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Abstract: Climate change is expected to influence cooling and heating energy demand of residential 

buildings and affect overall thermal comfort. Towards this end, the heating degree-day (HDD), the 

cooling degree-day (CDD) and the HDD+CDD were computed from an ensemble of 7 high-resolu-

tion bias-corrected simulations attained from EURO-CORDEX under RCP4.5 and RCP8.5. These 

three indicators were analyzed for 1971−2000 (from E-OBS) and 2011−2040 and 2041−2070, under 

both RCPs. Results show that the overall spatial distribution of HDD trends for the 3 time-periods 

points out an increase of energy demand to heat internal environments in Portugal's northern-east-

ern regions, most significant under RCP8.5. It is projected an increase of CDD values for both sce-

narios; however, statistically significant linear trends were only found for 2041−2070 under RCP4.5. 

The need for cooling is almost negligible for the remaining periods, though linear trend values are 

still considerably higher for 2041−2070 under RCP8.5. By the end of 2070, higher amplitudes for all 

indicators are depicted for southern Algarve and Alentejo regions, mainly under RCP8.5. For 

2041−2070 the Centre and Alentejo (North and Centre) regions present major positive differences 

for HDD(CDD) under RCP4.5(RCP8.5), within the 5 NUTS II regions predicting higher heating(cool-

ing) requirements for some locations. 

Keywords: heating degree-day (HDD), cooling degree-day (CDD), climate change, projections, en-

ergy demand of residential buildings, Portugal 

 

1. Introduction 

Climate changes have a profound impact on natural [1] and human systems. The 

projected impacts of 1.5C global warming [2,3] will increase the intensity and frequency 

of some climatic and extreme weather events [4,5], which in turn will result in negative 

impacts on resources, biodiversity, and ecosystems [6]. 

Several regions are most vulnerable to these projected changes; this is the 

Mediterranean region's case [2,7], including southern Europe in which Portugal is 

included. Since exposure to multiple and compound climate-related risks is projected to 

increase, assessing its impacts on human systems is highly relevant. 
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The projected rise in temperatures [8] is expected to pose greater risks to urban areas. 

The extent of the risk depends on human vulnerability and adaptation effectiveness, 

namely in the construction sector. Indoor environment conditions contribute greatly to 

human wellbeing, as most people spend around 90% of their time indoors, mainly at home 

or in the workplace [9]. The fluctuations in outdoor air temperatures [10] will have not 

only a substantial impact on human comfort, but also on building energy use [11] mainly 

in the existing residential buildings. Therefore estimate air temperature fluctuation 

projections have relevant implications for estimating its future impacts on residential 

heating and cooling related energy demand. 

Several studies used multiple methods to estimate future residential heating and 

cooling energy demand in buildings. While some authors choose simple approaches such 

as using current climate, discarding climate variability [12] or choosing a warm past year 

to represent a warming climate [13], others opt to use climate models using several 

datasets, namely global climate simulation models (GCMs) [11,14-19]. The most common 

methods used to determine residential demand in the future use parametric energy 

balance and degree-day methods. The degree-day method is a simple and widely used 

approach to relate outdoor temperature with the heating/cooling energy requirements. 

In this study, we have employed the degree-day method following the methodology 

used by [20] and, later on, by [11]. This methodology defines a base temperature (Tb) for 

the heating and cooling season and allows the computation of the respective outdoor air 

temperature deviations from maximum and minimum temperatures. The base 

temperature is a point at which internal gains equals the heat loss, acting as a threshold 

below (or above) which heating (or cooling) appliances are needed or not to operate to 

maintain indoor thermal comfort. Under the Portuguese Regulation on the Energy 

Performance of Residential Buildings (REPRS) [21,22], these temperatures are 18C related 

to the degrees-day of heating (HDD) and 25C to the degrees-day of cooling (CDD). 

Further details will be provided in the Materials and Methods section; however, it is worth 

mention that the REPRS is in line with the European Directive 2010/31/EC [23], which aims 

at reducing the greenhouse gas emissions by 20% by 2020 and in 80% until 2050, in relation 

to the 1990 emissions levels. Therefore, this objective includes the adoption of standard 

methodologies for calculating energy consumption, quality requirements for new and 

existing building envelopes, periodic inspection of boilers and air conditioning central 

systems, as well as building energy certification.  

Three key energy performance indicators were computed in this work: the HDD, the 

CDD and the global indicator HDD+CDD, obtained from an ensemble mean of seven 

biased corrected regional climate models (RCMs) for mainland Portugal. Three-time 

periods were analysed 1971−2000 (the historical baseline climate), 2011−2040 and 

2041−2070. For the latter periods, two representative concentration pathways (RCPs) were 

considered: a mitigated scenario RCP4.5 and the RCP8.5 unmitigated climate scenario [2]. 

To estimate meteorological characteristics over large regions, the data from ground 

stations are typically used as a basis for interpolation techniques. Spatial interpolation 

makes it possible to estimate any meteorological characteristic at locations away from 

those for which direct measurements exist. Inverse distance weighted (IDW), ordinary 
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kriging (OK), and ordinary cokriging (OCK) are the most frequently used techniques in 

environmental studies for spatial interpolation of data [24-29]. Several geostatistical 

techniques were performed in this study to attain the most accurate spatial representation 

of the different indicators. 

This study's main goal is to analyse the impacts of climate change on heating or 

cooling related energy demand for residential buildings thermal comfort by computing 

HDD, CDD and HDD+CDD for five regions of the Nomenclature of Territorial Units for 

Statistics (NUTS) NUTS II of mainland Portugal (Figure 1). The results presented herein 

under RCP4.5 and RCP8.5 until 2070 will serve as an indicator of projected climate change 

and help policymakers improve laws that led to more sustainable construction techniques 

in terms of mitigation and adaptation. Architects and building engineers can no longer 

assume a constant static condition for their designs and need to consider the values of 

design variables for future years. 

 

 

Figure 1. Portugal and NUTS II (Grey area) location in the Iberian Peninsula. 

2. Materials and Methods 

The overall methodology framework can be depicted in Figure 2 but will be detailed 

in the following subsections. 
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Figure 2. Methodological framework of this study. 

 

2.1. Study area 

This study area of interest is the five NUTS II regions of mainland Portugal: North, 

Centre, Lisbon Metropolitan Area, Alentejo and Algarve (Figure 2). Though HDD, CDD 

and HDD+CDD were computed for Portugal, the main objective is to assess climate 

change's impacts by NUTS II. This territory has the two largest urban areas in the country, 

Lisbon Metropolitan Area, with a population of 2,821,876 inhabitants (28% of the total 

Portuguese population) [30] and the urban area of Porto in the North, with over 1,700,000 

inhabitants (17% of the total Portuguese population) [31]. 

The Shuttle Radar Topography (SRTM) mission explored the structure of the earth 

surface from which SRTM-3 with a resolution of three-arc-seconds (about 90 meters) was 

retrieved. The elevation in mainland Portugal varies from 0 m (near the Atlantic Ocean) 

to 1,993 m (in the Estrela Mountain, located in the centre‐eastern) with a mean elevation 

of 323 m above mean sea level. Less than one-eighth of Portugal rises above 700 metres. 

Portugal and Spain share their major rivers—Douro, Tagus, Guadiana—rise in the central 

Meseta before draining west (or, in the case of the Guadiana, south) to the Atlantic. The 

North and Centre of the country are mountainous with elevations up to 1,544 m (Gerês). 

In the North of the northern interior region are high plateaus at 600 to 800 metres. Between 

the Douro and the Tagus rivers lies the central mountain range with the Serra da Estrela 
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(1,993 m in the Torre, the highest point in continental Portugal), North of the Tagus river, 

more than nine-tenths of the land rises above 400 metres. Some three-fifths of Portugal's 

land below 400 metres are found in the south. In Alentejo, the S. Mamede mountain range 

(1,027 m) and in the Algarve, the Monchique mountain range (902 m) is noteworthy. 

Portugal has more than 800 km of coastline, four-fifths of which faces westward. 

Most of Portugal has a warm Mediterranean climate, according to the Köppen climate 

classification: "Csa" and "Csb". A small region in inland Alentejo has Bsk or semi-arid 

climate. South of Serra da Estrela, there are high temperatures in summer and cool 

winters, with dry summers and wetter winters [32]. To the North of Serra da Estrela, in 

the north-east of the country, there is a continentalised Mediterranean, more humid and 

with lower average temperatures, especially in the high areas, while the low areas, in the 

Douro Valley, register high values, similar to those in the south of the country. In the 

North Coast (in the Northwest of the country), the climate is Mediterranean with a 

maritime influence and has moderate summers. 

Average annual temperatures in mainland Portugal range from 18°C in Faro to 10°C 

in Guarda, the country's highest and coldest city, while rainfall varies from less than 500 

mm in southern parts of Alentejo to over 3,000 mm in the Serra do Gerês. The country's 

coldest place is Serra da Estrela, which has an average annual temperature of 7 °C in the 

highest parts. Nevertheless, there is considerable climatic variability from one year to the 

next. 

The population distribution within Portugal reveals contrasts between the more 

densely populated North and the more sparsely populated south. With their low-lying 

plains and urban development, the coastal zones between Oporto and Lisboa have 

attracted manypopulations. Overall, 43.7% of Portugal's population live in urban areas in 

Área Metropolitana de Lisboa, Centro and Norte NUTS II regions. 

2.2. Datasets and bias correction 

In this study, E-OBS maximum and minimum temperatures gridded observational 

datasets were retrieved from EU-FP6 project UERRA (http://www.uerra.eu) and the data 

providers in the ECA&D project (http://www.ecad.eu), for the period between January 

1971 to December 2017) [33]. The daily mean, maximum and minimum temperature (Tx 

and Tn, °C) datasets are defined on a 0.25° regular grid. 

Maximum and minimum temperatures daily projections for the period between 

1971−2005 (historical) and 2006−2070 were taken from the EURO-CORDEX initiative 

(http://www.euro-cordex.net/) that provides regional climate projections for Europe at 

12.5km (EUR-11) resolution. The Coupled Model Intercomparison Project 5 (CMIP5) 

global climate projections [34] provided these new regional simulations in the RCPs 

[35,36], in this case under RCP4.5 and RCP8.5. The RCP8.5 can be interpreted as a rising 

radiative forcing pathway leading to 8.5 W/m2 in 2100 [37,38], whilst RCP4.5 implies a 

stabilisation without overshoot pathway to a 4.5 W/m2 stabilisation after 2100 [39,40,41]. 

In this study, seven RCMs were retrieved from EURO-CORDEX (Table 1). 

Table 1. Acronyms of the Regional Climate Models (RCM) and corresponding driving models. 
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Contributor Driving model RCM 

Météo France, CNRM CNRM-CM5 ALADIN53 

Royal Meteorological 

Institute of Belgium and 

Ghent University, RMIB 

CNRM-CM5 ALARO-0 

Climate Limited-area 

Modelling Community, 

CLMcom 

ICHEC-EC-EARTH CCLM4-8-17 

Danish Meteorological 

Institute, DMI 
ICHEC-EC-EARTH HIRHAM5 

Royal Netherlands 

Meteorological Institute, 

KNMI 

ICHEC-EC-EARTH RACMO22E 

Max Planck Institute for 

Meteorology, MPI-CSC 
MPI-ESM-LR REMO2009 

Institute Pierre-Simon 

Laplace, IPSL-INERIS 
IPSL-CM5A-MR WRF331F  

 

The observational data was extended by GCM projections, covering a period 

between 1971 and 2070. Bias correction was applied to the original variable's simulations 

using the observational data as a baseline climate (1971−2000) referred to as 'obs,control' 

in Figure 3. The E-OBS datasets and the respective GCMs that have a coarser spatial 

resolution on 0.11° regular grid, overlap thus allowing this bias correction. In this study, 

we used the quantile-quantile bias correction. This method assumes that the distribution 

function of a variable may change in the future. However, this methodology allows the 

correction of the complete distribution, tails included. Further details regarding this 

methodology can be found in [5]. Bias correction was applied to daily mean, minimum 

(Figure 3a) and maximum temperatures (Figure 3b) for the entire study region. Figure 3 

shows the respective cumulative distribution functions (CDFs) represented by the 

application of this bias correction methodology for the historical period (1971−2000), for 

both Tx and Tn, by projecting the distribution of the observed Tx and Tn (obs, control) 

onto the simulated Tx and Tn (RCM, control). Afterwards, Tx and Tn are biased corrected 

for all periods (RCM, cor). All variables were biased corrected, and an ensemble-mean of 

seven state-of-the-art RCMs (Table 1) was used to compute the HDD and the CDD. 
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Figure 3. Cumulative distribution functions (CDFs) of the observations (obs, control), ensemble-

mean simulation with no bias correction (RCM, control) and bias-corrected ensemble-mean (RCM, 

cor) for the baseline climate (1971−2000): (a) minimum, and (b) maximum daily temperatures (°C). 

2.3. Heating (HDD) and cooling (CDD) degree-day 

Energy consumption linked to the thermal comfort of buildings is related to the HDD 

and the CDD. The HDD translates the amount of energy needed (i.e., to a building with a 

heating system) on a given day or period to heat the indoor environment in a climate 

considered cold to a specific base temperature (18°C). The CDD reflects the amount of 

energy required (i.e., for a building with a cooling system) on a given day or period to 

cool the indoor environment in a climate considered warm to a specific base temperature 

(25°C). The theoretical formulation for calculating the HDD and CDD can be carried out 

in several ways. Calculations can be performed using monthly or annual data or with 

more sophisticated models. Although the base temperature values may differ, depending 

on the country under analysis, in this work, the daily values for the HDD should be 

determined using a base temperature (Tb in Table 2) of 18°C, while the daily CDD values 

using a base temperature (Tb in Table 3) of 25°C [21,22]. Daily HDD and CDD values are 

then calculated following the cases in Tables 2 and 3 [11,20], respectively, in which Ta is 

the mean calculated from the Tx and Tn temperature values. 

 

Table 2. Calculation of daily HDD values by comparing the maximum and minimum temperatures 

relative to the base temperature (Tb) [11,20]. 

Case Condition HDD 

1 
𝑇𝑥 ≤ 𝑇𝑏 

𝐻𝐷𝐷 = 𝑇𝑏 − 𝑇𝑎 

2 𝑇𝑎 ≤ 𝑇𝑏 < 𝑇𝑥 𝐻𝐷𝐷 =
𝑇𝑏 − 𝑇𝑛

2
−
𝑇𝑥 − 𝑇𝑏

4
 

3 𝑇𝑛 < 𝑇𝑏 < 𝑇𝑎 𝐻𝐷𝐷 =
𝑇𝑏 − 𝑇𝑛

24
 

4 𝑇𝑛 ≥ 𝑇𝑏 𝐻𝐷𝐷 = 0 (no need to heat) 

 

Table 3. Calculation of daily CDD values by comparing the maximum and minimum temperatures 

relative to the base temperature (Tb) [11,20]. 

Case Condition CDD 

1 𝑇𝑥 ≤ 𝑇𝑏 𝐶𝐷𝐷 = 0 (no need to cool) 

2 𝑇𝑎 ≤ 𝑇𝑏 < 𝑇𝑥 𝐶𝐷𝐷 =
𝑇𝑥 − 𝑇𝑏

4
 

3 𝑇𝑛 < 𝑇𝑏 < 𝑇𝑎 𝐶𝐷𝐷 =
𝑇𝑥 − 𝑇𝑏

2
−
𝑇𝑏 − 𝑇𝑛

4
 

4 𝑇𝑛 ≥ 𝑇𝑏 𝐶𝐷𝐷 = 𝑇𝑎 − 𝑇𝑏 
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The annual values for CDD are calculated as the cumulative sum of the daily CDD 

values for the hot season in which it is necessary to 'cool down' the buildings' internal 

environment. This season is considered from 1 June to 30 September. On the other hand, 

the annual values for HDD should be calculated as the cumulative sum of the daily HDD 

values for the 'cold season' in which there is now a need to 'heat up' the internal 

environment of the buildings. This heating station is considered to start on the first 10-

day mean after 1 October when the average daily temperature is below 15°C and ends in 

the last 10-day mean before 31 May in which that temperature is still below 15°C. 

[42,43] proposed a combined degree-day index by summing HDD and CDD 

(HDD+CDD). This unweighted sum of HDD and CDD can be interpreted as an indicator 

of the total heating and cooling demand. Consequently, it can act as an indicator of overall 

outdoor thermal comfort in chosen locations [20]. This composite index is computed for 

three periods; the historical (1971−2000) and the future (2011−2040) and (2041−2070) under 

RCP4.5 and RCP8.5. Anomalies () for HDD, CDD and HDD+CDD are also computed for 

the two future periods relative to the 1971−2000 baseline climate (hereafter, HDD, CDD 

and HDD+CDD, respectively). 

The spatial representation of these indicators will be presented after careful 

consideration of the best interpolation techniques that will be explored herein. 

2.4. Geostatistical techniques 

Geostatistical methods have been shown superior to the conventional and 

deterministic methods for spatial interpolation of rainfall [24]. Kriging and cokriging are 

two spatial interpolation methods that have been widely used to create spatially 

continuous climate-related data [25]. They estimate the value of a variable or indicator of 

interest at an unmonitored location based on the values at neighbouring monitored 

locations by fitting a semi-variogram model, which is a function of spatial distance. Simple 

kriging (SK) and Ordinary kriging (OK) differ by the methods used to model the means 

of primary and secondary variables. SK assumes that local means are relatively constant 

and equal to the population mean, which is well known. The population mean is used as 

a factor in each local estimate, along with the samples in the local neighbourhood [44]. 

Estimated primary and secondary local means could differ from the means calculated on 

the whole dataset. Consequently, OK did not require knowledge of the primary and 

secondary local means [44]. 

Cokriging allows additional predictor variables that exhibit inter-correlations with 

the variable of interest, possibly producing better prediction performance than the kriging 

method. This can help to minimise the error variance of the estimation [45]. The standard 

form of cokriging is the OCK method. This usually reduces the prediction error variance 

and specifically outperforms the kriging method if the secondary variable, the digital 

terrain model (DTM), is highly correlated (correlation coefficient higher than 0.75 ) with 

the primary variable and many more points are known [26].  

Kriging was used to interpolate temperature and precipitation in the Mediterranean 

by [46]. [27] used OK to interpolate monthly temperature anomalies but preferred IDW 

for precipitation. In [47], IDW was chosen since it captures well local variations and 
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captures exact values at co-located grid points for several climate variables. [29] compared 

IDW, OK, and OCK to predict air temperature at unmeasured Turkey sites. The OCK with 

elevation as an auxiliary variable proved to be the best technique to predict temperature 

against the criteria of model efficiency and relative root mean squared error (RMSE). Co-

variables derived from DTM are widely used to adjust topographic conditions [28] in 

interpolation techniques. However, the best technique's choice must be carefully 

evaluated since the temperature is not solely determined by elevation and land cover but 

also by atmospheric circulation patterns in the northern hemisphere [48]. Moreover, it has 

been reported that in some areas, precipitation was not related to elevation [49]. 

[50] studied the spatial pattern of CDD on a typical normal and extremely hot 

summer day using OCK geospatial mapping technique. Results revealed reasonable 

predictability of city-wide CDD with the OCK method, which uses two co-variables: 

"elevation of the weather station" and "building volume density within the 1,000 m radius 

neighbouring area". [20] used OK to project future HDD, CDD and HDD+CDD in the 

USA. 

In this investigation, the ArcGIS Geostatistical Analyst was used, and three 

techniques were tested: IDW, OK and OCK. The input datasets, in this case, HDD, CDD 

and HDD+CDD were evaluated regarding 1) data distribution, 2) global trends, and 3) 

directional influences. 

First, all datasets were tested regarding their normality (frequency histograms for the 

attributes) being subject to a transformation when skewed since the normal distribution 

datasets generate better results. Trend analyses identify the presence or absence of trends 

in the input dataset and identify which polynomials order best fit the trend. Local 

variation can be added to the surface by modelling the trend using one of the smooth 

functions, removing it from the data and allowing the subsequent analysis. Therefore, this 

evaluation was performed for all variables. Lastly, since a directional influence will affect 

the semi-variogram and the fit of the model, the -semivariogram model's anisotropy must 

also be evaluated. The directional influence can be statistically quantified and accounted 

for when making the map. 

Following the methodology previously presented, the HDD and HDD+CDD datasets 

histograms showed that their distributions were not normal, so a logarithmic 

transformation was performed; conversely, since CDD showed a normal distribution, no 

transformation was done. Regarding the trend analysis (Figure 4), an upward trend in the 

West-East direction was detected for all HDD datasets.  

 

 

Figure 4. Trend analysis for the historical period (1971–2000) for (a) HDD, (b) CDD, and (c) 

HDD+CDD. 
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Due to mainland Portugal location, for CDD and HDD+CDD, this trend is expected 

since the energy requirements for heating or cooling increase from west to east (oceanic 

influence). The HDD and CDD datasets trends in the North-South direction are also 

predictable since the heating(cooling) requirements decrease(increase) towards the south. 

The HDD+CDD dataset trends are similar to the HDD since the HDD values are relatively 

higher than the CDD, strongly influencing the sum. Consequently, these results 

substantiate the need to test the semi-variogram models with trend-removing functions. 

A first-order trend removal function was thus used since the trends proved to be almost 

linear. 

In this study, IDW and eleven semi-variograms were tested for both OK and OCK: 

Circular, Spherical, Tetraspherical, Pentaspherical, Exponential, Gaussian, Rational 

quadratic, Hole effect, K-Bessel, J-Bessel and Stable. The prediction performance of the 

adopted interpolation methods is assessed through cross‐validation. Let us remember that 

cross-validation evaluates the goodness of model prediction of unknown values. For all 

points, cross-validation sequentially omits a point, predicts its value using other data, and 

compares the measured and predicted values. Therefore, the calculated cross-validation 

statistics provide an indicator of the quality of the fit of the model. Consequently, the 

mean error (ME) should be close to 0; RMSE should be as small as possible; the mean 

standardised error (MSE) should be close to 0; the root-mean-square standardised error 

(RMSSE) close to 1; and lastly, the average standard error (ASE) should be similar to the 

RMSE [24]. Results for the cross-validation statistics can be observed in Table 4. 

 

Table 4. Cross-validation statistics for IDW, OK and OCK methods for historical (1971–2000) and 

future periods (2011–2040, 2041–2070) for HDD, CDD and HDD+CDD under RCP4.5 and RCP8.5. 

  

OK OCK IDW 

Mean RMSE Mean RMSE Mean RMSE 

HDD 

  1971−2000 0.055 13.322 -1.622 63.853 1.187 43.442 

RCP4.5 
2011−2040 0.066 12.699 -1.629 63.133 1.214 43.181 

2041−2070 0.065 12.592 -1.618 61.923 1.237 42.436 

RCP8.5 
2011−2040 0.064 12.762 -1.640 62.776 1.241 42.970 

2041−2070 0.064 12.762 -1.634 61.874 1.257 42.473 

CDD 

  1971−2000 0.008 2.051 -0.015 6.860 0.054 5.152 

RCP4.5 
2011−2040 0.009 2.171 -0.024 7.127 0.062 5.403 

2041−2070 0.009 2.347 -0.035 7.625 0.074 5.792 

RCP8.5 
2011−2040 0.009 2.191 -0.022 7.184 0.060 5.442 

2041−2070 0.009 2.426 -0.037 7.745 0.076 5.909 

HDD

+ 

CDD 

  1971−2000 0.040 17.296 -1.487 59.994 1.241 41.311 

RCP4.5 
2011−2040 0.122 13.445 -1.498 58.939 1.277 40.921 

2041−2070 0.107 12.695 -1.486 57.258 1.311 39.970 
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RCP8.5 
2011−2040 0.040 16.775 -1.505 58.577 1.302 40.718 

2041−2070 0.110 16.486 -1.499 57.034 1.333 39.941 

 

Directional influences (anisotropy) were detected on the semi-variogram and 

optimum parameters were calculated. For both OK and OCK the semi-variogram model 

that best fits the data was the Rational quadratic model. 

Evaluation of the geostatistical methods using RMSE and ME, as presented in Table 

4, showed that the estimation of HDD, CDD, HDD+CDD by OK, was the most accurate 

by comparison with OCK and IDW for all time periods and under both RCPs. Results 

show the respective average values of 0.063, 0.009 and 0.084 for the ME and 12.827, 2.246 

and 15.339 for RMSE. Consequently, all spatial representations of the variables presented 

in the results section will be based upon the OK interpolation technique following 

aforementioned methodology’s. 

2.5. Statistical analysis 

A comparison between 2011−2040 and 2041−2070 for the near future for both RCPs, 

and the reference period (1971−2000) was performed. Anomalies are therefore computed 

between the two later periods minus 1971−2000 for HDD, CDD and HDD+CDD. The 

statistically significant anomalies were assessed by the Mann-Whitney-Wilcoxon test 

(MWW) at a 5% significance level [51,52]. The null hypothesis of this non-parametric test 

tests if the data have equal medians against the alternative that they have not (Ha=1, 

rejection of the null hypothesis). 

Statistically significant trends (at a 5% significance level) were also assessed by using 

the rank-based non-parametric Spearman's rho (SR) statistical test [53,54]. This non-

parametric test can be used to detect monotonic trends in time series and is widely used 

in hydro-meteorological studies. The magnitude of the slope of the trend was estimated 

using Theil and Sen's approach [55,56]. The slope was estimated by 

𝑏 = 𝑀𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑗 − 𝑥𝑙

𝑗 − 𝑙
) , ∀𝑙<𝑗 (1) 

where b is the estimate of the slope of the trend and 𝑥𝑙  is the l-th observation. In this 

study, both tests were performed for each grid point for all indicators for 2041−2070 (30-

years-time period), 2011−2070 (60-years-time period) and 1971−2070 (90-years-time 

period) under both RCPs. 

Lastly, the areolar mean (for mainland Portugal) for each indicator was computed, 

and statistically significant linear trends were obtained for 30-years-time periods between 

1971 and 2070 under RCP4.5 and RCP8.5. Only the statistically significant linear 

regression models will be presented for each period (p-value < 5%, e.g., at a 5% 

significance level) with the associated indicator time-series. 

3. Results 

3.1. Spatial analysis of the energy indicators 
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An assessment of the spatial distribution of the historical baseline climate 1971−2000 

was made by the map based on the OK interpolated ensemble-means of HDD, CDD and 

HDD+CDD (Figure 5). Results show increasingly higher HDD values towards the north-

eastern regions (values ranges between 786 to 2,755), contrasting with the spatial 

distribution of CDD. This indicator, Figure 5b, shows a longitudinal contrast with 

increasingly higher values in inner central to southern Portugal with values ranging from 

9 in the vicinity of the coastal and mountains to 239. These results point out a stronger 

influence of oceanity-continentality factors when comparing with HDD (Figure 5a), for 

which a latitudinal contrast is prominent. Results also show that HDD(CDD) is 

higher(lower) in mountainous regions. 

Due to the differences in the magnitude of HDD and CDD and the fact that the HDD 

+CDD indicator is an unweighted sum, the spatial patterns resemble the ones observed 

for HDD. In fact, for 1971−2000 the mean values for HDD were 1,436, and 109 for CDD, 

and 1,546 for HDD+CDD. Consequently, the map based on this interpolation (Figure 5c) 

shows larger values in the northern regions with high values in higher altitudes. This 

indicator's values range from 880 to 2,777, with the low HDD+CDD values associated with 

a favourable balance between heating and cooling related energy demand. These areas 

can be found near the coastal zones and in the southernmost regions. This composite index 

revealed spatial heterogeneity, with clear north-south and inner region contrasts that 

imply different energy needs to ensure thermal comfort. In fact, in the northern areas, the 

combined degree-day index increased, showing both cooling and heating related energy 

demands throughout the year. 

 

Figure 5. Ensemble-mean values of (a) HDD, (b) CDD, and (c) HDD+CDD for the historical period 

(1971–2000) for Portugal (OK interpolation). 
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The HDD, CDD and HDD+CDD anomalies between the two future periods 

2011−2040 and 2041−2070 under both emission scenarios RCP4.5 e RCP8.5 and the 

reference period (1971−2000) are presented in Figures 6 and 7. 

Concerning HDD, results predict under both scenarios that the heating energy 

demand will increase by 2041−2070 (Figure 6d and 7d) throughout the country. 

Conversely, for 2011−2040 under RCP4.5 results project a decrease in heating demand 

(Figure 6a). The overall HDD projected increase is higher in innermost regions in 

comparison with the reference period values, e.g., regions with higher HDD values. It is 

worth mentioning an exception in Serra da Estrela, for which the HDD was higher for 

1971−2000; however, the projected future heating demands are not expected to increase in 

the same way compared to other inner regions. 

For the CDD anomalies indicator, results predict an increase for all periods under 

both RCPs (Figure 6b, 6e, 7b e 7e). The most significant rises are projected for the inland 

regions, particularly in Alentejo (in the southernmost inner region), for which in the 

reference period, the CDD anomalies showed the highest values. 

The anomalies of the HDD+CDD indicator provide a clear projection of the annual 

energy demand trend across Portugal (except for 2011−2040 under RCP4.5, Figure 6c). 

Results show that the energy demand will increase mainly for 2041−2070 (Figure 6f and 

7f), for the inner areas, specifically in the innermost Alentejo and North regions. 

Conversely to Alentejo, the innermost northern regions present already the highest energy 

demand in the past (Figure 5c). Results also predict near the coast a slight decrease in the 

cooling energy demand by 2011−2040 (Figure 6c and 7c) under both RCPs, and by 

2041−2070 that decrease is only projected for small areas in the Algarve Region. 
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Figure 6. Anomalies () for (a, d) HDD, (b, e) CDD, and (c, f) HDD+CDD between 2011−2040 (upper) 

and 2041−2070 (lower) under RCP4.5. (Note that  = future period − 1961−1990) 
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Figure 7. Anomalies () for (a, d) HDD, (b, e) CDD, and (c, f) HDD+CDD between 2011−2040 (upper) 

and 2041−2070 (lower) under RCP8.5. (Note that  = future period − 1961−1990) 

 

3.2. Trend analysis from 1971 until 2070 

Figures 8 and 9 depicts the statistically significant (at a 95% confidence level) linear 

trend values between 1971 and 2070 for the three energy performance indicators under 

RCP4.5 and RCP8.5. Three-time periods were chosen: 2011−2070 (60-year period) 

2041−2070 (30-year period), and 1971−2070 (100-year period). It is worth mention that, 

when found, the statistically significant trends are represented by a grey area background 

in Figures 8 and 9, and all linear trends are expressed for each indicator per year. 
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Figure 8. Statistically significant (S.S.) linear trends (at a 95% confidence level) of (a, b, c) HDD per 

year, (d, e, f) CDD per year, and (g, h, i) HDD+CDD per year under RCP4.5 for 2011−2070 (left) 

2041−2070 (centre) and 1971−2070 (right). 

The projected decrease of HDD for Portugal is significantly larger for 2041−2070 

under RCP8.5 (Figure 9b) than under RCP4.5 (Figure 8b). This statistically significant 

decrease is more pronounced towards North for all periods although with greater 

expression for 2041−2070 where values range from (-13.5 to -6 days per year) under 

RCP8.5 and (-9.9 to -2 days per year) under RCP4.5. Though statistically significant for the 
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entire territory, between 2011−2070 and 1971−2070 these linear trends are smaller when 

comparing with the 2041−2070 period. Again, for these latter periods under RCP8.5, the 

trends are higher. Results show that these trends' overall spatial distribution points out to 

an increase of energy demand to heat internal environments in the northern-eastern 

regions of Portugal, most significant under RCP8.5 (Figure 9a, b, c). 

 

Figure 9. Statistically significant (S.S.) linear trends (at a 95% confidence level) of (a, b, c) HDD per 

year, (d, e, f) CDD per year, and (g, h, i) HDD+CDD per year under RCP8.5 for 2011−2070 (left) 

2041−2070 (centre) and 1971−2070 (right). 
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Conversely, it is projected an increase of CDD values for both scenarios; however, 

the only statistically significant linear trends were found for 2041−2070 under RCP4.5 

(Figure 8e). Results suggest that the need for cooling is almost negligible for the remaining 

periods, though linear trend values are still considerably higher for 2041−2070 under 

RCP8.5. Under RCP4.5, statistically significant trends are found almost throughout the 

Portuguese territory for 2041−2070, as aforementioned, with values ranging between 0.1 

and 2 CDD per year. 

Given the results previously attained (Figures 8 and 9), an analysis of the linear 

regression model of the mean areolar values was undertaken for 2041−2070 under RCP4.5 

(Figure 10). Results revealed a stronger increasing tendency for CDD under RCP4.5 in 

clear accordance with the results shown in Figure 8e. Conversely, for both HDD and 

HDD+CDD weaker decreasing linear trends were found at a 95% confidence level 

(Figures 10a and c). This hint at a statistically significant projected increase in the need for 

cooling for the mainland Portugal area for 2041−2070 under RCP4.5. 

 

Figure 10. Annual ensemble-mean values of (a) HDD, (b) CDD, and (c) HDD+CDD for Portugal 

under RCP4.5 between 2041−2070 (blue lines) with the respective statistically significant linear trends 

(Linear regression model equation and R2 coefficient) at a 95% confidence level (orange lines). 

 

3.3. Case Study: NUTS II 

An analysis for a case study within the NUTS II region (Figure 1) was performed to 

get further insight regarding the projected cooling and heating related energy needs under 

future climate change conditions. Towards this aim, the evolution of the minimum, mean 

and maximum anomaly values were assessed for 2011−2040 and 2041−2070 under both 

RCPs by region (NUTS II) (Figures 1 and 11). Overall, results show that regions with 

higher projected cooling or heating demands present higher increases under both RCPs 

until 2070. However, higher needs are predicted for the cooling needs since for the heating 

requirements, like previously stated, non-significant increases were detected. Therefore, 

it can be concluded that for degree-day values, future spatial distribution for 2011−2040 

no significant changes are projected on a national scale, although on a regional scale, that 

might not be the case (Figure 11). 
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Figure 11. Mean (blue dot), Maximum (black square) and Minimum (black dot) values for the 

anomalies by region (NUTS II) for both periods and emission scenarios. (a) HDD, (b) CDD, and (c) 

HDD+CDD. 
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The inner-coastal contrasts are quite apparent, so are the north-south (Algarve and 

Alentejo southern regions) increase for CDD values (Figure 11b). Higher amplitudes are 

depicted for southern regions (again Algarve and Alentejo) for all the degree-days values, 

although the Centre also presents a high variability. Lower amplitudes are found for 

Lisbon Area (LVT in Figure 2), hinting at maritime conditions' influence to attenuate 

maximum and minimum contrast in the future. These amplitudes are predicted to be 

substantially higher for all degree-day values for 2041−2070, in which major differences 

are projected for HDD and HDD+CDD (Figure 11a and c) under RCP4.5 and under RCP8.5 

for CDD (Figure 11b). Overall, it can be predicted that all regions will present less heating 

demands for 2011−2040 when comparing with 2041−2070 under RCP4.5 (with higher 

positive anomalies). Conversely, for all regions, it can be projected higher demand for 

heating for both periods under RCP8.5. 

A closer look at Figure 11b allows observing that all CDD anomalies are negative, 

pointing out less demand for cooling, mainly in the Algarve region in the south. The 

increase in demand for energy for both periods is apparent but higher under RCP8.5. In 

fact, the mean anomaly is predicted to be around 20 degrees-day (DD), although, for 

2041−2070 under RCP8.5, these increases might reach 45DD in certain locations within 

Alentejo and Centre regions (Figures 11b and 12). 

 
Figure 12. Anomalies for HDD, CDD and HDD+CDD between 2011−2070 and 2041−2070 (under 

both RCPs) and 1971−2000 (historical period) for the city locations in NUTS II listed in Figure 1. 

 

For each location within the 5 NUTS II a comparison between the historical period 

1971−2000 and 2011−2070 and 2041−2070 (under both RCPs) was undertaken. HDD results 

revealed higher positive percentages for 2041−2070 when comparing with 2011−2040 also 

higher under RCP4.5 than RCP8.5 (Figure 12). For 2041−2070 the Centre and Alentejo 

regions present major values within the 5 regions, with Aveiro (3.5%), Coimbra (3.4%), 

Santarém (3.2%) and Portalegre (3.1%) with the highest percentages, thus pointing out an 

increase in heating demand in these locations under RCP4.5; conversely, Faro (0.9%) in 

Algarve thus not reveal major heating requirements under both RCPs. These results are 
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quite similar for the ones attained HDD+CDD, which is an indicator of locations that are 

thermally comfortable, with low and cooling demand. For this indicator, the Centre and 

Alentejo regions present the highest values again within the 5 regions for 2041−2070 under 

RCP4.5. Like previously, for Aveiro (4.9%), Coimbra (4.9%), Castelo Branco (4.3%), 

Portalegre (4.4%), Santarém (4.2%) and Beja (4.3%) highest percentages are projected. 

Finally, regarding CDD, higher positive percentages are projected for 2041−2070 now 

under RCP8.5. For this indicator, the highest percentages are located in the North and 

Centre regions; namely, with projected percentages above 30% in Bragança (39.6%), Viana 

do Castelo (33.5%), Braga (35%), Vila Real (41.4%), Porto (32.2%), and Guarda (32.5%). 

These results predicted an increase of cooling requirements for these locations, whilst for 

Faro in Algarve (southern region of Portugal), the lower values were depicted for both 

RCPs and both periods. Finally, it is worth mention that for both HDD and HDD+CDD 

percentages, for 2011−2070 under RCP4.5, results predicted small negative percentages or 

close to zero percentages depending on the location, with the North region with no 

significant variations in both indicators 

4. Discussion and Conclusions 

Daily maximum and minimum temperatures projections for a historical period 

between 1971−2005 and 2006−2070 were taken from the EURO-CORDEX initiative 

(http://www.euro-cordex.net/). The Coupled Model Intercomparison Project 5 (CMIP5) 

global climate projections [34] provide these regional simulations in the RCPs [35,36]. In 

this case, calculations and subsequence analysis were made under RCP4.5 and RCP8.5 

scenarios. An observational dataset of corresponding temperatures E-OBS was used to 

bias correct the simulations. In this study, we used the quantile-quantile bias correction, 

which assumes that the distribution function may change in the future. 

From a seven-member bias-corrected ensemble of maximum and minimum daily 

temperatures, the HDD, CDD and HDD+CDD indicators were computed. Having in mind 

that, although the base temperature values may differ, depending on the country under 

analysis, in this work, the daily values for the HDD were determined using a base 

temperature of 18°C, while the daily CDD values using a base temperature of 25°C 

following the Portuguese legislation [21]. Daily HDD and CDD values were then 

calculated following the [11,20] methodology. As a result of these methodological changes 

due to the specifications of the Portuguese Law, the magnitude of the indicators and 

trends attained in this work and other studies that encompasses Portugal within Europe 

cannot be directly compared, that is the case of [11,57]. Proposed by [42,43], a 3rd indicator 

that combines HDD and CDD (HDD+CDD) was also computed. This unweighted sum 

can be interpreted as an indicator of the global amount of heating and cooling demand 

related, consequently, it can act as an indicator of overall outdoor thermal comfort in 

chosen locations [20]. These three indicators were then computed for three periods; the 

historical (1971−2000) and in the future (2011−2040) and (2041−2070) under RCP4.5 and 

RCP8.5. Anomalies () for HDD, CDD and HDD+CDD were also computed for the two 
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future periods relative to the 1971−2000 as the baseline climate (hereafter, HDD, CDD 

and HDD+CDD, respectively) under both RCPs. 

Geostatistical analysis of the three indicators was performed following the 

methodology previously presented. As such, for HDD and HDD+CDD datasets 

histograms showed that their distributions did not follow the normal distribution, 

therefore a logarithmic transformation was performed; conversely, since CDD followed a 

normal distribution, no transformation was done. The trend analysis (Figure 4) showed 

an upward trend in the West-East direction also detected for all HDD datasets. Due to 

mainland Portugal location, for CDD and HDD+CDD, this trend is expected since the 

energy requirements for heating or cooling increase from west to east due to the oceanity 

influence on climate. The HDD and CDD datasets trends in the North-South direction are 

also predictable since the heating(cooling) requirements decrease(increase) towards the 

south. The HDD+CDD dataset trends were similar to the HDD since the HDD values are 

relatively higher than the CDD, consequently, strongly influence the sum. Subsequently, 

these results substantiate the need to test the semi-variogram models with trend-

removing functions. A first-order trend removal function was thus used since the trends 

proved to be almost linear. 

In this study, IDW and eleven semi-variograms were tested for both OK and OCK: 

Circular, Spherical, Tetraspherical, Pentaspherical, Exponential, Gaussian, Rational 

quadratic, Hole effect, K-Bessel, J-Bessel and Stable. Directional influences (anisotropy) on 

the semi-variogram were detected and optimum parameters were calculated. For both OK 

and OCK the semi-variogram model that best fits the data was the Rational quadratic 

model. 

Evaluation of the Geostatistical methods using RMSE and ME showed that the 

estimation of HDD, CDD, HDD+CDD by OK, was the most accurate by comparison with 

OCK and IDW for all time periods and under both RCPs. Consequently, all spatial 

representations of the variables were based upon the OK interpolation technique 

following the methodology aforementioned. 

The statistically significant anomalies were assessed by the Mann-Whitney-Wilcoxon 

test (MWW) at a 5% significance level [51,52]. Statistically significant trends (at a 5% 

significance level) were also assessed by using the rank-based non-parametric Spearman's 

rho (SR) statistical test [53,54]. Lastly, the areolar mean (for mainland Portugal) for each 

indicator was computed, and statistically significant linear trends were obtained for 30-

years-time periods between 1971 and 2070 under RCP4.5 and RCP8.5 scenarios. Only the 

statistically significant linear regression models were presented for each period (p-value 

< 5%, e.g., at a 5% significance level) with the associated indicator time-series. 

 

The main outcomes of this study will be summarised herein: 

1) An assessment of the spatial distribution of the historical baseline climate 1971−2000 

was made by the map based on the OK interpolated ensemble-means of HDD, CDD and 

HDD+CDD (Figure 5). Results show increasing higher HDD values towards the north-

eastern regions (with values between 786 to 2,755), contrasting with the spatial 

distribution of CDD. This indicator, Figure 5b, shows a longitudinal contrast with 
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increasing higher values in inner central to southern Portugal with values ranging from 

9 in the vicinity of the coastal areas and mountains to 239. These results point out a 

stronger influence of oceanity-continentality factors when comparing with HDD (Figure 

5a), for which a latitudinal contrast is evident. Results also show that HDD(CDD) is 

higher(lower) in mountainous regions hinting at major(minor) energy demand to 

residential heating(cooling). 

Due to the differences in the magnitude of HDD and CDD and the fact that the 

HDD+CDD indicator is an unweighted sum, the spatial patterns resemble the ones 

observed for HDD. In fact, for 1971−2000 the mean values for HDD were 1,436, 109 for 

CDD and 1,546 for HDD+CDD. Consequently, the map based on this interpolation 

(Figure 5c) shows larger values in the northern regions with high values in higher 

altitudes. The outcomes show that this indicator's values ranged from 880 to 2,777, with 

the low HDD+CDD values associated with a favourable balance between heating and 

cooling related energy demand. These extents were found near the coastal areas and in 

the southernmost regions. This composite index revealed spatial heterogeneity, with 

clear north-south and inner region contrasts which imply different energy requirements 

to ensure thermal residential comfort. Results revealed that in the northern areas, the 

combined degree-day index increased, showing both increasing cooling and heating 

related energy demands throughout the year. 

2) Results for HDD anomalies under both scenarios predict an increase in heating 

energy demand until 2041−2070 (Figure 6d and 7d) throughout the country. This is not 

the case between 2011−2040 under RCP4.5 for which it is projected a decrease in heating 

demand. This result might be due to uncertainties linked to model selection and the 

ensemble member ability to properly project maximum or minimum temperatures in 

certain locations (regions poorly covered by the national meteorological network stations 

can influence gridded observational data) due to inadequacies in the modelled physical 

processes, parameterisations or downscaling. It can also be due to a decrease in the 

amplitude of maximum and minimum temperatures within this 30-year period. Apart 

from this result, the remaining are consistent with previous studies' outputs based on a 

different set of RCMs, such as, [11]. Results also revealed that the overall HDD increase 

is higher inland, which was already depicted for 1971−2000, in regions with higher HDD 

values. An exception was found in Serra da Estrela, where the HDD values were higher 

in the past, but the projected future heating demands are not expected to increase in the 

same way than in other inner regions. Let us recall, that this is the most elevated region 

in mainland Portugal, therefore the altitude might play a key role in this outcome. 

Results predict an increase in CDD values for all periods under both RCPs (Figures 6b, 

6e, 7b and 7e). The most significant increases are projected for inland regions mainly in 

Alentejo but in its southermost inner areas, which already presented the past's highest 

CDD values. The anomalies of the HDD+CDD indicator provided a clear projection of 

the increasing energy demand ‘trend’ across Portugal (except for 2011−2040 under 

RCP4.5, Figure 6c). These outcomes confirm that the energy demand will increase inland 

mainly between 2041−2070 (Figure 6f and 7f), again with prominent relevance in the 

innermost Alentejo areas and North already with the highest demand values (Figure 5c). 
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Coastal regions will have a slight decrease in the cooling energy demand by 2011−2040 

(Figure 6c and 7c) and by 2041−2070 though that decrease is only projected for small areas 

in the Algarve Region. 

3) Projected statistically significant trends in heating or cooling degree days per year 

(at a 5% significance level) were analysed within each time period and for the three 

indicators. The predicted decrease trend of HDD for Portugal is significantly larger for 

2041−2070 under RCP8.5 (Figure 9b) than under RCP4.5 (Figure 8b). This statistically 

significant decrease is more pronounced towards North for all periods, although with 

greater expression for 2041−2070 where values range from -13.5 to -6 days per year under 

RCP8.5 and -9.9 to -2 days per year under RCP4.5. Though statistically significant for the 

entire territory, between 2011−2070 and 1971−2070 these linear trends are smaller(higher) 

in comparison with the 2041−2070 under RCP4.5(RCP8.5). Findings show that these 

trends' overall spatial distribution points out to an increase of energy demand to heat 

internal environments in Portugal's northern-eastern regions, most significant under 

RCP8.5 (Figure 9a, b, c). Despite the methodological differences, these results are in clear 

accordance with the magnitude of the European Environmental Agency's trends that can 

be consulted in the following website https://www.eea.europa.eu/data-and-

maps/figures/projected-linear-trend-in-heating. 

Projected statistically significant linear trends for CDD were only found for 2041−2070 

under RCP4.5 (Figure 8e), with values ranging from 0.1 to 4 days per year. Results 

suggest that the need for cooling is almost negligible for the remaining periods, though 

linear trend magnitudes are still considerably higher for 2041−2070 under RCP8.5. Again, 

these results are in clear accordance with the results attained by the European 

Environmental Agency. However, it is still worth emphasising that in this case, no 

statistical analysis of the trends is performed, therefore only the values (magnitude) of 

the trends can be compared. 

Projected linear trends for HDD+CDD are statistically significant for the entire territory 

except for a small region in the inner Centre for 1971−2070 under both RCPs. The 

projected trends present positive and negative magnitudes for 2011−2070 (-0.9 to 1 and -

1.9 to 1 days per year) and 1971−2070 (-0.4 to 1 and -0.9 to 1 days per year) under RCP4.5 

and RCP8.5, respectively and negative for 2041−2070 (-7.9 to -1.5 and -13.5 to -4 days per 

year). Major statistically significant magnitudes are predicted under RCP8.5, which hint 

for a major decrease in the heating demand trend for 2041−2070. No comparison with 

other studies can be performed for this indicator since no studies were made for Portugal 

(to our knowledge). 

4) The analyse of the linear regression model of the mean areolar values undertaken for 

2041−2070 under RCP4.5 revealed a stronger increasing trend for CDD under RCP4.5, in 

clear accordance with the results previously attained. Conversely, for both HDD and 

HDD+CDD weaker decreasing linear trends were found at a 95% confidence level, 

hinting at a statistically significant projected increase in the need for cooling energy 

demand for mainland Portugal for 2041−2070 under RCP4.5. 

5) The aggregation of regional changes in HDDs and CDDs to larger areas can be done 

using area weighting or population weighting (with a fixed population). Population 
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weighting is desirable for assessing energy demand trends over large regions with 

uneven population distribution, such as Europe. However, due to the size of the study 

area, this methodology was not followed for Portugal. The case study analysis within the 

NUTS II region showed that regions with higher projected cooling or heating demands 

present higher increases under both RCPs until 2070. However, higher needs are 

predicted for the cooling needs since for the heating requirements, like previously stated, 

non-significant increases were detected. The inner-coastal contrasts are quite clear, so are 

the north-south (Algarve and Alentejo southern regions) a projected increase in CDD 

values (Figure 11b) was found. Higher amplitudes were depicted for southern regions 

(again Algarve and Alentejo) for all the indicators, although the Centre also presents a 

high variability under both RCPs. Lower amplitudes are found for Lisbon Area (LVT in 

Figure 2), hinting at maritime conditions' influence to attenuate maximum and minimum 

temperature contrasts in the future. These amplitudes are predicted to be substantially 

higher for all indicators for 2041−2070, in which major differences are projected for HDD 

and HDD+CDD (Figure 11a and c) under RCP4.5 and RCP8.5 for CDD (Figure 11b). 

Results predict that all regions will present less heating demands for 2011−2040 when 

comparing with 2041−2070 under RCP4.5 (with higher positive anomalies). Conversely, 

for all regions, projections point out to higher demand for residential heating for both 

periods under RCP8.5. 

All CDD anomalies are negative, foreseeing less demand for cooling, mainly in the 

Algarve region in the south. The increase of energy demand for both periods is evident 

but higher under RCP8.5 (mean anomaly around 20DD), although, for 2041−2070, this 

rise might reach 45DD in certain locations within Alentejo and Centre regions (Figures 

11b and 12). 

6) For each location within the 5 NUTS II a comparison between the historical period 

1971−2000 and 2011−2070 and 2041−2070 (under both RCPs) was undertaken. HDD 

results revealed higher positive percentages for 2041−2070 in comparison with 

2011−2040; higher under RCP4.5 than RCP8.5 (Figure 12). For 2041−2070 the Centre and 

Alentejo regions present major values within the 5 regions, with Aveiro (3.5%), Coimbra 

(3.4%), Santarém (3.2%) and Portalegre (3.1%) with the highest percentages, thus 

pointing out an increase in heating demand in these locations under RCP4.5; conversely, 

Faro (0.9%) in Algarve thus not reveal major heating requirements under both RCPs. 

These results are quite similar for the ones attained HDD+CDD, which is an indicator of 

locations that are thermally comfortable, with low and cooling demand. For this 

indicator, the Centre and Alentejo regions present the highest values again within the 5 

regions for 2041−2070 under RCP4.5. Like previously, for Aveiro (4.9%), Coimbra (4.9%), 

Castelo Branco (4.3%), Portalegre (4.4%), Santarém (4.2%) and Beja (4.3%) highest 

percentages are projected. 

For CDD, higher positive percentages are projected for 2041−2070 under RCP8.5 with the 

highest percentages located in the North and Centre regions; namely, with projected 

percentages above 30% in Bragança (39.6%), Viana do Castelo (33.5%), Braga (35%), Vila 

Real (41.4%), Porto (32.2%), and Guarda (32.5%). Results predict an increase in cooling 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 April 2021                   doi:10.20944/preprints202104.0697.v1

https://doi.org/10.20944/preprints202104.0697.v1


 

 

requirements for these locations, whereas for Faro in Algarve (southern region of 

Portugal), the lower values were depicted for both RCPs and both periods.  

For both HDD and HDD+CDD percentages, for 2011−2070 under RCP4.5, results point 

out to small negative percentages or close to zero percentages depending on the location, 

with the North region with no significant variations in both indicators. 

 

The Portuguese Regulation on the Energy Performance of Residential Buildings [21], 

as aforementioned, is in line with the European Directive [23], which aims at reducing the 

greenhouse gas emissions by 20% by 2020 and in 80% until 2050, in relation to the 1990 

emissions levels. This study allowed to conclude that major differences in heating and 

cooling energy demand can be expected for mainland Portugal under both RCPs and until 

2070. The predicted regional differences in residential buildings stock heating and cooling 

requirements point out the relevance of improving energy effciency and refurbishment 

strategies implementing updatesustainable building energetic constraints. To ensure 

thermal comfort, reduce energy consumption, and reduce greenhouse gas emissions, new 

policies are needed. Indeed, better construction techniques, the use of new materials, , 

improving thermal quality requirements for new and existing buildings, energy end-uses 

aspects, as periodic inspection of boilers and air conditioning central systems and 

integration of renewables energies, as well as energy certification for buildings will be 

highly relevant towards building a more sustainable future. 
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