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Abstract: Malaria is caused by parasites of the genus Plasmodium spp. and it is transmitted to humans when 
infected female Anopheles mosquito bite or feed for blood meal. According to World Health Organization, an 
estimated 249 million malaria incidences were reported in 2022. Diagnostic methods are vital for dealing with 
the global malaria burden and declining malaria incidence. The diagnosis by microscopy is considered a gold 
standard; however, rapid diagnostic tests (RDTs) have become a primary diagnostic test in many malaria 
endemic areas. RDT have many advantages like fast preparation and diagnosis results, easy handling, low-cost 
diagnosis, species identification. But this most implemented method is also not free of disadvantages. The 
deletion of pfHRP2/3, low sensitivity with low parasite levels, cross-reactivity and prozone effect are certain 
disadvantages of RDTs. In addition to microscopy and RDTs molecular methods have also been developed. 
The Quantitative Buffy Coat (QBC) has fast preparation and diagnosis results with high specificity, however, 
the requirement of fluorescent microscope and expert personnel along with the low sensitivity under field 
conditions are the disadvantages. Another molecular technique such as Polymerase chain reaction (PCR) and 
loop-mediated isothermal amplification (LAMP) provides results with higher specificity and sensitivity but 
have drawbacks in terms of requirements of specialized instrumentation and difficult implementation in 
endemic areas. On the other hand the mass spectrometry based diagnostic have certain drawbacks like low 
sensitivity and requirement of specialized costly instruments and reagents. Another molecular method based 
on flow cytometry has advantages like quantification of infected erythrocytes and automated parasite level 
calculations. However, low sensitivity, specialized instrumentation and difficult implementation in endemic 
areas are the dragging forces behind its large scale implications in diagnosis of malaria. Recently malaria 
diagnosis  based on artificial intelligence system such as Artificial intelligence based object detection system 
(AIDMAN), Automated AI-based Microscopy (Easy Go scan) and smart phone based application for malaria 
diagnosis (Malaria Screener & PVF-Net) have been developed which can be implemented in the fields once the 
high sensitivity and specificity is achieved. Thus, there is an urgent need of the development of malaria 
diagnostic tools which has minimal disadvantage and show high sensitivity and specificity on the one hand 
and low cost on the other hand. Recently the gene deletions events have created a vacuum which can be filled 
with more advanced RDT. Recently we have identified a T-cell immunomodulatory protein which is secreted 
in the blood of infected mice and can be detected by ELISA. The RDT implying the T-cell immunomodulatory 
protein of P. falciparum is being developed in our lab, which may have advantages over other RDTs. 
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1. Introduction 

Malaria is the most common parasitic infection caused by protozoan parasite Plasmodium and 
transmitted through the bite of female Anopheles mosquito [1].Out of 200 Plasmodium species, majorly 
5 species have been found to show significant infection in humans (Plasmodium vivax, Plasmodium 
knowlesi, Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae [2]. 
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According to the global malaria report 2023 by World Health Organization (WHO), there were 
an approximately two hundred forty-nine million incidences of malaria in eighty-five malaria 
endemic countries and regions with an increment of five million of malaria cases [3]. Malaria is also 
prevalent in India, which accounts for approximately 1.4 % of the global burden [3]. Around 70% of 
malaria cases in India comes from five states that includes Odisha (36%), Chhattisgarh (12%), 
Jharkhand (9%), Madhya Pradesh (9%) and Maharashtra (5%) [4]. 

Malaria remains a leading cause of mortality and morbidity around the world. Timely and 
precise diagnosis plays a critical role in effectively managing the disease. The diagnosis of malaria 
can be achieved through various diagnostic methods such as Light microscopy, PCR-based tests, and 
Rapid diagnostic tests (RDTs) etc. [5–7].  

Emerging advanced technologies like Loop-mediated Isothermal Amplification (LAMP), Mass-
Spectrometry, and Enzyme-linked immunosorbent assay are showing promising results for 
diagnosing the malaria parasite [8–9]. Since 2010, it has been recommended by WHO that every 
suspected case of malaria should be verified either with Rapid diagnostic test or Light microscopy 
[10]. 

The development of novel technologies based on artificial intelligence and image analysis are 
revolutionizing malaria diagnostics by automating the diagnostic process and reducing reliance on 
expert microscopists. Convolutional Neural Network (CNN) models can now analyze microscopic 
images to detect parasitic infection and quantify parasitemia levels. Additionally the development of 
smart phone based applications such as Malaria screener and PVF-Net for the diagnosis of malaria is 
also emerging and potentially useful in endemic areas to screen larger populations efficiently with 
minimal resources [11–12]. 

Light microscopy is in use for over a century and considered as the standard method for malaria 
diagnosis [13]. However, it does have some limitations like it is time consuming, require skilled staff 
and infrastructure. The RDTs overcome all the major problems associated with microscopy and have 
been found to be very useful in endemic areas but recently, problems have been observed with the 
currently available RDTs as well [11]. Recently, deletion of HRP2 and HRP3 gene in Plasmodium 
falciparum have been observed in South America, African regions, and in some parts of India as well 
[14-16]. The Plasmodium lactate dehydrogenase (pLDH) based RDT cannot detect parasite in low 
density parasitemia and the sensitivity of the aldolase-based RDT also completely depends on the 
parasite-density [11]. Consequently, there is still a need for a reliable diagnostic test for the effective 
management and treatment of the disease. 

The global malaria diagnostic market plays a critical role in the fight against malaria and the 
market has grown significantly due to the growing demand for early and accurate diagnosis. This 
rise has fueled the development of diagnostic technologies like RDTs, PCR, and LAMP etc. Global 
malaria market was valued at approximately $819 million and anticipated to expand at 5% compound 
annual growth rate (CAGR) by 2024-2032 [17]. 

2. Diagnosis of Malaria 

The malarial infection symptoms are unspecific and thus unreliable to distinguish it from other 
tropical diseases(Health Organization, 2023).The effective diagnosis of the disease depends on 
several factors such as different species of the Plasmodium,different stages, parasitemia, immunity, 
and population movement etc.[1]. 

Diagnostic methods for infectious diseases should be rapid, easy, accurate, and cost effective. 
There are various techniques currently available for malaria diagnosis ranging from the earliest 
conventional light microscopy using blood smear to the cutting-edge techniques using rapid 
molecular method. In the past decade there has been growing interest in immunoassay based RDTs, 
flow cytometry, ELISA, and molecular method which includes real-time PCR, nested PCR, and 
LAMP [8–9].  
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2.1. Traditional Diagnostics Methods 

Malaria is an age-old disease, and the traditional diagnostic methods of malaria predominantly 
involve clinical diagnosis on the basis of symptoms such as fever, headache, and chills etc. The light 
microscopy based examination of blood smears considered as the gold standard method to identify 
malarial parasites efficiently. In addition, serology testing that detects the antibodies produced in 
response to the infection was found to be ineffective to diagnose malaria as antibodies could persist 
even after clearance of infection. 

2.1.1. Clinical Diagnosis of Malaria 

Clinical diagnosis is the most widely used method by doctors around the world despite the early 
symptoms of malaria being indistinguishable.The initial malarial symptoms or indications are non-
specific (flu-like) includes higher body temperature, headache, shivering, vomiting, nausea, 
wooziness, and anorexia (Figure 1)that makes it challenging to differentiate from other tropical illness 
[18–19]. 

The recent study in Ghana assessing different diagnostic method suggested that the sensitivity 
and specificity of clinical diagnosis are much lower as compared to the conventional microscopy and 
immuno-chromatographic assays [20]. 

 

Figure 1. Clinical diagnosis based on symptoms. 

2.1.2. Light Microscopy Based Diagnosis of Malaria 

The microscopic detection of malaria involves the identification of Plasmodium species in the 
Giemsa-stained smears of peripheral blood films.The diagnosis of malaria by light microscopy 
(Figure 2) involves preparation of thin and thick blood films (thin film for species confirmation and 
thick for parasite detection) on clean glass slide followed by staining with 10% Giemsa stain and 
incubation for 10 min at RT, then removal of the stain by washing with water and its examination 
under the microscope usinghigh power immersion oil lens (100X) [21]. 

The percentage of parasitemia is used to determine malaria parasite load [22], and it is calculated 
by the following formula: % Parasitemia = No. of infected RBCs/ Total no. of red blood cells x 100. 
Parasite density is categorized as high parasitemia (>10%), moderate parasitemia (1–10%), and low 
parasitemia (<1%) [23]. Expert microscopy makes it possible to differentiate all four major species of 
malaria parasite that are competent to cause infection in humans [24].  
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Figure 2. Diagnosis of malaria using light microscopy. 

The light microscopy based methods have certain advantages like low cost diagnosis; Parasite 
level calculations and species identification [25–32]. The conventional method of diagnosing malaria 
by microscopic analysis of stained blood films has a number of disadvantages. Because of its labor-
intensive nature and need for specialized infrastructure and well-trained personnel, it is less viable 
in environments with low resources. In endemic locations, its reliability declines, and when 
parasitemia levels are low, it has difficulty in correctly detecting infections particularly in areas where 
malaria is most common (Table-1) [25–32]. 

Table 1. Advantages, disadvantages, sensitivity and specificity of different Malaria diagnostic 
techniques. 

Diagnostic 
technique 

Advantages Disadvantages  Sensitivity Specificity 

Traditional Diagnostics methods 

Clinical 
Diagnosis 

(i) No instrument 
or specific facility 
required [18,19] 

(i) Challenging to 
differentiate from 

other tropical 
illness[18,19] 

17.2 % [20] 86.5 % [20] 
(ii) Only symptoms 

based [18,19] 

Microscopic 
examination 

(i) Availability 
[1,25] 

(i) Requires expert 
personnel [1,26,30] 

56 % [58] 100 % [58] 

(ii) Low-cost 
diagnosis [1,25] 

(ii) Results are 
expert-dependent 

[1,26,30] 
(iii) Parasite level 

calculations 
[29,30,32] 

(iii) Thin vs thick 
blood film variations 

[1,28- 32, 61] 
(iv)Species 

identification 
[1,27,29,30,31,32] 

  

Serology  

(i) Seroprevalence 
study [1,34] 

(i) Non-reliable 
diagnostic technique 

[35] 

    
(ii) Malaria 

transmission [1,35] 
(ii) Not indicative of 
active infection [35] 

(iii) screening of 
potential blood 
donors[ 1,34] 

  

Advanced Diagnostic Methods 
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Rapid 
Diagnostic 

Tests (RDTs)  

(i) Fast preparation 
and diagnosis 

results  [1,49,54,59] 

(i) pfHRP2/3 gene 
deletions [49, 

59,62,63] 
84.2% [55] 99.8% [55] 

(ii) Easy handling 
[1,49,54,59] 

(ii) Low sensitivity 
with low parasite 

levels [49,59] 
63.4-100% [56] 53.4-99.9% [56] 

(iii) Low-cost 
diagnosis [1,49,59] 

(iii) Low sensitivity 
with P. ovale and P. 

malariae species 
[45,54].  

84.2% [57] 95.2%[57] 

(iv) Species 
identification 

[45,49,59] (usually 
P. falciparum from 
non-P. falciparum 

species) 

(iv) Cross-reactivity 
[45,63] 37–88% [58] 93–100%[58] 

  
(v) Prozone effect 

[49,60] 95% (HRP2)[11] 95.2%(HRP2) [11] 98.5%(pLDH) [11] 

    
93.2% (pLDH) 

[11]   

        

Quantitative 
Buffy Coat 

(QBC)  

(i) simple, reliable, 
and user-friendly 

[1,67,68,70,72] 

(i) Requires expert 
personnel [1,67] 

70.5% [57] 92.1%[57] 

(ii) Rapid and 
sensitive [1,66–

68,70] 

(ii) Requires 
fluorescent 

microscopy set up 
[1,67] 

55.9 %[67] 88.8 %[67] 

(iii) High 
specificity [65,66] 

(iii) low sensitivity in 
field [70] 93 % [69] 99% [69] 

(iv) Less training 
time [66] 

 97.7 %[70] 99.7 %[70] 

   70.9 %[70] (field) 97.4 %[70] (field) 
       

PCR 

(i) High sensitivity 
and specificity 

[30,84–91] 

(i) Specialized 
instrumentation 
[1,30,84,85,91] 

100% [84,90,91] 100% [84,90,91] 

(ii) Accurate 
Species 

identification [84–
88,91] 

(ii) Difficult 
implementation in 

endemic areas 
[30,84,85,87,91] 

(iii) Reference tool 
for comparative 

studies [84,90–91] 

(iii) Expensive 
diagnosis 

[1,30,84,85,88,91] 
(iv) Works in low 
parasite density 

[87–89,91] 
  

LAMP  

(i) High sensitivity 
and specificity 
[92,94,95,96,97] 

(i) Less sensitive for 
other species (other 
than P. falciparum 
and P. vivax) [97] 

99 % (Pan) [96] 100%(Pan)[96] 

(ii) Species 
identification 

[94,96,97] 

 90%(P. 
falciparum) [96] 93%(P. falciparum) [96] 

(iii) Inexpensive, 
No thermocyclers 
needed [92,94,95] 

 95% [92]  99% [92] 
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(iv) Less 
turnaround time, 

comparable to RDT 
[94] 

 98.89% [94] 100% [94] 

   100% [58] 86–99% [58] 
   95–98% [95] 91–99% [95] 

Mass 
Spectrometry 

(i) High specificity 
[102,103] 

(i) Low sensitivity 
[102,103] 52 % [101] 92 % [101] 

(ii) Early detection 
of infection [100] 

(ii) Specialized and 
costly 

instrumentation 
[102, 103] 

80.2 % [102] >95% [102] 

Flow 
cytometry 

(i) Quantification of 
infected 

erythrocytes 
[102,103,105–108] 

(i) Low sensitivity 
than PCR [106] 

100 % [107] 98.39% [107] 
(ii) Automated 
parasite level 

calculations [105–
108] 

(ii) Difficult 
implementation in 

endemic areas [105–
108] 

2.1.3. Serological Test 

Serological testing is commonly based on the detection of antibodies generated against the 
Plasmodium parasite. However, these tests are not considered to be appropriate as they arenot capable 
of determining whether the antibodies are produced due to the past or ongoing infection but they are 
usually utilized for epidemiological studies and for screening of potential blood donors [33]. There 
are several assays such as IFA, ELISA and hemagglutination tests etc. Despite being time consuming 
the immunofluorescence antibody testing (IFA) is a reliable test for detecting antimalarial antibodies. 
It is specifically useful for screening prospective blood donors to avoid transfusion-transmitted 
malaria (Table 1) [1,34–35].  

2.2. Advancements in Malaria Diagnosis 

Recent advancements focus on the identification of disease specific biomarkers that allow for 
more precise detection and characterization of the malarial infections. While traditional  diagnostic 
methods of malaria primarily relies on blood or its products for detection of the disease but recent 
developments of non-invasive techniques using other bodily fluids such as saliva and urine have 
shown promising results. Techniques like nested-PCR targeting malarial small-subunit rRNA (18S 
PCR), Quantitative PCR, Chemiluminescent ELISA and UMT (Urine malaria test), which detects Pf-
HRP2 in urine sample, are being used to diagnose malaria. In addition, there have been 
improvements in blood based assays as well that include methods like Loop-mediated isothermal 
amplification, Photo induced electron transfer (PET)-PCR, Biosensor based Quartz crystal 
Microbalance technology, SELEX (Systematic Evolution of Ligands by Exponential Enrichment) 
holds the potential to revolutionize the field of malaria diagnostics [36–39].  

In order to reduce the dependency on conventional microscopy several software, applications, 
and tools are also being developed to detect malaria parasite in thick and thin blood smear’s 
microscopic images [32]. These approaches aim to automate the detection of the disease using deep 
learning Artificial Intelligence (AI) and advanced image analysis to streamline the procedure of 
diagnosis. Convolutional neural networks are used as trained classifier models to identify specific 
objects or features in images and videos using deep learning algorithms; it is specifically used in 
healthcare for medical diagnosis of various diseases [40]. 
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2.2.1. Rapid Diagnostic Test 

RDT is a lateral flow device that is based on the principle of immunochromatography which 
involves the movement of liquid across the nitrocellulose membrane (Figure 3). During testing the 
parasitic antigen from the patient’s blood is captured by a monoclonal antibody that is attached to a 
gold particle or a liposome with dye, these monoclonal antibodies are raised against the target 
malaria antigen. Another antibody captures the antigen-antibody complex as it moves across the 
nitrocellulose membrane in the immobile phase which results in generating a clear line. A labeled 
goat anti-mouse antibody is used as a control to ensure if test works properly or not [41–42]. 

 
Figure 3. Typical lateral flow device. 

Currently there are several RDT kits available that targets HRP2 (Histidine-rich protein2), 
Aldolase, and pLDH antigen for the detection of the malaria. HRP2 is a surface membrane protein in 
RBC which is produced in abundance during asexual stage of the Plasmodium parasite and it has been 
found highly specific for Plasmodium falciparum infection [43–48]. LDH is a soluble glycolytic enzyme 
which is expressed at high-levels in blood-stage of Plasmodium. PLDH based RDTs effectively detect 
two species of Plasmodium i.e P. vivax and P. falciparum [47–48]. Aldolase is also an enzyme produced 
during glycolytic pathway of malaria parasite and its presence has been observed in all Plasmodium 
species that makes it capable to detect all infections of malaria [48–49]. 

RDT test involves the collection of blood samples and placing the sample on the pad specified 
for samples. Then few drops of buffers are placed in the sample pad and the results are obtained 
within minutes (Figure 4).  

 
Figure 4. Malaria Diagnosis using a RDT kit. 

Many studies have demonstrated that RDT-based diagnosis of malaria shows robust 
performance in terms of sensitivity and specificity of the test [50–53]. Although RDTs cannot 
determine the parasite burden of patients and its sensitivity also decreases with low parasitemia (<100 
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parasites/uL), still it is thought to be the most reliable method for screening large populations in 
resource-limited areas [49]. 

The development of RDTs around 1990s resolved some of the issues linked with conventional 
microscopy and PCR based diagnosis, it is rapid and easy to use and requires minimal understanding 
[54]. Also, it was found very reliable in endemic areas to screen large population in short period of 
time. In a comparative study the sensitivity and specificity for P. falciparum using HRP2 based RDT 
has been found to be 95 % and 95.2% respectively. Similarly, for pLDH based RDT 93.2% and 98.5% 
sensitivity and specificity were respectively obtained [11,55–58]. But, recently deletion of HRP2 gene 
in Plasmodium falciparum have been observed in South America, African regions, and in some parts 
of India as well [14–16], the PLDH based RDT cannot detect parasite in low density parasitemia and 
parasite released aldolase enzyme in low concentrations decreases sensitivity of the aldolase-based 
RDT [11]. Large number of studies has highlighted issues with the currently available antigen-based 
RDTs [49,59–64]. Thus there is a critical need to find a novel species-specific target that can efficiently 
detect parasite infection and free from all the issues. 

2.2.2. Quantitative Buffy Coat (QBC) Test 

The quantitative buffy coat analysis is a well-known and a highly sensitive test which was 
developed to enhance the detection of malaria in peripheral blood [65]. QBC method relies on 
fluorescence and density-gradient centrifugation of malaria infected erythrocytes [66]. In QBC 
technique fluorescent dyes are used (Acridine orange) to stain the parasitic DNA in infected blood 
specimen followed by centrifugation at high speed for five minutes and then the detection of the 
malaria causing parasite under fluorescent microscope [1]. Within non-fluorescing red blood cells, 
the parasite is spotted as green under fluorescence microscope [67]. 

In addition, the QBC test has been found to be highly specific in identifying malaria in Indian 
set-up, where two species of Plasmodium i.e P. falciparum and P. vivax predominantly cause malaria 
[70]. QBC test is also a helpful technique in correctly diagnosing filariasis and visceral leishmaniasis 
[65].Studies demonstrated that QBC test is a reliable diagnostic tool for malaria.It shows excellent 
specificity, sensitivity, and possesses good accuracy in identifying both positive and negative 
results[57,67–69]. The field sensitivity of QBC test has been reported to decrease significantly under 
field condition [70].  

Despite its high specificity and sensitivity QBC is not a suitable diagnostic test in resource-
limited endemic areas, because it requires specialized equipments, trained lab staff, and a good 
infrastructure to carry out the testing operations (Table-1). The quantitative buffy coat test that 
involves centrifugation and use of acridine orange dye to visualize parasite under fluorescent 
microscope, the studies demonstrated that QBC possess better sensitivity compared to the 
microscopic examination, however, it requires skilled lab staff, infrastructure to carry out testing, and 
high costs (Table-1) [1,31,65,71,72]. 

2.3.3. Molecular Diagnosis of Malaria 

The molecular amplification of 18S rRNA which is conserved in all Plasmodiumspecies was first 
implemented by scientists using Nested PCR technique [73] since then molecular based diagnosis of 
malaria is constantly evolving with the development of RT-PCR, Nucleic Acid Sequence-Based 
Amplification (NASBA), Reverse-transcriptase PCR and LAMP. These PCR based diagnosis can 
detect multiple gene targets and it has been shown to be more sensitive than microscopy [74].  

RDT and Microscopy can detect 100-200 parasites/μl whereas molecular diagnostic methods 
such as PCR, LAMP, mass spectrometry, and flow cytometry can detect 5-50 parasites/μl [75–76]. 
Thus, studies have demonstrated the higher sensitivity of molecular methods as compared to other 
methods.,  

2.3.3.1. Polymerase Chain Reaction (PCR) 
The polymerase chain reaction attributed as a reliable test for identifying the mixed infections 

with better sensitivity as compared to the other laboratory tests. It involves the use of two sets of 
primers, from which one set of primer is used to detect the presence of the Plasmodium and the other 
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set is species-specific that will only amplify when the particular-species is present in the sample such 
as Plasmodium falciparum [77,78]. 

Real Time PCR use fluorescence based technology and can efficiently detect the target amplicons 
in real time and the melting curve analysis is done to precisely differentiate the Plasmodium species 
[10,79–82]. Whereas the multiplex-PCR is capable of amplifying multiple target sequences in a single 
reaction using different pair of primers for each target but it is also associated with several problems 
such as non-specific amplification and mispriming artifacts. However, the nested-PCR performs two 
steps of amplification, the product from first step amplification serves as the template for secondary 
amplification and use different set of primers internal to those used in primary PCR to avoid 
mispriming artifacts and primer dimer. Nested-PCR can detect submicroscopic malaria parasite with 
a low density of 10 parasite/μl of blood [83]. 

Diverse studies suggests that PCR based diagnosis of malaria possesses better sensitivity and 
specificity in comparison with the other two most widely used diagnostics and is also able to identify 
missed cases by these tests [29,84–91]. PCR based molecular diagnosis of malaria considered as more 
suitable technique compared to other conventional methods as it possess better sensitivity and 
specificity [88]. While it is more sensitive and capable of identifying the parasite at the species level, 
it is linked to multiple challenges such as it is not very reliable in remote areas, diagnosis takes 2-3h 
and associated with high costs [29,84].  

2.3.3.2. Loop-Mediated Isothermal Amplification (LAMP) 
The LAMP technique is considered to be more simplified and affordable technique. It identifies 

the Plasmodium falciparum’s conserved 18s ribosomal RNA gene and is also able to detect other 
Plasmodium species as well [92]. In LAMP assay amplification is done at a constant temperature i.e. 
around 62-65℃. DNA is amplified 109-1010 times in 15-60 min and the amplification is monitored using 
SYBR Green dye and automated monitoring using a turbidity meter (Figure 5) [36].  

A meta-analysis of multiple studies demonstrated the LAMP method's sensitivity is between 
93.9 to 100% and specificity is ranged between 93.8 to 100%, which makes it comparable with PCR 
based diagnostics [58,93–95]. Further it is less time consuming and capable of detecting all Plasmodium 
species efficiently [95–98]. 

 
Figure 5. Basic workflow of LAMP technique. 

The molecular technique known as loop-mediated isothermal amplification (LAMP) has been 
released into the market to detect malaria. LAMP satisfies the requirements for a point-of-care 
diagnostic screening test since it is easy to use and doesn't require sophisticated equipment or 
training [95–97]. So far LAMP technique producing better results as compared to other methods but 
more research and field studies has to be done to validate its results (Table 1). 

2.3.3.3. Mass Spectrometry 
The laser desorption mass-spectrometry based diagnostic for malaria has been developed two 

decades ago. It is based on the principle of identifying a heme group of hemozoin in a malaria infected 
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samples and does not detect heme bound to hemoglobin or other proteins in uninfected samples 
[99].Based on a study Liquid Chromatography-Mass Spectrometry (LC-MS) was found to be a rapid 
and sensitive test and could detect <10 parasites/μl (Plasmodium falciparum) in infected blood samples. 
The comparative study demonstrated the detection of Plasmodium infection within 2 days post 
infection in 0.3μl of blood sample whereas the microscopy and colorimetric hemozoin detects the 
infection between 2-5 days [100]. Samples from pregnant women with submicroscopic parasitemia, 
hemozoin screening using Laser desorption-time of flight (LD-TOF) showed sensitivity of 52% and 
specificity of 92% when compared with PCR [101]. Recently, a study has shown a high specificity 
(>95%) but insufficient sensitivity (80.2%) of LD-TOF-based detection of hemozoin for malaria 
screening [102]. In yet another study more than 10 peaks specific for P. falciparum were identified in 
the blood of infected patient by matrix-assisted laser desorption/ionization time-of-flight mass 
spectrometry (MALDI-TOF-MS) suggesting the potential of the technique for the diagnosis of 
malaria. However the sensitivity was not sufficient in this study also [103]. 

2.3.3.4. Flow Cytometry 
Flow cytometry is a high throughput technique to count and separate viable cells in a stream of 

fluid using a laser device that reveal the fluorescent markers on the cells [104].Flow cytometry 
provide more insights about the growth and development of malaria parasite compared to any other 
currently available techniques [8]. The flow cytometry based investigation of malaria parasite in 
blood stage relies on the absence of DNA in normal RBCs, The ratio of RBCs that stain positive for 
DNA to the total number of RBCs analyzed can be used to accurately determine the parasitemia in 
blood samples (Figure 6).  

In the first use of flow cytometry to detect malaria parasite, the test blood samples were mixed 
with saponin that lyse the RBC without affecting parasite and WBCs. Cells were then stained using 
two fluorescent dyes i.e. Hoechst 33258 and a FACStarto analyze the parasitic DNA. Parasite and 
WBCs were then differentiated by blue Hoechst 33258 fluorescence and forward scattering [105]. 
More simpler and rapid tri-colour flow cytometry assay was developed in 2011 which helps to 
quantify, characterize and differentiate different Plasmodium species. Leukocytes were detected using 
an antibody against CD45, and the parasites were stained with dihydroethidium, Hoechst 33342, or 
SYBR Green I. [106]. In a recent study compared to microscopy sensitivity of 100% (95% CI: 97.13–
100) and specificity of 98.39% (95% CI: 95.56–100), has been reported for the diagnosis of imported 
malaria cases. Moreover, the study showed determination of parasitemia in a very short time 
compared to other methods [107]. Flow cytometry based diagnosis of malaria has significant 
disadvantages like it is an expensive, labour-intensive, and requires trained laboratory staff though 
it is incredibly useful in malaria studies and for malaria screening [29,108]. 

 
Figure 6. Flow-cytometry based detection of malaria parasite. 
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2.3. Artificial Intelligence and Image Analysis Techniques 

Artificial intelligence is a transformative technology that has potential to revolutionize the field 
of malaria diagnosis. Convolutional neural networks (CNNs) are AI models (such as YOLOv5, R-
CNN, SSD, and RetinaNet) can help in analyzing microscopic images of thick and thin blood smear 
sample using deep learning tools. Deep Malaria convolutional neural network classifier model (Deep 
MCNN) capable of estimating parasitemia in malarial parasite MP/ul as recommended by WHO. It 
can calculate total malaria parasite and WBCs count and achieves a sensitivity and specificity ratio of 
0.92/0.90 compared to expert level microscopy [109]. Additional, development of handheld 
microscopes or smartphone microscope also has a great potential in the field of diagnosis.  Several 
studies have been done for the use of cyscope which is a portable fluorescent microscope. It is 
considered as a rapid detection test for malaria and provides result within 10 minutes. This technique 
has capability to quantify parasitemia from blood specimen [110–116]. 

2.3.1. Artificial Intelligence Based Object Detection System (AIDMAN) 

AIDMAN is an AI tool that uses deep learning algorithms to detect Plasmodium parasite in thin 
blood smear images with an accuracy of 98.4% comparable to the expert microscopists. It uses a 
combination of YOLOv5 and Transformer model for image analysis for detection of malaria parasite 
[117]. It may be utilized to screen more samples in limited-resource areas in order to reduce cost and 
time. Other AI systems for Plasmodium detection using smartphone have been reported [118–120]. 

2.3.2. Automated AI-Based Microscopy (Easy Go Scan) 

A fully automated microscopy that scans the blood film sample of patients and uses an AI 
software to detect and quantify malaria parasite through image processing with an accuracy of 88% 
has been developed by UK scientist. The system called EasyScan GO detects malaria parasites in 
field-prepared Giemsa-stained blood films [121]. 

For clinical validation researchers have sampled around 1200 blood samples of people who 
traveled to UK from malaria endemic areas, out of 113 positive samples for malaria automated 
microscope were able to detect 99 positive samples with an accuracy of 88%. AI software cannot be 
considered as good as expert microscopist as it has also given 122 false positive samples, but it can 
be improved further and trained on large datasets to provide more outstanding results [121]. 

2.3.3. Smartphone Based Application for Malaria Diagnosis (Malaria Screener & PVF-Net)  

Malaria screener is a first smartphone-based application that can detect Plasmodium falciparum 
infection from Giemsa-stained blood smears with an accuracy of 74% compared to the expert 
microscopy and 71% when compared with the nested PCR as reference. During microscopy the 
malaria screener app requires mounting a smartphone onto the microscope’s eyepiece then app will 
automatically capture an image, process it instantly, and displays the result on the screen. Its accuracy 
reaches 91.8% when threshold of parasite count (number of parasite used to determine whether a 
patient was infected or uninfected) was shifted [122]. Plasmodium VF-Net was developed as a more 
improved algorithm that can detect both P. falcifarum and P. vivax infections. It is trained using a 
sample datasets from Bangladesh [123] and provides an accuracy of 83.1% when compared with 
microscopy and 81% when compared with the nested PCR. Smartphone based application shows 
immense potential to be used in limited-resource settings for routine screening of malaria in endemic 
areas.It will help to reduce the reliance on expert microscopists and saves both time and cost. 

2.4. Malaria Diagnostic Market 

Malaria remains the prevalent, life-threatening disease worldwide. Malaria diagnostic market is 
becoming dynamic and evolving sector that plays a crucial rolein the global fight against malaria. 
The list of available malarial RDTs shows worldwide existence [124]. The primary factor that drives 
the market is the elevating incidences of malaria which leads to the increasing demand for effective 
malaria diagnostics.In 2023, the global malaria diagnostic market was valued at approximately USD 
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819.1 million and it is anticipated that it will grow at 5%CAGRduring the projection period from2024 
to 2032 (Figure 7) [17]. The major factor behind this enormous growth is the ongoing advancements 
in diagnostic technologies, increasing investment in global health initiatives, increased emphasis on 
enhancing diagnostic accessibility and accuracy in endemic areas [17]. 

 
Figure 7. Forecast period from 2024-2032. 

2.4.1. Challenges and Opportunities 

The precise and timely detection of malaria infection is indeed critical for effective management 
and treatment. In many regions delays in diagnosis and treatment often leads to severe complications 
and fatalities. However, diagnosing malaria presents significant challenges especially in resource-
limited countries where malaria is highly prevalent. There is lack of more accurate, rapid and cost-
effective diagnostic tool which highlights the urgent need of an improved diagnostic tool to 
streamline the testing process. 

Incentives to drive innovation in malaria diagnostic are constrained due to narrow profit 
margins and mostly innovations are donors funded leading to slow progress. The malaria RDTs that 
detect Pf-HRP2 continue to be the leading product in the donor-funded market, accounting for 70-
80% of the total volume [46]. In 2022, RDTs segment led the malarial diagnostic market, having the 
valuation of 53.69% in the revenue share. WHO estimates show that more than 312 million RDTs 
were distributed worldwide in the year 2016 [125]. At present, there are multiple prequalified RDT 
options that are available for each standard case management test type (such as HRP2-detecting tests 
for Plasmodium falciparum, Pf/pan, and Pf/Pv). However, there are still very few options for regions 
experiencing Pf-HRP2/3 gene deletions.  The molecular technique known as loop-mediated 
isothermal amplification (LAMP) was just released into the market to detect malaria (Loopamp™ 
Malaria Pv, Eiken Chemical, Tokyo, Japan). LAMP satisfies the requirements for a point-of-care 
diagnostic screening test since it is easy to use and doesn't require sophisticated equipment or 
training [98]. So far LAMP technique producing better results as compared to other methods but 
more research and field studies has to be done to validate its results.In the post COVID-19 era, now 
governments and international health organizations are likely to be more focused towards malaria, 
which could result in increased funding for malaria diagnostics. 

Ongoing innovations and development of new diagnostic tools present significant opportunities 
for early detection particularly in resource-limited areas, where advanced diagnostics can play key 
role to effectively manage and treat malaria. Recently we have shown the effectiveness of ELISA in 
detecting the T-Cell immunomodulatory protein of P. berghei in the sera of infected mice [126]. 
Presently we are working on the development of RDT diagnostic kit based on T-cell 
immunomodulatory protein of P. falciparum. 

USD 0.86 B

USD1.3 B

2024 2032
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