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Abstract

To enhance the penetration capability and strike accuracy of missiles in scenarios involving multi-
ple interceptors, this paper proposes a penetration guidance strategy based on deep reinforcement
learning (DRL). First, the BANG-BANG optimal penetration strategy is derived as an expert policy by
optimizing the maximum miss distance between the attacking missile and the interceptor missiles as a
performance metric. Subsequently, a Markov Decision Process (MDP) model for missile penetration
guidance is established, and a multi-objective reward function is designed to integrate penetration
success rate, miss distance, and energy consumption. Furthermore, a penetration strategy learning net-
work based on Generative Adversarial Imitation Learning (GAIL) and Proximal Policy Optimization
(PPO) is constructed and trained. Simulation results demonstrate that the proposed strategy exhibits
high training efficiency and enables superior decision-making in complex adversarial scenarios.

Keywords: hypersonic missile penetration; optimal guidance law; deep reinforcement learning;
imitation learning

1. Introduction

The precise strike capabilities of hypersonic missiles significantly affect modern warfare. In
practice, the flight trajectory of the hypersonic missile can be divided into three phases: the boost
phase, midcourse phase, and terminal phase. The terminal phase is crucial, as it directly determines the
success of the mission and influences the missile’s final flight path and strike accuracy. Recently, global
military powers have been researching interception technologies for hypersonic missiles and missile
defense systems, intensively [1-4]. The terminal phase dive, characterized by low altitude limited
acceleration, and high detectability, has become a critical interception zone for defense systems [5,6].
Enhancing missile maneuverability during the terminal phase to improve penetration and achieve
high-precision strikes has become a key area of missile guidance research [7-9].

Currently, missile maneuver penetration techniques can be classified into two main categories:
programmatic maneuver penetration and game-theoretic maneuver penetration [10]. Programmatic
maneuver penetration involves determining the timing and program of terminal maneuvers before the
missile is launched, without accounting for potential interference from enemy interception systems.
Consequently, when faced with high-precision interception systems, successful penetration becomes
challenging. As a result, autonomous maneuvering has become a primary focus in the development of
penetration guidance laws [11-14]. In contrast, game-theoretic maneuver penetration refers to a sce-
nario where, upon detecting an incoming interceptor, the attack missile acquires the interceptor’s flight
parameters and, using its onboard computation module, calculates real-time maneuver commands
to perform penetration maneuvers. This strategy allows the missile to select the optimal approach
to penetration based on the interception method, thereby significantly improving the likelihood of
successful penetration. Shinar applied a two-dimensional linearized kinematic method to analyze
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the penetration problem of interceptors under proportional guidance and identify the key factors
influencing the miss distance. A simple search algorithm was also used to determine the optimal
timing and direction of the maneuver [15]. Ref.16 addresses the issue of strategy implementation for
attacking missiles under limited observation by introducing a network adaptation feedback strategy
and inverse game theory. It also selects strategies that meet consistency standards through optimization
methods [16]. Ref.17 introduced a Linear-Quadratic (LQ) differential game approach to model the
missile offense-defense interaction [17]. By combining the Hamilton-Jacobi adjoint vector with the
conjugate method, the authors proposed a novel conjugate decision-making strategy and provided an
analytical solution for the optimal parameters. Ref.18 presents an optimal guidance solution based on
the linear quadratic differential game method and the numerical solution of the Riccati differential
equation. It studies the interception problem of ballistic missiles with active defense capabilities and
proposes an optimal guidance solution based on differential game strategies [18]. Ref.19 designs a co-
operative guidance law by establishing a zero-sum two-player differential game framework, allowing
the attack missile to intercept the target while evading the defender, and satisfying the constraint on
the relative interception angle [19]. Ref.20 derived a penetration guidance law with a controllable miss
distance, using optimal control theory to fit guidance parameters via a Back Propagation (BP) neural
network and achieve optimal energy expenditure during the guidance process [20]. Compared with
traditional pre-programmed maneuver strategies, maneuver penetration based on differential games
possesses intelligent characteristics and provides real-time decision-making capabilities. However,
it also presents challenges, including high computational complexity, difficulties in mathematical
modeling, and the need for precise problem formulation.

With the integration of artificial intelligence technologies into differential pursuit-escape problems,
novel approaches have emerged for missile terminal penetration. For the three-body pursuit-escape
problem in a two-dimensional plane, Ref.21 utilized the Twin Delayed Deep Deterministic policy gra-
dient (TD3) algorithm to train the attacker’s agent, enabling it to learn a guiding strategy in response to
the defender’s actions, thus achieving successful target capture [21]. In the missile penetration scenario
during an missile’s dive phase, Ref.22 employed an enhanced Prioritized Experience Replay-Deep
Deterministic Policy Gradient (PER-DDPG) algorithm, which emphasized learning from successful
penetration experiences. This approach notably accelerated the convergence of the training process
[22]. Ref.23 introduced a maneuvering game-based guidance law based on Deep Reinforcement Learn-
ing (DRL), which, in comparison to traditional programmatic maneuvering penetration, significantly
enhanced the stability of the penetration [23]. Ref.24 proposes a hypersonic missile penetration strategy
optimized using Reinforcement Meta Learning (RML), which increases the difficulty of interception
through multiple random transitions [24]. Ref.25 treated the penetration process as a linear system and
derived an analytical solution for the miss distance [25]. However, the penetration strategy obtained
in this manner requires complete knowledge of the interceptor’s guidance parameters, which is highly
challenging to obtain in practical confrontation scenarios.

Most existing penetration guidance laws mainly focus on the confrontation between the attacker
and defender, while neglecting the impact of penetration on strike accuracy. The primary goal of the
missile is to attack the target. If penetration alone is prioritized, there may be cases where penetration
succeeds but the missile misses the target due to excessive maneuvering. Therefore, an integrated pen-
etration guidance strategy is needed: one that accounts for both penetration and strike accuracy, while
staying within the missile’s acceleration and performance limits, and minimizing energy consumption
during the penetration process. Ref. 26 innovatively designs a reward function incorporating an
energy consumption factor to balance miss distance and energy efficiency. Additionally, a regression
neural network is utilized to enhance the generalization capability of the penetration strategy and
achieve evasion of interpret missile and precise strikes on the target [26]. Regarding the issue of missile
penetration time, Ref.27 proposed an integrated guidance and strike penetration law based on optimal
control, which ensures that the Line-of-sight (LOS) angular velocity between the attack missile and the
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defending interceptor reaches a specified value within a given time, thereby achieving penetration
[27].

In summary, existing penetration strategies predominantly focus on the one-on-one adversarial
scenario between the attacking missile and interceptor missiles, and heavily rely on the engagement
context between them, often neglecting the subsequent guidance tasks. To address these issues, this
paper explores the integration of optimal control and DRL, designing a guidance law that combines
intelligent penetration and steering. The main contributions of this paper are as follows:

1.  To address the attacking-multi interceptor-target adversarial scenario, a Markov Decision Process
(MDP) model is constructed. This model takes the observable states of both sides as input and
outputs the penetration acceleration commands for the attacking missile, enabling intelligent
maneuvering penetration decisions in a continuous state space.

2. To tackle the coupling problem between penetration maneuvers and guidance tasks, a multi-
objective reward function is designed. It maximizes the penetration success rate while constrain-
ing the maneuvering range through an energy consumption penalty term, ensuring terminal
strike accuracy.

3. To overcome the training efficiency bottleneck caused by sparse rewards, a fusion of Generative
Adversarial Imitation Learning (GAIL) and Proximal Policy Optimization (PPO) algorithms is
proposed. Expert trajectory priors are utilized to guide exploration, significantly improving
policy sampling efficiency and asymptotic performance.

The organization of this study is as follows: Section 2 establishes the mathematical model of the
adversarial scenario and derives the optimal BANG-BANG penetration strategy. Section 3 constructs
the MDP model for the penetration process and designs a GAIL-PPO-based hybrid training framework.
Section 4 presents the training and testing experimental results. Finally, Section 5 summarizes the
research conclusions.

2. Optimal BANG-BANG Penetration Strategy

In this section, we first establish a mathematical model of the engagement scenario, then derive
a maximum miss distance BANG-BANG penetration strategy to provide expert experience for the
GAIL-PPO training in Section 3.

2.1. Mathematical Model of Engagement Scenario

Figure 1 illustrates the planar penetration scenario. An attack missile targets a ground target, and
when the target detects the incoming missile, a interceptor missiles is launched from the ground to
intercept it. The interception is deemed successful when the distance Rpp between the attack missile
and the interceptor missiles is falls below the lethal radius Rp of the interceptors missile. Similarly,
the attack missile is considered to have hit the target when the distance Rgr between them is falls
below the lethal radius Ry of the attack missile. The initial launch position of the missiles is set at
the origin of the x-axis, with the horizon corresponding to the origin of the y-axis, establishing an
inertial coordinate system. In Figure 1, F, T, D1, and D2 represent the attack missile, the target, the
interceptor missiles 1 and the interceptor missiles 2, respectively. The velocities of the attack missile
and the interceptor missiles are denoted by Vi and Vp. The flight path angle, denoted by ¢r and ¢p,
are measured by clockwise rotation around the x-axis. The vertical velocity components ar and ap
represent the accelerations of the attack missile and interceptor missiles. Finally, the LOS angle of the
attack missile and interceptor missiles are represented by grr and grp.
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Figure 1. Missile Penetration Engagement Diagram.

Since the engagement scenario involves a hypersonic missile attacking a ground target, we
approximate the target as stationary. Given that the attack missile has no propulsion during the
terminal guidance phase and that air resistance is neglected, the velocity change of the attack missile
in this phase is considered negligible. Similarly, we assume that the interceptor missiles has already
reached its maximum speed during the penetration phase, so the velocity change of the interceptor
missiles is also negligible. Therefore, both the velocities of the attack missile and the interceptor
missiles can be treated as constant. From Figure 1, the relative motion equation of the attack missile
and the target in the inertial coordinate system can be expressed as:

Rpr = Vrcos(ger — ¢1) — Vi cos(qer — ¢F)
(1)
Rerger = Vrcos(qer — ¢1) + VESsin(grr — ¢F)

The relative motion equation between the attack missile and the interceptor missiles is given by:

Rep = Vg cos(qrp — @) — Vb cos(qrp — ¢p)
2)
Repdrp = Vb sin(qep — ¢p) — Vi sin(qep — ¢F)
At the same time, the motion models of the attack missile and the interceptor missiles can be derived
as:
xp = Vpcosgr yp= Vpsingr ¢p = % +d
)
ip = Vpcosgp yp = Vpsingp ¢p = %
where xp, yrand xp, yp represent the current positions of the attack missile and the interceptor missiles,
respectively.
During the engagement, we assume that the interceptor missiles follows a proportional guidance
law to intercept the attack missile. Specifically, the guidance law is expressed as:

ap = NpVpgrp 4)

where Np is the proportional gain coefficient.
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2.2. Derivation of the Optimal BANG-BANG Penetration Strategy
Differentiating both sides of the first Equation in (2) yields:
2 . . ap
Rep = — vpsin(qrp — ¢p) (QPD - )
° (5)

) _ a
+ovpsin(qrp — @F) (QFD - F)
Letx=| 1 [ = | X

OF
. LA = ,3 L ,B=
X2 RFD qFD 0

we can establish the state equation:

0 0
. . U= [ao ap},
sin(qrp — ¢p)  sin(qrp — @F)

% = Ax+ Bu (6)
Let t;? =3 ff o5 approximated the remaining Time-to-Go of the interceptor missiles and tgf,j =
Rep approximated the engagement time between the attacking missile and the interceptor missiles.

UF—UD

To reduce the order of system (6), introduce the Zero-Effort Miss (ZEM) distance z(t) as follows:

2(t) = [1 0} cb(t}:D,t)x(t) 7)

where @ ( D, t) is the state transition matrix, whose expression is obtained by solving the homoge-
f P y g g
neous equation x(t) = Ax(t) as:
. )
FD _ Cosh ( tF D ) u
o(150,1) =& (7770) = | o j ®

gsinh (q’tgl? ) cosh (qt;? )
where § = /4%, = |4rp|-
From the properties of the state transition matrix, we obtain:
& = @(tjlfD, t) A )

Differentiating Equation (7) and substituting Equation (9) yields the simplified expression:

z(t) = cosh(q't;?)RpD + Sinh(.qt;?)RPD
. q (10)
Z(t) — MEH

q
To maximize the penetration success rate as much as possible, we adopt the maximization of the
miss distance between the attacking missile and the interceptor missiles as the performance metric:

J=2le(82)]’ ay

The solution is derived using the maximum principle, establishing the Hamiltonian equation as:

H = Az(t) (12)
the canonical equations are:
. oH
A= —— = 1
5 =0 (13)
From the cross-ratio condition: 3
D\ _ 9 _
A(tf ) =< =a (14)

hence H is a linear function of ar.
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Assuming the maximum acceleration of the attacking missile is ar,_ , the penetration command
of the attacking missile is derived as follows:

sinh(zjtgl?)
u* = ar,.. -sign sin(qu — q)p) (15)

where sign denotes the sign function.
If the attacking missile employs an optimal guidance law with angle constraints to engage the
target during the non-penetration phase:

2R

OF itane = —tF—Tx1 — 4Rx, (16)
80
where t§oT =5 ff o5 approximated the remaining Time-to-Go of the attacking missile. The guidance

law of the attacking missile throughout the entire engagement process is derived as follows:

aFPEnetrate Zf RFD < R* (17)

ar else

giudance

ar =

where a Fpenctrate is calculated based on Equation (15), and R* is the penetration initiation distance.

2.3. Performance Evaluation of the BANG-BANG Penetration Strategy

To evaluate the effectiveness of the BANG-BANG penetration strategy, it is tested within the
engagement scenario shown in Figure 1. The simulation parameters are summarized in Table 1 as
follows:

Table 1. Simulation Parameters.

Parameters Value
ar,,.(m/s?) 80
D, (M0/ s%) 80
Interceptor 1 Initial Position(m) (48000, -10000)
Interceptor 2 Initial Position(m) (48000, 10000)
Target Position(m) (55000, -10000)

Assuming the target is stationary, the attacking missile velocity is set to 800m/s to prevent secondary
penetration. The interceptor missiles velocity is set slightly lower than that of the attacking missile
at 780 m/s. The initial attack angles of the attacking missile and the two interceptors are set to 0°,
170°, and 190°, respectively. Since the target is located on the ground, the desired attack angle of
the attacking missile must be a positive value and neither too large nor too small. Here, it is set to
qgr1,,; = 7t/ 3. The lethal radius of both the attacking missile and the interceptor missiles is set to 20m.
Based on experience, the penetration initiation distance is set to 2000m.

Figure 2 illustrates the test results of the BANG-BANG penetration strategy. When the distance
between the attacking missile and the interceptor missiles falls below R* , the attacking missile switches

its acceleration to ar, . Due to the maneuverability of the attacking missile, the interceptor’s

iudance

acceleration rapidly saturates, allowing it to slightly overshoot the target and achieve successful
penetration.
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Figure 2. Simulation Results of the BANG-BANG Penetration Strategy

3. GAIL-PPO Penetration Strategy

In Section II, we derived the BANG-BANG penetration strategy that maximizes the miss distance.
However, this derivation was conducted under a one-on-one engagement scenario. When facing
multiple interceptors simultaneously, penetration can only be achieved by switching targets, which
does not guarantee a high success rate. Additionally, energy consumption during the penetration
process was not considered. To address these issues, this section proposes an intelligent penetration
strategy based on GAIL-PPO.

3.1. Construction of the MDP Model for the Penetration Process

In order to use DRL to solve the problem of generating penetration strategies, the penetration
problem must be transformed into a DRL framework. First, a MDP model for missile penetration is
constructed to define how the agent interacts with the environment to make decisions. The model
primarily consists of elements such as S, A, P, R, and 7y, where S represents the finite state space, with
any state s € S; A represents the finite action space, with any action a € A; P is the state transition
probability; R is the reward function; and 7 is the discount factor and -y € [0, 1], used to calculate the
accumulated reward. In the context of this missile penetration problem, the state transition probability
P =1 is defined, and the state space, action space, and reward function are outlined as follows:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0144.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202508.0144.v1

8 of 19

3.1.1. Definition of the State Space

The penetration process must consider subsequent guidance tasks, requiring the state space
design to account for the states of the attack missile, intercept missile, and target. The penetration
direction of the attack missile has a significant impact on its flight altitude after penetration. Different
LOS angles require different flight altitudes after penetration. Smaller LOS angle prefers a lower flight
altitude after penetration, while larger LOS angle prefer a higher flight altitude. Hence, we incorporate
LOS-related terms into the state space to optimize the penetration direction. In order to enhance
learning stability, accelerate convergence, and alleviate numerical issues, we have normalized the state
space. The state space is therefore constructed as follows:

s = [Rp1, Ripo, R¥rs Ofp1, OFpos OF ] (18)

where Rip; = Rpp1/Rppi1(0), Rip, = Repz/Rep2(0), Rip = Rer/Rer(0), 6fpy = tanh (grp1 — ¢5),
Ofpy = tanh (grp2 — ¢F), Ofp = tanh (gt — ¢F), Rpp(0) represents the distance between the attack
missile and the intercept missile at the beginning of the penetration, and Rpy(0) represents the initial
distance between the attack missile and the target.

3.1.2. Definition of the Action Space

In selecting the action space, the missile’s penetration acceleration is often directly used as the out-
put. However, due to the small sampling step size typically used during training, directly outputting
the acceleration can lead to significant fluctuations in the acceleration curve during penetration, which
are difficult to realize in real-world scenarios. To mitigate this issue, we select the derivative of the
missile’s acceleration as the action space output:

A = anenetrate = [_(apmax)’apmax] (19)

3.1.3. Definition of the Reward Function

The reward function defines the immediate feedback provided by the environment after the agent
takes an action in a particular state. It influences the agent’s behavior and guides it toward achieving
its goal. Therefore, a well-designed reward function directly impacts the generation of penetration
commands. Unlike previous approaches that use the miss distance between the attack missile and
the intercept missile as the reward function, this paper chooses to use the acceleration of the intercept
missile as the reward function. When the interceptor’s acceleration reaches a saturation point, it
indicates that the interception task has surpassed the interceptor’s operational capacity. Consequently,
the goal of the attack missile’s penetration is to drive the interceptor’s acceleration toward saturation
as much as possible, thus bypassing the interceptor and achieving successful penetration. At the same
time, the attack missile should aim to minimize its maneuvering range. Based on this objective, we
design the instantaneous reward function as follows:

lap1 | +]apa|
T ap1 < 4g,,, Or app < 4f,..
Ry = (20)
2 ‘anenefrtzte ‘ _ d _
- AFmax |11D1| - aPmax an |lZD2| - aPmax

where |ap1| and |ap;| represent the accelerations sizes of two intercept missiles, respectively.
The terminal reward function is designed based on whether the task is successful:

—500 -] Rgp < Rp or Miss Target
R, = (21)
500 — ] Rer < Rt
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where

I 1 ar 2

represents the energy consumption term, Rp represents the kill radius of the intercept missile, Rt
represents the kill radius of the attack missile. When the attack missile is intercepted or the mission
fails, a large penalty is applied. Conversely, when the attack missile successfully hits the target, a large
reward is given.

Considering both the penetration effect and task completion status, the function is designed as

follows:
Ry Penetrating Defense

R= (22)
Ry Penetrated Completed

3.2. GAIL-PPO Algorithm
3.2.1. GAIL Training Network Construction
Generative Adversarial Imitation Learning (GAIL) learns a policy through a generative adversarial

approach, aiming to make the generated behavior as similar as possible to the expert behavior. Its
main structure is shown in Figure 3:

Expert
S| |sey sasot
Envi t o OIS o
nvnronTen \. : Discrimination
- o

s :\\ (s} 4:"& D{s, a}
\ A"';“’ )

® =
el
(]

Figure 3. GAIL structure.

GAIL primarily consists of an Actor Network and a Discriminator Network. When the environ-
ment provides a state, both the Actor and the Expert generate corresponding actions. These state-action
pairs are fed into the Discriminator, which outputs a real number between (0, 1). The Discriminator’s
task is to push the Expert’s output closer to 0 and the Actor’s output closer to 1, while the Actor’s
objective is to deceive the Discriminator as much as possible. Consequently, the loss functions for both
the Actor and the Discriminator are formulated as follows:

LACtOT = _ETNTEXpert [IOgD(T)] - ET’VTActor [1 - IOgD(T)] (23)
Lpiscriminator = —Et~tpgor [log D (T)]

where Tgxpert and Tactor denote the state-action pairs generated by the Expert and the Actor, respectively,
and D(7) represents the Discriminator’s probability prediction that the state-action pair belongs to the
Expert.

The Actor and the Discriminator form an adversarial process. Ultimately, the data distribution
generated by the imitator policy will approach the real expert data distribution, achieving the goal of
imitation learning.

3.2.2. PPO Training Network Construction

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm designed for efficient
and stable policy optimization [28]. Its core objective is to train agents that maximize cumulative
rewards by updating policy parameters via gradient ascent. PPO-CLIP achieves this through two key
innovations:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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PPO-CLIP uses a probability ratio to measure policy changes:
7o (at|st)
1(0) = ———~ 24
t( ) 71_901(1 (at|5t) ( )
A clipped objective function controls update magnitude:
LCLIP(Q) = Et [min(rtAt, Clip(i’t, 1-— €, 1+ €)At)] (25)

where Ay is the advantage function and e (typically 0.1-0.2) clips excessive policy changes. This
prevents destructive updates while allowing monotonic improvement.
To reduce variance in advantage estimation, we use Generalized Advantage Estimation (GAE):

n .
AP = 1 (rA) s (26)
i=0
with temporal difference error:
0t =re+ 7V (se) — V(st) (27)

where 7 is the discount factor and A balances bias-variance tradeoff.
The critic network Vj(s;) is optimized by minimizing mean squared error:

Ly(¢) = Et¢ [(Vrp(st) — (re + 7V¢(St+1)))2} (28)

This provides stable value estimates for advantage calculation and policy updates.

In the GAIL-PPO algorithm, both networks share a single Actor Network. Taking into account
the state space and action space of the model, the parameter settings for the three networks are
summarized in Table 2 as follows:

Table 2. Network Architecture.

Number of floors Actor Critic Discriminator

Input Layer 6(states) 6(states) 7(states)
Hidden Layer 1 256 256 256
BatchNorm 1 ones ones ones
Activation Function 1 Relu Relu Relu
Hidden Layer 2 256 256 256
BatchNorm 1 ones ones ones
Activation Function 2 Relu Relu Relu

Output Layer 1 1(Mean output) 1(Value function) 1(D(7))

Output Layer 2 1(Standard deviation output) - -

where the BatchNorm layer reduces internal covariate shift by normalizing the input distribution. It
accelerates training, enhances convergence stability, reduces sensitivity to weight initialization and
learning rates, and alleviates the issues of gradient vanishing and exploding.
3.2.3. Training Procedure of the GAIL-PPO Algorithm

The training process of the GAIL-PPO algorithm is illustrated in Figure 4:
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Figure 4. Training Procedure

First, the parameters of the Discriminator, Actor, and Critic networks are initialized. Subsequently, the
training enters the GAIL pre-training phase. In this phase, when the Discriminator loss is Lp > 0.01,
expert trajectories and agent trajectories are collected first. The Discriminator parameters are then
updated by calculating the cross-entropy loss. Following this, the GAIL reward is computed based on
the Discriminator’s output, and the advantage function is estimated using GAE. The Critic parameters
are updated with the Mean Squared Error (MSE) loss, while the Actor parameters are updated using
the PPO clipped objective function. When the Discriminator loss reaches Lp < 0.01, the training
transitions to the PPO fine-tuning phase. At this stage, only agent trajectories are collected, and the
environment’s true reward replaces the GAIL reward. The GAE advantage function is recomputed,
and the Actor-Critic network is updated again using the same PPO clipped objective function. The
training terminates when the average reward remains below a threshold for consecutive iterations.
The GAIL-PPO algorithm is shown in Table 3:
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Table 3. Simplified GAIL-PPO Algorithm Pseudocode.

Algorithm 2 Simplified GAIL-PPO

1. Input: initial policy parameters 0, initial value function parameters ¢y, initial
discriminator parameters .
2. While k < max_iter do

3. Compute Lp[(y)] (Equation 23).

4. IfLp(yp) >ep

5. Collect Dagent = {7;} via 71¢.

6. Update discriminator: ¢ <- ¢ —apVyLp(¢) (Adam).
7. Compute GAIL rewards: r‘?aﬂ = —log(1 — Dy(st,at)).
8. Else

9. Collect Dagent = {7;} via 714.

10. Use environment rewards (Equation 22).

11.  Endif

12.  Compute rewards-to-go:

Re =Y yrigii (use r;‘;aﬂ or 7).
13.  Compute GAE advantage (Equation 26).
14.  Update policy via PPO-CLIP:

Ok, = argmaxy m Yoot min(mAt,clip(-, 1—¢1+ e)At).
15.  Update value func. via MSE:
Prs1 = argming r5—r ¥ ooy (Vi(si) — Ri)?.
16.  If avg(Rt) < Rynres for N consecutive rounds, break.
17.  k+k+1.

18. End while
19. Output: 6.

This training process leverages GAIL pre-training to rapidly learn expert behavior patterns and then
employs PPO with true rewards to optimize the performance upper bound, combining the advantages
of imitation learning and reinforcement learning.

4. Training Results and Performance Validation

In this section, the training method proposed in section 3 is first applied, using the BANG-BANG
penetration strategy introduced in Section 2 as the expert experience to train the GAIL-PPO algorithm.
Subsequently, the trained strategy is compared with traditional methods, and the effects of different
parameters on penetration performance are evaluated. The engagement scenarios are consistent with
those defined in Section II, and the parameter settings remain the same as in Section II unless otherwise
specified.

4.1. Training Results

Before starting the training, the necessary parameters are set:
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Table 4. Parameters for Training.

Parameters Value
Discount Factor 0.99
Clip Factor 0.1
Entropy Loss Weight 0.05
GAE Factor 0.95
Mini Batch Size 128
Experience Horizon 1024
Sample Time 0.01
Interceptor 1 Initial Position(m) ([45000,50000], -10000)
Interceptor 2 Initial Position(m) ([45000,500001, 10000)
Target Position(m) ([50000,55000], -10000)
Target Position(rad) [7t/3,7t/2]
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Figure 5. GAIL-PPO Training Reward
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Figure 6. PPO Training Reward

As shown in Figures 5 and 6, the blue curve represents the per-step reward, while the red curve
represents the moving average reward. The GAIL-PPO algorithm, leveraging expert trajectories from
imitation learning, achieves significant improvements in training efficiency, final performance, and
policy stability.In terms of convergence speed, the average reward of GAIL-PPO reaches 300 at 1,700
steps, whereas the pure PPO algorithm only achieves -150 under the same number of steps, indicating
a 50% improvement in convergence speed. This suggests that GAIL provides effective exploration
priors for PPO by imitating expert behavior, thereby reducing ineffective attempts during random
exploration.Regarding final performance, in the later stages of training, the average reward of GAIL-
PPO stabilizes at 350, which is 94.4% higher than the 180 achieved by pure PPO. Additionally, the
fluctuation range of the per-step reward for GAIL-PPO is significantly narrower, demonstrating more
consistent action selection under similar states and reducing errors caused by random exploration.
These characteristics directly correlate with task performance: higher average rewards with reduced
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fluctuations imply that GAIL-PPO can more stably reproduce high-reward successful penetration
behaviors, resulting in a significantly higher penetration success rate compared to the pure PPO
algorithm.

The above results fully validate the effectiveness of the GAIL-PPO framework. Imitation learning
provides RL with expert priors, addressing the core challenges in missile penetration tasks—sparse
rewards (only successful penetration yields high rewards) and high exploration costs (incorrect actions
incur heavy penalties). This significantly improves training efficiency, final performance, and policy
stability. The imitation-reinforcement hybrid paradigm offers an optimized solution for training
intelligent agents in complex tasks such as missile penetration.

4.2. Performance Validation
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Figure 7. Simulation Results of Performance Validation
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To validate the performance of the GAIL-PPO penetration strategy, the same simulation parame-
ters as those used for the BANG-BANG strategy are adopted. The results are shown in Figure 7, while
Figure 8 presents the energy consumption calculated based on Equation (29) over the entire mission for
both strategies. Compared to the BANG-BANG strategy, which requires stepwise maneuvers against
each interceptor, the GAIL-PPO strategy achieves synchronized avoidance of multiple interceptors
through a single continuous maneuver. This eliminates the structural acceleration risk caused by
sustained saturated acceleration in the BANG-BANG strategy. Additionally, the GAIL-PPO strategy
significantly reduces the maneuvering range. This not only results in a 51% reduction in energy
consumption compared to the BANG-BANG strategy but also creates more favorable conditions for
guidance tasks following penetration.

4.3. Monte Carlo Simulation

The previous section demonstrated, through a single-case simulation, the advantages of the
GAIL-PPO strategy in terms of trajectory accuracy, maneuver efficiency, and energy consumption.
However, it did not account for the inevitable uncertainties present in real penetration tasks. To
systematically evaluate the robustness and statistical significance of the GAIL-PPO strategy, this
section conducts 1,000 Monte Carlo simulations under both training parameters and non-training
parameters. Key metrics, including penetration success rate, average energy consumption, mission
time, and minimum interception distance, are compared between the GAIL-PPO and BANG-BANG
strategies to quantitatively validate the comprehensive performance advantages of GAIL-PPO.

4.3.1. Testing in Training Parameters

Figure 9 shows the results of 1,000 Monte Carlo simulations, demonstrating that the GAIL-PPO
strategy achieves a successful penetration rate of 98.5%, significantly higher than the 86.9% for the
BANG-BANG strategy and 50.2% for the PPO strategy. In terms of the average miss distance over
1,000 simulations, the GAIL-PPO strategy stabilizes at 540 m, which is much lower than the 4,419
m for the BANG-BANG strategy and 17,273 m for the PPO strategy. These results indicate that the
GAIL-PPO strategy exhibits significant advantages in three key metrics: penetration success rate, miss
distance accuracy, and policy stability.
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Figure 9. Monte Carlo simulation results under the training scenario

4.3.2. Testing under Non-Training Parameters

Table 5. Non-Training Scenarios Parameter Settings.

Parameters Value
Interceptor 1 Initial Position(m) ([42000,52000], -10000)
Interceptor 2 Initial Position(m) ([42000,52000], 10000)

Target Position(m) ([50000,60000], -10000)
qrr,,,(rad) [rt/6,27/3]
@r(rad) [-7t/20,7t/20]
Vr(m/s) 20

To evaluate the robustness and generalization ability of the proposed penetration strategy, it
is applied to scenarios beyond the training data. The corresponding simulation parameters are
summarized in Table 5. To enhance the penetration challenge, a disturbance error is introduced into
the launch angle of the attacking missile. Furthermore, the target is no longer stationary but moves
with a constant linear velocity along the horizontal plane in the direction of the attacking missile,
simulating an evasive maneuver. The acceleration command for the intercept missile is governed by
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an interception guidance law specifically designed for high-speed maneuvering targets, as detailed in
Reference [29].
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Figure 10. Monte Carlo simulation results under the Non-Training Scenarios

Figure 10 displays the results of 1000 Monte Carlo simulation runs under the untrained scenario.
Figure (a) presents the distribution of miss distances from the simulation results. It shows that the
GAIL-PPO penetration strategy proposed in this paper performs well even in more complex adversarial
scenarios. Despite facing more sophisticated interceptors and certain disturbances, the penetration
success rate reaches 86.3%. Figure (b) illustrates the relationship between miss distance, desired LOS,
and the initial relative position of the target and interceptor. As shown in the figure, regions with a
larger desired LOS are populated with numerous cases of smaller miss distances, which aligns with the
distribution of cases where penetration is successful but the mission fails, as observed in Figure (a). This
indicates that when dealing with large desired LOS values, even if the attacking missile successfully
penetrates, the subsequent strike mission becomes highly challenging due to insufficient altitude after
penetration. Nevertheless, the attack success rate still achieves 77%.These simulation results validate
that the comprehensive penetration guidance law, designed based on deep reinforcement learning
in this paper, maintains excellent performance across various complex environments. The proposed
method demonstrates strong robustness and good generalization capabilities, even when encountering
adversarial scenarios with unknown characteristics, achieving a high mission success rate.

5. Conclusions

This paper proposes an intelligent penetration strategy combining optimal BANG-BANG law and
DRL, aiming to address the penetration problem faced by missiles during the terminal guidance phase
when confronting multiple interceptors. The key research contributions are summarized as follows:

1. The BANG-BANG penetration strategy, which maximizes the miss distance in a one-on-one
attacking missile-interceptor scenario, is derived and utilized as expert experience for GAIL
training.

2. An MDP model tailored for penetration and guidance adversarial scenarios is established. A
reward function is designed to reduce energy consumption while ensuring mission success,
considering both penetration and guidance tasks comprehensively.

3. A combined GAIL-PPO agent training method is proposed. Compared to the pure PPO algorithm,
the convergence speed is improved by 50%.
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4. Monte Carlo simulation results validate the effectiveness of the proposed strategy. In the trained
parameter scenarios, the penetration success rate reaches 98.5%, significantly outperforming
both the BANG-BANG strategy and the PPO strategy. Even in untrained scenarios, the strategy
achieves a penetration success rate of 86.3% and a mission success rate of 77%, demonstrating its
robustness and generalization ability.
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