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Abstract: This paper explores the progressive era of sleep monitoring, focusing on wearable and 
remote devices, moving towards the concept of home polysomnography. We begin by examining the 
basic physiology of sleep, establishing a theoretical foundation for understanding sleep stages and 
associated changes in physiological variables. The review then moves on to analyse specific cutting-
edge devices and technologies, emphasizing their practical applications, user comfort, and accuracy. 
Attention is also given to the ability of these devices to predict neurological disorders, particularly 
Alzheimer’s and Parkinson’s disease. The paper highlights the integration of hardware innovations, 
targeted sleep parameters, and partially advanced algorithms, illustrating how these elements 
converge to provide reliable information on sleep health status. By bridging the gap between clinical 
diagnosis and real-world applicability, this review aims to clarify the role of modern sleep monitoring 
tools in improving personalized healthcare and proactive disease management. 

Keywords: human sleep monitoring; polysomnography; home environment; respiration; 
photoplethysmography; neurodegenerative diseases 
 

1. Introduction 

Sleep is an integral part of human life, representing a fundamental physiological process 
essential for physical recovery, emotional balance, and the maintenance of cognitive functions [1]. 

The study of sleep and related disorders is the subject of a specialized medical field called sleep 
medicine. Sleep medicine is considered a young field, the emergence of which is closely related to 
progress in electrophysiological methods that enable the monitoring of various parameters suitable 
for sleep evaluation [2,3]. Global sleep disorders, including chronic sleep deprivation, insomnia, 
obstructive sleep apnoea (OSA), and circadian rhythm disorders have become a global epidemic, 
threatening the health and well-being of a large portion of the population [4]. These conditions are 
often underdiagnosed, poorly managed, and untreated. The most widespread sleep disorder, with 
symptoms affecting 30% of adults worldwide, is chronic insomnia [5]. As a result of poor sleep 
quality, cognitive functions, memory problems or the effectiveness of the immune system are 
impaired, which can leave individuals vulnerable to infections. Chronic insufficient sleep has been 
also linked to a higher risk of mortality. Recent studies indicate that increasing nightly sleep duration 
in individuals who regularly experience insufficient sleep may offer notable health benefits [6].  

Diagnosis of sleep disorders is traditionally conducted in specialized sleep laboratories, which 
are usually part of pulmonary, psychiatric, neurological, or paediatric clinics. The standard sleep 
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examination performed in clinical settings is known as polysomnography (PSG), which is an 
overnight diagnostic procedure with a robust system [7–9] and specialized software that enables the 
recording and analysis of biosignals [10]. For comprehensive sleep assessments, PSG remains the 
gold standard among all sleep examinations. The advantage of PSG lies in its precise and 
comprehensive measurement of physiological parameters, offering valuable insights into the overall 
sleep patterns and issues of an individual. During overnight video-polysomnography, patients are 
monitored under medical supervision, with numerous sensors attached to the body. The PSG 
configuration includes simultaneous recording of electrocardiography (ECG), electrooculography 
(EOG), electroencephalography (EEG), electromyography (EMG), respiration, abdominal and 
thoracic respiratory effort, snoring, heart rate (HR), blood oxygen saturation (SpO2), body position, 
and all body movements. The examination is monitored using an infrared (IR) camera to capture 
pathological movements during sleep [10,11]. 

This process requires specialized expertise for polysomnographic montage and subsequent 
biosignals processing, and it is both time-consuming and expensive. The sleep quality in patients 
undergoing polysomnography is often disrupted by the discomfort caused by the multitude of wires 
and sensors attached to the body, limiting natural movement during sleep. The number of 
individuals with sleep disorders is growing, which significantly affects waiting times for PSG 
examinations. This increase is closely associated with the rising prevalence of OSA, a condition for 
which obesity is a major risk factor. With obesity now recognized as a global health crisis, the 
challenges related to addressing these issues are becoming more urgent [12]. In this context, another 
challenge arises in the availability of diagnostic testing. For example, waiting times for PSG in our 
country, Slovakia, typically range from six months to 1.5 years. This situation may result in delayed 
diagnosis and subsequent management of OSA patients, which could have negative health 
consequences.  

The increasing prevalence of sleep disorders, combined with lengthy waiting times and high 
costs associated with traditional sleep diagnostics, has driven interest in developing wearable sleep 
monitoring devices. Home PSG represents a promising alternative to traditional diagnostic methods, 
as it enables non-invasive, more comfortable, less intrusive and long-term sleep monitoring in the 
patient's natural environment. Reduced costs are also a significant benefit, as the application of 
wearable devices is easier and does not require medical supervision. Home PSG is transforming sleep 
monitoring by bridging the gap between clinical diagnosis and patient convenience. This tool refines 
detailed assessments of sleep architecture and temporal changes, enabling early detection, more 
accurate risk assessment, and targeted disease management which relieves the pressure on sleep 
laboratories and healthcare professionals. Thanks to advances in new technologies, wireless 
communication and artificial intelligence, wearable devices are becoming increasingly sophisticated 
and widely available, allowing for detailed assessment of temporal changes in sleep architecture as 
well as obtaining earlier detection and more accurate and effective diagnostics, potentially leading to 
a revolution in the field of sleep medicine. Studies have shown that home PSG can provide reliable, 
high-quality results comparable to those obtained in laboratory settings [13–15]. 

The importance of home polysomnographic monitoring is evident in its potential to facilitate 
early detection and diagnosis of neurological disorders, where subtle disruptions in sleep patterns 
often serve as critical early indicators. Neurodegenerative pathologies such as Alzheimer's disease 
(AD) and Parkinson's disease (PD) represent another increasing burden on the healthcare system, 
and therefore it is appropriate to search for early symptoms that would help treat the diseases before 
the onset of their clinical symptoms. Many studies indicate cognitive, behavioural, sensory and motor 
changes preceding clinical manifestations of these diseases. Therefore, monitoring using mobile and 
wearable technologies in the home environment again seems ideal [16]. Sleep abnormalities often 
occur in neurodegenerative diseases. However, whether this is a suitable parameter for early 
diagnosis or whether they appear later in the course of the disease is still under investigation. Sleep 
and neurodegeneration have a bidirectional relationship, as sleep-regulating centres are affected by 
diseases, and sleep is also associated with the acceleration and worsening of diseases because proteins 
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are not removed during sleep and oxidative stress increases [17]. AD and PD are progressive and the 
two most common neurodegenerative disorders. As the number of elderly people in the population 
increases, the number of cases of these diseases, which have a prevalence that correlates with older 
age, is also increasing. AD and PD currently do not have effective treatments, available therapies only 
alleviate symptoms and slow their progression. They are usually diagnosed after these symptoms 
appear, and early diagnosis is essential for starting treatment as soon as possible. Patients have 
impaired thinking and motor skills, but sleep disorders such as insomnia, hypersomnia and excessive 
daytime sleepiness have also been found in them. This may stem from damage to the centres in the 
brain that control sleep cycles and where neurotoxic forms of amyloid β-peptide, tau and α-synuclein 
accumulate in these diseases [18,19]. For example, treatment of sleep-controlling signalling pathways 
in animal models has been shown to slow the progression of AD and PD. However, sleep 
disturbances are associated with these diseases and may be predictive of disease progression [20–23]. 
Studies suggest that early detection of certain sleep patterns may help identify individuals at higher 
risk of dementia [17,18]. 

The increasing focus on sleep disorders as early markers of neurological disorders underscores 
the urgent need for accessible and reliable diagnostic tools. This review explores the potential of 
wearable and remote devices to advance home polysomnography, paving the way for early detection 
of neurodegenerative disorders based on home monitoring and improving patient outcomes by 
initiating treatment as early as possible. 

As can be seen from the introduction, the motivation to write this review is high. However, 
deciding which studies and devices to include is more difficult. Essentially, the analysis of any 
physiological variable during sleep can qualify as sleep monitoring. Therefore, we focused on 
selecting wearable and remote devices that offer added value, have unique features, and ultimately 
contribute to the development of home PSG. The article is structured into two main chapters. Chapter 
2, “Physiology of Sleep”, provides an overview of sleep stages, physiological changes during the 
night, and how these changes can be affected by neurological diseases. We believe that this theoretical 
foundation is essential, as any progressive sleep monitoring device must build on top of it. Chapter 
3, “Actual state of Technological Evolution” focuses on the current state of sleep monitoring research 
and highlights the most promising devices. It starts with basic systems, categorized by the main 
physiological parameter. In the second subsection, we shift our focus on advanced multisensors, 
quasi “PSG” products. Each subsection is supplemented with summary technical tables and the 
chapter ends with a section on how some of these devices are applied in research and prediction of 
neurological disorders. The article finally concludes with a short discussion that touches future 
direction of our research and interesting aspects that could not be discussed in detail in the main text, 
followed by an overall conclusion. 

2. Physiology of Sleep 

2.1. Sleep Phases 

Sleep is divided into two phases: non-rapid eye movement (NREM) and rapid eye movement 
(REM). Individual sleep phases can be mostly distinguished through different patterns of brain 
activity, eye movements, and chin muscle tone. NREM sleep comprises most of the sleep and consists 
of three stages: falling asleep (NREM 1) which is the state between wakefulness and light sleep, light 
sleep (NREM 2), and deep sleep (NREM 3). These stages are characterized by synchronized 
electroencephalogram (EEG) activity with specific markers, such as K-complexes and/or sleep 
spindles. During NREM sleep, activity of the brain and muscles is decreased, allowing the body to 
relax and recover. In contrast, REM sleep is identified by typical rapid eye movements, intense brain 
activity, a desynchronized EEG, frequent dreaming, and muscle atonia, except the muscles 
controlling breathing and eye movements [24]. 

In healthy adults, the sleep NREM and REM phases alternate, repeating 4 to 6 times throughout 
the night during uninterrupted sleep. A complete sleep cycle for adults lasts approximately 90 to 110 
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minutes. About 75% of sleep time is spent in the NREM phase, mainly in light sleep. The first REM 
sleep phase is the shortest and occurs before midnight. It gradually lengthens as sleep continues and 
the longest REM phase occurs in the early morning. Deep sleep shortens as the night progresses [25]. 
The recommended sleep length for adult people is 7 to 9 hours [26]. The duration of each sleep stage 
changes with age. Unlike in children and adults, sleep cycles in newborns are shorter. Their sleep 
consists of quiet (like NREM), active (like REM), and indeterminate sleep (transitional sleep) [27]. 
Newborns typically sleep for 16 - 18 hours, with the longest uninterrupted sleep episodes lasting 2.5 
- 4 hours [25]. As individuals age, changes occur in the distribution of time spent in various sleep 
stages. It turns out that sleep cycles lengthen, with quiet sleep increasing, active sleep decreasing, and 
time spent in transitional sleep becoming less represented [28]. Typical physiological values for 
healthy adults are presented in Table 1. 

Table 1. Basic PSG parameters of adults and their physiological values [5]. 

Sleep parameter Duration 1 
Sleep onset latency ≤ 30 min 

NREM 1 3 – 5% 
NREM 2 45 – 55% 
NREM 3 10 – 20% 

REM 20 – 25% 
REM sleep latency 60 - 100 min 

Wakefulness after sleep onset 1 – 5% 
Sleep efficiency > 85% 

1 In minutes or % of sleep duration. 

2.2. Physiological Changes During Sleep 

Building on the previous chapter, we begin our review of physiological changes during sleep 
with the most reliable indicator of sleep stages: the EEG, which is often monitored using shared 
electrodes with the EOG. Together with chin EMG, these signals provide a detailed understanding 
of sleep architecture. Next, we discuss heart rate (HR) and heart rate variability (HRV), which are 
among the most assessed physiology in wearable sleep monitoring devices. We then turn to body 
movement, with a particular focus on leg movements, followed by respiration—a critical 
physiological variable with strong associations with sleep and breathing disorders. Finally, we 
examine temperature and blood pressure, which also show distinct and significant variations across 
sleep stages. 

2.2.1. Electroencephalography, Electrooculography and Electromyography 

Each stage of the sleep cycle has clinical and electrophysiological characteristics. In a relaxed 
wakeful state with closed eyes, EEG activity presents with higher frequencies compared to sleep, 
typically in the alpha wave range (8 - 13 Hz) and with low amplitude. During non-relaxed 
wakefulness, beta waves with a frequency of 14 – 30 Hz are commonly observed [29]. EOG signals 
are particularly effective in differentiating REM sleep from non-REM stages because REM is 
characterized by rapid, jerky eye movements, whereas non-REM stages show slower or minimal eye 
activity. This makes EOG a useful tool for identifying these stages with high precision [30,31]. The 
shape of EOG signals during non-relaxed wakefulness varies depending on the activity (e.g., reading, 
blinking, or eye rolling). Chin muscle EMG shows sustained tonic activity with high amplitude, while 
respiration remains irregular [32]. 

Sleep stage NREM 1, also called theta sleep, is characterized by low amplitude and mixed 
frequency activity, where theta waves dominate (4 – 7 Hz) on the EEG [29]. In this stage, the alpha 
rhythm dissipates, and vertex sharp waves, lasting up to 0.5 seconds, become visible. Slow, 
conjugated eye movements (SEM) can be observed via EOG during NREM 1. Chin EMG shows a 
lower amplitude of tonic activity compared to the wake state, but it is still high [32]. 
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Light sleep, or NREM 2, also known as spindle or sigma sleep, is marked by theta waves (4 – 7 
Hz) with low to moderate amplitude [29]. This stage is distinguished by the presence of sleep spindles 
and/or K-complexes in the EEG. Sleep spindles are brief bursts of high-frequency activity (11 – 16 Hz) 
with a spindle-shaped appearance, while K-complexes are sharp, long-lasting delta waves (~1 
second), known as the largest and most noticeable brain waves. K-complexes are important for 
maintaining sleep and consolidating memory. This sleep stage typically lasts about 25 minutes during 
the first sleep cycle, with duration increasing in subsequent cycles, eventually comprising around 
45% of total sleep. Bruxism (involuntary teeth grinding or jaw clenching) may occur in this stage [25]. 

Sleep stage NREM 3 is often referred to as slow-wave sleep. Slow delta waves (0.5 – 3.5 Hz) with 
high amplitude, at least 75 µV, particularly in the frontal leads have occurred. Delta waves take more 
than 20% of the time of each EEG epoch during this stage. Eye movement is absent, and EMG of chin 
muscle shows lower activity compared to NREM stage 2, with minimal motor manifestations. The 
arousal threshold is higher compared to other sleep stages [29]. Deep sleep plays a vital role in the 
body's recovery, especially during periods of illness or growth. Metabolic rate reaches its lowest point 
[33]. 

REM sleep, or paradoxical sleep, is distinguished by desynchronized EEG activity, where 
sawtooth waves (2 – 4 Hz) with moderate amplitude appear in small clusters. They occur 
simultaneously with rapid eye movements, characteristic of phasic REM sleep. Another key feature 
is continuous chin muscle atonia, occasionally interrupted by brief muscle twitches. Respiration is 
irregular, and emotionally charged dreams occur [24]. REM sleep is important for brain development, 
learning, memory consolidation, and emotional processing [34,35]. 

Recent studies have also shown that single-channel EOG can be a reliable alternative to the more 
complex and intrusive EEG for sleep monitoring. For example, a deep-learning approach using EOG 
signals achieved comparable accuracy to EEG in classifying sleep stages, demonstrating its potential 
for home-based and clinical sleep monitoring [36,37]. This makes EOG especially valuable for 
diagnosing disorders like REM sleep behaviour disorder (RBD), insomnia, or circadian rhythm 
disruptions, as these often manifest in altered sleep-stage dynamics detectable via EOG. Additionally, 
EOG is more user-friendly and less invasive than EEG. Techniques like attaching electrodes to a sleep 
mask enable easy data collection, which is practical for long-term monitoring. In disorders like RBD, 
where abnormal muscle and eye movements occur during REM sleep, EOG can help detect these 
irregularities early, aiding in diagnosis and treatment strategies. 

2.2.2. Hear Rate and Heart Rate Variability 

Another non-invasive method for sleep stage classification, which is associated with a wide 
range of sleep disorders, is HR and its variations in the form of HRV. HR and HRV are distinct yet 
complementary markers that provide critical insights into the autonomic nervous system (ANS) and 
its regulation during sleep. Each metric plays a unique role in understanding sleep architecture and 
related disorders. HR directly reflects cardiac activity and is particularly valuable for identifying 
transitions between sleep stages [38]. During NREM sleep, parasympathetic activity predominates, 
leading to a gradual reduction in HR. These physiological changes support cardiovascular recovery, 
metabolic conservation, and overall restorative processes. As sleep progresses from lighter NREM 
stages (e.g., NREM 1) to deeper ones, parasympathetic (PNS) tone increases while sympathetic (SNS) 
tone decreases. This shift leads to reductions in heart rate, lessening the burden on cardiac output 
and inducing autonomic stability [39]. Upon entering REM sleep, there is a shift to SNS dominance, 
accompanied by abrupt increases in HR [40]. These changes are closely linked to the vivid dreaming 
and heightened brain activity typical of REM sleep. The autonomic shifts observed during sleep 
suggest that these transitions serve essential autonomic-related functions. In conditions such as OSA, 
severe episodes are marked by elevated HR and sympathetic overactivation, especially during REM 
sleep. This overactivation contributes to fragmented sleep and significant cardiovascular stress [41]. 
HRV on the other hand offers insights into the dynamic balance between the SNS and PNS branches 
of the ANS [42]. HRV provides deeper insight into the quality of autonomic regulation during sleep. 
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Higher HRV during sleep, reflecting PNS dominance, is associated with better sleep quality and 
efficient restorative processes [43]. Lower HRV suggests autonomic imbalance and is linked to sleep 
disturbances such as insomnia, fragmented sleep, and increased stress vulnerability. In healthy 
individuals, HRV follows a predictable pattern across sleep stages. It is higher during NREM sleep 
when PNS activity supports recovery and restorative sleep, and lower during REM sleep, which 
involves increased SNS activity [44,45].  

Although HR and HRV are separate metrics, their combined use in sleep research enhances our 
ability to understand sleep disorders and autonomic regulation. HR captures immediate 
cardiovascular responses, while HRV offers a more nuanced understanding of autonomic flexibility 
and adaptation. Together, they provide comprehensive insights into the complex relationship 
between sleep, ANS function, and associated pathological conditions like OSA and 
neurodegenerative diseases. 

2.2.3. Body Movement 

Tracking body movement during sleep is a non-invasive method for assessing sleep patterns, 
autonomic regulation, and overall sleep quality [46]. Movement patterns, including large body 
movements (LMM), vary notably across sleep stages. According to Ibrahim et al. [47], LMMs are more 
frequent but shorter during REM sleep compared to NREM sleep, with the lowest occurrence 
observed in NREM 3. The authors also noted that men exhibit higher LMM indices than women, and 
while the overall prevalence of LMMs remains stable with age, their likelihood of causing 
awakenings increases over time. In contrast, Gori et al. [48] found that body movements, including 
LMMs, decrease significantly in elderly individuals compared to younger subjects, suggesting a 
gradual reduction across the lifespan. Unlike younger adults, whose sleep-related body movements 
predominantly occur during REM sleep, elderly individuals showed no preferential association with 
specific sleep stages. These findings may reflect age-related changes in the interaction between motor 
cortex control and subcortical circuits. This discrepancy may arise from differences in study 
populations or methodologies. 

LMM indices also correlate with sleep fragmentation, highlighting their potential as markers of 
sleep quality and restlessness. These fluctuations are valuable for detecting disruptions such as 
apnoea or nocturnal awakenings, which are associated with poor sleep quality, reduced efficiency, 
and daytime impairment [49]. Body movement also reflects autonomic regulation, with reduced 
movement indicating parasympathetic dominance during deep NREM sleep, and increased 
movement signalling sympathetic activation during REM sleep [39].  

2.2.4. Respiration  

As mentioned in the introduction, many people worldwide suffer from sleep disorders that can 
lead to deterioration in their quality of life. These disorders can disrupt sleep patterns (depth and 
duration), and manifest in various symptoms such as difficulty falling asleep, snoring, awakenings 
during sleep, or more serious health complications. Insomnia and sleep-related breathing disorders 
are the most common diseases among all sleep disorders. For that reason, measuring respiratory 
activity is crucial for assessing sleep quality, as deviations in normal respiratory patterns can be 
indicative of various sleep disorders and overall sleep efficiency (SE). Normal respiratory rates (RR) 
at rest typically range between 12 and 20 breaths per minute (rpm) in adults [50], however, this rate 
generally decreases during sleep [51]. Accurate monitoring of RR during sleep can help identify 
issues such as OSA, central sleep apnoea (CSA), hypoventilation and hypoxemia, or other respiratory 
dysfunctions, all of which significantly affect sleep quality [52]. Breathing disorders may involve 
interrupted breathing during sleep, caused by pauses or reduced airflow. Although frequently 
underestimated, sleep-related breathing disorders pose a serious threat to individual health. 

One of the most frequently occurring sleep disorder is sleep apnoea, affecting 9 - 38% of the 
global population [2]. OSA alone is estimated to affect up to one billion people worldwide, 
predominantly in the age range of 30 to 69 years. Its prevalence continues to rise, primarily due to 
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the global increase in obesity, a major risk factor for OSA [53]. Historically, the male-to-female ratio 
for OSA prevalence was around 4:1, but it is now believed that many women with OSA have been 
underdiagnosed [54]. The epidemiology of CSA has been studied in less detail. CSA is estimated to 
affect 5% to 10% of individuals with sleep-related breathing disorders [55]. Untreated OSA, which is 
associated with rhythm disturbances, serves as an independent predictor of both systemic and 
pulmonary hypertension and more than doubles the risk of heart failure. Such patients have elevated 
incidences of ischemic heart disease and stroke, and OSA contributes to metabolic disorders by 
affecting endocrine regulation [5]. Common symptoms include intermittent snoring, breath-holding, 
frequent awakenings with gasping, nocturia, excessive daytime sleepiness, unrefreshing sleep, 
morning fatigue, and issues with concentration. Furthermore, sleep apnoea can impact driving safety, 
as sleep interruptions may lead to microsleeps or impaired reaction times, increasing the risk of 
accidents on the road. Therefore, early diagnosis is important for patient safety and well-being [29]. 

In the context of sleep-related breathing disorders, the following terms are often encountered: 
Apnoea is defined as a respiratory event lasting more than 10 seconds with a reduction in airflow 
amplitude of ≥90%. A hypopnoeic respiratory event is defined as an event lasting more than 10 
seconds with a reduction in airflow amplitude of ≥30%, associated with a desaturation of at least 3% 
and/or an arousal (a brief period of wakefulness lasting 3–15 seconds) [56]. Desaturation refers to a 
drop in oxygen saturation by at least 3%, or 4% in some cases. It is recorded by pulse oximetry and is 
commonly associated with apnoeic and hypopnoeic events. Desaturation can also be present in 
patients with hypoventilation [32]. The number of desaturations per hour of sleep is expressed by the 
oxygen desaturation index (ODI). The severity of obstructive sleep apnoea/hypopnoea syndrome in 
adults is classified using the apnoea-hypopnoea index (AHI), which represents the number of 
respiratory episodes per hour of sleep (Table 2) [5]. 

Individual respiratory events are categorized based on the presence or absence of respiratory 
effort, which is usually detected through respiratory belts placed around the thorax and abdomen. 
Obstructive sleep apnoea/hypopnoea is characterized by an obstruction in the upper airways and 
involves preserved respiratory effort. In contrast, central sleep apnoea/hypopnoea is caused by 
malfunction in the central nervous system, defined as a respiratory event with no respiratory effort. 
Mixed sleep apnoea/hypopnoea is identified as a respiratory event with an initial absence of 
respiratory effort, followed by the recovery of effort during the event’s duration [10,56]. 

Table 2. Classification of sleep-disordered breathing severity in adults [5,57]. 

Classification of severity of sleep-related breathing disorders AHI 1 
Without sleep – related breathing disorders < 5 

Mild severity 5 ≥ AHI < 15 
Moderate severity 15 ≥ AHI <30 

Severe severity ≥ 30 
1 Apnoea-hypopnoea index. 

2.2.5. Body Temperature 

During the day, skin body temperature tends to fluctuate slightly between 1 and 2 °C. The 
temperature reaches its lowest values in the morning and its highest values in the early evening. This 
is the so-called circadian rhythm, which is influenced by melatonin [58]. During sleep, the core body 
temperature (CBT) may be 0.4 – 0.6 °C lower than during the day. Body temperature starts to fall just 
before the onset of sleep, which prepares the body for night sleep [59]. The extent of the decrease in 
CBT just before sleep corresponds to the onset and quality of sleep. A decrease in CBT is also observed 
during the duration of sleep, with the lowest temperature being reached in NREM 3 sleep [60]. In 
contrast, body temperature increases during REM sleep [61]. By manipulation of the body 
temperature, it is even possible to increase sleep quality [62–64], or initiate NREM sleep [65]. 

2.2.6. Blood Pressure 
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During healthy sleep, there is a physiological decrease in systemic BP compared to wakefulness. 
This nocturnal decrease is referred to as "dipping" and is attributable in part to a reduction in SNS 
activity. NREM is linked with stabilization of BP in healthy individuals, and as it shifts from NREM 
1 to NREM 3, there is approximately 5-14% reduction in arterial BP and peripheral vascular 
resistance. 

Blood pressure in REM sleep is then about 5% higher compared to NREM sleep. A decrease of 
10% to 20% in average nocturnal BP (both systolic and diastolic) compared to average daytime BP is 
considered normal. Conversely, the absence of nocturnal dipping is referred to as a <10% reduction 
in nocturnal BP [61]. Reduced nocturnal BP dip is a strong, independent predictor of cardiovascular 
risk [66]. There is a sharp rise in BP during waking. Pulmonary arterial pressure rises slightly during 
sleep. Its mean value is 18/8 mmHg during wakefulness and 23/12 mmHg during sleep. [61]. 

To provide clarity, following previous sections we have compiled a concise overview of the key 
physiological changes during sleep in Table 3. 

Table 3. Physiological changes during individual sleep stages [25,29,32,61,67]. 

 NREM 1 NREM 2 NREM 3 REM 

EEG 

Characterized by 
LAMF 1 activity 

with predominant 
theta waves (4 – 7 

Hz). Alpha 
activity dissipates, 
and typical vertex 

sharp waves 
lasting up to 0.5 s 

are visible. 

Typical theta waves (4 – 
7 Hz) with low to 

medium amplitude. 
Presence of sleep 

spindles (short bursts of 
11 – 16 Hz) and K-

complexes (sharp delta 
waves lasting 1 s), which 

play key roles in sleep 
maintenance and 

memory consolidation. 
Phase duration about 

25 minutes and 
lengthens with each 

cycle, comprising about 
45% of TST 2. 

Characterized by 
slow delta waves 
(0.5 – 3.5 Hz) with 
high amplitudes 

of at least 75 µV in 
frontal leads. 
Delta waves 

constitute more 
than 20% of the 
duration of an 

EEG epoch. 

Desynchronized 
EEG activity with 
sawtooth waves of 

2 – 4 Hz and 
moderate 

amplitude, 
appearing in small 
clusters in frontal 

leads. Dream 
activity occurs 

with an emotional 
undertone. REM 

sleep consolidates 
memory traces 

and strengthens 
memory. 

HR 
Slight decrease 

compared to 
wakefulness. 

Decrease of 5 – 8% 
compared to 
wakefulness. 

Decrease of 5 – 8% 
compared to 
wakefulness. 

Irregular. 

HRV 

Overall HRV 
increases, LF 
component 

decreases, LF/HF 
ratio decreases, 
HF component 

increases. 

Overall HRV increases, 
LF component decreases, 

LF/HF ratio decreases, 
HF component increases. 

 

HRV peaks, LF 
components are at 

their lowest, 
LF/HF ratio 

decreases, HF 
components are at 

its highest. 

Significant 
decrease in HRV, 

LF component 
increases, LF/HF 

ratio increases, HF 
component 
decreases. 

RR 

Slower rate 
compared to 
wakefulness, 

regular. 

Slower rate compared to 
wakefulness, regular. 

Slow and regular. 

Rate equal or 
higher than 

wakefulness, 
breathing 

becomes shallow. 

BP 

Decrease 
compared to 

wakefulness, less 
pronounced than 

Decrease of 5 – 14% 
compared to 
wakefulness. 

More significant 
decrease than in 
NREM 2, 5 – 14% 

lower than 
wakefulness. 

Increase of 
approximately 5% 

compared to 
NREM sleep. 
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in NREM 2 and 
NREM 3. 

CBT 
Decrease 

compared to 
wakefulness. 

Decrease compared to 
wakefulness. 

Largest 
temperature drop. 

Increase 
compared to 
NREM sleep. 

1 Low mixed frequency, 2 Total sleep time. 

2.3. Altered Sleep Physiology in Neurological Diseases 

The relationship between sleep and neurodegenerative diseases is not yet well-understood, but 
it is certain that they are closely related. Sleep disorders are common in these diseases, and it is being 
investigated how this fact can be used to slow cognitive decline and for early diagnosis. Diseases 
such as AD and PD begin before they manifest as either movement disorders (PD) or forgetfulness 
(AD), and the search for symptoms that occur in the early stages is very important to improve the 
quality of life of patients [68–70]. 

The conventional diagnosis of PD has traditionally been recognized as a movement disorder 
based on motor features such as bradykinesia, rigidity, and tremor. Nonmotor symptoms have 
become increasingly important in recent years, as they frequently result in hospitalization and 
increase the cost of patient care and may be an earlier indicator of the disease than movement 
problems. Sleep disorders certainly have clinical significance. Insomnia, daytime sleepiness, restless 
legs syndrome, and RBD affect more than 90% of PD patients and worsen over the course of the 
disease, also, OSA is frequent in PD [69,71]. For example, a finding in the brains of people with PD is 
the loss of dopaminergic neurons in the substantia nigra, and RBD could serve as an early sign of 
changes in dopaminergic neurotransmission [72]. In fact, many patients with RBD who have been 
monitored have developed a neurodegenerative disorder [73]. PSG analyses demonstrate a beneficial 
role of NREM 3 [69,74] and suggest that REM sleep may help maintain neuronal homeostasis because 
its disruption leads to neurodegeneration [75]. Determining the exact changes in PSG in PD patients 
and controls is not straightforward, as the study groups are highly heterogeneous in different studies, 
and age or sex can have varying effects. Sleep duration in middle-aged adults is a predictor of age at 
diagnosis of PD disease, and short duration (< 7 hours) is associated with a younger age at diagnosis 
of PD [76]. Chronic short sleep duration (< 7 hours per day) reduces the brain's ability to clear the 
accumulation of toxins and proteins, which may contribute to PD as well as AD. The study by Tanaka 
et al. provides insight into the number of turns during sleep and thus, reduced sleep activity could 
be an early indicator of PD (specifically, less than 6 turns per night) [77]. Reduced turning frequency 
may precede muscle weakness. Specifically, PSG studies have been conducted by Yong et al. [78], 
who used PSG to investigate sleep disorders in PD and conducted one of the largest case-control 
studies involving overnight polysomnographic evaluations of 56 PD patients and 68 healthy controls. 
The analysis showed that patients had shorter sleep time, lower sleep efficiency, and increased REM 
latency. 

Tracking body movements during sleep is crucial for diagnosing and monitoring sleep disorders 
such as periodic limb movement syndrome (PLMS) and restless legs syndrome (RLS), and for 
evaluating patients with neurodegenerative conditions like PD and AD. In patients with PD and AD, 
symptoms such as restless sleep, movements during sleep, and repetitive leg movements often 
indicate sleep-related disorders. Monitoring these movements can not only aid in early diagnosis but 
also serve as a tool for assessing the effectiveness of therapeutic interventions aimed at improving 
sleep quality [17,79].  

Monitoring EMG activity during sleep can detect subtle muscle activity that often precedes overt 
physical movements, facilitating early diagnosis of RBD [80]. This is particularly important because 
RBD is strongly associated with neurodegenerative disorders, especially PD. Studies indicate that a 
significant proportion of individuals diagnosed with idiopathic RBD go on to develop PD or other 
synucleinopathies, such as dementia with Lewy bodies or multiple system atrophy, over time [81–
83]. Identifying RBD early through EMG monitoring allows for closer neurological follow-up and 
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may provide a critical window for early interventions, potentially slowing the progression or 
mitigating the impact of associated neurodegenerative conditions. Especially with automatic 
identification from data from polysomnography and EMG, this identification can be faster and free 
from manual scoring bias [84].  

In AD patients, the disease causes the accumulation of amyloid-ß protein, which aggregates into 
plaques, and later tau protein, which leads to atrophy of key brain regions. It has been found that 
insufficient deep sleep is associated with early symptoms, and in older people who sleep poorly, 
increased amounts of tau protein are found. PSG studies of sleep changes in AD have suggested, but 
not fully demonstrated, a relationship between sleep disturbances and AD. Overall, studies show 
that better sleep is associated with lower risk or slower progression of AD [85]. Ju et al. [22] found 
that Aβ deposition in preclinical AD before the onset of cognitive impairment was associated with 
poorer sleep quality, and frequent napping was also associated with amyloid deposition, but no 
changes in sleep quantity were found. Patients experience significant reductions in total sleep time 
(TST), sleep efficiency, and percentage of slow-wave sleep (SWS) and REM sleep, and, conversely, 
increases in sleep latency, wake time after sleep onset, and number of awakenings. Reduced SWS and 
REM significantly correlate with the severity of cognitive impairment in patients [86]. Disrupted SWS 
activity significantly increased amyloid-ß protein levels. REM sleep helps maintain neuronal 
homeostasis in the brain, and its disruption negatively affects neurogenesis, and its loss likely leads 
to neurodegeneration and increased tau protein levels. [87,88]. Changes in EEG components and 
sleep spindles have also been observed. It has been found that insufficient deep sleep is associated 
with early symptoms, and that increased amounts of tau protein are found in older people who sleep 
poorly [89]. Pulver et al. [90] show that EEG recording is important for early diagnosis of AD because 
neural circuits associated with memory generate oscillatory events including theta bursts (TB), sleep 
spindles (SP), and slow waves (SW), and in AD there are changes in these events, with reduced TB 
spectral power in SW-TB connections and lower accuracy in SW-SP connections compared to 
amyloid-negative individuals. Disturbed nighttime sleep, characterized by restless and subsequent 
daytime fatigue may signal a future diagnosis of AD. Roh et al. [91,92] reported that after the 
formation of amyloid-ß plaques in a mouse model, the sleep-wake cycle is disrupted, and after their 
removal, the cycle returns to normal, demonstrating a link between neurodegeneration and sleep. 
The plaques are present in the brain long before symptoms appear. Gaeta et al. [93] conducted a PSG 
study in patients with mild to moderate AD, also testing cerebrospinal fluid (CSF) and blood samples 
for biomarkers. They used a multimodal Machine learning (ML) approach. The results showed that 
multimodal ML can help predict the outcome of CSF biomarkers in early AD, the impact of 
hypoxemia on higher CSF Amyloid levels, and hypopnoea and apnoea events associated with levels 
of pathological AD markers and cognitive decline. Tao et al. [94] used baseline PSG data from mild-
to-moderate AD patients and older healthy controls, with AD patients showing a lower percentage 
of time spent in slow-wave sleep (and a correspondingly higher percentage of time spent in lighter 
NREM 1 sleep), lower spindles per minute of NREM 2 sleep, and lower absolute EEG power during 
NREM sleep, particularly in the low-frequency bands.  

Neurological disorders, including synucleinopathies, disrupt the balance of the ANS, leading to 
reduced HRV and atypical sleep patterns. These reductions are often associated with degeneration 
in brain regions responsible for autonomic regulation, such as the brainstem and cortical areas. HRV 
analysis during sleep can provide valuable insights into biomarkers for disease progression, 
therapeutic targets, and mechanisms underlying autonomic dysfunction. It may also serve as an early 
indicator of complications in neurodegenerative diseases.  

In PD, impaired HRV has been associated with disease severity, the duration of motor 
symptoms, and the dosage of dopaminergic medications [95,96]. Devos et al. [97], also observed 
progressive nocturnal cardiac dysregulation as PD advances. Specifically, the more advanced the PD, 
the lower the high-frequency (HF) HRV components and the higher the low-frequency/high-
frequency (LF/HF) ratio. This pattern indicates diminished vagal output and increased 
sympathovagal balance during sleep. HRV patterns also appear to distinguish PD patients with RBD 
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from those without it, supporting HRV’s potential as a digital biomarker [98]. In AD, studies [99,100] 
indicate reduced parasympathetic activity, reflected in low HF-HRV during SWS, particularly in 
older adults at risk for dementia. This reduction is most pronounced in individuals with amnestic 
mild cognitive impairment (MCI), a precursor to AD. These findings suggest that parasympathetic 
activity during SWS might serve as an early biomarker of neurodegeneration, providing peripheral 
evidence of underlying pathological processes [100]. Both AD and PD are characterized by reduced 
HRV during sleep, but their underlying mechanisms differ. These distinctions highlight the role of 
HRV as a non-invasive tool for understanding the pathophysiology of neurodegenerative diseases, 
particularly during REM and non-REM sleep stages. 

There are multiple sleep disorders associated with neurodegeneration, and accurate diagnosis 
can be challenging, but the use of home PSG is able to capture these diverse symptoms, and 
appropriate algorithms would be able to detect specific disorders [70]. However, there is also 
heterogeneity among studies, and thus further research is needed to identify specific early markers 
of neurodegenerative diseases to ensure high patient coverage. Overall, several studies of PSG have 
been conducted on AD and PD patients and indicate the suitability of PSG for monitoring patients 
with neurodegeneration and early manifestations of these diseases. The specific factors are in the 
research phase, but they hold great promise for early detection of diseases and early treatment. 

3. Actual State of Technological Evolution 

The field of sleep monitoring devices has evolved significantly due to technological advances 
and the growing consumer demand for accessible health insights (Figure 1). This chapter 
systematically reviews these technologies, starting with the most widespread and progressing to 
more specialized approaches, reflecting their current role in the emerging field of sleep monitoring. 
Each section highlights the unique capabilities, limitations, and advances of these devices, 
highlighting their impact on consumer health and clinical diagnostics. 

Overall, the chapter is structured into three subchapters. The first focuses on basic devices that 
rely primarily on a limited range of physiological parameters, offering a simple approach to sleep 
monitoring (Table 4). The second subchapter explores more advanced systems, which utilize multiple 
physiological parameters and can be considered as variants or extensions of traditional PSG 
technology (Table 5). Finally, the third subchapter delves into research applications specifically 
targeting neurological disorders, often employing devices described in the previous sections. 
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Figure 1. Sleep monitoring devices: (a) ePPG—own designed multisensor with PPG, temperature and movement 
sensors for sleep analysis [10]; (b) SleepActa actigraphic monitor with Dormi algorithm [101]; (c) UMindSleep 
EEG based sleep tracker. Reprinted from ref. [102]; (d) Airgo chestbelt for sleep respiration disorders monitoring. 
Reprinted from ref. [103]; (e) Withing sleep analyser based on BCG placed under bed mattress. Reprinted from 
ref. [104]; (f) Wearable apnoea detection device. Reprinted from ref. [105]; (g) Somnofy—radar system for 
contactless analysis of sleep stage and RR. Reprinted from ref. [106]; (h) Flexible humidity sensor in facemask 
for sleep apnoea monitoring. Reprinted from ref. [107]; (i) Modular respiratory polygraphy device 
SOMNOtouchTM Resp. Reprinted from ref. [108]; (j) Wireless PSG device SOMNO HD. Reprinted from ref. 
[109]; (k) Wireless wearable sleep monitoring patches. Reprinted from ref. [110]; (l) Advanced wearable 
headband and wrist device WPSG-I. Reprinted from ref. [111]. 
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3.1. Basic Sleep Monitoring Devices 

3.1.1. PPG-Based Devices 

Photoplethysmography (PPG) is a non-invasive method based on optical measurement of 
volume changes in the blood circulation and has the great advantages of being simple and 
inexpensive. PPG signals can be sensed and recorded from various body positions such as the wrist, 
finger, ear, nose, forehead, arm, neck, etc [77,112–117]. It uses a light source (LED) and a 
photodetector (PD) to record volume changes in blood circulation related to variations in light 
absorption, thus providing information about HR, pulse oximetry values, and enabling the 
monitoring of various cardiovascular diseases. The incorporation of this method is very popular on 
hands [118], mainly in smart watches like Apple watch 10 (Apple Inc., Cupertino, CA, USA), Xiaomi 
Mi Band 9 (Xiaomi, Beijing, China), FitBit Sense 2 (Google Inc., Mountain View, CA, USA) [118–123], 
smart rings (Oura Ring (Oura Health, Oulu, Finland), O2 Ring (Wellue, Shenyhen, China), RingConn 
Gen 2 (RingConn LLC, Wilmington, DE, USA) [124–126] and various other multi-sensor devices for 
measuring human physiology that are also suitable for continuous measurement [127]. The use of 
PPG sensors for sleep monitoring is interesting for its ability to capture the modulation of the 
autonomic nervous system during sleep. The combination of PPG with accelerometery helps to 
construct hypnograms in sleep and detect sleep-disordered breathing (SDB) [128]. The combination 
with other sensors also seems interesting to obtain results, for example, in conjunction with brain 
activity. Using PPG and the developed algorithm, it is possible to detect the onset of sleepiness 
approximately 9 minutes before sleep onset by analysing the change in the LF/HF parameter [129] or 
sleep stage in conjunction with body movements. The use of PPG for sleep monitoring is suitable for 
home long-term monitoring of insomnia, circadian rhythm sleep disorders, treated SDB, OSA 
[128,130,131]. 

One of the most precise PPG-based sleep trackers currently available is the Oura Ring 
Generation 3 and 4. Using ML algorithms and a dataset of over 1,200 PSG-validated recordings, the 
Oura Ring achieves 79% agreement with PSG [132], approaching the reliability of human experts, 
which is 83% [133] and 88% [134], respectively, in sleep stage scoring. The Oura Ring uses HR and 
movement data to classify sleep into light, deep, REM, and wake stages. Its IR PPG sensors allow for 
deeper tissue monitoring, providing more accurate physiological measurements, such as HRV, 
compared to devices which rely on green light for more superficial signal capture. While IR light is 
more prone to movement artifacts, the Oura Ring compensates for this by integrating movement 
data. Green light, commonly used in other devices, offers a better signal-to-noise ratio [135], but lacks 
the depth of IR light, making it less effective for certain physiological assessments. The Oura Ring 4 
features an 18-path multi-wavelength PPG system that improves accuracy. In contrast, the Oura Ring 
3 uses a single/dual-wavelength PPG system, which is effective but less precise particularly in 
challenging conditions like movement or skin tone variations. Additionally, the Oura Ring features 
a negative temperature coefficient (NTC) sensor to directly monitor nighttime skin temperature. 
Although this data is not used for sleep stage classification, it provides valuable insights into recovery 
and illness. A study published in [136] supports the Oura Ring's accuracy in sleep tracking compared 
to other methods. A study [137] validated the accuracy of Oura's Sleep Staging Algorithm 2.0, 
showing its measurements closely matched PSG, with sleep staging accuracy ranging from 75.5% for 
light sleep to 90.6% for REM sleep. Tisyakorn et al. [138] screened for moderate to severe OSA with 
an O2 ring [124]. The study included 190 participants with an AHI of 50.4 and compared it with 
standard PSG. The optimal cutoff for 11% ODI was 1.25 events/hour lasting 20 s. He achieved a 
sensitivity of 87.30% and a specificity of 78.70%. The area under the receiver operating characteristic 
curve for identifying OSA was 0.91. The SVM (Support vector machine) model demonstrated a high 
sensitivity of 97% in screening moderate to severe OSA but had a low specificity of 50%. 

Another device is the WHOOP 4.0 (Whoop, Boston, MA, USA). WHOOP's PPG system includes 
three green LEDs, which enhance the accuracy of heart rate measurements, one red LED for SpO2 
monitoring, and one IR LED for tracking HRV. WHOOP also uses PPG data to estimate RR and 
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calculate HRV. In addition to PPG, WHOOP 4.0 integrates data from multiple sensors, including a 
3D accelerometer and gyroscope that detect movement and body orientation. These sensors, 
combined with PPG data (HR, HRV, resting HR, and RR), offer a more detailed analysis of sleep 
patterns and stages. Like the Oura Ring, WHOOP features a temperature sensor, though it does not 
use NTC technology. Instead, WHOOP monitors ambient and skin temperature, primarily for 
assessing stress and recovery, rather than sleep stage classification. Although WHOOP 4.0 has not 
yet been extensively validated in peer-reviewed studies, a study published in [139] supports the 
accuracy of WHOOP 3.0 in classifying sleep stages. WHOOP claims that the 4.0 model offers a 10% 
improvement in accuracy compared to the 3.0, largely due to enhancements in sensor technology, 
including the addition of SpO2 and skin temperature sensors [140]. Among PPG-based sleep trackers, 
such as the Samsung Galaxy, Apple Watch, Garmin, Xiaomi Mi Band 5, and Google's Pixel Watch, 
Fitbit stands out as one of the most well-validated options, particularly the Sense 2 and Charge 5 
[141]. These models use advanced algorithms based on HR and movement data (via accelerometer) 
to classify sleep into a simpler three-stage system: Light, Deep, and REM sleep. While Fitbit tracks 
HRV, it does not use HRV directly for sleep stage classification. Instead, HRV contributes to 
evaluating sleep quality, recovery, and overall health. Fitbit uniquely provides explicit SpO2 metrics, 
which help identify breathing irregularities potentially linked to sleep apnoea, though this 
information is presented as trends rather than direct alerts. The Sense 2 also includes an 
Electrodermal Activity (EDA) sensor, which helps address stress-related sleep disruptions, indirectly 
improving sleep quality. Additionally, both models monitor nightly skin temperature variations. 
Another device is the UpNEA [118], which is in the form of a smart glove. It contains a 3-axis 
accelerometer on the wrist connected to a PPG sensor on the finger. The device is mainly suitable for 
determining sleep stages, apnoea, hypopnoea, but of course it can also identify HR, SpO2, RR and 
atrial fibrillation. The apnoea and hypopnoea detection algorithm showed an accuracy of 75.1% when 
displaying the PPG window in one-minute segments. From the accelerometer, we can distinguish 
CSA from OSA with an accuracy of 92.6% and central hypopnoea from CSA with an accuracy of 
83.7% and OSA from obstructive hypopnoea with an accuracy of 82.7%. 

The devices described so far have been used on the wrist or finger. Young children and babies 
are often monitored on their feet. Regarding the application of PPG in less traditional locations, it is 
worth mentioning the study of Venema et al. [142], which explored PPG worn in the ear canal. The 
authors highlighted the reliability of home measurements without the need to conduct all 
measurements in laboratory conditions, where sensor results were compared with standard PSG 
monitoring. They diagnosed sleep apnoea and evaluated the dynamics of HR, SpO2 and discussed 
methods for deriving RR from PPG signals. Another study [143], utilized a device placed at the root 
of the nose for home all-night screening of sleep-disordered breathing, called Morfea. This device is 
designed to detect sleep apnoea and assess various sleep parameters. Morfea contains a PPG sensor 
with two LEDs, a microcontroller, a 3D accelerometer, a Bluetooth unit and a battery with a guarantee 
of 9 hours of acquisition. The recorded data is filtered with a bandwidth of 0.3 Hz to 3.5 Hz for 
processing the PPG signal to preserve the cardiac and respiratory components and remove high-
frequency noise. A filter with a bandwidth of 0.2 - 3.5 Hz is used to process the signal from the 
accelerometer. Morfea is effective in detecting sleep apnoea and can also identify five different body 
positions during sleep, can estimate SpO2, which is a direct indicator of sleep apnoea, can measure 
HR and determine the severity of sleep-disordered breathing. The device's limitations include its 
inability to distinguish between apnoea and hypopnoea and its inability to classify sleep. The study 
results show an 89% sensitivity and 93% accuracy in detecting sleep apnoea. Also of note is the review 
by Perez-Pozuelo et al. [144] dedicated to sleep detection outside the clinic using wearable HR 
measurement devices. 

Measurements using PPG sensors provide very valuable information about the overall 
physiological state of the patient and, in addition to HR, RR and SpO2, pulse oximetry can allow the 
measurement of other vital parameters such as thermoregulation or blood pressure fluctuations, thus 
reducing the number of sensors on multisensor devices. 
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3.1.2. Actigraphic Devices 

Accelerometers, as part of actigraphy devices, are usually made in the shape of wristbands or 
anklets and are focused on detecting cycles of sleep or wakefulness. They do not provide detailed 
information about sleep stages but are acceptable and effective tools for assessing disorders related 
to sleep patterns [145] such as insomnia, and circadian rhythm disorders [146]. Sleep interpretation 
from actigraphy assumes that little or no movement is registered during sleep, while wakefulness 
corresponds to higher movement activity. It quantifies movement exceeding a predetermined 
threshold [147]. When an actigraphy device is placed on a foot [148], it is possible to detect RLS or 
PLMS in sleep. It can determine the duration, amplitude, and periodicity of movements, as well as 
the severity of PLMS.  

A typical wrist-worn actigraphy systems are ActTrust 1 and ActTrust 2 (Neurocare Group AG, 
Munich, Germany) [149]. These devices enable the estimation of various objective sleep parameters, 
including time in bed (TIB), wake after sleep onset (WASO), sleep onset latency (SOL), TST, and SE. 
They contain an accelerometer, temperature sensors for measuring skin and ambient temperature, as 
well as an RGB light sensor and an IR sensor for monitoring environmental light exposure. The 
battery in these devices is rechargeable and allows monitoring for long periods, up to three months, 
on a single charge. For advanced monitoring, including also light exposure, the ActLumus (Condor 
Instruments, Sao Paulo, Brasil) device [150] has been developed, which additionally includes 
photopic and melanopic light sensors. It offers 10 light channels and features off-wrist capacitive 
sensor monitoring. Next actigraphy system, the ActiGraph wGT3X-BT (ActiGraph LLC, Pensacola, 
FL, USA) [151], is a proven wearable device utilized by researchers worldwide for continuous, real-
world monitoring of sleep and activity. This device excels in tracking various metrics, including 
physical activity (total movement, step count, energy expenditure, etc.) and estimation of basic sleep 
parameters mentioned above. It can communicate via Bluetooth LE, enabling the monitoring of 
parameters such as HR. Hayano et al. [152] made quantitative detection of sleep apnoea using inertial 
measurement unit (IMU) embedded in wristwatch devices. 122 adults underwent parallel PSG 
examinations. They operated with both accelerometric and gyroscopic signals and developed an 
algorithm to extract signals in the respiratory frequency band (0.13–0.70 Hz) and detect respiratory 
events as transient (10–90 s) decreases in amplitude. The respiratory event frequency correlated with 
AHI of the PSG with r = 0.84, and the accuracy for moderate apnoea was 85% and for severe apnoea 
89%. One of the promising algorithms used for sleep analysis in wearable sleep trackers is Dormi 
(Sleepacta, Pisa, Italy) [101,153]. Dormi uses a neural network to process raw data from lightweight, 
non-intrusive wearable activity trackers typically designed for tracking physical activity. Actigraphs 
using the Dormi artificial intelligence algorithm assess sleep quality and duration over a 24-hour 
circadian cycle. Actigraphic reports from Sleepacta calculate and provide sleep parameters essential 
for analysing sleep, such as TST, SE, WASO, sleep regularity index. Dormi is CE-certified Class I 
medical device. 

Modern actigraphy systems use a combination of PPG sensors, temperature sensors, gyroscopes, 
and barometers to provide comprehensive insight into a person's sleep [154]. By integrating multiple 
sensor types, these advanced actigraphy systems can monitor various physiological parameters, such 
as HR, body temperature, and movement, allowing for a more detailed analysis of sleep quality and 
patterns. A good example is the Somno-Art® [155,156], which utilizes a 3D accelerometer to monitor 
movements and PPG to measure HR for determining all sleep stages. This medical device, certified 
with a CE mark, consists of an armband that collects data and standalone software equipped with AI 
algorithms for automatic sleep analysis, producing a corresponding hypnogram. It uses Bluetooth 
technology for wireless communication, enabling seamless data transfer. Scientifically validated 
studies have shown that its outcomes are comparable to PSG. The device achieved a sleep-wake 
detection accuracy of 87.8%, with a sensitivity of 93.3% and a specificity of 69.5%. The overall 
accuracy for detecting all sleep stages, including NREM 1, NREM 2, NREM 3, REM, and wake, was 
68.5%, based on a sample of 246 patients compared to traditional PSG [156]. Finally, we must 
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highlight an article dedicated to algorithms in actigraphy [157] and the combination of actigraphy 
with PPG [158]. 

3.1.3. EEG-Based Devices 

While most wearables are designed for practical use on the wrist or finger, several specialized 
devices focused specifically on sleep monitoring, utilizing EEG technology, are worn by different 
means in the head area. Due to a direct sensing of the brain activity, EEG principle is considered the 
most accurate in sleep-tracking (capable of identifying all stages of sleep) and reliable in disorder 
diagnosing. A disadvantage of conventional medical devices is the large number of monitoring 
electrodes and their time-consuming setup, which can disrupt natural comfort and affect the results. 
Modern telemedicine devices are starting to make the implementation, self-application and usage 
way easier [145]. 

Among the head accessories, headbands like the Muse S (InteraXon Inc., Toronto, Canada) [159], 
are very popular. In addition to EEG data, it’s capable of monitoring HR, movement and position 
and breathing patterns, offering a comprehensive picture of sleep tracking. In comparison, the Dreem 
3 (Beacon Biosignals, Boston, MA, USA) [160] integrates EEG data with these metrics to provide 
detailed insight into the sleep quality. By using machine learning algorithms to analyse brainwave 
data, it helps to track sleep architecture and diagnose any disturbances [161]. Similarly, thanks to the 
artificial intelligence, the lightweight forehead monitor UMindSleep (EEG Smart, Shenzhen, China) 
[162] is also able to evaluate sleep records and diagnose disorders, such as OSA. On top of that, it can 
record snoring, forehead temperature, body movement and position, HR and SpO2. Another design 
introduced a convenient ear monitor [163], which makes its use barely noticeable. The structure is 
composed of memory foam and flexible electrodes. Highly elastic foam can detect signals caused by 
physical deformation of ear canal walls. Finally, there was a successfully tested set [164] with 
forehead EEG (and EOG) electrodes and chin EMG electrodes. All these setups have shown high 
consistency with standard polysomnography in terms of total sleep time, sleep efficiency, and 
latencies, although there are some differences in sleep stage measurements [165]. 

3.1.4. Respiratory-Based Devices 

Chest belts, whether in their traditional form or as smart patches, are highly effective for 
respiratory monitoring during sleep due to their ability to provide continuous, accurate, and non-
invasive measurements of thoracic and abdominal movements. They are particularly useful for 
identifying respiratory patterns and disruptions, which are critical for diagnosing sleep-related 
breathing disorders such as OSA.  

The Airgo belt (MyAir Inc., Boston, MA, USA) [103], for instance, uses a resistance-based sensor 
positioned at the lower ribcage to detect changes in chest circumference. The belt itself is made from 
stretchable materials with silver-coated yarn. The Airgo band incorporates Bluetooth and can process 
both live and recorded data. The device also includes an IMU for activity and position detection. In 
study [166], the Airgo belt was used for sleep monitoring of 120 patients, compared with respiratory 
sleep monitor Nox T3 (Nox Medical, Alpharetta, GA, USA) [167]. Results showed that the Airgo belt 
was able to classify OSA patients at different stages with 95.8% accuracy. The study by Wu et al. [168] 
proposed a chest belt based on respiratory inductive plethysmography (RIP) technology, specifically 
aimed at continuous sleep monitoring. In this study, two RIP belts were integrated into a suit to 
enhance comfort. Additionally, new signal processing algorithms were developed for RR extraction. 
Results from experiments on 10 healthy subjects showed a relative error of 15% when comparing the 
data with the commercial device BIOPAC MP150 (BIOPAC Systems Inc., Goleta, CA, USA). The 
device’s portability and digital design make it suitable for both clinical and home environments, 
where it can support the detection of sleep-related respiratory disorders. Hernandez et al. [169] 
developed a wireless, real-time, battery-operated system for monitoring respiratory effort and body 
position, using an IMU sensor placed on an elastic belt. This system employs data fusion techniques 
to monitor respiratory effort in both supine and lateral recumbent positions. The device was 
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compared with a standard respiratory belt and was validated through the Pearson correlation 
coefficient (PCC), with an average PCC of 0.963. Limitations include a restricted sample size of only 
one healthy subject due to ethics approval constraints. For better accuracy assessment, more testing 
subjects are needed. Another study conducted by Kristiansen et al. [170] investigated a low-cost strain 
gauge respiration belt called Flow, used in combination with a Convolutional neural network (CNN) 
for sleep apnoea severity estimation. The study involved 29 subjects undergoing unattended sleep 
monitoring at home, using the Flow respiration belt and the Nox T3 device simultaneously. The 
results demonstrated an accuracy of 0.7609, sensitivity of 0.7833, and specificity of 0.7217. 

New alternatives to chest belts could be smart sensor patches. In a study by Selvaraj [171], a 
wireless patch sensor, VitalPatch (VitalConnect, San Jose, CA, USA), was used for monitoring the 
sleep architecture of 42 volunteers, comparing results with standard PSG. VitalPatch is an FDA-
approved, disposable device capable of measuring single-lead ECG, HR, HRV, skin temperature, 
body position, fall detection, and respiratory rate. The results showed an accuracy of 80.5 ± 8.3% and 
a Cohen’s kappa of 0.50 ± 0.18 in 3-class sleep stage prediction. Zavanelli et al. [172] created a wireless 
soft patch capable of measuring Seismocardiography (SCG), ECG, PPG, and derived parameters such 
as SpO₂, HR, respiratory effort, and RR. The patch consists of a flexible circuit on an elastomeric 
membrane and features integrated nanomembrane electrodes. Machine learning algorithms were 
implemented for automatic detection of apnoea’s and hypopnoeas, achieving 100% sensitivity and 
95% precision compared with professionally acquired data. 

A very useful alternative method for measuring respiration during sleep is bioimpedance 
measurement. This method is gaining popularity mainly due to its integration into biopotential 
transducers, such as the circuit series ADS129xR [173], AFE4960 [174], AFE4500 [175] (Texas 
Instruments, Dallas, TX, USA), or ADAS1000 [176] and MAX30001 [177] (Analog Devices, 
Wilmington, MA, USA). Among the applications in the field of sleep, research is worth mentioning 
Van Steenkiste et al. [178] which introduced a novel wearable device called ROBIN, designed to 
measure impedance changes during breathing, along with ECG and acceleration measurements. For 
automated sleep apnoea event detection, a two-phase long short-term memory (LSTM) deep learning 
algorithm was implemented. The study involved 25 patients, with their vital signs simultaneously 
recorded using a bioimpedance sensor and standard PSG. The results demonstrated that the device 
achieved an accuracy of 72.8%, sensitivity of 58.4%, and specificity of 76.2%. 

3.1.5. Ballistographic Sensors 

The potential of ballistographic (BCG) sensors for contactless sleep monitoring opens 
compelling avenues for tracking biosignals without directly applying sensors on the body. BCG 
operates effectively through integration into everyday objects like mattresses, bed frames, and chairs, 
enabling unobtrusive, long-term sleep assessment. This approach is beneficial for tracking HR, HRV, 
RR, and broader physiological signals that indicate sleep health and quality. It is effective in 
identifying a range of sleep disturbances including insomnia, sleep apnoea, bruxism, RLS, nocturnal 
epilepsy, sleepwalking, and narcolepsy [179]. However, BCG is generally less effective in capturing 
fine neural activity typical in EEG-based sleep stages, making it better suited for general monitoring 
and longitudinal studies. 

A leading example of a BCG-based device is the Emfit QS Active (Emfit Ltd, Vaajakoski, Finland) 
sleep monitor, placed beneath the mattress, which continuously records HR, HRV, RR, sleep stages, 
movements, recovery, stress levels, snoring, and overall sleep quality [180]. Mack et al. [181] 
employed two mattress pressure pads for BCG in a sleep-monitoring system to assess HR and RR in 
40 healthy subjects, in conjunction with PSG. Zhao et al. [182] utilized oil pressure sensors embedded 
in a micromovement-sensitive mattress to assess sleep apnoea syndrome by applying a knowledge-
based support vector machine (KSVM) model, processing HR and RR data from 42 subjects over three 
nights. The Yi collective [183] developed a non-invasive hydraulic bed sensor for sleep stage 
classification, comprising four small pressure sensors under the mattress that capture small-
amplitude movements, including BCG signals during each cardiac cycle and respiratory phases. 
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Using SVM and KNN (K-Nearest Neighbours) models, they achieved 85% accuracy with a kappa of 
0.74 for REM, NREM, and awake detection. Further studies that demonstrate BCG’s versatility are 
Silva et al. [184] who applied Murata SCA11H (Murata Electronics, Vantaa, Finland) BCG sensors 
with a Random Forest algorithm to classify sleep stages. Alivar et al. [185] described a BCG-based 
motion detection algorithm within a smart bed system that effectively quantified restlessness, with 
Neyman-Pearson and sequential detection methods achieving 95% and 96% sensitivity for sleep 
movement. Liu et al. [186] identified OSA by exploiting event phase segmentation of BCG signals, 
yielding a precision of 94.6% and recall of 93.1%, as validated against 3,790 OSA events. Xian Li et al. 
[187] used a piezoelectric film sensor for BCG monitoring in 32 subjects, providing foundational data 
for future BCG-based vital sign monitoring. Wang et al. [188] applied BCG to assess the severity of 
sleep apnoea, estimating the apnoea-hypopnoea index by identifying sleep-related respiratory 
events. In clinical validation, Nurmi et al. [189] tested an accelerometer-based BCG sensor, validated 
with PSG in 20 subjects, showing parameter accuracy within a 95% confidence interval. Hwang et al. 
[190] established an accurate apnoeic events monitoring method using a polyvinylidene (PVDF) film. 
For min-by-min they classified sleep apnoea with a sensitivity of 72.9%, specificity of 90.6% and 
accuracy of 85.5%. Another smart device is a MEMS 3D accelerometer and pressure sensor-based belt 
by He et al. [191], which is placed under the patient and aims to detect vital signs, snoring events, 
and sleep stages. The accuracy of snoring detection is 97.2% and sleep stage detection is 79.7%. The 
combination of BCG and actigraphy is also increasingly popular, as noted by Jaworski et al. [121,192], 
which enhances movement and cardiovascular data interpretation for comprehensive sleep analysis. 
Next device, Withings Sleep Analyser (Withings, Issy-les-Moulineaux, France) [104], is a unique 
combination of two powerful sensors placed under the mattress at chest level with a one-time setup. 
A sound sensor identifies audio signals specific to snoring and cessation of breathing episodes, and 
a pneumatic sensor measures HR, RR, and body movements across the mattress. It allows in-depth 
analysis of sleep cycles and detection of sleep apnoea and its severity with medical grade. 

The narrative review by Balali et al. [193] provides a comprehensive overview of innovations in 
respiratory signal extraction, cardiorespiratory interactions, and AI applications in BCG monitoring 
outside clinical settings. They highlight the benefits of BCG in cost-effectively improving clinical and 
home sleep monitoring. Lastly, Sadek et al. [194] present an in-depth review of sensor technologies 
for BCG, detailing signal processing methods for analysing HR, RR, and sleep stage classification, 
demonstrating BCG’s expanding role in sleep health monitoring. 

3.1.6. Acoustic-Based Devices 

Acoustic sensors represent a promising, non-contact approach to sleep monitoring, leveraging 
sound analysis to assess physiological and environmental factors without body-worn devices. Their 
capacity to detect and interpret signals such as breathing patterns, snoring, coughing, and ambient 
noise is invaluable for monitoring sleep-related breathing disorders like sleep apnoea, as well as 
disturbances like restless leg syndrome and sleep talking. Acoustic sensors effectively capture 
respiratory events—monitoring rate and rhythm changes without disrupting the sleeper’s natural 
environment. Some limitations, such as potential signal interference from environmental noise and 
variability in complex respiratory condition analysis, exist. However, advancements in acoustic 
signal processing, machine learning, and noise-filtering algorithms are addressing these limitations, 
enhancing the reliability of acoustic sensing in identifying sleep stages and respiratory events. Some 
products and research use their own microphone designs, but a large portion relies on mobile phone 
microphones for practical reasons. 

Romero et al. [195] used acoustic screening to detect OSA in 103 participants through deep 
neural networks, achieving sensitivities and specificities of 0.79 and 0.80 for moderate OSA, and 0.78 
and 0.93 for severe OSA, making it suitable for implementation on consumer smartphones. 
Markandeya et al. [196] and Nakano et al. [197] further monitored sleep apnoea, with Nakano’s study 
emphasizing snoring as a critical sound indicator for sleep apnoea. Penzel et al. [198] employed 
tracheal sounds for sleep apnoea diagnosis with the PneaVox (CiDELEC, Sainte-Gemmes-sur-Loire, 
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France) sensor, designed with an airtight plastic chamber to minimize ambient noise and capture 
tracheal sounds accurately. This sensor is placed near the suprasternal notch and attaches via double-
sided adhesive tape. It records respiratory sounds typically in the 200–2000 Hz range and snoring 
sounds from 20–200 Hz. In a study conducted on 20 children, PneaVox demonstrated high reliability 
compared to a traditional polygraph (PG) device, indicating its utility in paediatric apnoea 
identification. A wearable medical device, AcuPebble SA100 (Acurable Limited, London, UK) [199], 
also utilizes acoustic sensing to detect OSA. This compact, circular device (2.9 cm diameter, 1.4 cm 
height, 7g weight) is affixed to the neck with disposable medical adhesive. It uses piezoelectric MEMS 
microphones and algorithms to capture and analyse respiratory events, heart rate, and breathing 
rhythm throughout the night. Although it does not provide direct PPG data or absolute oxygen 
saturation levels, it can detect oxygen desaturations through acoustic signal features. The device 
achieves a high diagnostic accuracy for OSA, with a specificity of 96.8% and sensitivity of 92.7%. 
Rodriguez-Villegas et al. [105] developed a compact (3.74 × 2.4 × 2.1 cm, 17g) wearable acoustic sensor 
for detecting apnoea and hypopnoea, with a small microphone chamber affixed to the neck via 
adhesive patches. The device demonstrated 77.1% sensitivity and 99.7% specificity in apnoea and 
hypopnoea detection. Fang et al. [200] developed a wireless acoustic sensor attached near the nose 
with a commercial headset for recording respiratory data during sleep, while Werthammer et al. [201] 
focused on infant apnoea detection, comparing respiratory sounds to trans-thoracic impedance and 
ECG.  

3.1.7. Radar Systems Devices 

Radar-based sensors enhance user comfort by eliminating the need for wearable devices or 
physical contact. They are installed at a distance, such as on a ceiling or bedside table, ensuring 
minimal intrusion while maintaining accurate respiratory monitoring. This makes them especially 
suitable for long-term sleep studies and for populations sensitive to traditional sensor-based setups, 
such as children or elderly individuals. 

Resuli et al. [202] developed a non-invasive device for monitoring respiration and sleeping 
posture, using a radio frequency (RF) sensor. The researchers used the Vayyar RF (Vayyar, Yehud-
Monosson Israel) with a carrier frequency of 6.014 GHz to collect signals for 13 different sleeping 
postures. All reflections were captured by a frequency modulated continuous wave (FMCW) signal. 
The collected data were compared with a respiration belt. The RF sensor was placed on the ceiling, 
2.3 m above the bed. The results showed 90% accuracy for RR estimation with the chest facing directly 
toward the sensor, 87% with the head positioned on the opposite side of the bed, and 86% while 
sitting. Turppa et al. [203] used another FMCW radar sensor for measuring RR, HR and HRV during 
sleep. The study involved ten subjects in different lying positions. The fast Fourier transform (FFT)-
based cepstral analysis was used for HR extraction, and the autocorrelation function was applied to 
the phase signal for RR extraction. The carrier frequency of the radar was 24 GHz with a 250 MHz 
bandwidth. The measurement system achieved a correlation of 86% for HR and 91% for RR, when 
compared with reference signals acquired by the certified PSG device, Embla Titanium (Raftopoulos, 
Athens, Greece). A very interesting device is Somnofy (Vitalthings AS, Trondheim, Norway) [106], 
which, in the form of an alarm clock, uses radar to detect RR, sleep phases, and restlessness, while 
also monitoring habits, lighting, atmospheric pressure, air quality, humidity, and temperature. 
Somnofy is an impulse radio ultrawideband radar with a carrier frequency of 23.8 GHz. For signal 
processing, it uses FFT every second for each preceding 20-second time window of measured data. 
In the study by Toften et al. [204], they used this device for measuring RR during sleep from 37 
healthy adult subjects. Another 6 healthy participants were recruited for a 3-month-long use of the 
Somnofy device during sleep in a home environment. The results of the study showed Bland-Altman 
95% limits of agreement ranging from -0.07 to -0.04 respirations per minute, compared with a 
reference RIP sensor. Further analysis showed that measurements were more accurate during deep 
sleep (NREM 3) and light sleep (NREM 1 or 2) than during other sleep stages (wake and REM). Dong 
et al. [205] designed a custom radar-based system with an algorithm for identifying respiratory 
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variables and extracting respiratory phases and amplitude during sleep. The system consists of a 
radar sensor with a 24 GHz signal, a microcontroller unit (MCU) for signal preprocessing, and a Wi-
Fi module for transmitting data to the cloud server. The measured data from the radar system were 
compared with data from the gold-standard PSG, simultaneously measured for ten subjects. 
Experimental results revealed an accuracy of 97% for respiration-to-respiration interval (RRI), 93% 
for inhale duration, and 92% for exhale duration assessment. Based on the accurate detection of RRI, 
it was also possible to distinguish between REM and NREM sleep. The SleepScore Max (SleepScore 
Labs, Carlsbad, CA, USA) [206] is a non-contact sleep monitoring device designed for bedside use, 
eliminating the need for wearable sensors. It measures movement, breathing, and environmental 
factors such as light and temperature to assess sleep quality and duration. Results are presented as a 
personalized Sleep-Score™, accessible via a companion app that offers evidence-based guidance for 
improving sleep. Validated in over a dozen peer-reviewed studies, it provides one of the most 
accurate non-contact sleep tracking outside clinical settings. Studies also demonstrate its ability to 
enhance sleep quality within one week of use. The study [207] presents a non-contact sleep 
monitoring device called S+. It operates by emitting low-power radio wave pulses at a frequency of 
10.5 GHz to detect body movements. The effective range of the device is 1.5 meters, ensuring accurate 
measurement of the intended person. The device is designed to detect respiratory patterns, overall 
body activity, room temperature, light, and sounds. It evaluates sleep stages – light, deep sleep, REM 
and wake. The device’s accuracy for sleep-wake detection was 87%, compared to PSG. Its sleep 
sensitivity, exceeding 90%, was notably higher than its specificity, which ranged from 70% to 75%. 
The accuracy in evaluating individual sleep stages reaches 68% for each stage. 

The last device, WiFi-Sleep [208], does not directly fall under radar devices, but it still works on 
the principle of influencing the RF signal by human physiology, so we'll include it here after all. WiFi-
Sleep is designed for practical application in real-life environments, offering a reliable solution for 
long-term sleep monitoring. This innovative system tracks sleep across four stages through key 
components: data collection, detection of respiration and body movements, and sleep stage 
classification. By utilizing standard Wi-Fi devices, WiFi-Sleep delivers a non-intrusive, cost-effective, 
and real-time method for comprehensive sleep analysis. The system operates with a pair of Wi-Fi 
transceivers, strategically placed with the subject positioned between them. Future developments 
will focus on expanding the system's ability to detect sleep-related conditions like chronic insomnia, 
RLS, and sleep apnoea. Additionally, the system's functionality will be enhanced by refining the 
analysis of respiration waveforms, tracking body movements, and detecting PLM, leading to 
improved accuracy. 

Further research on radar-based sleep monitoring is extensively discussed in the following 
review articles [209–211]. 

3.1.8. Breath Gas Monitoring Devices 

Temperature, humidity and pressure sensors are suitable for sleep monitoring, and they can 
analyse breath during sleep and be useful for detecting early physiological changes [212–214]. The 
use of these sensors is based on the fact, that exhaled air is warmer, more humid and contains more 
CO2 compared to inhaled air. Although most of the exhaled air is nitrogen, oxygen, water and carbon 
dioxide, even a low concentration of volatile organic compounds can provide valuable information 
about various diseases which also include neurodegenerative disorders [215,216]. The advantages of 
the temperature, humidity, and pressure sensors are non-invasiveness, painlessness and the 
possibility of long-term monitoring. Recently, sensors made of flexible materials that can be adapted 
and seamlessly integrated into face masks or attached as a nasal patch are preferred and developed 
[217–219].  

Inhalation and exhalation generate airflow that mechanically interacts with pressure sensors, 
and the signals are further transformed into measurable electrical signals. An interesting idea is self-
powered breath sensors that simultaneously sense and harvest energy by utilizing the piezoelectric 
or triboelectric effect [220,221]. Temperature sensors commonly use thermistor materials such as the 
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patch temperature sensor [222], nanofiber membrane colorimetry with thermochromic dye [223] or 
pyroelectric nanogenerators [220,224,225]). Exhaled breath temperature can effectively indicate 
inflammatory markers and changes in bronchial blood flow, making it a useful tool for identifying 
respiratory conditions such as asthma or lung cancer. [226]. Cao et al. [227] proposed a wearable 
respiratory sensor based on thermally sensitive materials to monitor normal and abnormal breathing, 
ideal for sleep monitoring. Pang et al. [228] fabricated a smart face mask capable of recognizing 8 
breathing patterns. The sensor uses novel 3D carbon nanofiber mats as active materials to 
simultaneously realize pressure and temperature sensing. The moisture content of inhaled and 
exhaled air is a very important indicator of the physiological state of the monitored person. Humidity 
sensors monitor the interaction between the sensing material and water vapor in the gas based on the 
amount of water molecules on the surface of the material where they bind. Monitoring changes in 
relative humidity records the frequency and intensity of breathing and distinguishes nasal and oral 
breathing [229]. These changes indicate respiratory health, sleep quality, hypertension, etc. Honda et 
al. [107] developed a highly stable humidity sensor that can wirelessly monitor sleep apnoea in real 
time and in a home environment. The flexible humidity sensor is on a mask and has a ZnIn2S4 
nanolayer, which is sensitive to humidity with high sensitivity and stability for more than 150 hours. 
Ma et al. [230] designed a low-cost, flexible, and easy-to-process paper moisture sensor for 
monitoring sleep breathing in the form of a patch. They achieved high sensitivity and application for 
monitoring sleep apnoea. The sleep mask NiteAura (Linkface, New York, NY, USA) for breathing 
care monitors breathing conditions and breathing during sleep, helping people with sleep-disordered 
breathing and setting appropriate conditions to help achieve deeper sleep [231]. It has multiple built-
in sensors - for humidity, temperature and IMU.  

There are several articles about humidity, pressure, and temperature sensors, and for use in 
monitoring early stages of diseases and determining the overall physiological condition of the 
patient, their incorporation into wearable systems with an overall evaluation of multiple factors is 
suitable. 

Table 4. Basic sleep monitoring devices. 

Type Application Sensing Element Key Parameters Ref. 
PPG HR, SpO2, sleep 

stage 
PPG (2× LED + 

PD), temperature, 
3D IMU 
in ring 

[Oura Ring], 106 subjects, ML 
using 5-fold cross-validation, 

Sleep/wake accuracy 94% from 
accelerometric model and 96% 

from ANS and circadian features, 
4-stage detection 57% resp. 79%, 

ARM Cortex MCU, Bluetooth 

[132] 

PPG HR, SpO2, sleep 
stage, movement 

PPG, 
accelerometer, 
gyroscope on 

wristband 

[Xiaomi Band 9], Ambient light 
sensor, Bluetooth, 45 subjects, 

Sleep stage accuracy 78%, 
Sensitivity 89%, Specificity 35%, 

κ = 0.22 

[120] 

PPG HR, SpO2, sleep 
stage, movement, 

ECG, OSA 

PPG, IMU, 
temperature in 

smartwatch  

[Apple watch], Temperature, 
Ambient light sensor, Bluetooth, 

Processor S10 SiP, Memory 
64 GB, GPS, Sleep stage 

agreement 53% (κ 1 = 0.2), 
Sensitivity 50.5-86.1%, Precision 

72.7-87.8% 

[123,136,139] 

PPG HR, SpO2, 
movement, OSA, 

ODI  

PPG, 
accelerometer 

in ring 

[O2 Ring], 190 subjects, ODI 
sensitivity 87.30% and specificity 

78.70%, SVMs model for OSA 
with sensitivity 97% and 

[124,138] 
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specificity 50%, Sampling rate 
150 Hz, BLE, Recording time 16 

hours, HR accuracy ±2 bpm, 
SpO2 accuracy ±3% 

PPG HR, SpO2, RR, 
HRV, skin 

temperature, 
stress, sleep stages 

PPG (3× green + 
red + IR LED, 4× 

PD) 
 

[WHOOP 4.0], Sleep stage 
agreement 65% (κ = 0.52)  

[139,140] 

PPG HR, SpO2, ECG, 
EDA, sleep 

patterns, stress, 
OSA, movement  

PPG, BT, 3D 
accelerometer in 

smartwatch 
 

[Fitbit Sense 2], NFC, Ambient 
light sensor, Wi-fi, GPS + 
Glonass, Bluetooth, OSA 

sensitivity 88%, OSA specificity 
52%, TST and SE overestimation 
10%, Sleep stage sensitivity 61.7-

78%, Precision 72.8-73.2% 

[119,141] 

PPG HR, SpO2, RR, 
sleep stages, 
central and 
obstructive 

apnoea/hypopnoea 

3D accelerometer 
and PPG in glove 

[UpNEA], MAX-30101 PPG, 
MAX-21105 IMU, PPG sampling 

rate 100 Hz, Accelerometer 
sampling rate 50 Hz, BLE, 

Tachycardia/bradycardia/atrial 
fibrillation/premature ventricular 

contraction detection, 
Accuracy 75.1% for 

apnoea/hypopnoea detection, 
Central vs obstructive accuracy 

about 83.2% 

[118] 

PPG HR, SpO2, RR, 
OSA 

In-Ear PPG 16-bit, MSP430F1611 
microcontroller 

[142] 

PPG HR, SpO2, RR, 
head position, 

apnoea 

PPG (red + IR 
LED), 

3D accelerometer 
on the nasal 

septum  

[MORFEA], MAX-30102 PPG, 
LSM6DSM accelerometer, 

Sampling rate 50 Hz, Modulation 
of PPG by breath, PSD 2 and 

PWA 3 method, Sensitivity 89% 
and precision 93% of apnoea 

detection, Bluetooth, 
Recording time 9h 

[143] 

Actigraphic Movements, 
light exposure  

3D MEMS 
accelerometer, 

light sensor 

[MotionWatch 8], Sleep patterns, 
PLMS detection, 

Circadian rhythm disorders, 
Memory 4 MBits, 

Recording time 3 months, 
Weight 9.1 g without strap  

[148] 

Actigraphic  Movements, 
ambient and body 
temperature, light 

2D accelerometer, 
RGB - IR light, 
temperature  

 

[ActTrust 1], Sleep patterns and 
activity, Circadian rhythm 
disorders, Memory 4 MB, 
Recording time 3 months, 

Weight 38 g 

[149] 

Actigraphic  Movements, 
ambient and body 
temperature, light 

exposure  

3D accelerometer, 
RGB - IR light, 
temperature  

[ActTrust 2], Sleep patterns and 
activity, Circadian rhythm 
disorders, Accelerometer 

sampling rate 25 Hz, Memory 8 
MB, Resolution 12-Bit, Digital 

[149] 
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time display, Recording time 3 
months, Weight 35 g 

Actigraphic Movements, 
ambient and body 
temperature, light 

exposure 

3D accelerometer, 
RGB - IR light, 
temperature, 

melanopic, Off-
wrist 

capacitive sensor 

[Act Lumus], Sleep patterns and 
activity, Circadian rhythm 
disorders, Accelerometer 

sampling rate 25 Hz, Memory 8 
MB, Resolution 12-Bit, Bluetooth, 
Recording time 1 month, Weight 

31 g 

[150] 

Actigraphic Movements, 
light exposure  

Accelerometer, 
light sensor 

[ActiGraph wGT3X-BT], Sleep 
patterns and physical activity, 

Weight 19 g, Sampling rate 30 – 
100 Hz, Memory 4 GB, Recording 

time 25 days, BLE 

[151] 

Actigraphic Movements, OSA, IMU, 
temperature 

[SleepActa], RTC, Sampling rate 
100 Hz, 78 subjects, Dormi 

algorithms (Waso, TST, SE, SRI 4), 
CE Class I medical device, MCC 5 

0.4 for mild AHI and MCC 0.3 
for severe AHI 

[101,153] 

Actigraphic HR, activity  3D accelerometer, 
PPG 

[Somno-Art], Sleep classification, 
Insomnia, OSA, Narcolepsy 
detection, AI algorithms for 

automatic sleep analysis, 
Bluetooth, Accelerometer 

sampling rate 250 Hz, 
Sleep/wake accuracy 87.8%, 
Sleep stages accuracy 68.5%, 

Recording time 40 hours 

[155] 

EEG 
 

EEG, HR, 
breathing, body 
movement and 

position 

4-channel EEG, 
PPG, 3D IMU, 

respiration in the 
headband 

[Muse S], Sleep tracking & 
evaluation 

[159] 

EEG EEG, HR, SpO2, 
movement, 
breathing 

temperature 

5-channel EEG, 
PPG, respiration, 
accelerometer on 

the headband 

[Dreem 3S], Sleep tracking, AI 
quality evaluation & disturbance 

diagnosis 

[160] 

EEG EEG, HR, SpO2, 
CBT, body 

movement and 
position, snoring  

1-channel EEG, 
PPG, 

6-axis IMU 
sensor, sound, 

pressure sensor 
on the forehead 

[UmindSleep], Sleep tracking, 
Forehead temperature, AI 

evaluation & disorder diagnosis 

[102,162] 

EEG EEG, sleep 
tracking 

Highly elastic 
memory foam, 

flexible electrodes 

Sleep tracking [163] 

EEG EEG, EOG, chin 
EMG 

10× EEG, 1× EOG 
on the forehead, 
EMG electrodes 

Sleep tracking [164] 

Respiratory RR, tidal volume, 
minute ventilation, 

body position 

Resistance-based 
sensor, IMU 

Sleep disorder screening, Sleep 
staging, Respiratory pattern 

detection, Posture and activity 
detection, 

[103] 
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Bluetooth, Class IIa certified 
medical device,  

Respiratory RR, breathing 
rhythm and depth 

Textile RIP 
integrated into a 

suit, 
3D accelerometer 

Smart signal processing 
algorithm, Sampling rate 10 Hz, 
Wireless communication, Peak 
power consumption 140 mW, 

Radio transmission range 20 m, 

[168]  

Respiratory Respiratory effort, 
body position 

IMU sensor MCU CC2650 with ARM Cortex-
M3, 16-bit resolution IMU, 
Wireless communication 

[169] 

Respiratory Sleep apnoea  Strain gauge 
sensor 

Sampling rate 10 Hz, Bluetooth, 
CNN 6, Accuracy 0.7609, 

Sensitivity of 0.78, Specificity of 
0.72 

[170] 

Respiratory RR, HR, HRV, 
ECG, skin 

temperature, 

ECG, 
thermometer, 
accelerometer 

Adhesive chest patch, Single use 
and fully disposable, Sleep 

staging, Wireless 
communication, 

Class IIa certified medical device 

[171] 

Respiratory RR, RE, HR, SpO2, 
sleep apnoea  

PPG, ECG, SCG PPG sampling rate 200 Hz, ECG 
sampling rate 120 Hz SCG 

sampling rate 500 Hz, Sleep 
staging, Bluetooth, 

Recording 10-hour, Sensitivity 
100%, Precision 95%  

[172] 

Respiratory Sleep apnoea BioZ 7 sensor BioZ sampling rate 1024 Hz, 
ECG sampling rate 512 Hz, 

Stimulation signal 8 kHz – 160 
kHz, Accuracy 72.8%, Sensitivity 

of 58.4%, Specificity of 76.2%  

[178] 

AFE 8 RR, ECG, EEG  ADS129xR 8-channels, 24-bit, Sampling rate 
250 Hz – 32 kHz, CMRR 9 −115 

dB, Internal oscillator 

[173] 

AFE Respiration, ECG 
 

AFE4960 2 channels, 22-bit, Single ADC, 
SPI and I2C 

interface, Sine wave or square 
wave excitation 

[174] 

AFE Respiration, ECG, 
optical HR 

AFE4500 4 input channels, 22-bit, single 
ADC, SPI and I2C 

interface 

[175] 

AFE Respiration, ECG 
 

ADAS1000 5 acquisition channels and one 
driven lead, SPI/QSPI interface, 

AC and DC lead-off detection  

[176] 

AFE Respiration, ECG 
 

MAX30001 High input impedance (>1 GΩ), 
SPI, 32-word ECG, 

8-word BioZ, FIFO 10, EMI 11 
filtering, 

ESD 12 protection, DC leads-off 
detection 

[177] 

BCG RR, HR, HRV, 
sleep, movement, 

snoring, stress 

Dynamic ferro-
electret under the 

mattress 

[Emfit QS] Sleep monitoring, 
Stress level, 

Sleep quality and classification 

[180] 
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BCG HR, RR 
 

Two pressure 
pads on mattress 

[NAPS], BCG evaluation in sleep, 
40 subjects 

[181] 

BCG HR, RR Set of oil pressure 
sensors in 
mattress 

16-bit, Sampling rate 100 Hz, 
KSVM 13 model, 42 subjects/3 
nights, Apnoea precision rate 
90.46% and recall rate 88.89%,  

[182] 

BCG HRV, RR 
variability  

Hydraulic 
transducers 
under the 
mattress 

Sleep quality and sleep related 
disorders, SVM and KNN 

classification methods, Sampling 
rate 100 Hz, Sleep stages 

detection accuracy 85%, κ = 0.74 

[183] 

BCG HR, HRV, RR, 
stroke volume  

Murata SCA11H 
sensors (IMU) 

under the 
mattress 

Sleep management, Random 
Forest algorithm, Sleep phase 

classification, Wi-Fi 

[184] 

BCG HR, RR 300 × 580 mm 
electromechanical 
film sewn into a 

fitted sheet 

Quantification of sleep quality, 
restlessness, Neyman-Pearson 

detection test, Sequential 
detection algorithm, 16-bit, 

Sampling rate 250 Hz, 94% and 
95.2% accuracy in sleep and 

restlessness state identification 

[185] 

BCG RR, OSA events Micromovement 
sensor in 
mattress 

Apnoea Phase, Respiratory effort 
phase and arousal phase, 38 
subjects, BP neural network, 
Accuracy 94.6%, Recall 93.1% 

[186] 

BCG HR, RR, sleep 
quality 

700 × 30 mm 
piezoelectric film 

sensor beneath 
the mattress 

Sampling rate 140 Hz, 32 
subjects, AMPD 14 algorithm, 

Correlation coefficient 0.95, MAE 
1.78 bpm for HR, Correlation 

coefficient 0.98, MAE 0.25 rpm 
for RR 

[187] 

BCG HR, RR, sleep 
apnoea syndrome 

4 pressure 
sensors in 
mattress 

Sleep apnoea syndrome severity, 
136 subjects, 

Resolution 16-bit, Wavelet 
decomposition, Physio ICSS 
based algorithm, Accuracy 

94.12% 

[188] 

BCG HR, HRV, RR, 
RRV, respiratory 
depth, movement 

Murata SCA11H 
sensors (IMU) 

under the 
mattress 

Sleep stage detection, 20 subjects, 
Sampling rate 1kHz, Correlation 
coefficient 0.97 for HR, 0.67 for 
HF HRV, 0.54 for LF HRV, 0.54 

for RR, 0.49 for RRV, Wi-Fi 

[189] 

BCG HR, RR, apnoea 
and hypopnoea 

4 × 1 array PVDF 
film-based sensor 
under silicon pad 

on mattress 

26 apnoea patients + 6 healthy 
subjects, NI-DAQ 6221 (National 
Instruments, Austin, TX, USA), 
Sampling rate 250 Hz, PCA 15 

method, Correlation coefficient 
for AHI 0.94, Apnoea detection 

with 72.9% sensitivity, 90.6% 
specificity and 85.5% accuracy 

[190] 

BCG HR, RR, snoring, 
sleep stages 

MEMS ISM330 
DLC 3D 

STM32F411 ARM processor, 
Accuracy for HR 1.5 bpm, for RR 

[191] 
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classification accelerometer 
and 

pressure sensor 
array on mattress 

0.7 rpm, Snoring recognition 
97.2%, Sleep stage prediction 

79.7% 

BCG Sleep stages, HR, 
HRV, RR 

Murata SCA11H 
+ 

Apple watch 8 + 
actigraphy device 

6 subjects, Nonlinear methods, 
LSTM model, 73% agreement to 

PSG 

[121] 

BCG HR, apnoea, 
snoring 

 

Pneumatic and 
sound sensor 

under mattress 

[Withings Sleep Analyzer], 
Medical-grade apnoea 

detection, Sleep cycles detection, 
Bluetooth, Wi-Fi 

[104] 

Acoustic OSA, respiratory 
sounds, apnoea, 

AHI 

Smartphone DNN architecture, 3× CNN 
layers, Adam optimizer, Mel-
frequency analysis, Sampling 

rate 256 Hz, 
103 subjects, Sensitivity 0.79 and 

specificity 0.80 for moderate 
OSA, Sensitivity 0.78 and 

specificity 0.93 for severe OSA 

[195] 

Acoustic OSA, respiratory 
sounds 

Smartphone 
iPhone 7 

Calibrated by oesophageal 
pressure manometry, ML 

algorithm, 13 subjects, Prediction 
of ΔPes 16 with MAE 17 6.75 cm 

H2O, r = 0.83 

[196] 

Acoustic OSA, snoring, 
apnoea, AHI 

Smartphone FFT analysis, 10 kHz Sampling 
rate, 50 subjects, 

Snoring time correlation r = 0.93, 
AHI correlation 

r = 0.94, OSA sensitivity 0.7, OSA 
specificity 0.94 

[197] 

Acoustic OSA, snoring Tracheal sound 
and 

suprasternal 
pressure sensor 

PneaVoX  

Sensitivity 99.4%, Specificity 
93.6% 

[198] 

Acoustic Apnoea Tracheal sensor 
AcuPebble SA100 

63 subjects, OSA accuracy 
89.77%, 

Central vs obstructive apnoea 
accuracy 82.54% 

[199] 

Acoustic Apnoea, 
hypopnoea 

Tracheal sensor 
WADD 

WADD and SOMNO automated 
software, 20 healthy and 10 
apnoea diagnosed subjects, 

Apnoea detection sensitivity 
88.6% and specificity 99.6% 

[105] 

Acoustic OSA, snoring Wireless headset 
Plantronics M165 

near nose 

Sampling frequency 11 kHz, Mel-
scale based features, 8 subjects, 
Snore detection accuracy 96.1%, 

Abnormal detection result 
accuracy 93.1% 

[200] 

Acoustic Apnoea Body worn audio 
amplifier 

MSP430 microcontroller, SPP, 
Orthogonal Matching Pursuit 

[201] 
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algorithm, Accuracy 80%, 
Bluetooth, 

Streaming 8 kb/s  
Radar RR, restless time Vayyar FMCW 18 

radar over bed 
6.014 GHz, 14 transmitting and 

13 receiving antennas, 13 
different sleeping postures, 

Distance 2.3m, 
RR accuracy 86 - 90% 

[202] 

Radar HR, RR, 
sleep analysis 

FMCW radar 
over bed 

24 GHz, 250 MHz bandwidth, 
FFT based on 

cepstral and autocorrelation 
analyses, 11 subjects, 

HR correlation 86%, RR 
correlation 91% 

[203] 

Radar RR, sleep stages, 
restlessness 

Radar sleep 
monitor in form 
of alarm clock 

[Somnofy] 23.8 GHz, 
Environment monitoring (sound, 

light, pressure, air quality, 
humidity, 

temperature), Night reports, 
Sleep assessment, Alerts 

[106] 

Radar RR, sleep scoring Radar sleep 
monitor in form 
of alarm clock 

[Somnofy] 23.8 GHz, FFT, 37 
subjects, RR with MAE 0.18, 

Accuracy of sleep detection 0.97, 
Accuracy of wake detection 0.72 

[204] 

Radar RR, inhale/exhale 
duration, 

NREM/REM stage 
detection 

Radar-based IoT 
system on 

bedside wall 

2 × 4 linearly polarized antenna 
array on PCB, 

Distance 40-100 cm, FIR filter 
(VMD 19, CEEMDAN 20, LOES 21 
algorithm), AMPD algorithm, 

Sampling rate 100 Hz, RR 
accuracy 97%, Inhale duration 
accuracy 93%, Inhale duration 

accuracy 92%, Wi-Fi 

[205] 

Radar RR, movement, 
sleep stage 
detection 

Radar on bedside 
table 

[SleepScore Max tracker] 
Automated sleeping scoring 

[206] 

Radar RR, movement, 
sleep stage 
detection 

Radar on bedside 
table 

[S+ ResMed] 10.5 GHz, Emitting 
power 1 mW, 

Distance 1.5 m, Environment 
monitoring (room temperature, 
light, and sounds), 27 subjects, 
Sleep detection accuracy 93.8%, 
Wake detection accuracy 73.1% 

[207] 

Radar Body movements, 
respiration, 

apnoea 

Wi-Fi based 
system 

[WiFi-Sleep], Sleep stage 
analysis, PLMS, 

Accuracy for sleep classification 
81.8%, 

Future developments - detecting 
chronic insomnia 

[208] 

Breath gas Sleep monitoring, 
apnoea, 

hypopnoea, 
breathing 

Platinum thermal 
sensor on patch 

Response time 0.07 s, Sensitivity 
1.4‰ °C−1, Sampling rate 32 Hz, 

16-bits resolution, 10th order 

[227] 
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Butterworth 3Hz low-pass filter, 
RR filter 0.2–0.5 Hz Bluetooth 

Breath gas Sleep monitoring, 
respiration 

Pressure, 
temperature 

sensors in 
facemask 

Recognizing 8 breath patterns, 
3D carbon nanofiber mats, 

discrimination between oral and 
nasal breathing, human body's 

physiology analysis 

[228] 

Breath gas Respiration, 
apnoea, RR, 

NREM/REM stage 
detection 

Humidity sensor 
in facemask 

Highly stable, Wireless 
monitoring Real time sleep 

apnoea, ZnIn2S4 nanolayer, High 
sensitivity and 

stability, Operating time 150 
hours 

[107] 

Breath gas  Respiration, 
apnoea, 

breathing  

Easy-to-process 
paper humidity 
sensor on patch 

Low-cost, Flexible, High 
sensitivity 5.45 kΩ/% RH, 

Repeatability 85.7%, Sampling 
rate 18 Hz, 

Battery 3.7 V 

[230] 

Breath gas Respiration, sleep 
breathing patterns, 

humidity level, 
temperature 

Humidity, 
temperature, 

accelerometer, 
barometer, 

gyroscope, IMU 
sensors in 
facemask 

[NiteAura], Breathing conditions 
during sleep, Help with sleep-
disordered breathing and set 

appropriate conditions to achieve 
deeper sleep 

[231] 

1 Cohen’s kappa , 2 Power spectral density, 3 Pulse wave amplitude, 4 Sleep regularity index, 5 Matthews 
correlation coefficient, 6 Convolutional neural network, 7 Bioimpedance, 8 Analog front-end, 9 Common mode 
rejection ratio, 10 First in- first out, 11 Electromagnetic interference, 12 Electrostatic discharge protection, 13 

Knowledge-based support vector machine, 14 Automatic multiscale-based peak detection, 15 Principal component 
analysis, 16 Peak to through differences, 17 Median of absolute error, 18 Frequency modulated continuous wave, 
19 Variational modal decomposition, 20 Complete ensemble empirical mode decomposition, 21 Locally estimated 
scatterplot smoothing. 

3.2. Advanced Sleep Monitoring Devices 

In the field of sleep medicine, the accurate diagnosis and monitoring of sleep disorders is crucial 
for effective treatment. Modern monitoring devices (Table 5) detect a wide range of sleep disorders, 
not only in the hospital but also in the home environment. These devices vary in complexity, ranging 
from simpler limited respiratory polygraphs that focus mainly on respiratory parameters to modular 
devices offering greater diagnostic capability, and full PSG systems, which provide comprehensive 
sleep analysis. 

3.2.1. Limited Respiratory Polygraphy 

A limited respiratory polygraphy is monitoring device that records at least 4 channels, including 
two respiratory channels (e.g. airflow, respiratory effort), SpO2 and HR or ECG [232]. This device is 
typically classified as a Type III device according to the American Academy of Sleep Medicine 
(AASM). It is a simpler form of full-night PSG, which usually does not record EEG, EOG or EMG, 
meaning it does not provide detailed information about sleep stages [233]. This makes PG useful for 
diagnosing sleep-related breathing disorders, allowing for the determination of their severity, 
positional dependence, and the type of sleep-related breathing disorder (e.g., obstructive, central or 
mixed). A device that does not normally include EEG determines the AHI using total recording time 
(TRT) or time in bed (TIB). Due to its simple setup, it is ideal for home monitoring. Its main 
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advantages include portability, affordability, and fast result evaluation [234–236]. Modern 
respiratory PG devices support the connection of additional sensors, enabling expanded and more 
detailed monitoring of diagnostic parameters, as further described in the following section. 

An example of a typical PG system is the portable monitoring device Samoa (Löwenstein 
Medical SE & Co. KG., Bad Ems, Germany) [232][233]. PG device uses a nasal pressure cannula for 
detecting pressure differences during breathing, and a thermistor is utilized to monitor temperature 
changes associated with respiration. The respiratory effort of the thorax and abdomen is captured by 
pressure rubber pads integrated into the straps. Additionally, a finger sensor measures SpO2, PPG, 
and HR, and an internal light sensor continuously tracks the brightness of the sleeping environment. 
The device also includes an integrated acceleration sensor to detect body position and activity. The 
Samoa device features a built-in microphone for capturing breathing sounds and is powered by a 
rechargeable Li-Ion battery.  

Another device used to diagnose sleep breathing disorders is the PG device Alice NightOne 
(Philips Respironics, Murrysville, PA, USA). The configuration of this device includes data channels 
for respiration, such as a nasal pressure cannula and a thoracic respiratory belt based on RIP to 
monitor respiratory effort. Additionally, it records snoring, SpO2, HR, PPG, and body position [238]. 
It can identify five different positions (upright, right side, left side, supine, and prone). The device is 
equipped with 4 GB of internal storage memory. To power the monitoring device, two AA alkaline 
batteries (1.5 V) or two AA rechargeable batteries (1.2 V) with a minimum capacity of 2400 mAh are 
required. The compact diagnostic device Alice NightOne measures 10.34 × 2.51 × 6.78 cm and weighs 
84 g, excluding batteries and sensors. The sampling rate of the pulse oximetry is 62.5 Hz [239].  

A wide variety of PG devices are available on the market from various leading companies in 
sleep medicine. In addition to those mentioned above, other devices include ApneaLinkTM Air 
(ResMed, San Diego, USA) [240], Cadwell's ApneaTrak (Cadwell Industries Inc., Kennewick, USA) 
[241], SOMNOtouch RESP eco (SOMNOmedics AG, Randersacker, Germany) [242,243], and others. 
These devices vary in design, technical specifications, and price. 

3.2.2. Modular Systems 

Modular monitoring systems are flexible diagnostic devices designed to allow clinicians and 
researchers to modify the configuration of recording parameters based on specific medical and 
research needs. These systems include removable sensors that allow targeted data collection while 
reducing the overall burden on the user. For example, in addition to the basic parameters that 
conventional PG can detect, modular devices can measure EEG, EOG, EMG of the chin muscles, or 
ECG by integrating additional sensors into the system for more comprehensive sleep analysis. By 
integrating these additional channels, modular systems bridge the gap between simpler respiratory 
polygraphs and full polysomnography setups, offering a scalable solution for more comprehensive 
sleep monitoring. The adaptability of modular systems extends their applicability to diverse patient 
populations, including paediatric and geriatric groups. Modular systems enhance operational 
efficiency by allowing healthcare professionals to upgrade devices incrementally rather than 
investing in entirely new systems. This approach reduces costs and increases accessibility in clinical 
and home settings. Some devices may prioritize portability and ease of use, while others focus on 
advanced monitoring capabilities or the possibility of real-time monitoring. 

Such modular systems, like the SOMNOtouchTM RESP (SOMNOmedics AG, Randersacker, 
Germany), offer versatility and straightforward operation thanks to their compact design and 
integrated features. The device is a modern touch-screen respiratory PG with a colour display and a 
built-in Li-Ion battery. Besides the basic channels (airflow, effort, HR, SpO2), the SOMNOtouchTM 
RESP includes an integrated actigraphy sensor for tracking movements. Based on body position and 
actigraphy, a detailed evaluation of sleep and wakefulness can be performed. The device can be 
upgraded to a PSG system by connecting EEG, EOG, EMG, and ECG channels. It is one of the lightest 
devices in its category, weighing only 64 g without sensors, and measuring 8.4 cm × 5.5 cm. The 
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device employs an innovative algorithm to determine blood pressure using the Pulse Transit Time 
(PTT) parameter [108,244].  

Another device that is important to mention is the Nox T3sTM (Nox Medical, Alpharetta, GA, 
USA). The polygraph is an advanced device for sleep monitoring that operates without the need for 
traditional EEG, EOG, or EMG signals, which are commonly used to track brain activity during 
different sleep stages. Instead, it uses a proprietary algorithm that identifies physiological changes 
that correspond to brain activity changes. This is done through Nox RIP technology and actigraphy. 
In addition to the basic monitored parameters, the device also features two integrated bipolar ExG 
channels that can record additional data, depending on the application. This portable system contains 
built-in 3D sensors for tracking body position and activity, as well as an upgraded microphone for 
clearer snoring detection. It offers 4 GB storage capacity and can record continuously for up to 24 
hours on a single AA battery. The device uses Bluetooth 5.0 LE, which allows it to measure signals 
from other compatible auxiliary devices. It also features a USB Type-C port under the battery cover 
for device configuration and data download. The Nox T3sTM device is configured with Noxturnal PC 
software, which also enables reviewing, organizing, analysing, and summarizing all the signals 
captured by the device. The device’s design makes it easy to use in both clinical and home settings 
[167,245]. 

The portable device Embletta® MPR (Natus, Middleton, WI, USA) is a respiratory PG with 
exceptional functionality that can be configured into a PSG online wireless recorder by adding 
additional modules. With a basic module, the device can record additional channels: 2 EEG, 1 ECG, 
2 EOG and 2 EMG of lower limbs. With an advanced module, the device is upgraded to a full PSG, 
supporting 6 EEG channels, 3 chin EMG, 2 EMG of lower limbs, 2 EOG, and 1 ECG [246]. 

3.2.3. Wireless PSG Devices 

Traditional PSG examinations using digital PSG systems are performed in sleep laboratories, 
where medical professionals closely monitor the entire process. These PSG systems [7] provide 
accurate results and enable extensive analysis of physiological signals. However, their design places 
less emphasis on patient comfort. Traditional PSG systems rely on fully wired connections, which 
restrict patient movement during sleep, and recording units are typically larger and not portable 
[247]. Data transfer is conducted via physical connections to computer software and there is no 
possibility of wireless data transmission via Bluetooth or Wi-Fi. On the other hand, cable connection 
provides reliable and stable data transmission. 

The transition from wired to wireless PSG systems represents a breakthrough in patient 
convenience and usability. Key advantages include improved mobility, easier setup, and reduced 
interference from tangled wires. These systems are particularly suited for long-term studies requiring 
continuous monitoring over several nights [248]. However, the reliability of data transmission and 
potential interference in wireless environments remain challenges to address. 

Modern PSG devices combine wired data transmission with wireless transmission from sensors, 
improving the movement flexibility of patients during sleep by reducing the number of cables. These 
PSG systems utilize wireless data transfer to local computers or cloud-based storage via 
communication protocols such as Bluetooth or Wi-Fi, making PSG systems portable and suitable for 
use in the home environment [249]. Such advances are in line with the goals of companies like 
SOMNOmedics, which focus on developing innovative solutions for sleep medicine. SOMNOmedics 
offers a wide range of equipment, from actigraphy devices and polygraphs to modular systems and 
full laboratory PSG, which are discussed in detail in the relevant sections of this article. A significant 
portable wireless PSG system by SOMNOmedics is the SOMNO HD [109,244]. It is unique for its 
wireless EMG sensors for the lower limbs, designed for PLMS detection. These wireless sensors for 
PLMS offer synchrony with precision of less than 60 ms and a sampling rate ranging from 64 to 512 
Hz. The SOMNO HD supports a configuration of up to 55 channels, integrating both wireless and 
wired sensors to maximize versatility. It is designed to work with a maximum of six wireless sensors, 
enabling the collection of a broader range of physiological data while minimizing patient discomfort.  
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Another compact PSG system that integrates wireless technology is the Nox A1sTM by Nox 
Medical. The device features a wireless pulse oximeter, an integrated snoring sensor, and a built-in 
accelerometer for measuring activity and body position. EEG electrodes are connected to a single 
cable leading to the device, which helps reduce the negative impact of the large number of cables on 
the patient's well-being. The Nox A1sTM (Nox Medical, Alpharetta, GA, USA) is equipped with a 
rechargeable battery that lasts for multiple nights of use, making it practical for home sleep studies 
[250,251]. 

3.2.4. Wearable Devices 

The evolution of advanced wearable devices has significantly transformed sleep monitoring by 
leveraging breakthroughs in sensor miniaturization, algorithm development, and device ergonomics. 
Early wearable systems often fell short of matching the precision of traditional PSG conducted in 
clinical settings. However, innovations such as compact sensor arrays, extended battery life, and 
streamlined designs have enhanced both user convenience and functionality. Modern wearable PSG 
devices now integrate multi-channel sensors capable of monitoring key physiological parameters, 
including EEG, EOG, EMG, and vital signs such as HR and respiratory patterns, enabling a 
comprehensive analysis of sleep health [111,252]. Reliability of such home-based PSG is further 
enhanced through remote monitoring by enabling real-time adjustments and reducing failure rates 
[253]. Portable computerized PSG systems have also been validated against lab-based devices, 
demonstrating comparable signal quality, good agreement in sleep variables, and accuracy in 
diagnosing conditions like OSA [254]. 

Ongoing advancements in materials science are making adhesive patch systems popular and 
now replacing traditional bulky headgear. Systems with sensors integrated directly into the patches 
minimize sleep disruption. Developments in signal processing are increasing the accuracy of these 
devices and bringing wearable PSG technology closer to the reliability of traditional clinical-grade 
systems. Among wearable PSG systems, the patch-based Onera Sleep Test System (Onera 
Technologies B.V., Palaiseau, France) stands out for its innovative design and comprehensive 
monitoring functions, setting the standard in modern sleep diagnostics. This wearable wireless PSG 
system consists of four disposable patches placed on the forehead, thoracic and abdominal areas, and 
lower leg. The patch on the forehead records EEG, EOG, EMG, and SpO2, while the chest patch 
monitors ECG, activity, respiratory effort, sound pressure, and body position. A nasal flow pressure 
cannula is connected to the abdomen patch. The lower leg sensor detects leg movements [255]. The 
device is designed for user-friendliness, with an average hook-up time of approximately 4.5 minutes, 
which is more than a 77% reduction compared to traditional PSG montage [256]. The sensitivity, 
accuracy, and specificity for all sleep stages were high, except for NREM 1, which shows low 
sensitivity. The results from the Onera device highly correlate with traditional PSG [257]. The medical 
device company Compumedics introduces the Somfit® system, which includes the Somfit device and 
an adhesive electrode. The device integrates neurological signals (1-channel EEG, 1-channel EMG, 2-
channels of EOG) with channels designed for pulse arterial tonometry (PAT), which are commonly 
utilized in monitoring devices for OSA. The system measures parameters such as HRV, pulse, SpO2, 
and additional relevant metrics. The sleep staging algorithm of Somfit utilizes deep learning, 
specifically built on a CNN architecture. The Compumedics also developed advanced Somfit® Pro 
(Compumedics Limited, Abbotsford, Australia) system. In addition, it contains Respifit module 
which enables monitoring of additional parameters, like airflow, RR, body position, 1-channel ECG 
and thoracic effort via inductive belt [258]. Somfit's automatic hypnograms and PSG showed an 
overall agreement of 76.14% across all sleep stages [259]. Another patch sensor with comprehensive 
analysis is presented by Kwon et al [110]. One patch on the forehead is measuring EEG and EOG, 
and the second on the chin EMG. Electronic components are stored in elastic polyurethane, which 
makes them more comfortable to wear. The bottom side of the patches uses adhesive silicone with 
nanomembrane electrodes for better contact with the skin. Sleep stages tracking and diagnosis 
evaluation is done by CNN. Afterwards, the data is sent via Bluetooth to an external device. OSA 
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detection accuracy reached 88.5%. In addition to the mentioned physiological parameters, this patch-
based system will incorporate sensors to monitor SpO2, carbon dioxide, and movement, enhancing 
the accuracy of apnoea detection. The study [260] presents a wireless solution for monitoring various 
electrophysiological potentials and detecting respiration signals, usable for several days without 
being affected by physical daily activities or bathing. The core material of the electrodes is a biphasic 
liquid metal composite, which provides a signal of high quality. The comfort of such a device lies in 
its reduced size and lightweight design. Thanks to digital printing, these bio-stickers can be easily 
tailored to specific research needs. This technology enables the creation of various configurations for 
monitoring a wide range of electrophysiological parameters, enhancing their flexibility and 
applicability in different settings. 

Alternative wearable sleep monitor is the Sleep Profiler™ [261]. This wireless sleep monitor is 
designed to capture important parameters for assessing sleep quality. It is also capable of recording 
ECG, pulse, snoring, and determining head movement and position. This device, in the form of a 
headband, provides detailed information about the sleep cycles, offering an accurate and efficient 
alternative to traditional polysomnography [262]. The advanced version of this sleep monitor, the 
Sleep Profiler PSG2™ (Advanced Brain Monitoring, Carlsbad, CA, USA), includes a wireless pulse 
oximeter, attachable chest and abdominal RIP belts, and a flow nasal cannula, providing a total of 13 
channels for comprehensive monitoring. Author Xin Li and the collective in the article [111] present 
the WPSG-I wearable device consisting of a headband, pulse oximeter and data processing software. 
The device monitors EEG, chin EMG and EOG, which is extracted from frontal EEG electrodes. The 
headband of this device contains a 3D accelerometer for head position detection and an audio sensor 
for snoring and ambient sound. A wrist-mounted pulse oximeter measures SpO2 and wirelessly 
transmits the data to the headband's recorder. Automated sleep staging has good accuracy compared 
to PSG, verified in healthy people and patients with neurological disorders. Other headbands for 
monitoring sleep, concentration, and physiological parameters, such as the FRENZ Brainband 
(Earable Vietnam Co. Ltd., Hanoi, Vietnam) [263,264], may also be of interest. The device is placed 
around the forehead and back of the skull, and uses a PPG sensor to capture SpO2 and HR. It also 
contains additional sensors for EEG, EMG, EOG, gyroscope and accelerometer, and uses the power 
of AI. All this can be viewed by users from a smartphone app. The device offers a solution in 
supporting rapid falling asleep, accurate monitoring of sleep status, and achieving high social 
acceptance through reliable assessment [265]. The market offers a wide range of devices for sleep 
monitoring and related disorders, many of which are suitable for home use. The choice of device 
depends on the specific preferences and needs of the user or healthcare provider. A comprehensive 
comparison of all the mentioned advanced devices, along with their key features, is summarized in 
Table 5. These wearable monitoring devices prioritize ease of setup, patient comfort, and reliable data 
collection. In general, wearable sleep monitors designed for home use should avoid complex setups 
that increase the risk of user error, while ensuring the quality of the collected data. 

Table 5. Advanced sleep monitoring devices. 

Type Application Sensing Element Key Parameters Ref. 
PG Flow, snoring, SpO2, 

HR, 
activity, light, 

thoracic & 
abdominal effort, 

body position 

Pressure, thermistor, 
light, SpO2 sensor, 

accelerometer, 
chest/abdominal 

pressure pad, 
microphone 

[Samoa] & [SleepDoc Porti ®9], 
Bluetooth, Recording time 100 
hours, Weight 135 g, Battery 

3.6 V 

[237,266] 

PG Flow, thoracic effort, 
snoring, SpO2, HR, 

body position, PAP1  

Pressure, RIP, SpO2 
sensor, accelerometer 

[Alice NightOne], Sleep-wake 
determination, Memory 4 GB, 
Weight 84 g without battery 

and sensors, Bluetooth 

[238] 
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PG Flow, thoracic effort, 
snoring, SpO2, HR 

Pressure, RIP, SpO2 
sensor 

[ApneaLinkTM Air], Memory 15 
MB, 

Recording time 8 hours, 
Weight 66 g 

[240] 

PG Flow, thoracic & 
abdominal effort, 

snoring, SpO2, HR, 
body position  

Pressure, thermistor, 
RIP, SpO2 sensor, 

microphone, 
accelerometer 

[ApneaTrak Legacy], USB 
connection, Recording time 24 

hours, 
Weight 143.5 g 

[241] 

PG Flow, thoracic effort, 
snoring, SpO2, HR, 

PPG, body position, 
activity, PAP 

Pressure, RIP, SpO2 
sensor, accelerometer 

[SOMNOtouch RESP eco], 
USB,Additional sensor for 
abdominal effort/bruxism, 
Analysis of Cheyne-Stokes, 

[242] 

Modular 
PG 

Flow, snoring, SpO2, 
HR, thoracic & 

abdominal effort, 
PPG wave, body 

position, movement, 
PAP, extension to 

include EEG, EOG, 
ECG, chin EMG and 

leg EMG  

Accelerometer, 
thermistor, Pressure, 

RIP, SpO2 sensor, 
EEG, EOG, EMG 

attachable electrodes  

[SOMNOtouchTM RESP], 
Scalable to PSG, Memory 

512 MB, Sampling rate 4 - 512 
Hz, Built-in chest effort sensor 
and sensor for body position, 
BP monitoring, , Weight 64 g 

[108,244] 

Modular 
PG 

Flow, snoring, SpO2, 
HR, thoracic & 

abdominal effort, 
PPG wave, body 
position, activity, 

PAP, ExG   

Pressure sensor, RIP, 
SpO2 sensor, 

accelerometer, 
microphone, 2 bipolar 

attachable ExG 
electrodes 

[Nox T3sTM], Scalable to PSG, 
BLE, Memory 4 GB, Recording 

time 24 hours, BodySleep 
technology by Nox, 

Weight 86 g 

[167,245] 

Modular 
PG 

Flow, snoring and 
sound, SpO2, HR, 

activity, thoracic & 
abdominal effort, 
PPG wave, body 

position, 
extension to include 

EEG, EOG, ECG, chin 
EMG and leg EMG, 

ExG  

Pressure, RIP, SpO2 
sensor, accelerometer, 

1× Bipolar ExG 
electrodes, 

microphone, EEG, 
EOG, EMG attachable 

electrodes 

[Embletta® MPR], Scalable to 
PSG, 

Sampling rate 8 kHz, 
Resolution 24-bit, Recording 

time 24 hours, Attachable 
ST/ST+ proxy for PSG Weight 

153 g 

[246] 

Wireless 
PSG 

EEG, EOG, ECG, chin 
EMG, flow, SpO2, HR, 
PPG wave, thoracic & 

abdominal effort, 
snoring, movement, 
body position, leg 

EMG, PAP, Ambient 
light  

Electrodes for EEG, 
EOG, chin EMG, EMG 

of limbs, and ECG, 
thermistor, 

pressure, RIP, SpO2, 
light sensor, 
microphone, 

accelerometer 

[SOMNO HD], Up to 70 
channels, 

Sampling rate 4 kHz/channel, 
Bluetooth real-time data 
transmission, 6 wireless 

sensors available, Normal 
recording time 20 hours, 

Online recording 12 hours, 
Weight 190 g  

[109,244] 

Wireless 
PSG 

EEG, EOG, ECG, chin 
EMG, flow, thoracic 
& abdominal effort, 
sound, SpO2, HR, 
PPG wave, body 

position, 

Electrodes for EEG, 
EOG, chin EMG, EMG 

of limbs, and ECG, 
thermistor, RIP, 

pressure, SpO2 sensor, 
3D 

[Nox A1sTM], Memory 4 GB, 
Recording time 30 hours, 
Wireless PPG, Integrated 
snoring sensor, Built-in 

accelerometer, BLE, Ergonomic 
cable design, 
Weight 120 g 

[250,251] 
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activity, leg EMG, 
PAP  

accelerometer, 
microphone 

Wearable 
patch-
based 
PSG  

EOG, EEG, chin 
EMG, ECG, forehead 

SpO2, snoring, leg 
movements, airflow, 

respiratory effort, 
position, activity  

EEG, EOG, ECG, 
EMG, 

bioimpedance, 
pressure 

sensor, sound, 
3D accelerometer 

[Onera STS], Sleep stages 
classification, Sleep-disordered 
breathing, PLMS, PSG with 15 
channels, Acquisition 1-night 

[255] 

Wearable 
patch-
based  

 EEG, EOG, EMG, 
HRV, HR, SpO2, 

snoring, 
head position, 

movement, ambient 
light, PAT  

3 frontal electrodes, 
3D accelerometer, 

PPG, 
microphone, 2-
channel EEG 

[Somfit], Sleep stages 
classification, OSA, Insomnia 

and circadian rhythm 
disorders, AHI and ODI index, 

DL2 on a CNN architecture, 
EEG (24-Bit, 0.5 – 30 Hz), 

Agreement of 76.14% across all 
sleep stages, 7 days of 

recording, BLE 

[258] 

Wearable 
patch-
based 
PSG  

EEG, EOG, EMG, 
ECG, HRV, HR, SpO2, 

movement, ambient 
light, PAT, airflow, 
effort, position, RR, 

snoring  

3 frontal electrodes, 
PPG, 3D 

accelerometer, 
microphone, 

inductive belts, 
nasal pressure 

cannula 

[Somfit Pro], Sleep stages 
classification, Agreement of 

76.14%, 2× EEG (24-Bit, 0.5 – 30 
Hz), Breathing disorders, DL 

on CNN, Recording time 8 
hours, BLE 

[258] 

Wearable 
patch-
based  

EEG, EOG, chin 
EMG, SpO2, CO2 

monitoring, 
movement 

Nanomembrane 
electrodes 

Sleep stages tracking, OSA 
detection, Evaluation by CNN, 

Bluetooth, OSA detection 
accuracy - 88.5% 

[110] 

Wearable 
patch-
based 

EEG, EOG, EMG, 
ECG, 

respiration  

Biphasic liquid metal 
composite electrodes 

Sleep stage classification, 
Bruxism, 

Customizable digital printed 
bio-stickers, Light and flexible 

design 

[260] 

Wearable 
headband 

EEG, EOG, EMG, 
ECG, HR, head 

position and 
movement snoring  

3× frontal electrodes, 
optical sensor, 
microphone, 

accelerometer 

[SleepProfiler], Optional ECG 
and EMG electrodes, Memory 
8 GB, Recording time 30 hours, 

8 channels, Bluetooth, 3.7 V 
battery 650 mAh, Weight 71 g 

[261] 

Wearable 
headband 

PSG 

EEG, EOG, EMG, 
ECG, SpO2, HR, head 

position and 
movement snoring, 

thoracic & abdominal 
effort 

3× frontal electrodes, 
RIP, PPG, optical 

sensor, 
microphone, 

accelerometer, nasal 
pressure cannula 

[SleepProfiler PSG2], Optional 
ECG and EMG electrodes, 
Recording time 26 hours, 
Bluetooth, 3.7 V battery 

650 mAh 

[267] 

Wearable 
headband 

PSG 

EEG, EMG, EOG, 
SpO2, HR, head 

position, snoring and 
ambient sound  

Frontopolar EEG and 
chin EMG electrodes, 

PPG, 3D 
accelerometer, audio 

sensor, 

[WPSG-I], Automated sleep 
staging with good accuracy 

compared to PSG 

[111] 
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Wearable 
headband 

EEG, EMG, EOG, 
SpO2, HR, breathing 
rhythm, head motion 

Gold-plated brass 
electrodes and dry-
sensing electrodes, 

PPG, accelerometer, 
gyroscope  

[FRENZ Brainband], 
Determining sleep and 

concentration, AI, Accuracy of 
automatic sleep scoring 88%, 
Real-time, Supporting sleep 

quality with sounds 

[263,264] 

1 Positive airway pressure, 2 Deep learning. 

3.3. Application in Neurological Disorders 

Specifically, we have not yet found many PSG devices for neurological disorders, although 
various of the above-mentioned devices meet the parameters. For example, PSG devices such as The 
SOMNOwatch eco from SOMNOmedics are capable of being used for the diagnosis and management 
of PD, as they detect PLM/RLS movements and monitor tremor frequency and intensity. This device 
is a compact advanced actigraphy designed to objectively monitor sleep and movement patterns over 
several weeks. It is equipped with a 3D acceleration sensor that tracks body position and activity, as 
well as a light sensor to measure the ambient light level in the environment. It provides key 
parameters such as time in bed (TIB), sleep-wake analysis, circadian rhythm monitoring, 24-hour 
sleep patterns, and a raster display for detailed information [268]. 

Another suitable and actually used device is the Dreem Headband by Beacon Biosignals [160], 
offering PSG quality in a lightweight and easy-to-use device that includes 5 EEG sensors, a bone 
conduction speaker for audio output, an accelerometer to measure movements, head position, and 
RR during sleep. The device is comfortable, efficient, suitable for both home use and clinical studies 
with EEG signal quality like PSG [269]. It uses deep learning and advanced digital signal processing 
to create algorithms that can predict EEG events more accurately and reliably than any expert. In 
addition to classic sleep analysis, AI quantifies sleep microarchitecture to search for new biomarkers 
of disease. Van del Bulcke et al. [270] performed a study with the device on mild to moderate AD 
patients and demonstrated a significant mean increase in SWS to targeted acoustic stimuli in AD 
patients. Alternatively, Gonzales et al. [271] conducted a study in PD patients and demonstrated the 
suitability of the device for monitoring patients with neurodegenerative diseases and found that 
longer PD duration and rapid eye movements were associated with greater alertness and worse 
motor symptoms correlated with less deep sleep. 

A similar device capable of detecting neurodegenerative diseases based on sleep biomarkers is 
the Sleep Profiler™ [261] that we mentioned above. This device is a wireless, lightweight, PSG sleep 
monitor with sensors for recording EEG, EOG and EMG, which are necessary to characterize sleep 
time by individual stages. It also records ECG, pulse, head position, head movement, quantitative 
snoring and is fully capable of detecting sleep abnormalities in AD and PD patients [272,273]. 
Similarly, other PSG systems are suitable for use in the detection of neurological diseases, as they 
meet all the parameters necessary for early diagnosis, even if they have not yet been used for these 
specific purposes. For instance, the Nox A1s PSG device has not been tested with PD or AD patients, 
its features offer all the tools for early diagnosis of AD/PD [167,274]. 

Sleep disturbances are not only symptoms of advanced neurodegenerative diseases, but are also 
critical early indicators that home PSG, with its ability to assess sleep architecture in detail, should be 
able to detect and thus aid in early diagnosis. By enabling early detection of diseases such as PD and 
AD, home PSG offers significant potential to improve patient outcomes and slow disease progression. 
The continued development of PSG technology, including the integration of AI and wearable 
systems, promises to bridge the gap between clinical diagnosis and daily patient care. As innovation 
advances, home PSG represents a transformative tool in the early detection and treatment of 
neurodegenerative diseases, reshaping the future of sleep monitoring and neurological health. 
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4. Discussion and Future Directions 

The growing demand for personalized health solutions and the integration of sophisticated 
sensor technologies are driving sleep monitoring technology forward rapidly and have seen 
significant progress over the past decade. However, many challenges and opportunities that could 
shape the future of the field remain. Wearable devices such as smartwatches, rings, and bracelets 
have become the most popular form of sleep monitoring, largely due to their affordability and ease 
of use. These devices primarily rely on PPG-based sensors to measure HR and HRV, as well as 
accelerometers to track activity. The advantages of such devices include their affordability, 
portability, and user-friendly design, making them suitable for long-term use. However, their 
reliance on indirect measurements (e.g., PPG during breathing or sleep) often results in reduced 
accuracy compared to the gold standard PSG. In addition, their performance can be affected by 
factors such as motion artifacts and sensor misplacement. 

Remote systems, such as BCG sensors, radar devices, and acoustic monitors, offer a non-
intrusive alternative to wearable devices. These systems are particularly advantageous for 
populations where wearing devices is impractical, such as the elderly or individuals with sensory 
sensitivities. Radar-based systems, for example, can capture detailed respiratory and movement data 
without physical contact, making them ideal for home environments. However, their adoption is 
hindered by higher cost, installation complexity, and susceptibility to environmental interference. 

Recent innovations have also led to the development of advanced systems that integrate 
multiple physiological parameters, including EEG, respiratory signals, and body temperature, to 
approach PSG-like accuracy. These systems, such as modular or wireless PSG devices, are 
particularly promising for clinical research and home diagnostics. Although these devices offer 
excellent accuracy, their higher cost, bulkier design, and technical complexity may limit widespread 
adoption. 

Looking ahead, the integration of multimodal systems that combine multiple physiological 
measurements appears to be the most promising direction for sleep monitoring technology. By 
leveraging data fusion techniques, ML algorithms, and AI, these systems can achieve higher accuracy 
and greater diagnostic value [275–278]. In addition, the development of wearable devices specifically 
tailored for neurological disorders such as PD underscores the growing emphasis on personalized 
and specific monitoring solutions. 

We are also actively involved in this area within the project “NAP – Twin on a Chip Brains for 
Monitoring Individual Sleep Habits” [279]. This project represents a new paradigm in science and 
technology, which aims to evaluate the potential of next-generation brain organoids, where they 
would serve as a miniature, personalized sleep model and predict early symptoms of PD. The project 
includes the transfer of sleep patterns from ePPG [10] and Dormi [101] devices to organoids, as well 
as the development of new algorithms for home PSG and the investigation of sleep habits of PD 
patients. We plan to provide a detailed description of this work in later publications. 

The challenge for future research lies in striking a balance between accuracy, usability, and cost. 
While advanced systems are approaching the capabilities of PSG, they must also address barriers to 
widespread adoption, such as convenience, affordability, and privacy.  

Privacy concerns include data confidentiality, potential misuse of data, and the psychological 
impact on participants. Sleep monitoring devices collect highly sensitive physiological data which in 
a medical setting are protected under health privacy regulations like HIPAA (in the U.S.) or GDPR 
(in Europe). However, ensuring secure storage and transmission of these data is critical, especially 
for home-based monitoring where devices may rely on cloud storage or Wi-Fi connections, increasing 
vulnerability to data breaches [280]. Sleep data can potentially be used for purposes beyond medical 
care, such as marketing or insurance risk assessment. Home-based PSG devices, especially consumer-
grade wearables, may share data with third-party companies, raising concerns about commercial 
exploitation without explicit consent [281]. Knowing their sleep is being continuously monitored can 
lead to anxiety or changes in behaviour, potentially affecting sleep patterns and undermining the 
study's accuracy. Ethical protocols should include steps to minimize participant discomfort and 
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ensure data collection reflects typical behaviour [280]. While home-based monitoring offers 
convenience, it shifts some responsibility to the participant, such as managing device setup and 
maintenance. This autonomy can be empowering but may also increase the likelihood of errors or 
noncompliance if adequate training and support are not provided. Addressing these concerns 
requires robust ethical frameworks, secure data handling protocols, and transparent communication 
between researchers, healthcare providers, and participants. It also calls for balancing technological 
advancements with the protection of individual rights and well-being. 

A collaborative effort between engineers, clinicians, and researchers will be essential to drive 
innovations that meet these requirements and to expand the use of sleep monitoring technologies in 
clinical, home, and research settings [282]. 

Sleep research is advancing rapidly and the transition to wearable electronics and home 
measurements is unstoppable. Our article was able to describe only a small part of the current state. 
If we tried to focus on everything, its length would unfortunately be unbearable. Just describing the 
algorithms or automatic scoring systems used in detail would take up entire separate articles. 
Therefore, we bring to the attention of readers, who are interested in this issue, the following excellent 
reviews. Birrer et al. [247] made a comprehensive overview of the reliability of sleep evaluation using 
wearable electronics and Tran et al. [283] about their use in OSA. Lujan et al. [280] described wearable 
multisensors for monitoring sleep and circadian rhythms while providing a glimpse into the history, 
present and future. De Fazio et al. [284] focused on methodology and wearable electronics in sleep 
dysfunctions. Zambotti et al. [285] focused on state of the science and recommendations for using 
wearable technology in sleep and circadian research. Kwon et al. [252], cited earlier, recent advances 
in wearable sensors and portable electronics for sleep monitoring. Cay et al. [286] even added AI 
methods and Peake et al. [287] wrote a review of consumer wearables and mobile applications for 
monitoring stress and sleep. 

5. Conclusions 

In conclusion, sleep monitoring technologies are advancing rapidly, driven by innovations in 
wearable and remote devices. These tools, while differing in design and functionality, share a 
common goal of improving accessibility, accuracy, and relevance for both general and clinical 
applications. The future lies in integrating these technologies into multimodal, user-friendly systems 
capable of providing accurate information about sleep health and its links to broader physiological 
and neurological conditions in the natural environment. With continued collaboration across 
disciplines, sleep monitoring is poised to transform not only our understanding of sleep, but also its 
role in predicting and managing complex disorders. 
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