributes to
evaluating sleep quality, recovery, and overall health. Fitbit uniquely provides explicit SpO2 metrics,
which help identify breathing irregularities potentially linked to sleep apnoea, though this
information is presented as trends rather than direct alerts. The Sense 2 also includes an
Electrodermal Activity (EDA) sensor, which helps address stress-related sleep disruptions, indirectly
improving sleep quality. Additionally, both models monitor nightly skin temperature variations.
Another device is the UpNEA [118], which is in the form of a smart glove. It contains a 3-axis
accelerometer on the wrist connected to a PPG sensor on the finger. The device is mainly suitable for
determining sleep stages, apnoea, hypopnoea, but of course it can also identify HR, SpO, RR and
atrial fibrillation. The apnoea and hypopnoea detection algorithm showed an accuracy of 75.1% when
displaying the PPG window in one-minute segments. From the accelerometer, we can distinguish
CSA from OSA with an accuracy of 92.6% and central hypopnoea from CSA with an accuracy of
83.7% and OSA from obstructive hypopnoea with an accuracy of 82.7%.

The devices described so far have been used on the wrist or finger. Young children and babies
are often monitored on their feet. Regarding the application of PPG in less traditional locations, it is
worth mentioning the study of Venema et al. [142], which explored PPG worn in the ear canal. The
authors highlighted the reliability of home measurements without the need to conduct all
measurements in laboratory conditions, where sensor results were compared with standard PSG
monitoring. They diagnosed sleep apnoea and evaluated the dynamics of HR, SpO2 and discussed
methods for deriving RR from PPG signals. Another study [143], utilized a device placed at the root
of the nose for home all-night screening of sleep-disordered breathing, called Morfea. This device is
designed to detect sleep apnoea and assess various sleep parameters. Morfea contains a PPG sensor
with two LEDs, a microcontroller, a 3D accelerometer, a Bluetooth unit and a battery with a guarantee
of 9 hours of acquisition. The recorded data is filtered with a bandwidth of 0.3 Hz to 3.5 Hz for
processing the PPG signal to preserve the cardiac and respiratory components and remove high-
frequency noise. A filter with a bandwidth of 0.2 - 3.5 Hz is used to process the signal from the
accelerometer. Morfea is effective in detecting sleep apnoea and can also identify five different body
positions during sleep, can estimate SpO2, which is a direct indicator of sleep apnoea, can measure
HR and determine the severity of sleep-disordered breathing. The device's limitations include its
inability to distinguish between apnoea and hypopnoea and its inability to classify sleep. The study
results show an 89% sensitivity and 93% accuracy in detecting sleep apnoea. Also of note is the review
by Perez-Pozuelo et al. [144] dedicated to sleep detection outside the clinic using wearable HR
measurement devices.

Measurements using PPG sensors provide very valuable information about the overall
physiological state of the patient and, in addition to HR, RR and SpO:, pulse oximetry can allow the
measurement of other vital parameters such as thermoregulation or blood pressure fluctuations, thus
reducing the number of sensors on multisensor devices.
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3.1.2. Actigraphic Devices

Accelerometers, as part of actigraphy devices, are usually made in the shape of wristbands or
anklets and are focused on detecting cycles of sleep or wakefulness. They do not provide detailed
information about sleep stages but are acceptable and effective tools for assessing disorders related
to sleep patterns [145] such as insomnia, and circadian rhythm disorders [146]. Sleep interpretation
from actigraphy assumes that little or no movement is registered during sleep, while wakefulness
corresponds to higher movement activity. It quantifies movement exceeding a predetermined
threshold [147]. When an actigraphy device is placed on a foot [148], it is possible to detect RLS or
PLMS in sleep. It can determine the duration, amplitude, and periodicity of movements, as well as
the severity of PLMS.

A typical wrist-worn actigraphy systems are ActTrust 1 and ActTrust 2 (Neurocare Group AG,
Munich, Germany) [149]. These devices enable the estimation of various objective sleep parameters,
including time in bed (TIB), wake after sleep onset (WASO), sleep onset latency (SOL), TST, and SE.
They contain an accelerometer, temperature sensors for measuring skin and ambient temperature, as
well as an RGB light sensor and an IR sensor for monitoring environmental light exposure. The
battery in these devices is rechargeable and allows monitoring for long periods, up to three months,
on a single charge. For advanced monitoring, including also light exposure, the ActLumus (Condor
Instruments, Sao Paulo, Brasil) device [150] has been developed, which additionally includes
photopic and melanopic light sensors. It offers 10 light channels and features off-wrist capacitive
sensor monitoring. Next actigraphy system, the ActiGraph wGT3X-BT (ActiGraph LLC, Pensacola,
FL, USA) [151], is a proven wearable device utilized by researchers worldwide for continuous, real-
world monitoring of sleep and activity. This device excels in tracking various metrics, including
physical activity (total movement, step count, energy expenditure, etc.) and estimation of basic sleep
parameters mentioned above. It can communicate via Bluetooth LE, enabling the monitoring of
parameters such as HR. Hayano et al. [152] made quantitative detection of sleep apnoea using inertial
measurement unit (IMU) embedded in wristwatch devices. 122 adults underwent parallel PSG
examinations. They operated with both accelerometric and gyroscopic signals and developed an
algorithm to extract signals in the respiratory frequency band (0.13-0.70 Hz) and detect respiratory
events as transient (10-90 s) decreases in amplitude. The respiratory event frequency correlated with
AHI of the PSG with r=0.84, and the accuracy for moderate apnoea was 85% and for severe apnoea
89%. One of the promising algorithms used for sleep analysis in wearable sleep trackers is Dormi
(Sleepacta, Pisa, Italy) [101,153]. Dormi uses a neural network to process raw data from lightweight,
non-intrusive wearable activity trackers typically designed for tracking physical activity. Actigraphs
using the Dormi artificial intelligence algorithm assess sleep quality and duration over a 24-hour
circadian cycle. Actigraphic reports from Sleepacta calculate and provide sleep parameters essential
for analysing sleep, such as TST, SE, WASQ, sleep regularity index. Dormi is CE-certified Class I
medical device.

Modern actigraphy systems use a combination of PPG sensors, temperature sensors, gyroscopes,
and barometers to provide comprehensive insight into a person's sleep [154]. By integrating multiple
sensor types, these advanced actigraphy systems can monitor various physiological parameters, such
as HR, body temperature, and movement, allowing for a more detailed analysis of sleep quality and
patterns. A good example is the Somno-Art® [155,156], which utilizes a 3D accelerometer to monitor
movements and PPG to measure HR for determining all sleep stages. This medical device, certified
with a CE mark, consists of an armband that collects data and standalone software equipped with Al
algorithms for automatic sleep analysis, producing a corresponding hypnogram. It uses Bluetooth
technology for wireless communication, enabling seamless data transfer. Scientifically validated
studies have shown that its outcomes are comparable to PSG. The device achieved a sleep-wake
detection accuracy of 87.8%, with a sensitivity of 93.3% and a specificity of 69.5%. The overall
accuracy for detecting all sleep stages, including NREM 1, NREM 2, NREM 3, REM, and wake, was
68.5%, based on a sample of 246 patients compared to traditional PSG [156]. Finally, we must
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highlight an article dedicated to algorithms in actigraphy [157] and the combination of actigraphy
with PPG [158].

3.1.3. EEG-Based Devices

While most wearables are designed for practical use on the wrist or finger, several specialized
devices focused specifically on sleep monitoring, utilizing EEG technology, are worn by different
means in the head area. Due to a direct sensing of the brain activity, EEG principle is considered the
most accurate in sleep-tracking (capable of identifying all stages of sleep) and reliable in disorder
diagnosing. A disadvantage of conventional medical devices is the large number of monitoring
electrodes and their time-consuming setup, which can disrupt natural comfort and affect the results.
Modern telemedicine devices are starting to make the implementation, self-application and usage
way easier [145].

Among the head accessories, headbands like the Muse S (InteraXon Inc., Toronto, Canada) [159],
are very popular. In addition to EEG data, it's capable of monitoring HR, movement and position
and breathing patterns, offering a comprehensive picture of sleep tracking. In comparison, the Dreem
3 (Beacon Biosignals, Boston, MA, USA) [160] integrates EEG data with these metrics to provide
detailed insight into the sleep quality. By using machine learning algorithms to analyse brainwave
data, it helps to track sleep architecture and diagnose any disturbances [161]. Similarly, thanks to the
artificial intelligence, the lightweight forehead monitor UMindSleep (EEG Smart, Shenzhen, China)
[162] is also able to evaluate sleep records and diagnose disorders, such as OSA. On top of that, it can
record snoring, forehead temperature, body movement and position, HR and SpO:. Another design
introduced a convenient ear monitor [163], which makes its use barely noticeable. The structure is
composed of memory foam and flexible electrodes. Highly elastic foam can detect signals caused by
physical deformation of ear canal walls. Finally, there was a successfully tested set [164] with
forehead EEG (and EOG) electrodes and chin EMG electrodes. All these setups have shown high
consistency with standard polysomnography in terms of total sleep time, sleep efficiency, and
latencies, although there are some differences in sleep stage measurements [165].

3.1.4. Respiratory-Based Devices

Chest belts, whether in their traditional form or as smart patches, are highly effective for
respiratory monitoring during sleep due to their ability to provide continuous, accurate, and non-
invasive measurements of thoracic and abdominal movements. They are particularly useful for
identifying respiratory patterns and disruptions, which are critical for diagnosing sleep-related
breathing disorders such as OSA.

The Airgo belt (MyAir Inc., Boston, MA, USA) [103], for instance, uses a resistance-based sensor
positioned at the lower ribcage to detect changes in chest circumference. The belt itself is made from
stretchable materials with silver-coated yarn. The Airgo band incorporates Bluetooth and can process
both live and recorded data. The device also includes an IMU for activity and position detection. In
study [166], the Airgo belt was used for sleep monitoring of 120 patients, compared with respiratory
sleep monitor Nox T3 (Nox Medical, Alpharetta, GA, USA) [167]. Results showed that the Airgo belt
was able to classify OSA patients at different stages with 95.8% accuracy. The study by Wu et al. [168]
proposed a chest belt based on respiratory inductive plethysmography (RIP) technology, specifically
aimed at continuous sleep monitoring. In this study, two RIP belts were integrated into a suit to
enhance comfort. Additionally, new signal processing algorithms were developed for RR extraction.
Results from experiments on 10 healthy subjects showed a relative error of 15% when comparing the
data with the commercial device BIOPAC MP150 (BIOPAC Systems Inc., Goleta, CA, USA). The
device’s portability and digital design make it suitable for both clinical and home environments,
where it can support the detection of sleep-related respiratory disorders. Hernandez et al. [169]
developed a wireless, real-time, battery-operated system for monitoring respiratory effort and body
position, using an IMU sensor placed on an elastic belt. This system employs data fusion techniques
to monitor respiratory effort in both supine and lateral recumbent positions. The device was
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compared with a standard respiratory belt and was validated through the Pearson correlation
coefficient (PCC), with an average PCC of 0.963. Limitations include a restricted sample size of only
one healthy subject due to ethics approval constraints. For better accuracy assessment, more testing
subjects are needed. Another study conducted by Kristiansen et al. [170] investigated a low-cost strain
gauge respiration belt called Flow, used in combination with a Convolutional neural network (CNN)
for sleep apnoea severity estimation. The study involved 29 subjects undergoing unattended sleep
monitoring at home, using the Flow respiration belt and the Nox T3 device simultaneously. The
results demonstrated an accuracy of 0.7609, sensitivity of 0.7833, and specificity of 0.7217.

New alternatives to chest belts could be smart sensor patches. In a study by Selvaraj [171], a
wireless patch sensor, VitalPatch (VitalConnect, San Jose, CA, USA), was used for monitoring the
sleep architecture of 42 volunteers, comparing results with standard PSG. VitalPatch is an FDA-
approved, disposable device capable of measuring single-lead ECG, HR, HRV, skin temperature,
body position, fall detection, and respiratory rate. The results showed an accuracy of 80.5 + 8.3% and
a Cohen’s kappa of 0.50 + 0.18 in 3-class sleep stage prediction. Zavanelli et al. [172] created a wireless
soft patch capable of measuring Seismocardiography (SCG), ECG, PPG, and derived parameters such
as SpO,, HR, respiratory effort, and RR. The patch consists of a flexible circuit on an elastomeric
membrane and features integrated nanomembrane electrodes. Machine learning algorithms were
implemented for automatic detection of apnoea’s and hypopnoeas, achieving 100% sensitivity and
95% precision compared with professionally acquired data.

A very useful alternative method for measuring respiration during sleep is bioimpedance
measurement. This method is gaining popularity mainly due to its integration into biopotential
transducers, such as the circuit series ADS129xR [173], AFE4960 [174], AFE4500 [175] (Texas
Instruments, Dallas, TX, USA), or ADAS1000 [176] and MAX30001 [177] (Analog Devices,
Wilmington, MA, USA). Among the applications in the field of sleep, research is worth mentioning
Van Steenkiste et al. [178] which introduced a novel wearable device called ROBIN, designed to
measure impedance changes during breathing, along with ECG and acceleration measurements. For
automated sleep apnoea event detection, a two-phase long short-term memory (LSTM) deep learning
algorithm was implemented. The study involved 25 patients, with their vital signs simultaneously
recorded using a bioimpedance sensor and standard PSG. The results demonstrated that the device
achieved an accuracy of 72.8%, sensitivity of 58.4%, and specificity of 76.2%.

3.1.5. Ballistographic Sensors

The potential of ballistographic (BCG) sensors for contactless sleep monitoring opens
compelling avenues for tracking biosignals without directly applying sensors on the body. BCG
operates effectively through integration into everyday objects like mattresses, bed frames, and chairs,
enabling unobtrusive, long-term sleep assessment. This approach is beneficial for tracking HR, HRV,
RR, and broader physiological signals that indicate sleep health and quality. It is effective in
identifying a range of sleep disturbances including insomnia, sleep apnoea, bruxism, RLS, nocturnal
epilepsy, sleepwalking, and narcolepsy [179]. However, BCG is generally less effective in capturing
fine neural activity typical in EEG-based sleep stages, making it better suited for general monitoring
and longitudinal studies.

A leading example of a BCG-based device is the Emfit QS Active (Emfit Ltd, Vaajakoski, Finland)
sleep monitor, placed beneath the mattress, which continuously records HR, HRV, RR, sleep stages,
movements, recovery, stress levels, snoring, and overall sleep quality [180]. Mack et al. [181]
employed two mattress pressure pads for BCG in a sleep-monitoring system to assess HR and RR in
40 healthy subjects, in conjunction with PSG. Zhao et al. [182] utilized oil pressure sensors embedded
in a micromovement-sensitive mattress to assess sleep apnoea syndrome by applying a knowledge-
based support vector machine (KSVM) model, processing HR and RR data from 42 subjects over three
nights. The Yi collective [183] developed a non-invasive hydraulic bed sensor for sleep stage
classification, comprising four small pressure sensors under the mattress that capture small-
amplitude movements, including BCG signals during each cardiac cycle and respiratory phases.

d0i:10.20944/preprints202412.2554.v1


https://doi.org/10.20944/preprints202412.2554.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 December 2024 d0i:10.20944/preprints202412.2554.v1

18 of 52

Using SVM and KNN (K-Nearest Neighbours) models, they achieved 85% accuracy with a kappa of
0.74 for REM, NREM, and awake detection. Further studies that demonstrate BCG’s versatility are
Silva et al. [184] who applied Murata SCA11H (Murata Electronics, Vantaa, Finland) BCG sensors
with a Random Forest algorithm to classify sleep stages. Alivar et al. [185] described a BCG-based
motion detection algorithm within a smart bed system that effectively quantified restlessness, with
Neyman-Pearson and sequential detection methods achieving 95% and 96% sensitivity for sleep
movement. Liu et al. [186] identified OSA by exploiting event phase segmentation of BCG signals,
yielding a precision of 94.6% and recall of 93.1%, as validated against 3,790 OSA events. Xian Li et al.
[187] used a piezoelectric film sensor for BCG monitoring in 32 subjects, providing foundational data
for future BCG-based vital sign monitoring. Wang et al. [188] applied BCG to assess the severity of
sleep apnoea, estimating the apnoea-hypopnoea index by identifying sleep-related respiratory
events. In clinical validation, Nurmi et al. [189] tested an accelerometer-based BCG sensor, validated
with PSG in 20 subjects, showing parameter accuracy within a 95% confidence interval. Hwang et al.
[190] established an accurate apnoeic events monitoring method using a polyvinylidene (PVDF) film.
For min-by-min they classified sleep apnoea with a sensitivity of 72.9%, specificity of 90.6% and
accuracy of 85.5%. Another smart device is a MEMS 3D accelerometer and pressure sensor-based belt
by He et al. [191], which is placed under the patient and aims to detect vital signs, snoring events,
and sleep stages. The accuracy of snoring detection is 97.2% and sleep stage detection is 79.7%. The
combination of BCG and actigraphy is also increasingly popular, as noted by Jaworski et al. [121,192],
which enhances movement and cardiovascular data interpretation for comprehensive sleep analysis.
Next device, Withings Sleep Analyser (Withings, Issy-les-Moulineaux, France) [104], is a unique
combination of two powerful sensors placed under the mattress at chest level with a one-time setup.
A sound sensor identifies audio signals specific to snoring and cessation of breathing episodes, and
a pneumatic sensor measures HR, RR, and body movements across the mattress. It allows in-depth
analysis of sleep cycles and detection of sleep apnoea and its severity with medical grade.

The narrative review by Balali et al. [193] provides a comprehensive overview of innovations in
respiratory signal extraction, cardiorespiratory interactions, and Al applications in BCG monitoring
outside clinical settings. They highlight the benefits of BCG in cost-effectively improving clinical and
home sleep monitoring. Lastly, Sadek et al. [194] present an in-depth review of sensor technologies
for BCG, detailing signal processing methods for analysing HR, RR, and sleep stage classification,
demonstrating BCG’s expanding role in sleep health monitoring.

3.1.6. Acoustic-Based Devices

Acoustic sensors represent a promising, non-contact approach to sleep monitoring, leveraging
sound analysis to assess physiological and environmental factors without body-worn devices. Their
capacity to detect and interpret signals such as breathing patterns, snoring, coughing, and ambient
noise is invaluable for monitoring sleep-related breathing disorders like sleep apnoea, as well as
disturbances like restless leg syndrome and sleep talking. Acoustic sensors effectively capture
respiratory events—monitoring rate and rhythm changes without disrupting the sleeper’s natural
environment. Some limitations, such as potential signal interference from environmental noise and
variability in complex respiratory condition analysis, exist. However, advancements in acoustic
signal processing, machine learning, and noise-filtering algorithms are addressing these limitations,
enhancing the reliability of acoustic sensing in identifying sleep stages and respiratory events. Some
products and research use their own microphone designs, but a large portion relies on mobile phone
microphones for practical reasons.

Romero et al. [195] used acoustic screening to detect OSA in 103 participants through deep
neural networks, achieving sensitivities and specificities of 0.79 and 0.80 for moderate OSA, and 0.78
and 0.93 for severe OSA, making it suitable for implementation on consumer smartphones.
Markandeya et al. [196] and Nakano et al. [197] further monitored sleep apnoea, with Nakano’s study
emphasizing snoring as a critical sound indicator for sleep apnoea. Penzel et al. [198] employed
tracheal sounds for sleep apnoea diagnosis with the PneaVox (CiDELEC, Sainte-Gemmes-sur-Loire,
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France) sensor, designed with an airtight plastic chamber to minimize ambient noise and capture
tracheal sounds accurately. This sensor is placed near the suprasternal notch and attaches via double-
sided adhesive tape. It records respiratory sounds typically in the 200-2000 Hz range and snoring
sounds from 20-200 Hz. In a study conducted on 20 children, PneaVox demonstrated high reliability
compared to a traditional polygraph (PG) device, indicating its utility in paediatric apnoea
identification. A wearable medical device, AcuPebble SA100 (Acurable Limited, London, UK) [199],
also utilizes acoustic sensing to detect OSA. This compact, circular device (2.9 cm diameter, 1.4 cm
height, 7g weight) is affixed to the neck with disposable medical adhesive. It uses piezoelectric MEMS
microphones and algorithms to capture and analyse respiratory events, heart rate, and breathing
rhythm throughout the night. Although it does not provide direct PPG data or absolute oxygen
saturation levels, it can detect oxygen desaturations through acoustic signal features. The device
achieves a high diagnostic accuracy for OSA, with a specificity of 96.8% and sensitivity of 92.7%.
Rodriguez-Villegas et al. [105] developed a compact (3.74 x 2.4 x 2.1 cm, 17g) wearable acoustic sensor
for detecting apnoea and hypopnoea, with a small microphone chamber affixed to the neck via
adhesive patches. The device demonstrated 77.1% sensitivity and 99.7% specificity in apnoea and
hypopnoea detection. Fang et al. [200] developed a wireless acoustic sensor attached near the nose
with a commercial headset for recording respiratory data during sleep, while Werthammer et al. [201]
focused on infant apnoea detection, comparing respiratory sounds to trans-thoracic impedance and
ECG.

3.1.7. Radar Systems Devices

Radar-based sensors enhance user comfort by eliminating the need for wearable devices or
physical contact. They are installed at a distance, such as on a ceiling or bedside table, ensuring
minimal intrusion while maintaining accurate respiratory monitoring. This makes them especially
suitable for long-term sleep studies and for populations sensitive to traditional sensor-based setups,
such as children or elderly individuals.

Resuli et al. [202] developed a non-invasive device for monitoring respiration and sleeping
posture, using a radio frequency (RF) sensor. The researchers used the Vayyar RF (Vayyar, Yehud-
Monosson Israel) with a carrier frequency of 6.014 GHz to collect signals for 13 different sleeping
postures. All reflections were captured by a frequency modulated continuous wave (FMCW) signal.
The collected data were compared with a respiration belt. The RF sensor was placed on the ceiling,
2.3 m above the bed. The results showed 90% accuracy for RR estimation with the chest facing directly
toward the sensor, 87% with the head positioned on the opposite side of the bed, and 86% while
sitting. Turppa et al. [203] used another FMCW radar sensor for measuring RR, HR and HRV during
sleep. The study involved ten subjects in different lying positions. The fast Fourier transform (FFT)-
based cepstral analysis was used for HR extraction, and the autocorrelation function was applied to
the phase signal for RR extraction. The carrier frequency of the radar was 24 GHz with a 250 MHz
bandwidth. The measurement system achieved a correlation of 86% for HR and 91% for RR, when
compared with reference signals acquired by the certified PSG device, Embla Titanium (Raftopoulos,
Athens, Greece). A very interesting device is Somnofy (Vitalthings AS, Trondheim, Norway) [106],
which, in the form of an alarm clock, uses radar to detect RR, sleep phases, and restlessness, while
also monitoring habits, lighting, atmospheric pressure, air quality, humidity, and temperature.
Somnofy is an impulse radio ultrawideband radar with a carrier frequency of 23.8 GHz. For signal
processing, it uses FFT every second for each preceding 20-second time window of measured data.
In the study by Toften et al. [204], they used this device for measuring RR during sleep from 37
healthy adult subjects. Another 6 healthy participants were recruited for a 3-month-long use of the
Somnofy device during sleep in a home environment. The results of the study showed Bland-Altman
95% limits of agreement ranging from -0.07 to -0.04 respirations per minute, compared with a
reference RIP sensor. Further analysis showed that measurements were more accurate during deep
sleep (NREM 3) and light sleep (NREM 1 or 2) than during other sleep stages (wake and REM). Dong
et al. [205] designed a custom radar-based system with an algorithm for identifying respiratory
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variables and extracting respiratory phases and amplitude during sleep. The system consists of a
radar sensor with a 24 GHz signal, a microcontroller unit (MCU) for signal preprocessing, and a Wi-
Fi module for transmitting data to the cloud server. The measured data from the radar system were
compared with data from the gold-standard PSG, simultaneously measured for ten subjects.
Experimental results revealed an accuracy of 97% for respiration-to-respiration interval (RRI), 93%
for inhale duration, and 92% for exhale duration assessment. Based on the accurate detection of RRI,
it was also possible to distinguish between REM and NREM sleep. The SleepScore Max (SleepScore
Labs, Carlsbad, CA, USA) [206] is a non-contact sleep monitoring device designed for bedside use,
eliminating the need for wearable sensors. It measures movement, breathing, and environmental
factors such as light and temperature to assess sleep quality and duration. Results are presented as a
personalized Sleep-Score™, accessible via a companion app that offers evidence-based guidance for
improving sleep. Validated in over a dozen peer-reviewed studies, it provides one of the most
accurate non-contact sleep tracking outside clinical settings. Studies also demonstrate its ability to
enhance sleep quality within one week of use. The study [207] presents a non-contact sleep
monitoring device called S+. It operates by emitting low-power radio wave pulses at a frequency of
10.5 GHz to detect body movements. The effective range of the device is 1.5 meters, ensuring accurate
measurement of the intended person. The device is designed to detect respiratory patterns, overall
body activity, room temperature, light, and sounds. It evaluates sleep stages — light, deep sleep, REM
and wake. The device’s accuracy for sleep-wake detection was 87%, compared to PSG. Its sleep
sensitivity, exceeding 90%, was notably higher than its specificity, which ranged from 70% to 75%.
The accuracy in evaluating individual sleep stages reaches 68% for each stage.

The last device, WiFi-Sleep [208], does not directly fall under radar devices, but it still works on
the principle of influencing the RF signal by human physiology, so we'll include it here after all. WiFi-
Sleep is designed for practical application in real-life environments, offering a reliable solution for
long-term sleep monitoring. This innovative system tracks sleep across four stages through key
components: data collection, detection of respiration and body movements, and sleep stage
classification. By utilizing standard Wi-Fi devices, WiFi-Sleep delivers a non-intrusive, cost-effective,
and real-time method for comprehensive sleep analysis. The system operates with a pair of Wi-Fi
transceivers, strategically placed with the subject positioned between them. Future developments
will focus on expanding the system's ability to detect sleep-related conditions like chronic insomnia,
RLS, and sleep apnoea. Additionally, the system's functionality will be enhanced by refining the
analysis of respiration waveforms, tracking body movements, and detecting PLM, leading to
improved accuracy.

Further research on radar-based sleep monitoring is extensively discussed in the following
review articles [209-211].

3.1.8. Breath Gas Monitoring Devices

Temperature, humidity and pressure sensors are suitable for sleep monitoring, and they can
analyse breath during sleep and be useful for detecting early physiological changes [212-214]. The
use of these sensors is based on the fact, that exhaled air is warmer, more humid and contains more
CO:z compared to inhaled air. Although most of the exhaled air is nitrogen, oxygen, water and carbon
dioxide, even a low concentration of volatile organic compounds can provide valuable information
about various diseases which also include neurodegenerative disorders [215,216]. The advantages of
the temperature, humidity, and pressure sensors are non-invasiveness, painlessness and the
possibility of long-term monitoring. Recently, sensors made of flexible materials that can be adapted
and seamlessly integrated into face masks or attached as a nasal patch are preferred and developed
[217-219].

Inhalation and exhalation generate airflow that mechanically interacts with pressure sensors,
and the signals are further transformed into measurable electrical signals. An interesting idea is self-
powered breath sensors that simultaneously sense and harvest energy by utilizing the piezoelectric
or triboelectric effect [220,221]. Temperature sensors commonly use thermistor materials such as the
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patch temperature sensor [222], nanofiber membrane colorimetry with thermochromic dye [223] or
pyroelectric nanogenerators [220,224,225]). Exhaled breath temperature can effectively indicate
inflammatory markers and changes in bronchial blood flow, making it a useful tool for identifying
respiratory conditions such as asthma or lung cancer. [226]. Cao et al. [227] proposed a wearable
respiratory sensor based on thermally sensitive materials to monitor normal and abnormal breathing,
ideal for sleep monitoring. Pang et al. [228] fabricated a smart face mask capable of recognizing 8
breathing patterns. The sensor uses novel 3D carbon nanofiber mats as active materials to
simultaneously realize pressure and temperature sensing. The moisture content of inhaled and
exhaled air is a very important indicator of the physiological state of the monitored person. Humidity
sensors monitor the interaction between the sensing material and water vapor in the gas based on the
amount of water molecules on the surface of the material where they bind. Monitoring changes in
relative humidity records the frequency and intensity of breathing and distinguishes nasal and oral
breathing [229]. These changes indicate respiratory health, sleep quality, hypertension, etc. Honda et
al. [107] developed a highly stable humidity sensor that can wirelessly monitor sleep apnoea in real
time and in a home environment. The flexible humidity sensor is on a mask and has a ZnIn:S.
nanolayer, which is sensitive to humidity with high sensitivity and stability for more than 150 hours.
Ma et al. [230] designed a low-cost, flexible, and easy-to-process paper moisture sensor for
monitoring sleep breathing in the form of a patch. They achieved high sensitivity and application for
monitoring sleep apnoea. The sleep mask NiteAura (Linkface, New York, NY, USA) for breathing
care monitors breathing conditions and breathing during sleep, helping people with sleep-disordered
breathing and setting appropriate conditions to help achieve deeper sleep [231]. It has multiple built-
in sensors - for humidity, temperature and IMU.

There are several articles about humidity, pressure, and temperature sensors, and for use in
monitoring early stages of diseases and determining the overall physiological condition of the
patient, their incorporation into wearable systems with an overall evaluation of multiple factors is
suitable.

Table 4. Basic sleep monitoring devices.

Type Application Sensing Element Key Parameters Ref.
PPG HR, SpOz, sleep  PPG (2x LED + [Oura Ring], 106 subjects, ML [132]
stage PD), temperature,  using 5-fold cross-validation,
3D IMU Sleep/wake accuracy 94% from
in ring accelerometric model and 96%

from ANS and circadian features,
4-stage detection 57% resp. 79%,
ARM Cortex MCU, Bluetooth

PPG HR, SpOy, sleep PPG, [Xiaomi Band 9], Ambient light [120]

stage, movement  accelerometer, sensor, Bluetooth, 45 subjects,

gyroscope on Sleep stage accuracy 78%,
wristband Sensitivity 89%, Specificity 35%,
k=0.22

PPG HR, SpOz, sleep PPG, IMU, [Apple watch], Temperature, [123,136,139]

stage, movement, temperaturein Ambient light sensor, Bluetooth,

ECG, OSA smartwatch Processor 510 SiP, Memory
64 GB, GPS, Sleep stage

agreement 53% (k1= 0.2),
Sensitivity 50.5-86.1%, Precision

72.7-87.8%
PPG HR, SpO, PPG, [O2Ring], 190 subjects, ODI [124,138]
movement, OSA,  accelerometer sensitivity 87.30% and specificity
ODI in ring 78.70%, SVMs model for OSA

with sensitivity 97% and
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specificity 50%, Sampling rate
150 Hz, BLE, Recording time 16
hours, HR accuracy +2 bpm,
SpO: accuracy *3%
PPG HR, SpO2, RR, PPG (3x green + [WHOOP 4.0], Sleep stage [139,140]
HRYV, skin red + IR LED, 4x agreement 65% (ic = 0.52)
temperature, PD)
stress, sleep stages
PPG HR, SpOy, ECG, PPG, BT, 3D [Fitbit Sense 2], NFC, Ambient [119,141]
EDA, sleep accelerometer in light sensor, Wi-fi, GPS +
patterns, stress, smartwatch Glonass, Bluetooth, OSA
OSA, movement sensitivity 88%, OSA specificity
52%, TST and SE overestimation
10%, Sleep stage sensitivity 61.7-
78%, Precision 72.8-73.2%

PPG HR, SpOz, RR, 3D accelerometer [UpNEA], MAX-30101 PPG, [118]
sleep stages, and PPG in glove MAX-21105 IMU, PPG sampling
central and rate 100 Hz, Accelerometer
obstructive sampling rate 50 Hz, BLE,
apnoea/hypopnoea Tachycardia/bradycardia/atrial

fibrillation/premature ventricular
contraction detection,
Accuracy 75.1% for
apnoea/hypopnoea detection,
Central vs obstructive accuracy

about 83.2%
PPG HR, SpO2, RR, In-Ear PPG 16-bit, MSP430F1611 [142]
OSA microcontroller
PPG HR, SpO, RR, PPG (red + IR [MORFEA], MAX-30102 PPG, [143]
head position, LED), LSM6DSM accelerometer,
apnoea 3D accelerometer Sampling rate 50 Hz, Modulation
on the nasal of PPG by breath, PSD?2 and
septum PWA 3 method, Sensitivity 89%

and precision 93% of apnoea
detection, Bluetooth,

Recording time 9h
Actigraphic =~ Movements, 3D MEMS [MotionWatch 8], Sleep patterns, [148]
light exposure accelerometer, PLMS detection,
light sensor Circadian rhythm disorders,
Memory 4 MBits,

Recording time 3 months,
Weight 9.1 g without strap

Actigraphic Movements, 2D accelerometer, [ActTrust 1], Sleep patterns and [149]
ambient and body = RGB - IR light, activity, Circadian rhythm
temperature, light  temperature disorders, Memory 4 MB,

Recording time 3 months,
Weight38 g

Actigraphic Movements, 3D accelerometer, [ActTrust 2], Sleep patterns and [149]
ambient and body = RGB - IR light, activity, Circadian rhythm
temperature, light  temperature disorders, Accelerometer

exposure sampling rate 25 Hz, Memory 8

MB, Resolution 12-Bit, Digital
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time display, Recording time 3
months, Weight 35 g
Actigraphic =~ Movements, 3D accelerometer, [Act Lumus], Sleep patterns and [150]
ambient and body RGB - IR light, activity, Circadian rhythm
temperature, light  temperature, disorders, Accelerometer
exposure melanopic, Off-  sampling rate 25 Hz, Memory 8
wrist MB, Resolution 12-Bit, Bluetooth,
capacitive sensor Recording time 1 month, Weight
3lg
Actigraphic Movements, Accelerometer,  [ActiGraph wGT3X-BT], Sleep [151]
light exposure light sensor patterns and physical activity,
Weight 19 g, Sampling rate 30 —
100 Hz, Memory 4 GB, Recording
time 25 days, BLE
Actigraphic Movements, OSA, IMU, [SleepActa], RTC, Sampling rate ~ [101,153]
temperature 100 Hz, 78 subjects, Dormi

algorithms (Waso, TST, SE, SRI#),
CE Class I medical device, MCC?5
0.4 for mild AHI and MCC 0.3
for severe AHI
Actigraphic HR, activity 3D accelerometer, [Somno-Art], Sleep classification, [155]
PPG Insomnia, OSA, Narcolepsy
detection, Al algorithms for

automatic sleep analysis,
Bluetooth, Accelerometer
sampling rate 250 Hz,
Sleep/wake accuracy 87.8%,
Sleep stages accuracy 68.5%,
Recording time 40 hours

EEG EEG, HR, 4-channel EEG, [Muse S], Sleep tracking & [159]
breathing, body PPG, 3D IMU, evaluation
movement and  respiration in the
position headband
EEG EEG, HR, S5p0O;, 5-channel EEG, [Dreem 3S], Sleep tracking, Al [160]
movement, PPG, respiration, quality evaluation & disturbance
breathing accelerometer on diagnosis
temperature the headband
EEG EEG, HR, S5p0O;, 1-channel EEG, [UmindSleep], Sleep tracking, [102,162]
CBT, body PPG, Forehead temperature, Al
movement and 6-axis IMU evaluation & disorder diagnosis

position, snoring  sensor, sound,
pressure sensor
on the forehead

EEG EEG, sleep Highly elastic Sleep tracking [163]

tracking memory foam,
flexible electrodes

EEG EEG, EOG, chin 10x EEG, 1x EOG Sleep tracking [164]
EMG on the forehead,
EMG electrodes

Respiratory RR, tidal volume, Resistance-based Sleep disorder screening, Sleep [103]

minute ventilation,  sensor, IMU staging, Respiratory pattern
body position detection, Posture and activity

detection,
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Bluetooth, Class Ila certified
medical device,

Respiratory ~ RR, breathing Textile RIP
rhythm and depth integrated into a

suit,

3D accelerometer

Smart signal processing
algorithm, Sampling rate 10 Hz,
Wireless communication, Peak
power consumption 140 mW,
Radio transmission range 20 m,

[168]

Respiratory Respiratory effort, IMU sensor

body position

MCU CC2650 with ARM Cortex-
M3, 16-bit resolution IMU,
Wireless communication

[169]

Respiratory ~ Sleep apnoea Strain gauge

sensor

Sampling rate 10 Hz, Bluetooth,
CNN ¢, Accuracy 0.7609,
Sensitivity of 0.78, Specificity of
0.72

[170]

Respiratory  RR, HR, HRYV,
ECG, skin
temperature,

ECG,
thermometer,
accelerometer

Adhesive chest patch, Single use
and fully disposable, Sleep
staging, Wireless
communication,

Class Ila certified medical device

[171]

Respiratory RR, RE, HR, SpOz,
sleep apnoea

PPG, ECG, SCG

PPG sampling rate 200 Hz, ECG
sampling rate 120 Hz SCG
sampling rate 500 Hz, Sleep
staging, Bluetooth,
Recording 10-hour, Sensitivity
100%, Precision 95%

[172]

Respiratory ~ Sleep apnoea BioZ?7 sensor

BioZ sampling rate 1024 Hz,
ECG sampling rate 512 Hz,
Stimulation signal 8 kHz — 160
kHz, Accuracy 72.8%, Sensitivity
of 58.4%, Specificity of 76.2%

[178]

AFES? RR, ECG, EEG ADS129xR

8-channels, 24-bit, Sampling rate
250 Hz - 32 kHz, CMRR° -115
dB, Internal oscillator

[173]

AFE Respiration, ECG AFE4960

2 channels, 22-bit, Single ADC,
SPI and I2C
interface, Sine wave or square
wave excitation

[174]

AFE Respiration, ECG, AFE4500

optical HR

4 input channels, 22-bit, single
ADC, SPI and I>C
interface

[175]

AFE Respiration, ECG ADAS1000

5 acquisition channels and one
driven lead, SPI/QSPI interface,
AC and DC lead-off detection

[176]

AFE Respiration, ECG MAX30001

High input impedance (>1 GQ),
SPI, 32-word ECG,
8-word BioZ, FIFO 0, EMI !
filtering,

ESD 2 protection, DC leads-off
detection

[177]

BCG RR, HR, HRYV, Dynamic ferro-
sleep, movement, electret under the

snoring, stress mattress

[Emfit QS] Sleep monitoring,
Stress level,
Sleep quality and classification

[180]
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BCG HR, RR Two pressure  [NAPS], BCG evaluation in sleep, [181]
pads on mattress 40 subjects
BCG HR, RR Set of oil pressure  16-bit, Sampling rate 100 Hz, [182]
sensors in KSVM 3 model, 42 subjects/3
mattress nights, Apnoea precision rate
90.46% and recall rate 88.89%,
BCG HRV, RR Hydraulic Sleep quality and sleep related [183]
variability transducers disorders, SVM and KNN
under the classification methods, Sampling
mattress rate 100 Hz, Sleep stages
detection accuracy 85%, k =0.74
BCG HR, HRV, RR, Murata SCA11H Sleep management, Random [184]
stroke volume sensors (IMU) Forest algorithm, Sleep phase
under the classification, Wi-Fi
mattress
BCG HR, RR 300 x580 mm  Quantification of sleep quality, [185]
electromechanical restlessness, Neyman-Pearson
film sewn into a detection test, Sequential
fitted sheet detection algorithm, 16-bit,
Sampling rate 250 Hz, 94% and
95.2% accuracy in sleep and
restlessness state identification
BCG RR, OSA events Micromovement Apnoea Phase, Respiratory effort [186]
sensor in phase and arousal phase, 38
mattress subjects, BP neural network,
Accuracy 94.6%, Recall 93.1%
700 x 30 mm Sampling rate 140 Hz, 32 [187]

BCG HR, RR, sleep
quality piezoelectric film  subjects, AMPD ™ algorithm,
sensor beneath  Correlation coefficient 0.95, MAE
the mattress 1.78 bpm for HR, Correlation
coefficient 0.98, MAE 0.25 rpm

for RR
BCG HR, RR, sleep 4 pressure Sleep apnoea syndrome severity, [188]
apnoea syndrome sensors in 136 subjects,
mattress Resolution 16-bit, Wavelet
decomposition, Physio ICSS
based algorithm, Accuracy
94.12%
BCG HR, HRV, RR, = Murata SCA11H Sleep stage detection, 20 subjects, [189]
RRYV, respiratory ~ sensors (IMU)  Sampling rate 1kHz, Correlation
depth, movement under the coefficient 0.97 for HR, 0.67 for
mattress HF HRV, 0.54 for LF HRV, 0.54
for RR, 0.49 for RRV, Wi-Fi
BCG HR, RR, apnoea 4 x1array PVDF 26 apnoea patients + 6 healthy [190]
and hypopnoea film-based sensor subjects, NI-DAQ 6221 (National
under silicon pad Instruments, Austin, TX, USA),
on mattress Sampling rate 250 Hz, PCA 15
method, Correlation coefficient
for AHI 0.94, Apnoea detection
with 72.9% sensitivity, 90.6%
specificity and 85.5% accuracy
BCG HR, RR, snoring, = MEMS ISM330 STM32F411 ARM processor, [191]
sleep stages DLC3D Accuracy for HR 1.5 bpm, for RR
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classification accelerometer 0.7 rpm, Snoring recognition
and 97.2%, Sleep stage prediction
pressure sensor 79.7%
array on mattress
BCG Sleep stages, HR, Murata SCA11H 6 subjects, Nonlinear methods, [121]
HRYV, RR + LSTM model, 73% agreement to
Apple watch 8 + PSG
actigraphy device
BCG HR, apnoea, Pneumatic and [Withings Sleep Analyzer], [104]
snoring sound sensor Medical-grade apnoea
under mattress  detection, Sleep cycles detection,
Bluetooth, Wi-Fi
Acoustic  OSA, respiratory Smartphone DNN architecture, 3x CNN [195]
sounds, apnoea, layers, Adam optimizer, Mel-
AHI frequency analysis, Sampling
rate 256 Hz,
103 subjects, Sensitivity 0.79 and
specificity 0.80 for moderate
OSA, Sensitivity 0.78 and
specificity 0.93 for severe OSA
Acoustic  OSA, respiratory Smartphone Calibrated by oesophageal [196]
sounds iPhone 7 pressure manometry, ML
algorithm, 13 subjects, Prediction
of APes 6 with MAE "7 6.75 cm
H20, r=0.83
Acoustic OSA, snoring, Smartphone FFT analysis, 10 kHz Sampling [197]
apnoea, AHI rate, 50 subjects,
Snoring time correlation r = 0.93,
AHI correlation
r=0.94, OSA sensitivity 0.7, OSA
specificity 0.94
Acoustic OSA, snoring Tracheal sound Sensitivity 99.4%, Specificity [198]
and 93.6%
suprasternal
pressure sensor
PneaVoX
Acoustic Apnoea Tracheal sensor 63 subjects, OSA accuracy [199]
AcuPebble SA100 89.77%,
Central vs obstructive apnoea
accuracy 82.54%
Acoustic Apnoea, Tracheal sensor WADD and SOMNO automated [105]
hypopnoea WADD software, 20 healthy and 10

apnoea diagnosed subjects,

Apnoea detection sensitivity

88.6% and specificity 99.6%

Acoustic OSA, snoring ~ Wireless headset Sampling frequency 11 kHz, Mel- [200]
Plantronics M165 scale based features, 8 subjects,
near nose Snore detection accuracy 96.1%,
Abnormal detection result
accuracy 93.1%

Acoustic Apnoea Body worn audio  MSP430 microcontroller, SPP, [201]
amplifier Orthogonal Matching Pursuit
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algorithm, Accuracy 80%,
Bluetooth,
Streaming 8 kb/s
Radar RR, restless time ~ Vayyar FMCW 8 6.014 GHz, 14 transmitting and [202]
radar over bed 13 receiving antennas, 13

different sleeping postures,
Distance 2.3m,
RR accuracy 86 - 90%
Radar HR, RR, FMCW radar 24 GHz, 250 MHz bandwidth, [203]
sleep analysis over bed FFT based on
cepstral and autocorrelation
analyses, 11 subjects,
HR correlation 86%, RR
correlation 91%
Radar RR, sleep stages, Radar sleep [Somnofy] 23.8 GHz, [106]
restlessness monitor in form Environment monitoring (sound,
of alarm clock light, pressure, air quality,
humidity,
temperature), Night reports,
Sleep assessment, Alerts
Radar RR, sleep scoring Radar sleep [Somnofy] 23.8 GHz, FFT, 37 [204]
monitor in form subjects, RR with MAE 0.18,
of alarm clock  Accuracy of sleep detection 0.97,
Accuracy of wake detection 0.72
Radar RR, inhale/exhale Radar-based IoT 2 x 4 linearly polarized antenna [205]

duration, system on array on PCB,
NREM/REM stage  bedside wall Distance 40-100 cm, FIR filter
detection (VMD ¥, CEEMDAN 2, LOES 2!

algorithm), AMPD algorithm,
Sampling rate 100 Hz, RR
accuracy 97%, Inhale duration
accuracy 93%, Inhale duration
accuracy 92%, Wi-Fi

Radar RR, movement, Radar on bedside [SleepScore Max tracker] [206]
sleep stage table Automated sleeping scoring
detection
Radar RR, movement, Radar on bedside [S+ ResMed] 10.5 GHz, Emitting [207]
sleep stage table power 1 mW,
detection Distance 1.5 m, Environment

monitoring (room temperature,
light, and sounds), 27 subjects,
Sleep detection accuracy 93.8%,
Wake detection accuracy 73.1%

Radar Body movements, Wi-Fi based [WiFi-Sleep], Sleep stage [208]
respiration, system analysis, PLMS,
apnoea Accuracy for sleep classification
81.8%,

Future developments - detecting
chronic insomnia

Breath gas Sleep monitoring, Platinum thermal Response time 0.07 s, Sensitivity [227]
apnoea, sensor on patch  1.4%. °C-1, Sampling rate 32 Hz,
hypopnoea, 16-bits resolution, 10t order

breathing
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Butterworth 3Hz low-pass filter,
RR filter 0.2-0.5 Hz Bluetooth
Breath gas Sleep monitoring, Pressure, Recognizing 8 breath patterns, [228]
respiration temperature 3D carbon nanofiber mats,
sensors in discrimination between oral and
facemask nasal breathing, human body's
physiology analysis
Breath gas Respiration, Humidity sensor Highly stable, Wireless [107]
apnoea, RR, in facemask monitoring Real time sleep
NREM/REM stage apnoea, Znln2S4 nanolayer, High
detection sensitivity and
stability, Operating time 150
hours
Breath gas Respiration, Easy-to-process Low-cost, Flexible, High [230]
apnoea, paper humidity sensitivity 5.45 k()/% RH,
breathing sensor on patch  Repeatability 85.7%, Sampling
rate 18 Hz,
Battery 3.7V

Breath gas Respiration, sleep Humidity, [NiteAura], Breathing conditions [231]
breathing patterns,  temperature, during sleep, Help with sleep-

humidity level, accelerometer, disordered breathing and set
temperature barometer, appropriate conditions to achieve
gyroscope, IMU deeper sleep
sensors in
facemask

! Cohen’s kappa , 2 Power spectral density, 3 Pulse wave amplitude, * Sleep regularity index, > Matthews
correlation coefficient, ® Convolutional neural network, 7 Bioimpedance,  Analog front-end, *Common mode
rejection ratio, 1° First in- first out, ' Electromagnetic interference, 2 Electrostatic discharge protection, '
Knowledge-based support vector machine, '* Automatic multiscale-based peak detection, > Principal component
analysis, '° Peak to through differences, 7 Median of absolute error, ® Frequency modulated continuous wave,
Y Variational modal decomposition, 22 Complete ensemble empirical mode decomposition, 2! Locally estimated

scatterplot smoothing.

3.2. Advanced Sleep Monitoring Devices

In the field of sleep medicine, the accurate diagnosis and monitoring of sleep disorders is crucial
for effective treatment. Modern monitoring devices (Table 5) detect a wide range of sleep disorders,
not only in the hospital but also in the home environment. These devices vary in complexity, ranging
from simpler limited respiratory polygraphs that focus mainly on respiratory parameters to modular
devices offering greater diagnostic capability, and full PSG systems, which provide comprehensive
sleep analysis.

3.2.1. Limited Respiratory Polygraphy

A limited respiratory polygraphy is monitoring device that records at least 4 channels, including
two respiratory channels (e.g. airflow, respiratory effort), SpOz2 and HR or ECG [232]. This device is
typically classified as a Type III device according to the American Academy of Sleep Medicine
(AASM). It is a simpler form of full-night PSG, which usually does not record EEG, EOG or EMG,
meaning it does not provide detailed information about sleep stages [233]. This makes PG useful for
diagnosing sleep-related breathing disorders, allowing for the determination of their severity,
positional dependence, and the type of sleep-related breathing disorder (e.g., obstructive, central or
mixed). A device that does not normally include EEG determines the AHI using total recording time
(TRT) or time in bed (TIB). Due to its simple setup, it is ideal for home monitoring. Its main
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advantages include portability, affordability, and fast result evaluation [234-236]. Modern
respiratory PG devices support the connection of additional sensors, enabling expanded and more
detailed monitoring of diagnostic parameters, as further described in the following section.

An example of a typical PG system is the portable monitoring device Samoa (Léwenstein
Medical SE & Co. KG., Bad Ems, Germany) [232][233]. PG device uses a nasal pressure cannula for
detecting pressure differences during breathing, and a thermistor is utilized to monitor temperature
changes associated with respiration. The respiratory effort of the thorax and abdomen is captured by
pressure rubber pads integrated into the straps. Additionally, a finger sensor measures SpO2, PPG,
and HR, and an internal light sensor continuously tracks the brightness of the sleeping environment.
The device also includes an integrated acceleration sensor to detect body position and activity. The
Samoa device features a built-in microphone for capturing breathing sounds and is powered by a
rechargeable Li-lon battery.

Another device used to diagnose sleep breathing disorders is the PG device Alice NightOne
(Philips Respironics, Murrysville, PA, USA). The configuration of this device includes data channels
for respiration, such as a nasal pressure cannula and a thoracic respiratory belt based on RIP to
monitor respiratory effort. Additionally, it records snoring, SpO2, HR, PPG, and body position [238].
It can identify five different positions (upright, right side, left side, supine, and prone). The device is
equipped with 4 GB of internal storage memory. To power the monitoring device, two AA alkaline
batteries (1.5 V) or two AA rechargeable batteries (1.2 V) with a minimum capacity of 2400 mAh are
required. The compact diagnostic device Alice NightOne measures 10.34 x 2.51 x 6.78 cm and weighs
84 g, excluding batteries and sensors. The sampling rate of the pulse oximetry is 62.5 Hz [239].

A wide variety of PG devices are available on the market from various leading companies in
sleep medicine. In addition to those mentioned above, other devices include ApneaLink™ Air
(ResMed, San Diego, USA) [240], Cadwell's ApneaTrak (Cadwell Industries Inc., Kennewick, USA)
[241], SOMNOtouch RESP eco (SOMNOmedics AG, Randersacker, Germany) [242,243], and others.
These devices vary in design, technical specifications, and price.

3.2.2. Modular Systems

Modular monitoring systems are flexible diagnostic devices designed to allow clinicians and
researchers to modify the configuration of recording parameters based on specific medical and
research needs. These systems include removable sensors that allow targeted data collection while
reducing the overall burden on the user. For example, in addition to the basic parameters that
conventional PG can detect, modular devices can measure EEG, EOG, EMG of the chin muscles, or
ECG by integrating additional sensors into the system for more comprehensive sleep analysis. By
integrating these additional channels, modular systems bridge the gap between simpler respiratory
polygraphs and full polysomnography setups, offering a scalable solution for more comprehensive
sleep monitoring. The adaptability of modular systems extends their applicability to diverse patient
populations, including paediatric and geriatric groups. Modular systems enhance operational
efficiency by allowing healthcare professionals to upgrade devices incrementally rather than
investing in entirely new systems. This approach reduces costs and increases accessibility in clinical
and home settings. Some devices may prioritize portability and ease of use, while others focus on
advanced monitoring capabilities or the possibility of real-time monitoring.

Such modular systems, like the SOMNOtouch™ RESP (SOMNOmedics AG, Randersacker,
Germany), offer versatility and straightforward operation thanks to their compact design and
integrated features. The device is a modern touch-screen respiratory PG with a colour display and a
built-in Li-Ion battery. Besides the basic channels (airflow, effort, HR, SpOz), the SOMNOtouch™
RESP includes an integrated actigraphy sensor for tracking movements. Based on body position and
actigraphy, a detailed evaluation of sleep and wakefulness can be performed. The device can be
upgraded to a PSG system by connecting EEG, EOG, EMG, and ECG channels. It is one of the lightest
devices in its category, weighing only 64 g without sensors, and measuring 8.4 cm x 5.5 cm. The
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device employs an innovative algorithm to determine blood pressure using the Pulse Transit Time
(PTT) parameter [108,244].

Another device that is important to mention is the Nox T3s™ (Nox Medical, Alpharetta, GA,
USA). The polygraph is an advanced device for sleep monitoring that operates without the need for
traditional EEG, EOG, or EMG signals, which are commonly used to track brain activity during
different sleep stages. Instead, it uses a proprietary algorithm that identifies physiological changes
that correspond to brain activity changes. This is done through Nox RIP technology and actigraphy.
In addition to the basic monitored parameters, the device also features two integrated bipolar ExG
channels that can record additional data, depending on the application. This portable system contains
built-in 3D sensors for tracking body position and activity, as well as an upgraded microphone for
clearer snoring detection. It offers 4 GB storage capacity and can record continuously for up to 24
hours on a single AA battery. The device uses Bluetooth 5.0 LE, which allows it to measure signals
from other compatible auxiliary devices. It also features a USB Type-C port under the battery cover
for device configuration and data download. The Nox T3s™ device is configured with Noxturnal PC
software, which also enables reviewing, organizing, analysing, and summarizing all the signals
captured by the device. The device’s design makes it easy to use in both clinical and home settings
[167,245].

The portable device Embletta® MPR (Natus, Middleton, WI, USA) is a respiratory PG with
exceptional functionality that can be configured into a PSG online wireless recorder by adding
additional modules. With a basic module, the device can record additional channels: 2 EEG, 1 ECG,
2 EOG and 2 EMG of lower limbs. With an advanced module, the device is upgraded to a full PSG,
supporting 6 EEG channels, 3 chin EMG, 2 EMG of lower limbs, 2 EOG, and 1 ECG [246].

3.2.3. Wireless PSG Devices

Traditional PSG examinations using digital PSG systems are performed in sleep laboratories,
where medical professionals closely monitor the entire process. These PSG systems [7] provide
accurate results and enable extensive analysis of physiological signals. However, their design places
less emphasis on patient comfort. Traditional PSG systems rely on fully wired connections, which
restrict patient movement during sleep, and recording units are typically larger and not portable
[247]. Data transfer is conducted via physical connections to computer software and there is no
possibility of wireless data transmission via Bluetooth or Wi-Fi. On the other hand, cable connection
provides reliable and stable data transmission.

The transition from wired to wireless PSG systems represents a breakthrough in patient
convenience and usability. Key advantages include improved mobility, easier setup, and reduced
interference from tangled wires. These systems are particularly suited for long-term studies requiring
continuous monitoring over several nights [248]. However, the reliability of data transmission and
potential interference in wireless environments remain challenges to address.

Modern PSG devices combine wired data transmission with wireless transmission from sensors,
improving the movement flexibility of patients during sleep by reducing the number of cables. These
PSG systems utilize wireless data transfer to local computers or cloud-based storage via
communication protocols such as Bluetooth or Wi-Fi, making PSG systems portable and suitable for
use in the home environment [249]. Such advances are in line with the goals of companies like
SOMNOmedics, which focus on developing innovative solutions for sleep medicine. SOMNOmedics
offers a wide range of equipment, from actigraphy devices and polygraphs to modular systems and
full laboratory PSG, which are discussed in detail in the relevant sections of this article. A significant
portable wireless PSG system by SOMNOmedics is the SOMNO HD [109,244]. It is unique for its
wireless EMG sensors for the lower limbs, designed for PLMS detection. These wireless sensors for
PLMS offer synchrony with precision of less than 60 ms and a sampling rate ranging from 64 to 512
Hz. The SOMNO HD supports a configuration of up to 55 channels, integrating both wireless and
wired sensors to maximize versatility. It is designed to work with a maximum of six wireless sensors,
enabling the collection of a broader range of physiological data while minimizing patient discomfort.
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Another compact PSG system that integrates wireless technology is the Nox Als™ by Nox
Medical. The device features a wireless pulse oximeter, an integrated snoring sensor, and a built-in
accelerometer for measuring activity and body position. EEG electrodes are connected to a single
cable leading to the device, which helps reduce the negative impact of the large number of cables on
the patient's well-being. The Nox Als™ (Nox Medical, Alpharetta, GA, USA) is equipped with a
rechargeable battery that lasts for multiple nights of use, making it practical for home sleep studies
[250,251].

3.2.4. Wearable Devices

The evolution of advanced wearable devices has significantly transformed sleep monitoring by
leveraging breakthroughs in sensor miniaturization, algorithm development, and device ergonomics.
Early wearable systems often fell short of matching the precision of traditional PSG conducted in
clinical settings. However, innovations such as compact sensor arrays, extended battery life, and
streamlined designs have enhanced both user convenience and functionality. Modern wearable PSG
devices now integrate multi-channel sensors capable of monitoring key physiological parameters,
including EEG, EOG, EMG, and vital signs such as HR and respiratory patterns, enabling a
comprehensive analysis of sleep health [111,252]. Reliability of such home-based PSG is further
enhanced through remote monitoring by enabling real-time adjustments and reducing failure rates
[253]. Portable computerized PSG systems have also been validated against lab-based devices,
demonstrating comparable signal quality, good agreement in sleep variables, and accuracy in
diagnosing conditions like OSA [254].

Ongoing advancements in materials science are making adhesive patch systems popular and
now replacing traditional bulky headgear. Systems with sensors integrated directly into the patches
minimize sleep disruption. Developments in signal processing are increasing the accuracy of these
devices and bringing wearable PSG technology closer to the reliability of traditional clinical-grade
systems. Among wearable PSG systems, the patch-based Onera Sleep Test System (Onera
Technologies B.V., Palaiseau, France) stands out for its innovative design and comprehensive
monitoring functions, setting the standard in modern sleep diagnostics. This wearable wireless PSG
system consists of four disposable patches placed on the forehead, thoracic and abdominal areas, and
lower leg. The patch on the forehead records EEG, EOG, EMG, and SpO:, while the chest patch
monitors ECG, activity, respiratory effort, sound pressure, and body position. A nasal flow pressure
cannula is connected to the abdomen patch. The lower leg sensor detects leg movements [255]. The
device is designed for user-friendliness, with an average hook-up time of approximately 4.5 minutes,
which is more than a 77% reduction compared to traditional PSG montage [256]. The sensitivity,
accuracy, and specificity for all sleep stages were high, except for NREM 1, which shows low
sensitivity. The results from the Onera device highly correlate with traditional PSG [257]. The medical
device company Compumedics introduces the Somfit® system, which includes the Somfit device and
an adhesive electrode. The device integrates neurological signals (1-channel EEG, 1-channel EMG, 2-
channels of EOG) with channels designed for pulse arterial tonometry (PAT), which are commonly
utilized in monitoring devices for OSA. The system measures parameters such as HRV, pulse, SpO,
and additional relevant metrics. The sleep staging algorithm of Somfit utilizes deep learning,
specifically built on a CNN architecture. The Compumedics also developed advanced Somfit® Pro
(Compumedics Limited, Abbotsford, Australia) system. In addition, it contains Respifit module
which enables monitoring of additional parameters, like airflow, RR, body position, 1-channel ECG
and thoracic effort via inductive belt [258]. Somfit's automatic hypnograms and PSG showed an
overall agreement of 76.14% across all sleep stages [259]. Another patch sensor with comprehensive
analysis is presented by Kwon et al [110]. One patch on the forehead is measuring EEG and EOG,
and the second on the chin EMG. Electronic components are stored in elastic polyurethane, which
makes them more comfortable to wear. The bottom side of the patches uses adhesive silicone with
nanomembrane electrodes for better contact with the skin. Sleep stages tracking and diagnosis
evaluation is done by CNN. Afterwards, the data is sent via Bluetooth to an external device. OSA
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detection accuracy reached 88.5%. In addition to the mentioned physiological parameters, this patch-
based system will incorporate sensors to monitor SpOz, carbon dioxide, and movement, enhancing
the accuracy of apnoea detection. The study [260] presents a wireless solution for monitoring various
electrophysiological potentials and detecting respiration signals, usable for several days without
being affected by physical daily activities or bathing. The core material of the electrodes is a biphasic
liquid metal composite, which provides a signal of high quality. The comfort of such a device lies in
its reduced size and lightweight design. Thanks to digital printing, these bio-stickers can be easily
tailored to specific research needs. This technology enables the creation of various configurations for
monitoring a wide range of electrophysiological parameters, enhancing their flexibility and
applicability in different settings.

Alternative wearable sleep monitor is the Sleep Profiler™ [261]. This wireless sleep monitor is
designed to capture important parameters for assessing sleep quality. It is also capable of recording
ECG, pulse, snoring, and determining head movement and position. This device, in the form of a
headband, provides detailed information about the sleep cycles, offering an accurate and efficient
alternative to traditional polysomnography [262]. The advanced version of this sleep monitor, the
Sleep Profiler PSG2™ (Advanced Brain Monitoring, Carlsbad, CA, USA), includes a wireless pulse
oximeter, attachable chest and abdominal RIP belts, and a flow nasal cannula, providing a total of 13
channels for comprehensive monitoring. Author Xin Li and the collective in the article [111] present
the WPSG-I wearable device consisting of a headband, pulse oximeter and data processing software.
The device monitors EEG, chin EMG and EOG, which is extracted from frontal EEG electrodes. The
headband of this device contains a 3D accelerometer for head position detection and an audio sensor
for snoring and ambient sound. A wrist-mounted pulse oximeter measures SpO: and wirelessly
transmits the data to the headband's recorder. Automated sleep staging has good accuracy compared
to PSG, verified in healthy people and patients with neurological disorders. Other headbands for
monitoring sleep, concentration, and physiological parameters, such as the FRENZ Brainband
(Earable Vietnam Co. Ltd., Hanoi, Vietnam) [263,264], may also be of interest. The device is placed
around the forehead and back of the skull, and uses a PPG sensor to capture SpO2 and HR. It also
contains additional sensors for EEG, EMG, EOG, gyroscope and accelerometer, and uses the power
of AL All this can be viewed by users from a smartphone app. The device offers a solution in
supporting rapid falling asleep, accurate monitoring of sleep status, and achieving high social
acceptance through reliable assessment [265]. The market offers a wide range of devices for sleep
monitoring and related disorders, many of which are suitable for home use. The choice of device
depends on the specific preferences and needs of the user or healthcare provider. A comprehensive
comparison of all the mentioned advanced devices, along with their key features, is summarized in
Table 5. These wearable monitoring devices prioritize ease of setup, patient comfort, and reliable data
collection. In general, wearable sleep monitors designed for home use should avoid complex setups
that increase the risk of user error, while ensuring the quality of the collected data.

Table 5. Advanced sleep monitoring devices.

Type Application Sensing Element Key Parameters Ref.
PG Flow, snoring, SpO2,  Pressure, thermistor, [Samoa] & [SleepDoc Porti ®9], [237,266]
HR, light, SpO2 sensor,  Bluetooth, Recording time 100
activity, light, accelerometer, hours, Weight 135 g, Battery
thoracic & chest/abdominal 3.6V
abdominal effort, pressure pad,
body position microphone

PG Flow, thoracic effort,  Pressure, RIP, SpO:2  [Alice NightOne], Sleep-wake [238]
snoring, SpO2, HR,  sensor, accelerometer determination, Memory 4 GB,
body position, PAP! Weight 84 g without battery
and sensors, Bluetooth
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PG Flow, thoracic effort,  Pressure, RIP, SpO2 [ApneaLink™ Air], Memory 15 [240]
snoring, SpO2, HR sensor MB,
Recording time 8 hours,
Weight 66 g
PG Flow, thoracic & Pressure, thermistor, [ApneaTrak Legacy], USB  [241]
abdominal effort, RIP, SpO: sensor, connection, Recording time 24
snoring, SpOs, HR, microphone, hours,
body position accelerometer Weight 143.5 g
PG Flow, thoracic effort,  Pressure, RIP, SpO2 [SOMNOtouch RESP eco],  [242]
snoring, SpO2, HR,  sensor, accelerometer USB,Additional sensor for
PPG, body position, abdominal effort/bruxism,
activity, PAP Analysis of Cheyne-Stokes,
Modular Flow, snoring, SpOs, Accelerometer, [SOMNOtouch™ RESP], [108,244]
PG HR, thoracic & thermistor, Pressure, Scalable to PSG, Memory
abdominal effort, RIP, SpO: sensor, 512 MB, Sampling rate 4 - 512
PPG wave, body EEG, EOG, EMG Hz, Built-in chest effort sensor
position, movement, attachable electrodes and sensor for body position,
PAP, extension to BP monitoring, , Weight 64 g
include EEG, EOG,
ECG, chin EMG and
leg EMG
Modular Flow, snoring, SpO2, Pressure sensor, RIP, [Nox T3s™], Scalable to PSG, [167,245]
PG HR, thoracic & SpO: sensor, BLE, Memory 4 GB, Recording
abdominal effort, accelerometer, time 24 hours, BodySleep
PPG wave, body  microphone, 2 bipolar technology by Nox,
position, activity, attachable ExG Weight 86 g
PAP, ExG electrodes
Modular  Flow, snoring and Pressure, RIP, SpO2  [Embletta® MPR], Scalable to [246]
PG sound, SpOz, HR,  sensor, accelerometer, PSG,
activity, thoracic & 1x Bipolar ExG Sampling rate 8 kHz,
abdominal effort, electrodes, Resolution 24-bit, Recording
PPG wave, body microphone, EEG, time 24 hours, Attachable
position, EOG, EMG attachable ST/ST+ proxy for PSG Weight
extension to include electrodes 153 g
EEG, EOG, ECG, chin
EMG and leg EMG,
ExG
Wireless EEG, EOG, ECG, chin Electrodes for EEG, [SOMNO HD], Up to 70 [109,244]
PSG  EMG, flow, SpOz, HR, EOG, chin EMG, EMG channels,
PPG wave, thoracic & of limbs, and ECG, Sampling rate 4 kHz/channel,
abdominal effort, thermistor, Bluetooth real-time data
snoring, movement,  pressure, RIP, SpOz, transmission, 6 wireless
body position, leg light sensor, sensors available, Normal
EMG, PAP, Ambient microphone, recording time 20 hours,
light accelerometer Online recording 12 hours,
Weight 190 g
Wireless EEG, EOG, ECG, chin Electrodes for EEG, [Nox Als™], Memory 4 GB, [250,251]

PSG

EMG, flow, thoracic
& abdominal effort,
sound, SpO:, HR,
PPG wave, body
position,

EOG, chin EMG, EMG Recording time 30 hours,
of limbs, and ECG, Wireless PPG, Integrated
thermistor, RIP, snoring sensor, Built-in
pressure, SpO:2 sensor, accelerometer, BLE, Ergonomic
3D cable design,

Weight 120 g
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activity, leg EMG, accelerometer,
PAP microphone
Wearable EOG, EEG, chin EEG, EOG, ECG, [Onera STS], Sleep stages [255]
patch- EMG, ECG, forehead EMG, classification, Sleep-disordered
based SpO;, snoring, leg bioimpedance, breathing, PLMS, PSG with 15
PSG movements, airflow, pressure channels, Acquisition 1-night
respiratory effort, sensor, sound,
position, activity 3D accelerometer
Wearable  EEG, EOG, EMG, 3 frontal electrodes, [Som(fit], Sleep stages [258]
patch- HRYV, HR, 5pOs, 3D accelerometer, classification, OSA, Insomnia
based snoring, PPG, and circadian rhythm
head position, microphone, 2- disorders, AHI and ODI index,
movement, ambient channel EEG DL2 on a CNN architecture,
light, PAT EEG (24-Bit, 0.5 - 30 Hz),
Agreement of 76.14% across all
sleep stages, 7 days of
recording, BLE
Wearable EEG, EOG, EMG, 3 frontal electrodes, [Somfit Pro], Sleep stages [258]
patch- ECG, HRV, HR, SpO, PPG, 3D classification, Agreement of
based movement, ambient accelerometer, 76.14%, 2x EEG (24-Bit, 0.5 - 30
PSG light, PAT, airflow, microphone, Hz), Breathing disorders, DL
effort, position, RR, inductive belts, on CNN, Recording time 8
snoring nasal pressure hours, BLE
cannula
Wearable  EEG, EOG, chin Nanomembrane Sleep stages tracking, OSA [110]
patch- EMG, S5pO, CO: electrodes detection, Evaluation by CNN,
based monitoring, Bluetooth, OSA detection
movement accuracy - 88.5%
Wearable  EEG, EOG, EMG,  Biphasic liquid metal Sleep stage classification, [260]
patch- ECG, composite electrodes Bruxism,
based respiration Customizable digital printed
bio-stickers, Light and flexible
design
Wearable EEG, EOG, EMG, 3x frontal electrodes, [SleepProfiler], Optional ECG  [261]
headband ECG, HR, head optical sensor, and EMG electrodes, Memory
position and microphone, 8 GB, Recording time 30 hours,
movement snoring accelerometer 8 channels, Bluetooth, 3.7 V
battery 650 mAh, Weight 71 g
Wearable EEG, EOG, EMG, 3x frontal electrodes, [SleepProfiler PSG2], Optional = [267]
headband ECG, SpO2, HR, head RIP, PPG, optical ECG and EMG electrodes,
PSG position and sensor, Recording time 26 hours,
movement snoring, microphone, Bluetooth, 3.7 V battery
thoracic & abdominal accelerometer, nasal 650 mAh
effort pressure cannula
Wearable EEG, EMG, EOG, Frontopolar EEG and [WPSG-I], Automated sleep [111]
headband  SpO2, HR, head chin EMG electrodes,  staging with good accuracy
PSG position, snoring and PPG, 3D

ambient sound accelerometer, audio

sensor,

compared to PSG
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Wearable EEG, EMG, EOG, Gold-plated brass [FRENZ Brainband], [263,264]
headband SpO:, HR, breathing  electrodes and dry- Determining sleep and
rhythm, head motion  sensing electrodes,  concentration, Al, Accuracy of
PPG, accelerometer, automatic sleep scoring 88%,
gyroscope Real-time, Supporting sleep
quality with sounds

1 Positive airway pressure, > Deep learning.

3.3. Application in Neurological Disorders

Specifically, we have not yet found many PSG devices for neurological disorders, although
various of the above-mentioned devices meet the parameters. For example, PSG devices such as The
SOMNOwatch eco from SOMNOmedics are capable of being used for the diagnosis and management
of PD, as they detect PLM/RLS movements and monitor tremor frequency and intensity. This device
is a compact advanced actigraphy designed to objectively monitor sleep and movement patterns over
several weeks. It is equipped with a 3D acceleration sensor that tracks body position and activity, as
well as a light sensor to measure the ambient light level in the environment. It provides key
parameters such as time in bed (TIB), sleep-wake analysis, circadian rhythm monitoring, 24-hour
sleep patterns, and a raster display for detailed information [268].

Another suitable and actually used device is the Dreem Headband by Beacon Biosignals [160],
offering PSG quality in a lightweight and easy-to-use device that includes 5 EEG sensors, a bone
conduction speaker for audio output, an accelerometer to measure movements, head position, and
RR during sleep. The device is comfortable, efficient, suitable for both home use and clinical studies
with EEG signal quality like PSG [269]. It uses deep learning and advanced digital signal processing
to create algorithms that can predict EEG events more accurately and reliably than any expert. In
addition to classic sleep analysis, Al quantifies sleep microarchitecture to search for new biomarkers
of disease. Van del Bulcke et al. [270] performed a study with the device on mild to moderate AD
patients and demonstrated a significant mean increase in SWS to targeted acoustic stimuli in AD
patients. Alternatively, Gonzales et al. [271] conducted a study in PD patients and demonstrated the
suitability of the device for monitoring patients with neurodegenerative diseases and found that
longer PD duration and rapid eye movements were associated with greater alertness and worse
motor symptoms correlated with less deep sleep.

A similar device capable of detecting neurodegenerative diseases based on sleep biomarkers is
the Sleep Profiler™ [261] that we mentioned above. This device is a wireless, lightweight, PSG sleep
monitor with sensors for recording EEG, EOG and EMG, which are necessary to characterize sleep
time by individual stages. It also records ECG, pulse, head position, head movement, quantitative
snoring and is fully capable of detecting sleep abnormalities in AD and PD patients [272,273].
Similarly, other PSG systems are suitable for use in the detection of neurological diseases, as they
meet all the parameters necessary for early diagnosis, even if they have not yet been used for these
specific purposes. For instance, the Nox Als PSG device has not been tested with PD or AD patients,
its features offer all the tools for early diagnosis of AD/PD [167,274].

Sleep disturbances are not only symptoms of advanced neurodegenerative diseases, but are also
critical early indicators that home PSG, with its ability to assess sleep architecture in detail, should be
able to detect and thus aid in early diagnosis. By enabling early detection of diseases such as PD and
AD, home PSG offers significant potential to improve patient outcomes and slow disease progression.
The continued development of PSG technology, including the integration of Al and wearable
systems, promises to bridge the gap between clinical diagnosis and daily patient care. As innovation
advances, home PSG represents a transformative tool in the early detection and treatment of
neurodegenerative diseases, reshaping the future of sleep monitoring and neurological health.
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4. Discussion and Future Directions

The growing demand for personalized health solutions and the integration of sophisticated
sensor technologies are driving sleep monitoring technology forward rapidly and have seen
significant progress over the past decade. However, many challenges and opportunities that could
shape the future of the field remain. Wearable devices such as smartwatches, rings, and bracelets
have become the most popular form of sleep monitoring, largely due to their affordability and ease
of use. These devices primarily rely on PPG-based sensors to measure HR and HRV, as well as
accelerometers to track activity. The advantages of such devices include their affordability,
portability, and user-friendly design, making them suitable for long-term use. However, their
reliance on indirect measurements (e.g., PPG during breathing or sleep) often results in reduced
accuracy compared to the gold standard PSG. In addition, their performance can be affected by
factors such as motion artifacts and sensor misplacement.

Remote systems, such as BCG sensors, radar devices, and acoustic monitors, offer a non-
intrusive alternative to wearable devices. These systems are particularly advantageous for
populations where wearing devices is impractical, such as the elderly or individuals with sensory
sensitivities. Radar-based systems, for example, can capture detailed respiratory and movement data
without physical contact, making them ideal for home environments. However, their adoption is
hindered by higher cost, installation complexity, and susceptibility to environmental interference.

Recent innovations have also led to the development of advanced systems that integrate
multiple physiological parameters, including EEG, respiratory signals, and body temperature, to
approach PSG-like accuracy. These systems, such as modular or wireless PSG devices, are
particularly promising for clinical research and home diagnostics. Although these devices offer
excellent accuracy, their higher cost, bulkier design, and technical complexity may limit widespread
adoption.

Looking ahead, the integration of multimodal systems that combine multiple physiological
measurements appears to be the most promising direction for sleep monitoring technology. By
leveraging data fusion techniques, ML algorithms, and Al, these systems can achieve higher accuracy
and greater diagnostic value [275-278]. In addition, the development of wearable devices specifically
tailored for neurological disorders such as PD underscores the growing emphasis on personalized
and specific monitoring solutions.

We are also actively involved in this area within the project “NAP — Twin on a Chip Brains for
Monitoring Individual Sleep Habits” [279]. This project represents a new paradigm in science and
technology, which aims to evaluate the potential of next-generation brain organoids, where they
would serve as a miniature, personalized sleep model and predict early symptoms of PD. The project
includes the transfer of sleep patterns from ePPG [10] and Dormi [101] devices to organoids, as well
as the development of new algorithms for home PSG and the investigation of sleep habits of PD
patients. We plan to provide a detailed description of this work in later publications.

The challenge for future research lies in striking a balance between accuracy, usability, and cost.
While advanced systems are approaching the capabilities of PSG, they must also address barriers to
widespread adoption, such as convenience, affordability, and privacy.

Privacy concerns include data confidentiality, potential misuse of data, and the psychological
impact on participants. Sleep monitoring devices collect highly sensitive physiological data which in
a medical setting are protected under health privacy regulations like HIPAA (in the U.S.) or GDPR
(in Europe). However, ensuring secure storage and transmission of these data is critical, especially
for home-based monitoring where devices may rely on cloud storage or Wi-Fi connections, increasing
vulnerability to data breaches [280]. Sleep data can potentially be used for purposes beyond medical
care, such as marketing or insurance risk assessment. Home-based PSG devices, especially consumer-
grade wearables, may share data with third-party companies, raising concerns about commercial
exploitation without explicit consent [281]. Knowing their sleep is being continuously monitored can
lead to anxiety or changes in behaviour, potentially affecting sleep patterns and undermining the
study's accuracy. Ethical protocols should include steps to minimize participant discomfort and
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ensure data collection reflects typical behaviour [280]. While home-based monitoring offers
convenience, it shifts some responsibility to the participant, such as managing device setup and
maintenance. This autonomy can be empowering but may also increase the likelihood of errors or
noncompliance if adequate training and support are not provided. Addressing these concerns
requires robust ethical frameworks, secure data handling protocols, and transparent communication
between researchers, healthcare providers, and participants. It also calls for balancing technological
advancements with the protection of individual rights and well-being.

A collaborative effort between engineers, clinicians, and researchers will be essential to drive
innovations that meet these requirements and to expand the use of sleep monitoring technologies in
clinical, home, and research settings [282].

Sleep research is advancing rapidly and the transition to wearable electronics and home
measurements is unstoppable. Our article was able to describe only a small part of the current state.
If we tried to focus on everything, its length would unfortunately be unbearable. Just describing the
algorithms or automatic scoring systems used in detail would take up entire separate articles.
Therefore, we bring to the attention of readers, who are interested in this issue, the following excellent
reviews. Birrer et al. [247] made a comprehensive overview of the reliability of sleep evaluation using
wearable electronics and Tran et al. [283] about their use in OSA. Lujan et al. [280] described wearable
multisensors for monitoring sleep and circadian rhythms while providing a glimpse into the history,
present and future. De Fazio et al. [284] focused on methodology and wearable electronics in sleep
dysfunctions. Zambotti et al. [285] focused on state of the science and recommendations for using
wearable technology in sleep and circadian research. Kwon et al. [252], cited earlier, recent advances
in wearable sensors and portable electronics for sleep monitoring. Cay et al. [286] even added Al
methods and Peake et al. [287] wrote a review of consumer wearables and mobile applications for
monitoring stress and sleep.

5. Conclusions

In conclusion, sleep monitoring technologies are advancing rapidly, driven by innovations in
wearable and remote devices. These tools, while differing in design and functionality, share a
common goal of improving accessibility, accuracy, and relevance for both general and clinical
applications. The future lies in integrating these technologies into multimodal, user-friendly systems
capable of providing accurate information about sleep health and its links to broader physiological
and neurological conditions in the natural environment. With continued collaboration across
disciplines, sleep monitoring is poised to transform not only our understanding of sleep, but also its
role in predicting and managing complex disorders.
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