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Abstract: Understanding tonal structures in Renaissance music has been a long-standing musicological
problem. Computational analysis on a large scale could shed new light on this. Encoded scores provide
easy access to pitch content, but the availability of such data is low. This paper addresses this shortage
of data by exploring the potential of audio recordings. Analysing audio, however, is challenging due
to the presence of harmonics, reverb and noise, which may obscure the pitch content. We test several
multiple pitch estimation models on audio recordings, using encoded scores from the Josquin Research
Project (JRP) as a benchmark for evaluation. We present a dataset of multiple pitch estimations from
611 compositions in the JRP. We use the pitch estimations to create pitch profiles and pitch class profiles,
and to estimate the lowest final pitch of each recording. Our findings indicate that the Multif0 model
yields pitch profiles, pitch class profiles, and finals most closely aligned with symbolic encodings.
Furthermore, we found no effect of year of recording, number of voices and ensemble composition on
the accuracy of pitch estimations. Finally, we demonstrate how these models can be applied to gain
insight into tonal structures in early polyphony.

Keywords: audio; multiple pitch estimation; automatic music transcription; symbolic encodings; pitch
profiles; modes; vocal polyphony; Renaissance; early music

1. Introduction

To a distant listener, the sound of Renaissance music is fairly similar to that of later music.
But on a closer look we observe different patterns in the way pitch is organised, and such tonal
structures [1] show an evolution over time. Understanding this evolution poses a major challenge
in historical musicology. A quantitative approach would be to analyse machine-readable encodings
of a large sample from the repertoire using music analysis software. However, encoding sources
is a slow and complicated process that has resulted so far in relatively small corpora [2]. Audio
recordings are available in a much larger amount. Therefore, this paper explores the potential of audio
recordings in large-scale analysis of tonal structures. In this exploratory phase, we focus on three
simple characteristics of tonal structures, namely the final pitch, pitch class profile and pitch profile.

1.1. Analysing Tonal Structures

In the analysis of tonal structures there are roughly two approaches: the traditional musicological
qualitative approach investigates a limited number of compositions in depth, while the computa-
tional approach with its quantitative methods can survey large numbers of compositions. Peter
Urquhart’s study on accidentals in the Franco-Flemish Renaissance [3] takes a middle course by manu-
ally analysing 1047 motets on melodic patterns in cadences. A search on the Motet Online Database [4]
reveals more than 33.000 Renaissance motets found in sources from all over Europe. Urquhart’s study
covers 3% of these motets and with the manual approach this is about the upper limit of the number of
compositions that reasonably can be analysed.

Pitch class profiles and pitch profiles are an important means to study tonal structures in mu-
sic information computing. They have been applied to music from the seventeenth to twentieth
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century [5-7] as well as to medieval plainchant [8]. In this study, we define a pitch profile as the
relative presence of each pitch in a musical work, recorded or notated (see section 3.4.2 for the exact
calculations). By convention, sharps and flats are not distinguished and ‘sharp’ labels are used.

A pitch class profile is similar to a pitch profile, but with all the pitches folded into the space of
one octave. Figure 1 shows a comparison between pitch and pitch class profiles extracted from an
encoded score - henceforth symbolic encoding' - and from audio for a specific composition.
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Figure 1. Pitch profiles and pitch class profiles of Josquin, Virgo salutiferi, (JRP Jos2513) extracted from a MusicXML
encoding and from a recording by A Sei Voci, using the Multif0 model [9]. The finals of both sources are used to
align the profiles. Note the small amount of noise in the C#, F#, G#, and B bins of the Multif0 profiles.

We will use these profiles to study the modes in Section 5. Modes describe the scales used in
Renaissance music; these scales resemble but are not identical to the modern major and minor keys.

1.2. Data Availability

For almost any period in music history, there are more recordings available than encodings, and
certainly the period we are interested in. The Dutch national CD library, Muziekweb [10], has more
than 35.000 albums containing at least one composition by a composer whose life touched the period
1500 - 1700. A conservative estimate translates this into 350.000 tracks. A rough estimate of the number
of symbolic encodings in this period is 20.000 to 40.000 according to [2]. Please note that both estimates
are counts of instances, not of unique compositions.

Compared to symbolic encodings, audio recordings have properties that obscure the pitch content,
such as harmonics, reverb, vibrato, instrumental characteristics like the fast decay of lute tones, and
extraneous noise in the recording like birdsong. In addition, the handling of audio asks for more com-
puting power than processing encodings, since a WAYV file is about 500 times as large as a MusicXML
encoding of the same composition and because pitch extraction is computationally expensive.

While symbolic encodings come in many types that are not fully compatible with each other
(for example, **kern, MusicXML, Lilypond, MIDI), audio files are available as WAV or another easily
convertible format. Therefore, while audio analysis presents us with the challenge of pitch extraction,
we can avoid problems of compatibility and conversion of formats.

1.3. Research Questions

Before we can attempt a study of tonal structures using pitch content extracted from audio as
main data source, we must assess the quality of pitch extractions models. The main research question
therefore is:

Is the output of extraction models accurate enough for music historical research, specifically
studying tonal structures in the 16th and 17th centuries?

In this paper, we will answer that question and give a preview of the possibilities that such a model
will enable. More specifically, we will investigate the following subquestions:

1. What are suitable state-of-the-art audio pitch extraction models?

1" The word symbolic in symbolic encoding refers to the use of a finite alphabet to encode music notation.
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2. What is the pitch extraction model that results in pitch (class) profiles most similar to those
extracted from symbolic encodings?

3. What is the effect of year of recording, number of voices and the ensemble composition on the
quality of pitch (class) profiles?

4. How can we study tonal structures using pitch content extracted from audio?

In section 2 we will outline three lightweight pitch extraction models and three state-of-the-art
multiple pitch extraction models, trained with (deep) neural networks. The methods to find the
best pitch extraction model and the effect of characteristics in the performance will be addressed
in sections 3 and 4. As an example how the multiple pitch extractions can be used to study tonal
structures in Renaissance music, a modal cycle by Palestrina and Gesualdo’s Sixth book of madrigals
will be analysed in Section 5. In Section 6 we will discuss the limitations of our work and make some
observations on the extraction models. We will finish with a conclusion on the research questions and
with suggestions for future work.

2. Background

In this section we will provide background on the modes and corpus studies. We will also give a
brief overview of current pitch extraction models and select those that we will evaluate.

2.1. Modes

Modes, originally describing the pitch organisation in Gregorian plainchant melodies, were
widely applied to polyphony from the 15th century onwards. They are an example of intangible
intellectual and cognitive heritage: music theorists describe the modes, composers applied them in
creating new works and listeners developed mental models of the modes that helped to process the
music they heard. Modes make use of the diatonic scale.” In the traditional 8-mode system, the notes
D, E, F and G can act as the final pitch of two modes: an authentic and a plagal mode. Melodies in
the four authentic modes have a high range with respect to the final (usually extending to the octave
above the final); while those in the four plagal modes have a lower range, often from the lower fourth
to the upper fifth. Other important properties of a mode are its reciting tone, see also Table 1, and
the tones on which intermediate closures can be made. Because of these properties, each mode has a
distinctive pitch profile or pitch class profile [8].

Table 1. The 12 untransposed modes with their final, range, and reciting tone (undefined for modes 9-12). In
polyphony, modes are regularly transposed to the lower 5th or upper 4th and notated with a signature of one flat.
Other transpositions are rare.

Mode Final Range Reciting Tone
1 D high (authentic) A
2 D low (plagal) F
3 E high (authentic) C
4 E low (plagal) A
5 F high (authentic) C
6 F low (plagal) A
7 G high (authentic) D
8 G low (plagal) C
9 A high (authentic) -
10 A low (plagal) -
11 C high (authentic) -
12 C low (plagal) -

2 For example, the white keys of the piano form a diatonic scale.
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Due to the transfer of the modal system to polyphony, controversies arose in the 16th century
about some of its characteristics. The most conspicuous was the much-debated extension to 12 modes
proposed by Glarean (1547) [11], adding A and C as regular modal finals. Also, composers often did
not adhere closely to the theoretical models. Much practical evidence about composing in the modes
can be gained from studying modal cycles: such sets of compositions through all the modes were
created by many of the major Renaissance composers. However, from the end of the 16th century
onwards, polyphonic modality went through a phase of transition and was ultimately replaced by
modern tonality that emphasises harmony.

2.2. Music Corpus Studies

The aim of corpus studies is to discover patterns in larger music datasets that preferably are
selected for and tailored to the research question at hand. Table 2 lists the corpus studies that include
more than 500 records, and that contain 16th and 17th century compositions. Large numbers of
items are found in corpus studies that use metadata as their source. Rose et al. [12] studied almost
2.000.000 metadata records to explore the potential of metadata for historical musicology and Park [13]
studied metadata of 63.679 CDs to investigate composer networks.

Table 2. Corpus studies that include music composed before 1700.

Study Data type Items Dataset

Rose et al. (2015) [12] Metadata 2,000,000 British Library of printed music,
Hughes'’s catalogue of
manuscript music in the British

Museum, RISM A /11

Broze & Huron (2013) [14]  Audio 880,906 Naxos track samples and some
smaller subsets

Park et al. (2015) [13] Metadata 63,679 ArkivMusic and All Music
Guide

Harasim et al. (2021) [7] Encoding 13,402 Classical Archives, Lost Voices,
ELVIS, CRIM

Yust (2019) [15] Encodings 4,544 YCAC

Upham & Cumming Encodings 2,016 JRP, RenCOmp?7

(2020) [16]

Moss (2019) [17] Encodings 2,012 ABC, CCARH, CDPL, DCML,
Kozeluh

Moss et al. (2024) [18] Encodings 2,012 TP3C

Weif3 et al. (2018) [19] Audio 2,000 Cross-Era Dataset

Geelen et al. (2021) [20] Encodings 1,248 JRP

Arthur (2021)[21] Encodings 707 Palestrina Masses

To our knowledge, there are only two studies that use audio as their source; the 2019 study by
Weifs et al. [19] on style evolution, and the 2013 study by Broze and Huron [14] on the relation between
pitch and tempo. The remaining studies focus on symbolic encodings with relatively small datasets. A
general observation on these datasets is that, while the 18th and 19th centuries are well represented,
the proportion of early music is fairly small. For example, in the TP3C corpus [22] 66% of the works
are 18th or 19th century compositions, whereas the 14th to 17th century are represented by only 25%.

None of the datasets listed in Table 2 were created as a representative sample of the repertoire at
which the studies are aimed: they rather seem to be convenience selections from the available materials.
This is especially true for the encodings: their distribution over time is irregular and usually only the
big composer names are represented.
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Amending this problem by creating more encodings would require a huge investment. On the
other hand, musical audio is available in much higher quantities already now, which potentially allows
us to select a more carefully composed corpus for research. As an initial step, we demonstrate this by
an audio corpus that parallels the Josquin Research Project (JRP) corpus [23].

2.3. Multiple Pitch Estimation

In the past decades, various approaches [24,25] have been developed for multiple pitch estimation
(MPE) and music transcription. Many works focus on transcription of piano music, where annotations
can be obtained using Disklavier pianos that record the performance of each note in real time in
MIDI-format [26]. Other studies, such as Mel-RoFormer [27] and MT3 [28], focus on stream-level
transcription, mainly in popular music.> Other studies propose models trained partially or fully on
vocal classical music: Deep Salience [29], Multif0 [9], Multipitch [30] and NoteTranscription [31]. Since
these models are computationally expensive, there are attempts to create faster models without loss of
performance: Basicpitch [32] is a low-resource neural network-based model.

For this study, we are interested in models specifically trained on vocal music that demonstrate
state-of-the-art performance: Multif0, Multipitch, and NoteTranscription. However, at the time of
submission, the training weights for NoteTranscription were unavailable. Therefore, of these models,
we will compare Multif0 and Multipitch. To complement these computationally demanding models,
we also include Basicpitch as a fast reference model.

Since this study focusses only on pitch profiles and pitch class profiles as features, we will compare
the MPE models with two fast, spectral models: the Harmonic Pitch Class Profile [33], henceforth
HPCP, and the Constant-Q transform (CQT) [34]. In Subsection 2.4, we will discuss the models
evaluated in this study in more detail.

2.4. Models in this Study

Among lightweight models, HPCP is particularly interesting for analysing tonal content, as it is
specifically designed for analysis of harmonics and pitch estimation. The process involves extracting
spectral peaks (from the Short-Time Fourier Transform), filtering the peaks within the expected
melodic range, assigning them to pitch-class bins, and then applying spectral whitening to equalize
energy distribution across frequencies. This prevents low frequencies—which naturally have higher
energy—f{rom dominating the representation. Since HPCP emphasises harmonic content, HPCP is
often favoured over the CQT, which covers the full frequency range (including less relevant frequencies
for pitch analysis) and does not suppress non-harmonic content.

In the conventional Fourier transformation, all pitch bins have the same size, resulting in too low a
resolution for the low pitches and too high a resolution for the high pitches, because of the logarithmic
relation between frequency and pitch. To approach musical pitch perception, CQT transforms a signal
into the time-frequency domain with geometrically spaced frequency bins, doubling in frequency for
each octave[35].

Multif0, Basicpitch and Multipitch use a modified version of CQT as the main input. This
modification entails the transformation of the CQT to a set of harmonics and subharmonics as explained
in Figure 2. This transformation is called Harmonic ConstantQ transform (HCQT) [29] and it supports
a neural network in finding the harmonic content more easily. Although all three models use HCQT as
input, they differ in several aspects as listed in Table 3.

The authors of MT3 specifically mention that this model has not been trained on singing. We have run a preliminary test on
150 works in our dataset, evaluating the quality of the pitch (class) profiles. Instead of finals extracted from the MT3 output,
we used the ground truth finals, thereby boosting the performance of MT3. Even with this advantage, the results are only
marginally better than Basicpitch and worse than Multif0 and Multipitch. Therefore, we decided not to further pursue the
evaluation of MT3 in our study.


https://doi.org/10.20944/preprints202504.2129.v1

Stack of transposed CQT spectrograms, slices indicated at t =1 sec

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 April 2025

Slices att =1 sec

o I TE TN I T B mEEm

R
sub 1 2 3
Harmonic

A

B e B L R ERaR: )
A

d0i:10.20944/preprints202504.2129.v1

Energies at
t=1secand F3, F4-the
fundamental — and F5

6 of 21

-

F5

Fa

F3

Harmonic

Figure 2. The creation and application of a Harmonic Constant Q-transform: a CQT spectrogram is transposed to

the subharmonic and first 5 harmonics. To find one or more fundamental frequencies, the energy distribution over

the harmonics for all pitches is evaluated in a single time slice. In this picture, for each of the 6 (sub)harmonics,

slices are taken from t = 1, where a single F4 is sung. A fundamental tone shows a pattern with energy in the

fundamental higher harmonics, but no energy in the subharmonic. In this example, the F4 histogram is the only F

pitch that matches this pattern. This example of a single note is straightforward, but for multiple pitches sounding

at the same time, a neural network is needed to deal with pitches that share harmonics, with a variety of timbres.

Recording: Palestrina, Vergine quante lagrime, Hilliard Ensemble.

Table 3. Specifics of the multiple pitch estimation models.

Multiple pitch
estimation model

Multif0 [9]

Multipitch [30]

Basicpitch [32]

Model input

HCQT harmonics

Input bin size in cents
Output bin size in cents
Tracks in training

Instrumentation in
training

Genre

Polyphonic/monophonic

Annotation

Architecture

Loudness in output

HCQT + phase
differentials

1,2,3,4,5
20
20
69

a capella

classical

polyphonic

f0 annotation per
voice

Late/Deep CNN

yes

HCQT

051,2,3,4,5
33

100

744

opera, chamber
music, symphonic,
a capella

classical

polyphonic

mixed: aligned
scores, multitrack,
midi-guided
performance

Deep Residual
CNN

no

HCQT

05,1,2,3,4,56,7
33

100

4127

vocal guitar, piano,
synthesizers,
orchestra

classical and pop

monophonic and
polyphonic

unspecified

CNN

no

Multif0O preprocesses the audio by binning the pitches into 5 bins per semitone, and the output
is also in 20 cent bins. Multipitch and Basicpitch use 3 bins per semitone in the preprocessing, and

the binning into semitones is done as an integral part of the CNN. The training data shows a notable

difference in size; while Multif0 is trained with only 69 tracks of a capella music - data augmentation
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not counted - Multipitch is trained by diverse sets of 744 tracks in total, and Basicpitch even with
4127 tracks.

Having answered research question 1 on suitable audio pitch-extraction models, we can now
move on to the evaluation of the selected models.

3. Methods

In this section we describe the steps to answer research question 2, namely, which pitch extraction
model results in pitch (class) profiles most similar to those extracted from symbolic encodings. We
have chosen the features pitch profiles and pitch class profiles because these are important and simple
features in the musicological study of tonal structures.

The workflow of this study consists of five phases: creating the dataset, extracting the pitches
with various models, postprocessing the data, extracting the features, and evaluating the features
relative to the ground truth, as laid out in Figure 3. Each phase is discussed in detail below. Finally,
in Section 3.6 we describe how research question 3 will be answered, namely, what is the effect of
recording characteristics on the quality of the profiles?

Create dataset Extract pitch Postprocessing
te playlist of JRP recordings tract pitch extrp;;tr.ctr\::ns adjusted pitch
create playlist of -l way 5| EXtract pitc Multifd—{ tune and bin ¥ extractions
compositions \f content -GSV
Ground truth
i Multipitch L, apply
download musicxml o enoodlngsl Basicpitch thresholds
from JRP T
o
Create features Evaluation
Y ¥

finals
extract finals

» final
w » [evaluate
4

o | evaluate pitch (class) evaluations

profiles csv
: lised pitch
- normalised pitc
create >
Freate normalised o (class) profiles p| Clusters evaluate
pitch (class) profiles csv clusters €8V clusters

Figure 3. Overview of the workflow in this paper.

3.1. Create Dataset

For this study, the data of the Josquin Research Project (JRP) [23] is used. The JRP originally aimed
to secure attribution of compositions to Josquin des Prez (c. 1450-1455 to 1521) and now contains
more than 900 symbolic high-quality representations of compositions by Josquin, his predecessors and
contemporaries. To create a accompanying audio corpus, we collected recordings, preferably a capella,
by professionally schooled performers adhering to historically informed performance practice. Some
performances do not meet all criteria: these are incorporated nevertheless for the sake of completeness.
Each recording has been checked by ear to ensure it is in line with the encoding; repetitions and
instrumentation type are described in the metadata. The Sanctus movements in the masses are a
special case: in encodings the order of the Sanctus parts is Sanctus - Hosanna - Benedictus, in recording
the order is Sanctus - Hosanna - Benedictus - Hosanna. This impacts the final of the symbolic encodings
(Benedictus final is taken instead of Hosanna final) and the pitch (class) profile. This is annotated in
the metadata.
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3.2. Extract Pitch

For each recording in the dataset, pitch is extracted using the selected models, resulting in CSV
files. MultifO returns extracted fundamental frequencies (rounded to the closest 20 cents frequency
bin) with a sample rate of 86 slices per second, and frequencies ordered from low to high. Multipitch
returns relative energy for each MIDI tone in the range 24 - 96 with a sample rate of 43.* The output
of Basicpitch is similar to MIDI representation; note events with a start and end time, a MIDI tone,
the velocity (loudness) and a list of pitch bends (microtonal pitch deviations). As voice leading is a
yet unsolved problem in the field of music information computing, none of the models assign the
extracted pitches to separate voices, other than an ordering of the extracted pitches by height.

3.3. Postprocessing Pitch Extractions

To extract finals and profiles properly, we need to overcome two challenges that are inherent
in recordings: concert pitch and transposition. Concert pitch is the microtonal deviation of the
performance from the standard tuning of 440 Hz, transposition is the deviation in semitones from the
written notation. The concert pitch chosen may severely disturb the attribution of pitches to pitch
bins or midi tones, whereas an uncorrected transposition makes a comparison between a recording
and a symbolic encoding impossible. In our workflow, adjusting for the concert pitch is the first step.
We calculate the pitch deviation in MIDI tones, and add this deviation to each individual pitch in the
pitch extraction.

3.3.1. Concert Pitch

In the piano roll in Figure 4 we see many simultaneously sounding semitones. This is an artifact
caused by performance pitch not being identical to the concert pitch. The pitches are around the pitch
bin edges and consequently they are assigned to two neighbouring bins. In Multif0, with its 5 bins per
semitone, we can compensate for this as it allows us to measure the deviation of a recording from the
standard tuning of 440 Hz.

81 = 81

33 33

355 360 365 370
Time (seconds)

Figure 4. Pitch binning problems: piano roll representation of the Multipitch (model 214c) extraction of Pierre de
la Rue, Missa Almana, Gloria (Rue1002b) by Beauty Farm, 2018, last 15 seconds. Single pitches end up in two bins a
semitone apart.

We do this as follows. In an ideal situation, we expect one in 5 bins to be the most prominent
because they correspond to the intended pitch. We can use this intuition to determine the distance of
the prominent bin to the standard 440 Hz tuning.

4 Middle C is MIDI tone 60
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The concert pitch is measured by selecting the most frequent pitch bin B, in the Multif0 output
and its four neighbouring bins B;,_», B,_1, B, 11 and B, ;2. We then calculate the weighted average B
of the five bins B,,_, ..., B,4+2 weighted by their relative presence w,:

n+42
L Ll B;
=iz
B = —m (1a)

Y w;

i=n—2

We define the deviation from 440 Hz in MIDI tones as:

5 = B —round(B) (1b)

This deviation J is used to adjust pitch binning, enabling precise extraction of finals and construc-
tion of pitch class profiles.

3.3.2. Pitch Binning

Pitch binning is an inseparable part of the Basicpitch and Multipitch models. For Multipitch, this
leads to problems in cases where there is some pitch instability within a recording. In Figure 4 the
frequencies of each pitch are just in between two bins and are alternately assigned to two adjacent
pitch bins.

For Multif0, pitch binning is a separate step in our workflow as the Multif0 output has 5 bins
per semitone. In this step we merge these bins into new bins of the size of 1 MIDI tone, where
the boundaries between the bins are decided by the concert pitch as measured by the method in
Section 3.3.1.

3.3.3. Loudness Thresholding

Multif0 applies loudness thresholding as part of the neural network, whereas Multipitch and
Basicpitch extractions include the loudness (or velocity in MIDI terms) of each pitch for each time slice.
For Multipitch, we apply a global loudness threshold, whereas a dynamic loudness threshold is used
for Basicpitch. These thresholds are applied in creating the profiles from the raw pitch extractions.

3.4. Create Features
3.4.1. Finals

We define the final as the lowest note in the last chord of a composition. The final of a encoding
or recording is an important prerequisite for two reasons: first, to enable the alignment of the encoding
and (transposed) recording; secondly, to be able to connect profiles to modes. Each extraction model
needs its own custom settings to detect the final. We optimised the final detection in the Multipitch
and Basicpitch extractions by means of several thresholds: minimum loudness, window size (where in
the extraction to look for the final) and the minimum duration of the final, the values of which can be
found in the code.’

The extraction of the final from the audio pitch extraction is not trivial and needs a custom
thresholding method for each extraction type. After establishing a ground truth for all recordings
in the JRP dataset, we optimise the final detectors for each model using thresholds for loudness, the
minimum length of a final, the window in which a final has to be sought. In addition, the pitch
candidates for a final are filtered by the pitch class profile: only pitches belonging to pitch classes in
the top 7 of the pitch class profile are candidate for the final. Basicpitch and Multipitch are sensitive for
noise and reverb in the recording. Low noise appears to be extra problematic, as this results in the
wrong final. By allowing only pitches that have more than 1% representation in the pitch profile, we
filter out low noise at the end of a recording. This approach does not solve all problems. The piano roll

5 https://github.com/MirjamVisscher/FuzzyFrequencies /
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representation of a Basicpitch extraction in Figure 5 suggests that midi tone 31 is the final, while in
reality, the final is midi tone 53. Midi tone 31 has a frequency of 49 Hz, which is near the European
power grid frequency of 50 Hz. We chose not to develop a final detector for HPCP and CQT: these
algorithms borrow their final from the ground truth.

93| 93

MIDI pitch
o
g

300 305 310 315 320 325 330 335 340 35
Time (seconds)

Figure 5. Noise problems: piano roll representation of the Basicpitch extraction of Josquin, O bone et dulcissime
Jesu (Jos2109) by La Chapelle Royale, 1986, last 45 seconds. The MIDI pitch 31 at the end is inaudible noise at a
frequency of 50 Hz.

3.4.2. Pitch Profiles and Pitch Class Profiles

To create the pitch profiles, we compute the relative presence of each MIDI tone, weighted for
duration. To create the pitch class profiles, we fold the pitch profiles into the space of one octave. Each
extraction model returns a different format, which impacts the exact calculation of the presence of each
tone. For Multipitch and Multif0, we use the number of timestamps on which the pitch occurs; for
Basicpitch and for the encodings, we sum the durations of the tones.

3.4.3. Distance Between Profiles

We calculate the Euclidean distance between the pitch (class) profiles of the recording and the
symbolic encoding. Given two pitch (class) profiles p = (p1,p2, ..., pn) and g = (41,492, ..,qn), the
Euclidean distance D between them is computed as:

D= (pi —qi)? )

I

i=1

In performance, it is not uncommon for the bass part to sing or play the final an octave lower than
is notated. This practice has no effect on the pitch class profile, but it has on the pitch profile: every
pitch is one octave off. Conversely, the Multif0 extractor sometimes misses the lowest sounding final
because of instrumentation® or dynamics. For this reason, we calculate the distance between the audio
and encoded pitch profile three times, with the audio extraction at pitch, and transposed an octave up
and down. Then, we take the minimum of these three distances.

3.5. Evaluation

The performance of the models is evaluated at two abstraction levels: similarity of pitch (class)
profiles and similarity of clustering. At the first level, for each composition, we compare the profiles
from the encoding to the audio extractions by calculating the Euclidean distance D. Then, for each
model, we take the mean y of these distances:

6 For example, the sound of a lute decays faster than a voice does.
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v_.(D))
e = Mt ld 1] J 3)

where ] is the number of compositions in the JRP dataset.

We consider the model with the lowest mean distance between symbolic and the audio extraction
to be the best. Ideally, this model would also show a low standard deviation.

Given that the data are not normally distributed, the extraction models are independent of one
another, and we are comparing three or more groups, a Kruskal-Wallis test is employed to determine if
there are statistically significant differences among the mean distances of the various models. Following
this, a Dunn test is utilized to identify which specific pairs of models show significant differences.

At the second level, we examine the clustering of the profiles to assess whether clustering audio
profiles yields results comparable to clustering symbolic profiles. Initially, we identify the optimal
number of clusters using K-means clustering [36] and evaluate the clustering quality with a silhouette
score [37]. Subsequently, we apply t-SNE [38] with standard parameters to reduce dimensionality,
facilitating visualization. We then assess which extraction model produces the most similar clustering
outcomes using the Adjusted Rand Index (ARI) [39] and the Adjusted Mutual Information (AMI)
score [40].

The ARI provides a similarity measure between two clusterings by considering all pairs of samples
and counting those assigned to the same or different clusters in both the predicted and true clusterings.
The AMI adjusts the Mutual Information (MI, the amount of information that is shared between two
clusterings) score to account for chance, addressing the tendency of MI to yield higher values for
clusterings with a larger number of clusters, regardless of the actual shared information.

Finally, in Section 5, we investigate two musicological cases in detail.

3.6. Exploring the Effect of Performance and Recording on Pitch Extractions of the Best Extraction Model

To answer research question 3, we conduct a multiple regression analysis for the independent
variables year of recording, number of voices and ensemble composition on the accuracy of the pitch
(class) profiles extracted with the best performing pitch extraction model, resulting from 3.5. We test
the hypotheses:

1.  Recent recordings yield more accurate pitch (class) profiles.

2. Alower number of voices yields more more accurate pitch (class) profiles.

3. The ensemble composition on which the model is trained on yields the most accurate pitch
(class) profiles.

4. Results

In this section, we first present the CANTO-JRP Dataset, then we answer research questions 2 and 3.

4.1. The CANTO-JRP Dataset

The CANTO-JRP Dataset is based on the dataset in the Josquin Research Project (JRP), a project
dedicated to the composer Josquin des Prez (c.1450 - 1521). Aiming to support studies on composer
attribution, the JRP contains 902 works by Josquin, 21 of his contemporaries, and anonymous works.
The dataset contains:

U Metadata composer, composition title, number of voices, instrumentation category, recording
decade, performer(s), final pitch, the extent to which the audio is similar to the encoding. Figure 6
provides some characteristics of the dataset, and shows that the dataset mainly consists of recent,
a cappella recordings for four voices.
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e  Recordings for 611 out of the 902 works on the JRP website, usable recordings have been found
on Spotify; these are collected in a playlist.” For convenient reference, the order of the playlist has
been maintained in the metadata.

*  Pitch estimations On each of these recordings Multif0, Basicpitch, and Multipitch (both 195f and
214c) have been applied. The extractions are made available in the dataset.

*  Encodings The encodings of the 611 works in the dataset have been copied from the JRP website.

Number of voices Instrumentation category Recording decade

&

400 200

8
3

300 150

200 100

Number of compositions
=] <]
8 =]

100 50

2 3 4 5 [ 7 12 24 vocal mixed instrumental o 1950 1960 1970 1980 1990 2000 2010 2020

o
B

Figure 6. Distribution of the 611 recorded compositions in the CANTO-JRP Dataset over number of voices,
instrumentation category, and decade of recording.

4.2. Finals

The final of a recording is the reference to make pitch (class) profiles of multiple recordings
comparable. In 3.4.1, we established a ground truth, Table 4 show a comparison between the different
extraction models.

Since differences of one semitone can occur as a consequence of concert pitch adjustment, we
allow a deviation of one semitone.

Table 4. Percentage of correct finals for each model within the range of one semitone. The finals of HPCP and
CQT are not generated and for the remainder of this study provided by the ground truth.

Extraction model correct pitch of finals correct pitch class of finals
Multifo 95.4% 99.0%
Mp 195f 90.3% 94.6%
Mp 214c 93.1% 95.3%
Basicpitch 72.8% 84.0%

4.3. Distance Between Extractions and Encoding

For each recording in the dataset, we compared the Euclidean distance between the pitch (class)
profiles created from the different pitch extractions and from the symbolic encoding. The distribution
of the distances for each extraction model is visualised in Figure 7 for the pitch class profiles and
Figure 8 for the pitch profiles.

extraction method
25 — multifo
— 195f
20 — 214c
> basicpitch
2 15 cqt
o
Qo — hpcp
10
5
\_\\ - -
(9.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Euclidean distance to symbolic profile

Figure 7. Distributions of distances between the pitch class profiles extracted from recordings and encodings in
the JRP for all extraction models in this study. The area under each individual curve sums to 1.

7 https:/ /open.spotify.com/playlist/2QyBpYbol W5fZhjrIx1uew?si=ef55e1ae74294179
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Figure 8. Distributions of distances between the pitch profiles extracted from recordings and encodings in the JRP
for the extraction models based on neural networks. The area under each individual curve sums to 1.

The figures suggest that MultifO performs better than the other models for both pitch profiles
and pitch class profiles. The statistics support this supposition, see Table 5. A Kruskal-Wallis test was
conducted to examine the effect of extraction model on the distance between pitch class profile of
the extraction and pitch profile of the encoding. This revealed a significant effect of pitch extraction
model: x?(5,N = 611) = 1580, p < .001, with a large effect size (> = 0.43), indicating that 43% of the
variance in pitch class profile distance can be attributed to differences in extraction models.

Table 5. Euclidean distances between profiles of the six tested models and the ground truth of symbolic encodings.
Best scores are in bold.

Extraction Pitch Class Profiles Pitch Profiles
model

mean median stdev mean median stdev

Multif0 [9] 0.0481 0.0400 0.0414 0.0741 0.0442 0.0770

Mp 195f [30] 0.0954 0.0506 0.0911 0.1028 0.0611 0.0838

Mp 214c [30] 0.0932 0.0609 0.0819 0.1047 0.0727 0.0766

Basicpitch [32]  0.1143 0.0705 0.1018 0.1464 0.1073 0.0948
CQT [34] 0.2036 0.2007 0.0380
HPCP [33] 0.1495 0.1383 0.0502

A Kruskal-Wallis test was conducted to examine the effect of extraction model on the distance
between pitch profile of the extraction and pitch profile of the encoding. This revealed a signif-
icant effect of pitch extraction model: x?(3,N = 611) = 467, p < .001, with a large effect size
(7? = 0.19), indicating that 19% of the variance in pitch profile distance can be attributed to differences
in extraction models.

A Dunn’s test was conducted to evaluate the pairwise differences between extraction models. For
pitch class profiles, all differences were significant (p < 0.01), except between 195f and 214c (p = 0.25),
which are two versions of the same model and show similar results. For pitch profiles, all models show
significant differences (p < 0.01).

Table 6. Pairwise Dunn’s test results for pitch class profiles. Lower p-values indicate statistically more
significant differences.

Mp 195f Mp 214c Basicpitch CQT HPCP
Multifo 5.2E-23 3.0E-28 2.3E-54 6.3E-273 5.5E-149
Mp 195¢ 0.25 1.6E-08 1.5E-142 1.9E-58
Mp 214c 6.7E-06 3.5E-130 1.1E-50
Basicpitch 5.2E-87 1.2E-25

cQT 1.4E-20
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Table 7. Pairwise Dunn’s test results for pitch profiles. Lower p-values indicate statistically more
significant differences.

Mp 195f Mp 214c Basicpitch
Multif0 1.1E-18 7.6E-39 1.3E-99
Mp 195 2.5E-05 4.0E-35
Mp 214c 3.6E-16

Multif0 is the pitch extraction model that results in pitch (class) profiles most similar to those
extracted from symbolic encodings.

4.4. Clustering Profiles with Various Extraction Models

To assess whether the pitch (class) profiles obtained from audio pitch extractions are of practical
use, we clustered the pitch (class) profiles based on encoded scores and all pitch extraction models. We
then evaluated how similar the clusters based on the pitch extractions are to the clusters based on the
encodings, both visually and quantitatively.

Using K-means and silhouette score, we found 5 as the optimal number of clusters in the encoded
data. We then applied t-SNE with 5 clusters on the profiles. In Figure 9, the 5 clusters for the symbolic
pitch class profiles are clearly discernible. Multif0 shows a very similar pattern, while the similarity
decreases for Multipitch (195f and 214c), Basicpitch, HPCP, and CQT. This is confirmed by the ARI and
AMI scores in Table 8, which show the same order as one would infer from the images.

symbolic multif0 214c 195f

&
% oy
R

bl

3

P

50 0 50
basicpitch

Figure 9. T-SNE clusters of the recordings based on the pitch class profiles extracted with the various models in
this study. The colouration is derived from the clusters of the encodings.
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Figure 10. T-SNE clusters of the recordings based on the pitch profiles extracted with the various models in this
study. The colouration is derived from the clusters of the encodings.
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Table 8. ARI and AMI scores for the clustering of pitch (class) profiles using the pitch extraction in this study.

Extraction model Pitch Class Profiles Pitch Profiles
ARI AMI ARI AMI

Multif0 [9] .84 .79 .58 .61

Mp 195f [30] .45 47 32 .36

Mp 214c [30] 52 .53 .35 40

Basicpitch [32] 44 42 .34 34
CQT [34] .34 42
HPCP [33] .50 .56

The clustering of the pitch profiles show a similar trend, but these clusters appear to be more
scattered than the pitch class profiles. The main reason for this could be that pitch class profiles are
octave-invariant, whereas the pitch profiles are sensitive to the octave of the final: if the bass sounds in
another octave than notated, the distance is larger than musical intuition would suggest. The ARI and
AMI scores of the pitch profiles are also lower than those of the pitch class profiles.

The main takeaway from the clustering experiments is that the clusters of encodings and audio are
very similar under the condition that the right pitch estimation model is applied. Since the clustering is
unsupervised, these clusters are not necessarily in line with musicological models of tonality. However,
pitch class profiles within the same cluster seem to be based mainly on the (untransposed) modal
scales of Table 1: cluster 1 contains works ending on finals F and C, cluster 2 works ending on G,
cluster 3 works ending on E, cluster 4 works ending on E, cluster 5 works ending on D.

4.5. The Effect of Performance and Recording on Pitch Class Profiles

We tested the effect of year of recording, number of voices and the ensemble composition (vocal,
instrumental, mixed; as recorded in the metadata file) on the accuracy of pitch class profiles and
pitch profiles generated from MultifO pitch extractions. The multiple regression analysis yielded a
R-squared of 0.071 for the pitch class profiles and 0.086 for the pitch profiles. This suggests that the
three independent variables contribute only about 7% to 9% of the variance in the pitch (class) profiles.
Please note that there are only two recordings before 1980 in the dataset, the effect of earlier recordings
is not investigated in this study.

5. Case Studies in Polyphonic Modality

As a preliminary answer to research question 4, we present two short case studies that illustrate
how pitch class profiles extracted from recordings by Multif0 may be interpreted from a musicological
point of view. The first case is Palestrina’s Vergine cycle (published in 1581). This modal cycle consists
of 8 madrigals, one for each of the eight modes. The profiles of each modal pair (1-2, 3-4 etc.) show
comparable though slightly different distribution of pitch classes in Figure 11. The profiles of mode 1
and 2 are very similar except the final. In fact, the piece in mode 1 seems to end not on the final but
on the fifth above it. This peculiar feature is found in multiple compositions by Giovanni Pierluigi
da Palestrina and seems to be his personal solution to differentiate the two modes [41]. The repeated
observation in musicological literature [42—-45] that similar compositions in mode 1 strongly resemble
his mode 2 works is now confirmed (for this cycle) by their virtually identical pitch class profiles. In
comparison to mode 3, the final of mode 4 is only weakly differentiated from other prominent pitches,
with a quite strong presence of C, the major second below the final, in mode 4. In authentic modes 5
and 7, the fifths above the final (A# and C, respectively) have a much stronger presence than in plagal
modes 6 and 8.

Powers’ insight [42] that Palestrina’s modes 5-8 follow a conventional pattern while modes 1-4
use a more peculiar approach is thus already reflected in the pitch class profiles.
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Figure 11. Pitch class profiles of Palestrina’s Vergine cycle. Finals are in dark red. Note that finals are a whole tone
lower than in Table 1 as the pieces were performed at a lower pitch than notated.

Modes evolved over time, and often chromaticism (the use of pitches foreign to the modal scales)
is identified as one of the catalysts for this development. Therefore we analysed all 23 works from the
Madrigali libro sesto by Carlo Gesualdo (published in 1611), using the mode attributions from [46]. The
pitch class profiles in Figure 12 show that, even though the pitch class profiles are flatter than those in
Figure 11 (because of the increase in chromatic pitches), they remain recognisable and there are no
dramatic differences between pieces in the same mode. Profiles of modes 1 and 2 differ mainly in
minor third above and major second below the final. Those of modes 3 and 4 are quite similar, with
maybe a stronger presence of the very characteristic minor second above the final in mode 3. Modes 11
and 12 differ most strikingly in the ratio between the final and the semitone below. Overall, modes
seem to keep their characteristics despite the increase in chromatic pitches.

These brief case studies indicate that the pitch class profiles are robust enough to serve as evidence
in the study of the modes, complementing qualitative approaches. Realising their potential goes in
two directions: systematically extracting pitch information from modal cycles and designing more
sophisticated features than the simple pitch and pitch class profiles.
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Figure 12. Pitch class profiles Gesualdo’s Libro sesto. Finals are in dark hues. Finals are a semitone lower than in Table
1, except for modes 1 and 11, which are a major third higher. There are no compositions for modes 6, 8 and 10.
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6. Discussion and Perspectives for Music History Research
6.1. Limitations of This Study

This study is aimed towards the usability of audio pitch extractions for the analysis of pitch (class)
profiles and finals of complete audio tracks. We did not test the performance of pitch extraction models
for shorter segments within tracks, which would allow us to draw conclusions on a more granular
level than complete tracks. Although there is some variation in the audio of the CANTO-JRP Dataset
regarding timbre, ensemble composition and year of recording, the selection highly favours recent
recordings of professional performances that adhere to the current historically informed performance
practice. Therefore, the dataset mainly contains recordings after 1980, and we can not draw conclusions
about the accuracy of pitch extractions from recordings earlier than 1980. The instruments in the
recordings in this study are mainly voice, lute, recorder, viol, Renaissance brass and organ; harpsichord
has not been tested. Please note that only a subset of Renaissance repertoire has been tested: we cannot
guarantee if these conclusions hold for other expressions of early music.

6.2. Observations on Multiple Pitch Estimation Models

The models evaluated in this study show a good performance, even though they are trained with
different data than used in this study, as presented in Table 3. Heterogenous timbres within a single
frame, and ‘wilder data’ such as choirs with lots of vibrato, pitch instability, and extraneous noise may
negatively impact performance of the models.

Multipitch and Basicpitch are more sensitive to this than Multif0. An example of a recurrent
problem is the combination of lute and voice: the pitch extractions from solo voice or solo lute are
accurate, but when combined, the thresholding of Multif0 leads to non-detection of the lute in the
decay phase. To improve robustness, training multiple pitch estimation models on a diverse range of
complex musical textures and recording conditions would be beneficial.

Another factor influencing model flexibility is the size of output pitch bins. Models that use
100-cent bins offer limited opportunities to correct or study intonation and tuning deviations, whereas
the 20-cent bins of Multif0 allow for more detailed performance practice studies, as well as for study of
microtonal repertoires from various musical cultures.

A trade-off exists between loudness thresholding and sensitivity to noise. MultifQ returns fre-
quencies without loudness information, whereas Multipitch and Basicpitch provide both loudness and
pitch estimates. However, analysing results from the latter two models requires custom thresholding
to filter out noise, a problem that Multif0 solves by incorporating loudness thresholding directly into
its neural network.

Additionally, computational demands must be considered. The best-performing algorithms
require GPU power to handle large datasets, such as the CANTO-JRP Dataset. Processing times are
often longer than the duration of the audio tracks.

Given these findings, future work on multiple pitch estimation should prioritize training models
on recordings with diverse timbres, loudness variations, and decay characteristics. Following the
approach of Multif0, incorporating loudness thresholding within the neural network while providing
both thresholded and non-thresholded outputs would accommodate different user needs. Furthermore,
maintaining a small output pitch bin size would prevent unnecessary data loss, as pitch binning can
be easily performed as a post-processing step.

7. Conclusions and Future Work

For this study, we selected five state-of-the-art pitch extraction models: the basic chroma-based
models CQT and HPCP, and the (deep) neural network models Multif0, Multipitch and Basicpitch
(RQ1). Although computationally expensive, the trained models have a strong performance compared
to HPCP and CQT. From these models, MultifQ shows the best performance on detection of the final,
pitch profiles and pitch class profiles. We tested quality of the clustering of audio pitch extractions and
found that clusters of pitch (class) profiles created by means of Multif0 yield a clustering closest to
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clustering based on symbolic encodings (RQ2). Although we expected effects of the year of recording,
number of voices and ensemble composition on the accuracy of the pitch (class) profiles, we could
not find any significant effect (RQ3). The case studies show how the extractions can provide useful
information for the analysis of tonal structures of 16th and 17th century music (RQ4). In conclusion,
the results strongly suggest that Multif0 extractions can be used meaningfully for the same quantitative
research into tonal patterns in early music as symbolic data (main research question).

In addition, we deliver the new CANTO-JRP Dataset of pitch extractions by the neural network
models, accompanied by metadata. For proprietary reasons, the audio cannot be shared. Although
the CANTO-JRP Dataset is intended first of all as a test set for evaluation of multiple pitch estimation
models, it can be used for a variety of MIR studies with methods closely related to the methods used
to study symbolic encodings as well as for performance research. Finally, we provide a codebase
containing a workflow for evaluating other multiple pitch estimation models.

We have demonstrated the potential of multiple pitch estimation for feature extraction in record-
ings of early music, using simple features such as pitch (class) profiles and final pitch. More advanced
features that are similar to the features used in study of encoded music, for example features related to
dissonance, could also be designed. Such features would enable the study of audio recordings using
techniques developed for encoded music, such as detection of modes and keys, cadence analysis and
exploration of tonal structures in general.

As stated in Section 2.2, symbolic early music corpora for early music are limited in size and
representativeness. Since our results indicate good performance on recordings of early music, a next
step would be creating large corpora of extractions of pre-1700 music, such as modal cycles (of which
there are hundreds) or a balanced corpus that is fit for a longitudinal study. These large corpora could
then be used to study the evolution of tonal structures using the proposed features.

This article has demonstrated the usability of current audio analysis methods for musicological
purposes. As multiple pitch estimation models advance, future research can further bridge the gap
between encoded and recorded music, especially in cases where symbolic datasets are scarce.
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