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Abstract 

Metaheuristic algorithms are widely used for solving complex optimization problems without 

relying on gradient information. They efficiently explore large, non-convex, and high-dimensional 

search spaces but face challenges with dynamic environments, multi-objective goals, and complex 

constraints. This paper introduces a novel hybrid algorithm, Fick’s Law Algorithm with Opposition-

Based Learning (FLA-OBL), combining FLA’s strong exploration-exploitation balance with OBL’s 

enhanced solution search. Tested on CEC 2017 benchmark functions, FLA-OBL outperformed state-

of-the-art algorithms, including the original FLA, in convergence speed and solution accuracy. To 

address real-world multi-objective problems, we developed FFLA-OBL (Fuzzy FLA-OBL) by 

integrating a Fuzzy Logic System for UAV path planning with obstacle avoidance. This variant 

effectively balances exploration and exploitation in complex, dynamic environments, providing 

efficient, feasible solutions in real time. Experimental results confirm FFLA-OBL’s superiority over 

the original FLA in both solution optimality and computational efficiency, demonstrating its practical 

applicability for multi-objective optimization in UAV navigation and related fields. 

Keywords: Fick’s Law Algorithm; Opposition-Based Learning; Metaheuristic algorithms; multi-

objective optimization problems; Fuzzy Logic; UAV path planning 

 

1. Introduction 

As real-world problems continue to grow in complexity and sophistication, there has been a 

marked increase in the demand for more efficient optimization methods, particularly metaheuristic 

algorithms, over the past few decades. These problems, in general, are characterized by numerous 

non-linear constraints, computationally intensive processes, expansive search spaces, and non-

convex complexities, all of which pose significant challenges to conventional optimization 

approaches. As such, solving these intricate problems requires advanced strategies capable of 

navigating high-dimensional, irregular, and often ill-defined solution landscapes. 

Metaheuristic algorithms have, indeed, garnered significant attention and widespread 

acceptance due to several advantages: (i) flexibility and simplicity in design; (ii) ease of 

implementation, owing to their intuitive concepts; (iii) the ability to avoid suboptimal regions within 

the solution space; and (iv) the fact that they do not require knowledge of the objective function 

gradient. However, it is important to note that metaheuristic algorithms typically aim to find a near-

optimal solution, rather than the exact optimal one. 

Their operation lies mostly on balancing between two critical search strategies: (1) 

exploitation/diversification and (2) exploration/intensification. Exploration focuses on globally 

searching the solution space, which helps in avoiding local optima and mitigating the risk of 

entrapment in suboptimal regions. In contrast, exploitation involves refining and improving the 

quality of neighboring promising solutions through localized search. Achieving optimal algorithm 

performance requires a careful balance between these two complementary strategies. While each 
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algorithm employs these strategies, the specific operators and mechanisms used to implement them 

vary across different metaheuristics [1–4]. 

Another critical aspect that influences the performance of optimization algorithms is population 

initialization, which significantly impacts the convergence rate. A widely used strategy involves the 

random generation of the initial population. However, this approach may result in an initial 

population that is either far from or close to the true optimal solution. In real-time applications, such 

as navigation or path planning, it is essential to obtain a fast solution while ensuring that the solution 

remains adequately optimal. As such, the choice of initialization technique becomes crucial, as it 

directly affects the algorithm's ability to quickly converge to a near-optimal solution while preserving 

computational efficiency. 

The random initialization of solutions can lead to fast convergence, provided the initial guess is 

relatively close to the optimal solution. However, if the initial guess is significantly distant from the 

optimal solution, such as being in the worst-case scenario where it is in the opposite direction, the 

optimization process may take considerably longer or, in extreme cases, become intractable. 

Naturally, in the absence of any prior knowledge about the problem, it is impossible to make the 

perfect initial guess. A more rational approach would be to simultaneously explore in all directions, 

or more specifically, to include the possibility of searching in the opposite direction. For instance, if 

the goal is to find a solution for 𝑥, and we hypothesize that searching in the opposite direction might 

be beneficial, then the first logical step would be to calculate the opposite solution 𝑥̆ as part of the 

search process. This strategy helps in efficiently covering the search space, potentially accelerating 

convergence by leveraging both the direct and opposite search directions. This concept is rooted in 

Opposition – Based Learning (OBL) , a strategy that aims to enhance the efficiency of optimization 

algorithms by considering not only the current solution but also its opposite counterpart [5,6]. 

In recent research, significant efforts have been made to enhance the performance of 

optimization algorithms by incorporating the concept of Opposition-Based Learning (OBL). For 

instance, Generalized Opposition-Based Learning (GOBL) combined with Cauchy mutation was 

utilized in [7] to augment the Particle Swarm Optimization (PSO) algorithm's ability to escape local 

optima. Similarly, the Firefly Algorithm (FA) was hybridized with OBL to form Opposition-based 

Firefly Algorithm (OFA), which improved both the convergence speed and exploration capabilities 

of the algorithm [8]. The Brainstorm Optimization Algorithm (BSO) leveraged chaotic maps and 

opposition-based learning for initializing solutions and updating the population to enhance its 

optimization performance [9]. Chaotic Opposition Learning (COL) was also employed to enhance the 

Grey Wolf Optimization (GWO) algorithm, particularly in continuous global numerical optimization, 

by mitigating solution stagnation and improving the precision of the search [10]. In [11], an Improved 

Self-Regulatory Woodpecker Mating Algorithm was introduced, featuring a novel Distance 

Opposition-Based Learning (DOBL) mechanism aimed at improving exploration, diversity, and 

convergence in solving optimization problems. Additionally, a dynamic opposition-based learning 

concept was proposed in [12], in combination with Levy flight, to enhance the prairie dog 

optimization algorithm's efficiency in addressing global optimization and engineering design 

challenges. 

The concept of OBL is commonly integrated into optimization algorithms, particularly during 

the stages of population initialization and/or population update, to enhance their performance. 

Building on the advantages of OBL to boost the efficiency of optimization processes, this study 

introduces a hybrid optimization algorithm, based on the newly proposed Fick's Law Algorithm 

(FLA) [13] combined with OBL (FLA-OBL), aimed at improving convergence speed and facilitating 

local optima avoidance in solving real-world global optimization problems.  FLA was selected due 

to its superior convergence rate and its effective balance between exploration and exploitation. To 

evaluate the performance of FLA-OBL, the CEC 2017 benchmark suite (IEEE Congress on 

Evolutionary Computation 2017) [21] is employed for a comprehensive comparison with state-of-the-

art optimization algorithms.  
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To further address complex multi-objective scenarios, such as Unmanned Aerial Vehicle (UAV) 

path planning with obstacle avoidance, we extend FLA-OBL by integrating a Mamdani-type fuzzy 

logic inference system (FFLA-OBL). This fuzzy enhancement allows the algorithm to handle 

conflicting objectives dynamically during solution evaluation. We validate the proposed FFLA-OBL 

algorithm in simulated UAV path planning tasks and benchmark its performance against baseline 

FLA, highlighting improvements in path efficiency, safety, and multi-objective trade-offs. UAV path 

planning is a critical research area, particularly relevant for delivery applications, where efficiency, 

safety, and adaptability are paramount. With the growing demand for autonomous delivery systems 

in urban and rural environments, optimizing UAV flight paths ensures timely, energy-efficient, and 

collision-free deliveries. Real-world delivery scenarios often involve static and dynamic obstacles, 

no-fly zones, and multiple delivery points, making them ideal testbeds for evaluating the robustness 

and adaptability of advanced optimization algorithms. By focusing on UAV path planning, especially 

in delivery contexts, we can address pressing logistical challenges while demonstrating the practical 

value of the developed algorithms in high-impact, real-time applications with tangible societal and 

economic benefits. 

This work contributes a novel metaheuristic framework based on FLA that leverages opposition 

learning and fuzzy logic to achieve faster convergence, enhanced solution quality, and greater 

adaptability in both synthetic benchmarks and real-world optimization applications.  

2. Materials and Methods 

2.1. Fick’s Law Algorithm (FLA) 

The Fick’s Law Algorithm (FLA) is a recently developed physics-inspired optimization method 

that emulates the principles of Fick’s law to identify stable molecular positions. The FLA operates 

through three distinct phases corresponding to different modes of particle motion: the diffusion 

phase, the equilibrium phase, and the steady-state phase. During the diffusion phase, which 

corresponds to the exploration stage, particles migrate from regions of higher concentration to 

regions of lower concentration, driven by concentration gradients, in accordance with Fick’s law of 

diffusion. This phase facilitates broad search across the solution space. Subsequently, the equilibrium 

phase serves as a transitional stage between exploration and exploitation, wherein concentration 

gradients equilibrate, and particles relocate based on the identification of the most stable positions 

within the local region. Finally, the steady-state phase emphasizes exploitation by refining particle 

positions to achieve an optimal balance between exploration and exploitation. This phase mitigates 

the risk of premature convergence to local optima by continuously updating particle positions, 

thereby enhancing convergence stability and solution quality. 

The Fick’s Law Algorithm (FLA) (Figure 1) begins with a random initialization, followed by the 

division of the population into two equal subgroups (subgroups 𝑖 and 𝑗). The three phases alternate 

based on the parameter 𝑇𝐹𝑡  =  sinh (
𝑡

𝑇
)
𝐶1
 (1) , where 𝑡  represents the 𝑡𝑡ℎ  iteration, 𝑇  the 

maximum number of iterations and 𝐶1is an initial pre-defined parameter (equals with 0.5 in [13]), as 

follows: 

𝑋𝑖
𝑡 = {

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟
𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

𝑆𝑡𝑒𝑎𝑑𝑦 − 𝑆𝑡𝑎𝑡𝑒 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 

𝑇𝐹𝑡 < 0.9
0.9 ≤ 𝑇𝐹𝑡 ≤ 1
𝑇𝐹𝑡 > 1

 (2) 

Diffusion Operator 

In the diffusion phase the direction of flow (𝐷𝑂𝐹) is calculated by: 

𝐷𝑂𝐹 = exp(−𝐶2(𝑇𝐹
𝑡 − 𝑟1)) (3) 

with 𝐶2 = 2 and random number 𝑟1 ∈ [0,1] in [13] 
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Figure 1. The flowchart of FLA. 

The number of molecules that will travel to region is determined by: 

𝑁𝑇𝑖𝑗 = 𝑁𝑖 × 𝑟1 × (𝐶4 − 𝐶3) + 𝑁𝑖 × 𝐶3 (4) 

with 𝐶3 = 0.1, 𝐶4 = 0.2 in [13] and 𝑁𝑖 is the number of molecules of group 𝑖. 

The individual position is updated by: 

𝑋𝑝,𝑖
𝑡+1 = 𝑋𝐸𝑂,𝑗

𝑡 + 𝐷𝐹𝑝,𝑖
𝑡 × 𝐷𝑂𝐹 × 𝑟2 × (𝐽𝑖,𝑗

𝑡 × 𝑋𝐸𝑂,𝑗
𝑡 − 𝑋𝑝,𝑖

𝑡 ) (5) 

where 𝑋𝐸𝑂,𝑗
𝑡  is the equilibrium position in region 𝑗, 𝐷𝐹𝑝,𝑖

𝑡  is the direction factor which equals either 

{−1,1} that changes randomly and will give high scanning opportunity the given search area and 

escaping from local optimum, and random number 𝑟2 ∈ [0,1]. 

𝐽𝑖,𝑗 
𝑡 is diffusion flux given by: 

𝐽𝑖,𝑗
𝑡 = −𝐷

𝑑𝑐𝑖,𝑗
𝑡

𝑑𝑥𝑖,𝑗
𝑡  (6) 

𝑑𝑐𝑖,𝑗
𝑡 = 𝑋𝑚,𝑗

𝑡 − 𝑋𝑚,𝑖
𝑡  (7) 

𝑑𝑥𝑖,𝑗
𝑡 =  √(𝑋𝐸𝑂,𝑗

𝑡 )
2
− (𝑋𝑝,𝑖

𝑡 )
2
+ 𝑒𝑝𝑠 (8) 

where 𝐷 = 0.1 in [13] refers to the effective diffusivity constant, 𝑋𝑚,𝑗
𝑡  and 𝑋𝑚,𝑖

𝑡  being the mean of 

molecule position in regions 𝑗 and 𝑖, respectively, and, eps being  the smallest positive number that 

can be distinguished from zero in a given system. 

𝑋𝑝,𝑖
𝑡  is the direction of flow given by: 

𝑋𝑝,𝑖
𝑡 = {

𝑓𝑟𝑜𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑗,   𝑇𝐷𝑂
𝑡 < 𝑟𝑎𝑛𝑑

𝑓𝑟𝑜𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗 𝑡𝑜 𝑖,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 (9) 

where 𝑇𝐷𝑂
𝑡 = 𝐶5 × 𝑇𝐹

𝑡 − 𝑟 (10)with 𝐶5 = 2 in [13] and random number 𝑟 ∈ [0,1]. 

The other molecules in region 𝑖 are updated by: 

𝑋𝑝,𝑖
𝑡+1 = {

𝑋𝐸𝑂,𝑖
𝑡 ,                                                          𝑟𝑎𝑛𝑑 < 0.8

𝑋𝐸𝑂,𝑖
𝑡 + 𝐷𝑂𝐹 × (𝑟3 × (𝑈 − 𝐿) + 𝐿),   𝑟𝑎𝑛𝑑 < 0.9

𝑋𝑝,𝑖
𝑡 ,                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

where 𝑋𝐸𝑂,𝑖
𝑡  is the equilibrium position in region 𝑖, 𝑈 and 𝐿 are the upper and lower boundaries of 

the problem, respectively, and random number 𝑟3 ∈ [0,1]. 

The molecules in region 𝑗 are updated by: 

𝑋𝑝,𝑗
𝑡+1 = 𝑋𝐸𝑂,𝑗

𝑡 + 𝐷𝑂𝐹 × (𝑟4 × (𝑈 − 𝐿) + 𝐿) (12) 

where random number 𝑟4 ∈ [0,1]. 

Equilibrium Operator 

The Diffusion Rate Factor of each group region is calculated by: 

𝐷𝑅𝐹𝐸𝑂,𝑔
𝑡 = 𝑒𝑥𝑝 (−

𝐽𝐸𝑂,𝑝
𝑡

𝑇𝐹𝑡
)  (13) 

𝐽𝐸𝑂,𝑝
𝑡 = −𝐷

𝑑𝑐𝐸𝑂,𝑔
𝑡

𝑑𝑥𝐸𝑂,𝑝
𝑡   (14) 

𝑑𝑐𝐸𝑂,𝑔
𝑡 = 𝑋𝐸𝑂,𝑔

𝑡 − 𝑋𝑚,𝑔
𝑡   (15) 
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𝑑𝑥𝐸𝑂,𝑝
𝑡 =  √(𝑋𝐸𝑂,𝑔

𝑡 )
2
− (𝑋𝑝,𝑔

𝑡 )
2
+ 𝑒𝑝𝑠  (16) 

where 𝑋𝐸𝑂,𝑔
𝑡  is the equilibrium location in group 𝑔  and  𝑋𝑝,𝑔

𝑡  or 𝑋𝑚,𝑔
𝑡  is the position of particle 

𝑝 𝑜𝑟 𝑚 in group 𝑔, respectively.  

The Group Relative Quantity of the region in group 𝑔 is calculated by: 

𝑄𝐸𝑂,𝑔
𝑡 = 𝑅1

𝑡 × 𝐷𝐹𝑔
𝑡 × 𝐷𝑅𝐹𝐸𝑂,𝑔

𝑡   (17) 

where 𝑅1
𝑡 = 𝑟𝑎𝑛𝑑[0,1]𝑑, 𝑑 = 1: 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛  

The individual position is updated by: 

𝑋𝑝,𝑔
𝑡+1 = 𝑋𝐸𝑂,𝑝

𝑡 + 𝑄𝐸𝑂,𝑔
𝑡 × 𝑋𝑝,𝑔

𝑡 + 𝑄𝐸𝑂,𝑔
𝑡 × (𝑀𝑆𝐸𝑂,𝑝

𝑡 × 𝑋𝐸𝑂,𝑔
𝑡 − 𝑋𝑝,𝑔

𝑡 )  (18) 

where 𝑋𝑝,𝑔
𝑡  is the position of particle 𝑝 in group 𝑔, 𝑋𝐸𝑂,𝑝

𝑡  or 𝑋𝐸𝑂,𝑔
𝑡  is the equilibrium location in 

group 𝑝 or 𝑔, and the motion step 𝑀𝑆𝐸𝑂,𝑝
𝑡 = 𝑒𝑥𝑝 (−

𝐹𝑆𝐸𝑂,𝑔
𝑡

𝐹𝑆𝑝,𝑔
𝑡 +𝑒𝑝𝑠

) (19), with 𝐹𝑆𝐸𝑂,𝑔
𝑡  and 𝐹𝑆𝑝,𝑔

𝑡  being 

the best fitness score and the fitness score of particle 𝑝 in group 𝑔 at time 𝑡, respectively. 

Steady State Operator 

The Diffusion rate factor is calculated based on: 

𝐷𝑅𝐹𝑔
𝑡 = exp (−

𝐽𝑝,𝑆𝑆
𝑡

𝑇𝐹𝑡
) (20) 

𝐽𝑝,𝑆𝑆
𝑡 = −𝐷

𝑑𝑐𝑆𝑆,𝑔
𝑡

𝑑𝑥𝑆𝑆,𝑝
𝑡  (21) 

𝑑𝑐𝑆𝑆,𝑔
𝑡 = 𝑋𝑚,𝑔

𝑡 − 𝑋𝑆𝑆
𝑡  (22) 

𝑑𝑥𝑆𝑆,𝑝
𝑡 = √(𝑋𝑆𝑆

𝑡 )2 − (𝑋𝑝,𝑔
𝑡 )

2
+ 𝑒𝑝𝑠 (23) 

where 𝑋𝑠𝑠
𝑡  is the steady state location, 𝑋𝑝,𝑔

𝑡  the position of particle 𝑝 of region 𝑔 at time 𝑡,  

The motion step factor is calculated based on: 

𝑀𝑆𝑝,𝑔
𝑡 = −exp (−

𝐹𝑆𝑆𝑆
𝑡

(𝐹𝑆𝑝,𝑔
𝑡 + 𝑒𝑝𝑠)

) (24) 

where 𝐹𝑆𝑆𝑆
𝑡  and 𝐹𝑆𝑝,𝑔

𝑡  are the best fitness score and the fitness score of particle 𝑝 in group 𝑔 at time 

𝑡, respectively. 

The individual position is updated by: 

𝑋𝑝,𝑔
𝑡 = 𝑋𝑠𝑠

𝑡 + 𝑄𝑔
𝑡 × 𝑋𝑝,𝑔

𝑡 + 𝑄𝑔
𝑡 × (𝑀𝑆𝑝,𝑔

𝑡 × 𝑋𝑠𝑠
𝑡 − 𝑋𝑝,𝑔

𝑡 ) (25) 

𝑄𝑔
𝑡 = 𝑅1

𝑡 × 𝐷𝐹𝑔
𝑡 × 𝐷𝑅𝐹𝑔

𝑡  (26) 

where  𝑄𝑔
𝑡  is the relative quantity of the region 𝑔. 

2.2. Opposition-Based Learning (OBL) 

Opposition-Based Learning (OBL) is a relatively novel concept introduced in 2005 [5] and since 

then numerous artificial and computing intelligence algorithms have been enhanced by utilizing this 

concept, such as Reinforcement Learning, Neural Networks, numerical optimization algorithms / 

metaheuristics and Fuzzy Systems, among others. The basic idea of OBL theory is based on the 

interplay between estimates and counter-estimates, positive and negative weights, and actions versus 

counter-actions [6]. In the context of Opposition-Based Learning (OBL), the core aim of the 

optimization algorithm is to determine the optimal solution for an objective function by evaluating 

both an estimate and its opposite at the same time. This approach can improve the algorithm's 

performance, since the simultaneous consideration of opposing solutions helps to expand the search 

space, which may lead to faster convergence and a reduced risk of getting trapped in local optima. 

Initially, the definitions of the opposite number, the opposite point and of the opposition-based 

optimization should be introduced [5,14]. 

Definition 1. Opposite Number 

Let 𝑥 ∈ [𝑎, 𝑏] be a real number, where 𝑎, 𝑏 ∈ ℝ. The opposite number 𝑥̆ of 𝑥 is defined by 

𝑥̆ = 𝑎 + 𝑏 − 𝑥 (27) 

Similarly, the opposite point in higher dimensions is defined. 

Definition 2. Opposite Point 
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Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ
𝑛 be a point in n-dimensional space, where 𝑥𝑖 ∈ [𝑎𝑖 , 𝑏𝑖], ∀𝑖 ∈ {1, … , 𝑛}. 

The opposite point 𝑋̆ = (𝑥̆1, 𝑥̆2, … , 𝑥̆𝑛) of 𝑋 is defined by 

𝑥̆𝑖 = 𝑎𝑖 + 𝑏𝑖 − 𝑥𝑖  (28) 

Definition 3. Opposition-Based Optimization (OBO) 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ
𝑛  be a point in n-dimensional space used as a candidate solution, 

and 𝑓(∙): ℝ𝑛 → ℝ be the fitness function. If 𝑓(𝑋̆) ≥ 𝑓(𝑋), then the point 𝑋 can be replaced by 𝑋̆ in 

the set of candidate solutions 𝒮, otherwise the point 𝑋 remains in 𝒮. Therefore, both the point 𝑋 

and its opposite point 𝑋̆ are simultaneously evaluated to keep the optimal one. 

Population-based algorithms, generally, initiate the optimization process with an initial 

population, which is often generated randomly. The aim is to iteratively improve this population, 

ultimately converging to an optimal solution. The process is terminated when the predefined 

termination criteria are satisfied. Commonly adopted termination criteria include the number of 

iterations or the number of fitness function’s evaluations. The random initialization of the population, 

along with the distance of the individuals from an optimal solution affect the computation time and 

the convergence speed, among others. Based on the probability theory, which suggests that 50% of 

cases a guess is farther from the solution than its opposite [14], the generation of the initial population 

can be enhanced by incorporating the opposite candidate solutions, as well. Hence, the initial 

population is formed either by the initial solutions or its opposites, depending on their evaluation 

score (Definition 3). This allows a better initial population closer to optimal solution leading to higher 

convergence speed. Similarly, the OBO approach can be employed not only during the initialization 

of the population but also integrated into iterative phase of the algorithm to enhance the update 

process of the population. 

2.3. Fick’s Law Algorithm Enhanced with Opposition-Based Learning (FLA-OBL) 

Opposition-Based Learning is employed to enhance the operation of FLA algorithm. Specifically, 

OBL will be used in the initialization of the population and in the update processes of the population 

(Figure 2).  

Population initialization of FLA with OBL  

Let assume 𝑁 randomly generated particles following the process of original FLA. In FLA-OBL 

the initial population will consist of the 𝑁 particles with their opposite points. The rest of the process 

including the evaluation of the population will remain the same. 

Population update of FLA with OBL 

After every stage of FLA (diffusion operator, equilibrium operator, and steady-state operator) 

where the population has been updated the opposite operator will take place. In this stage the 

opposite population will be generated based on the corresponding opposite points of the particles 

that form the current population. Every particle with its opposite particle will be evaluated based on 

the fitness score and the best will be chosen to form the final population. 
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Figure 2. Flowchart of FLA-OBL. 

2.4. Fick’s Law Algorithm Enhanced with Fuzzy Logic and Opposition-Based Learning (FFLA-OBL) 

To address real world multi-objective optimization problems the proposed FLA-OBL algorithm 

will be enhanced with Fuzzy Logic (FFLA-OBL). Specifically, the Mamdani Fuzzy Inference System 

(FIS) will be integrated into the evaluation process of the FLA-OBL algorithm (Figure 3). In section 3 

the implementation of the FIS for the multi-objective path planning problem in case in UAV missions 

and obstacle avoidance is presented analytically. 

 

Figure 3. Flowchart of FFLA-OBL. 

3. Mathematical Modeling of UAV Multi-Objective Path Planning Problem 

To solve the UAV multi-objective path planning problem the proposed FLA-OBL algorithm will 

be enhanced with Fuzzy Logic in the evaluation process of the algorithm. The Mamdani FIS will be 

used for this purpose.  
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3.1. Mathematical Formulation of the Problem 

The UAV multi-objective path planning problem consists of finding the optimal path from an 

initial position to a desired destination by minimizing the traveled distance (traveled distance 

objective term), minimizing brute changes during flight (path curvature objective term) and 

minimizing the penalties/risk for obstacle collision, which means to keep safe distance while passing 

from obstacles (collision risk objective term). Below, the mathematical modeling of the objective terms 

are shown: 

Traveled distance 

Given the set 𝒩 of the discretization points of the path with edges ℰ, we calculate with the 

Euclidean distance the length of the generated path that the UAV has to travel as: 

𝐿 =  ∑ ∑ 𝑑𝑛𝑚
𝑚∈𝒩:
(𝑛,𝑚)∈ℰ

𝑛∈𝒩

= ∑ ∑ (√(𝑚𝑥 − 𝑛𝑥)
2 + (𝑚𝑦 − 𝑛𝑦)

2
)

𝑚∈𝒩:
(𝑛,𝑚)∈ℰ

𝑛∈𝒩

  (29) 

Path curvature 

Given the angle 𝜑𝑙𝑚𝑛 that the discretization points 𝑙, 𝑚 and 𝑛 of the path form, we define the 

path deviations as: 

∑ ∑ ∑ 𝜑𝑙𝑚𝑛
𝑛∈𝒩:
(𝑚,𝑛)∈ℰ

m∈𝒩:
(𝑙,𝑚)∈ℰ

𝑙∈𝒩

  (30) 

 

Figure 4. The formation of the angle 𝜑𝑙𝑚𝑛 from 3 consecutive discretization points 𝑙, 𝑚 and 𝑛. 

Collision risk 

The safety term (33) is defined as the sum of mean violation measure (32) computed from the 

Euclidean distance (31) of each obstacle 𝑜 ∈ 𝒪 and the given points 𝑛, 𝑛 ∈ 𝒩 which are derived from 

path’s discretization: 

𝑑𝑜 = ∑ (√(𝑜𝑥 − 𝑛𝑥)
2 + (𝑜𝑦 − 𝑛𝑦)

2
)

𝑛∈𝒩

(31) 

𝑣𝑜 = max (1 −
𝑑𝑜

𝑟𝑜 + 𝐶
, 0) (32) 

∑
𝑣𝑜
|𝒪|

𝑜∈𝒪

(33) 

where 𝐶 is the minimum safety distance from obstacles defined by the user (0.3 for the UAV case 

study in Section 4.3.2) and 𝑟𝑜 the radius of the obstacle presented as circle. 

3.2. Mamdani Fuzzy Inference System for the Fuzzy FLA-OBL (FFLA-OBL) 

The Fuzzy Inference System (FIS) is implemented with the Mamdani inference methodology 

[15]. Mamdani fuzzy inference system is commonly adopted to multi-objective path planning 

problems [16–20]. Its advantages can be summarized as: (i) expressive power; (ii) easy formalization 

and interpretability; (iii) reasonable results with relatively simple structure; (iv) suitable and widely 

used for decision support applications due to the intuitive and interpretable nature of the rule base; 

(v) can be used for Multiple Input Single Output and Multiple Input Multiple Output systems; and 

(vi) the output value can be either crisp or fuzzy [21–23]. Given each crisp value, the uncertainty can 

be modeled by fuzzy sets, where 𝑦̃1,𝑣  corresponds to the traveled distance term, 𝑦̃2,𝑣  to the path 

curvature, 𝑦̃3,𝑣 to collision risk and 𝑞̃𝑣 to path quality:  
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𝑦̃1,𝑣 = {〈𝑥, 𝜇𝑦1,𝑣,(𝑥)〉 | 𝑥 ∈ 𝑈𝑦1} , 𝑣 =

{𝑠ℎ𝑜𝑟𝑡,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝑙𝑜𝑛𝑔}  

(34) 

𝑦̃2,𝑣 = {〈𝑥, 𝜇𝑦2,𝑣,(𝑥)〉 | 𝑥 ∈ 𝑈𝑦2} , 𝑣 =

{𝑠𝑚𝑜𝑜𝑡ℎ, 𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒, 𝑏𝑟𝑢𝑡} 

(35) 

𝑦̃3,𝑣 = {〈𝑥, 𝜇𝑦3,𝑣 ,
(𝑥)〉 | 𝑥 ∈ 𝑈𝑦3} , 𝑣 =

{𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ}  

(36) 

𝑞̃𝑣 = {〈𝑥, 𝜇𝑞𝑣 ,(𝑥)
〉 | 𝑥 ∈ 𝑈𝑞} , 𝑣 =

{𝑣𝑒𝑟𝑦 𝑙𝑜𝑤, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ, 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ} 

(37) 

representing overlapping value intervals that can be expressed linguistically similarly to the 

proposed FIS.  For this, three fuzzy universes are defined: 𝑈𝑦1 , 𝑈𝑦2  and 𝑈3  representing the 

universe of discourse for the traveled distance, path’s curvature/smoothness and collision risk, 

respectively. The universe 𝑈𝑞 corresponds to the overall path’s quality. The membership functions 

are selected based on the possible values of each variable and are illustrated in Figures 5–8.  In Table 

1 the fuzzy rules used in FIS are presented, while Figure 9 illustrates the flowchart of the fuzzy 

evaluation process integrated in FLA algorithm. 

 

Figure 5. Membership function of objective term Traveled Distance (Equation (29)). 

 

Figure 6. Membership function of objective term Path Curvature (Equation (30)). 

 

Figure 7. Membership function of objective term Collision Risk (Equation (33)). 
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Figure 8. Membership function of Path Quality. 

Table 1. Fuzzy rules of FIS. 

Fuzzy Rules Distance Curvature Collision Risk Path Quality 

Rule 1 Short Smooth Low Very High 

Rule 2 Short Smooth Medium Very High 

Rule 3 Short Adequate Low Very High 

Rule 4 Moderate Smooth Low Very High 

Rule 5 Short Smooth High High 

Rule 6 Short Adequate Medium High 

Rule 7 Short Brut Low High 

Rule 8 Moderate Smooth Medium High 

Rule 9 Moderate Adequate Low High 

Rule 10 Long Smooth Low High 

Rule 11 Short Adequate High Medium 

Rule 12 Short Brut Medium Medium 

Rule 13 Short Brut High Medium 

Rule 14 Moderate Smooth High Medium 

Rule 15 Moderate Adequate Medium Medium 

Rule 16 Moderate Brut Low Medium 

Rule 17 Long Smooth Medium Medium 

Rule 18 Long Smooth High Medium 

Rule 19 Long Adequate Low Medium 

Rule 20 Long Brut Low Medium 

Rule 21 Moderate Adequate High Low 

Rule 22 Moderate Brut Medium Low 

Rule 23 Moderate Brut High Low 

Rule 24 Long Adequate Medium Low 

Rule 25 Long Adequate High Low 

Rule 26 Long Brut Medium Low 

Rule 27 Long Brut High Very Low 
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Figure 9. Flowchart of Fuzzy Evaluation process. 

4. Experimental Verification  

To examine the effectiveness of the proposed algorithm FLA-OBL a comprehensive evaluation 

was conducted, which includes: (i) comparison with various state-of-the-art optimization algorithms 

in CEC2017 testbed; (ii) convergence and fitness landscape analyses; and (iii) comparison of FFLA-

OBL with original FLA across multiple scenarios in multi-objective UAV path planning and obstacle 

avoidance.  

The experimental evaluation was implemented in Python 3.10 using a Windows 11 Pro 64-bit 

operating system with a 3.9 GHz CPU and 32 GB RAM. 

4.1. Testbed for Computational Analysis of FLA-OBL  

The FLA-OBL algorithm was evaluated against a range of state-of-the-art optimization 

algorithms (2016-2023), spanning various categories, including nature-inspired metaheuristics, 

physics-inspired metaheuristics, swarm intelligence-based metaheuristics, evolutionary 

metaheuristics, and hybrid approaches (Table 2). Specifically, Hunger games search (HGS) [24] is a 

population-based metaheuristic that mimics the logic of the collaborative interactions based on 

individual hunger. Chaotic Local Search-Based Differential Evolution Algorithm (CJADE) [25] 

incorporating chaotic local search (CLS) mechanisms into the well-known differential evolution (DE) 

algorithm JADE. Hybrid Salp Swarm‑Harris Hawks optimization algorithm (HSSAHHO) [26] is a 

modern, hybrid optimization algorithm that combines the strengths of Salp Swarm Algorithm (SSA) 

and Harris Hawks Optimization (HHO). The Salp Swarm Algorithm (SSA) is a nature-inspired 

optimization algorithm based on the collective movement of salps (a type of jellyfish). Harris Hawks 

Optimization (HHO) is an optimization algorithm inspired by the hunting behavior of Harris' hawks. 

Ensemble Particle Swarm Optimizer (EPSO) [27] is a metaheuristic optimization algorithm that 

integrates the strengths of multiple Particle Swarm Optimization (PSO) models into an ensemble 

learning framework to improve the performance and robustness of solving optimization problems. 

The Whale Optimization Algorithm (WOA) [28] is a nature-inspired metaheuristic optimization 

algorithm based on the hunting behavior of humpback whales. Emotion-aware Brainstorm 

Optimization (EBO) [29], is inspired by the attraction-repulsion mechanism of electromagnetism, and 

it is applied in a new emotion-aware brainstorming context, where positive and negative thoughts 

produce ideas interacting with each other. Hybrid Teaching Learning Optimization Algorithm 

(HTLBO) [30] is an evolutionary algirthm that employs a group of learners or a class of learners to 

perform global optimization search process. The original FLA algirithm is also included. 

To assess FLA-OBL’s consistency and reliability, the under-consideration algorithms were 

constructed with the same number of iterations (1000) and population size (30), respectively, to 

provide a fair comparison in CEC2017. The CEC 2017 (IEEE Congress on Evolutionary Computation 

2017) consists of a set of benchmark functions commonly used to test optimization algorithms. These 

functions are used to evaluate the performance of algorithms in solving real-world optimization 

problems [31]. The CEC2017 consists of 2 unimodal functions (F1-F2), 7 simple multimodal functions 
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(F3-F9), 10 hybrid functions (F10-F19), and 10 composition functions (F20-F29) [31]. It is important to 

highlight that the second function in the CEC2017 suite (F2) was excluded from the evaluation due 

to its instability, particularly at higher dimensions [32]. 

The experimental evaluation was conducted following established standard experimental 

protocols [33]. To assess the performance of the compared algorithms, the results were subjected to 

rigorous statistical analysis. For each optimization problem, 20 runs were performed for 30 

dimensions where the average of the results (mean) and standard deviation (std) have been reported. 

Additionally, performance comparisons of the algorithms were supplemented by non-parametric, 

rank-based tests, specifically the Mann-Whitney U (MWU) test and the Friedman test. The MWU test 

was employed on the results obtained from pairwise comparisons between the FLA-OBL algorithm 

and the competing algorithms. The MWU is first conducted on the results of the 20 runs for each 

function among the competed algorithms. Subsequently, the Friedman test is applied among all 

competed algorithms per function categories (unimodal, multimodal, hybrid and composition 

functions). 

For post-hoc statistical analysis, MWU tests (α = 0.05) with Holm p-value correction [34] were 

performed, using the results obtained from independent algorithm runs to rank the algorithms’ 

performance. This methodological framework was selected due to its recognition as a robust 

approach for comparing swarm and evolutionary algorithms in the literature [35–37]. 

Table 2. Summary of algorithms used for comparison. 

Algorithm Year Category Source  

CJADE 2021 Hybrid DE/Physics-Inspired [25] 

HSSAHHO 2022 Hybrid swarm intelligence/Nature-Inspired [26] 

EPSO 2017 Nature-Inspired [27] 

FLA 2023 Physics-Inspired [13] 

HGS 2021 Swarm intelligence with stochastic elements [24] 

WOA 2016 Nature-Inspired [28] 

EBO 2023 Hybrid swarm intelligence/ Physics-Inspired [29] 

HTBLO 2021 Other hybrid learning algorithm [30] 

4.2. Convergence and Fitness Landscape Analyses 

Most population-based metaheuristic algorithms are designed to balance the capabilities of 

divergence and convergence. Divergence (or exploration) enables the algorithm to explore the search 

space for potential new regions, while convergence (or exploitation) focuses on refining solutions 

within known regions of interest [29,38,39]. Consequently, the convergence capability reflects the 

efficiency of the selection and evolution processes employed in FLA-OBL. Divergence, on the other 

hand, is facilitated by the OBL operator, highlighted in previous studies [6,40]. In the following, 

convergence and fitness landscape analyses are conducted to evaluate the contributions of the 

proposed strategies in FLA-OBL, in comparison to traditional FLA and the two most competitive 

algorithms based on their performance on CEC2017. 

To assess the effectiveness of the proposed algorithm relative to the original FLA, a convergence 

velocity analysis and Dynamic Fitness Landscape Analysis (DFLA) were conducted to evaluate the 

convergence and divergence characteristics of FLA-OBL. For the convergence analysis, the following 

metrics were utilized: (i) Expected Quality Gain (EQG) and (ii) Expected Change (EC) in the distance 

to the global optimum. These metrics were selected to provide a comprehensive evaluation of the 

algorithm's ability to approach optimal solutions and navigate the search space effectively [29,41,42]: 

𝐸𝑄𝐺 = Ε[𝑓(𝓈𝑡+1) − 𝑓(𝓈𝑡)]  (38) 

𝐸𝐶 = Ε[‖𝓈∗ − 𝓈𝑡‖ − ‖𝓈
∗ − 𝓈𝑡+1‖] (39) 
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The where 𝓈∗  and  𝓈𝑡  are the global optimum and the best-found solution at  iteration 𝑡 , 

respectively. 

The divergence analysis is grounded in Dynamic Fitness Landscape Analysis (DFLA), a widely 

used framework for assessing the effectiveness of population-based metaheuristic algorithms 

[29,41,42]. In this context, three key metrics—evolutionary probability, evolutionary ability, and 

evolvability—were considered to evaluate the algorithm's divergence capabilities. These metrics are 

quantified using the following measures:  

The Evolutionary Probability of a Population (EPP) characterizes the collective behavior of the entire 

population. Given an initial individual 𝒾 and the generated population 𝒫𝒾, the EPP is defined as the 

probability that an individual from the population 𝒫𝒾 will evolve or transition toward a more 

optimal solution over successive generations. This metric provides insight into the population's 

overall capacity for exploration and the likelihood of finding better solutions within the search space: 

𝐸𝑃𝑃(𝒫𝒾) =
|ℰ𝑖|

|𝒫𝑖|
 (40) 

where ℰ𝑖 = {𝑝 | 𝑝 ∈  𝒫𝑖 ∶ 𝑓(𝑝) < 𝑓(𝑖)} is the set of evolved individuals in the population  𝒫𝒾  for a 

minimization problem, and  |∙| represents the cardinality of the respective sets.  

The Evolutionary Ability of a Population (EAP) quantifies the average evolutionary capacity of an 

initial individual as it progresses through its evolved population. It reflects the population's potential 

to improve the quality of the individual’s solution over time. This metric helps assess how effectively 

the population as a whole contributes to the improvement of the initial individual’s solution over 

generations. The EAP is estimated by the following equation: 

𝐸𝐴𝑃(𝒫𝒾) =

{
 

 
∑ |𝑓(𝑖) − 𝑓(𝑝)|𝑝∈ℰ𝑖

𝜎(𝑓(𝒫𝑖)) ∙ |𝒫𝑖|

|ℰ𝑖|
, |ℰ𝑖| ≥ 1

                  0                   , |ℰ𝑖| = 0 

  (41) 

where 𝜎(𝑓(𝒫𝑖)) is the standard deviation of the fitness values of the population 𝑃𝑖 .  

The Evolvability of a Population (EVP) represents the average evolutionary ability across the entire 

set of the generated population. It captures how effectively the entire population, on average, can 

evolve toward better solutions over time. This metric provides a holistic view of the population’s 

overall ability to evolve, integrating both the likelihood of evolution (EPP) and the actual capacity for 

improvement (EAP) across all individuals. Given the Evolutionary Probability (EPP) and the 

Evolutionary Ability (EAP), the EVP can be estimated as: 

𝐸𝑉𝑃(𝒫𝒾) = 𝐸𝐸𝑃(𝒫𝒾) ∙ 𝐸𝐴𝑃(𝒫𝒾)   (42) 

4.3. Evaluation Metrics for the UAV Multi-Objective Path Planning with FFLA-OBL 

The evaluation methodology integrates both qualitative and quantitative assessments to provide 

a comprehensive analysis of algorithmic performance. Qualitative evaluation involves the visual 

inspection of the generated paths, enabling a comparative analysis of trajectory characteristics across 

competed algorithms. Quantitative evaluation, similar to [19,20,43,44], is conducted based on the 

following: 

• The objective criteria: (i) traveled distance; (ii) path’s curvature; and (iii) safety, each reflecting 

critical aspects of path efficiency and feasibility. 

• Path quality based on the defuzzification value of Mamdani FIS (Fuzzy evaluation) 

• The relative percentage deviation (RPD), quantifying each algorithm's deviation from the best-

known solutions: 

𝑅𝑃𝐷 =  
𝐵𝑒𝑠𝑡𝑠𝑜𝑙 − 𝐴𝑙𝑔𝑠𝑜𝑙

𝐵𝑒𝑠𝑡𝑠𝑜𝑙
100%                                                         (38) 

where 𝐵𝑒𝑠𝑡𝑠𝑜𝑙  is the best solution with the highest path quality value; and  𝐴𝑙𝑔𝑠𝑜𝑙  is the path quality 

value of the examined solution. Based on the above equations, it is obvious that the lowest values of 

RPD indicate the preferable solution based on the satisfaction of objective criteria. 

5. Results 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2025 doi:10.20944/preprints202507.0776.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0776.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 25 

 

5.1. CEC 2017 Testbed 

Table 3 presents the performance results of the compared algorithms on the CEC2017 benchmark 

set, along with their corresponding rankings. Specifically, for each benchmark function, the 

algorithms are ranked from 1 to 9 based on the results from the 20 independent runs and the Wilcoxon 

rank-sum tests (α = 0.05) with Holm p-value correction. Figure 10 depicts the relative ranking of each 

algorithm across different categories of benchmark functions. Table 4 shows the results of the 

Friedman test for all competed algorithms per function categories. 

Table 3. Comparative results on the CEC2017 benchmark suite. The symbols +,−, and ≈ indicate that FLA-

OBL performs significantly better, worse, or shows no significant difference, respectively, compared to the 

competing algorithm, based on the Mann–Whitney U test. An asterisk (∗) denotes statistical significance at the 

0.05 level (i.e., 𝑝 <  0.05). 

   Algorithms   

Function FLA-OBL EBO CJADE HTLBO HSSAHHO EPSO FLA HGS WOA 

F1 

Mean 

Std 

MWU 

Rank 

1.37E+02 

6.76E+01 

 

1 

1.74E+02 

1.85E+02 

+/∗ 

2 
 

1.48E−14  

3.98E−15 

+/∗ 

3 
 

3.22E+03  

3.70E+03 

+/∗ 

8 
 

3.03E+05  

1.20E+08 

+/∗ 

5 
 

4.57E+02  

5.98E+02 

+/∗ 

4 

3.61E+03  

4.60E+03 

+/∗ 

6 
 

7.04+03 

4.85E+03 

+/∗ 

7 

2.29E+06 

1.45E+06 

+/∗ 

9 

F3 

Mean 

Std 

MWU 

Rank 

2.17E+02 

1.48E+02 

 

2 

3.94E+02 

3.22E+02 

+/∗ 

4 

4.52E+03  

1.26E+04 

+/∗ 

8 

3.00E+02 

2.50E-05 

−/∗ 

1 
 

1.02E+03  

1.54E+03 

+/∗ 

7 

4.68E−08  

1.27E−07 

+/∗ 

5 

2.17E+02  

1.73E+02 

≈ 

3 
 

9.01E+02 

2.87E+03 

+/∗ 

6 

1.36E+05 6.08E+04 

+/∗ 

9 

F4 

Mean 

Std 

MWU 

Rank 

4.54E+02 

2.97E+01 

 

1 

4.59E+02 

1.99E+01 

≈ 

2 

3.96E+01   

2.90E+01 

+/∗ 

8 

4.62E+02   

3.19E+01 

+/∗ 

3 

5.39E+02  

1.01E+01 

+/∗ 

4 

3.17E+01  

3.20E+01 

+/∗ 

9 

9.34E+01  

2.54E+01 

+/∗ 

6 

8.94E+01 

2.49E+01 

+/∗ 

7 

1.40E+02 

3.38E+01 

+/∗ 

5 

F5 

Mean 

Std  

MWU 

Rank 

3.71E+02 

2.17E+01 

 

3 

6.04E+02 

3.15E+01 

−/∗ 

1 
 

2.59E+01  

3.85E+00 

+/∗ 

8 
 

6.07E+02   

2.01+01 

−/∗ 

2 

1.28E+01  

7.43E+00 

+/∗ 

9 
 

5.20E+01 

1.19E+01 

+/∗ 

6 
 

4.32E+01  

1.17E+01 

+/∗ 

7 
 

1.12E+02 

3.12E+01 

+/∗ 

5 

2.40E+02 

5.05E+01 

+/∗ 

4 

F6 

Mean 

Std  

MWU 

Rank 

6.32E+02 

5.33E+00 

 

2 

6.46E+02 

7.35E+00 

≈ 

3 

1.18E−13  

2.23E−14 

+/∗ 

9 

6.19E+02  

6.17E+00 

≈ 

1 

1.02E+03 

1.98E+02 

+/∗ 

5 

1.93E−08 

1.01E−07 

+/∗ 

8 

7.82E-03 

2.13E-03 

+/∗ 

7 
 

5.46E-01 

7.37E-01 

+/∗ 

6 

6.53E+01 

1.03E+01 

+/∗ 

4 

F7 

Mean 

Std  

MWU 

Rank 

8.77E+02 

8.10E+01 

 

1 

9.45E+02 

7.80E+01 

+/∗ 

4 

5.49E+01 

4.05E+00 

+/∗ 

9 
 

8.91E+02 

4.80E+02 

≈ 

2 

1.01E+03 

4.72E+01 

+/∗ 

5 
 

9.45E+01 

1.41E+01 

+/∗ 

7 
 

7.81E+01  

1.16E+01 

+/∗ 

8 
 

1.64E+02 

4.28E+01 

+/∗ 

6 

4.99E+02 

1.06E+02 

+/∗ 

3 

F8 

Mean 

Std 

MWU 

Rank 

8.70E+02 

1.24E+01 

 

1 

8.95E+02 

1.58E+01 

≈ 

3 
 

2.60E+01 

3.78E+00 

+/∗ 

7 
 

8.81E+02  

1.64E+02 

≈ 

2 
 

6.26E+03  

1.19E+03 

+/∗ 

9 
 

5.61E+01 

1.55E+01 

+/∗ 

6 
 

4.15E+01  

1.13E+01 

+/∗ 

8 
 

1.04E+02 

1.70E+01 

+/∗ 

5 

2.16E+02 

4.28E+01 

+/∗ 

4 
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F9 

Mean 

Std 

MWU 

Rank 

1.09E+03 

3.14E+02 

 

1 

1.43E+03 

7.96E+02 

+/∗ 

2 

1.76E-03  

1.25E-02 

+/∗ 

6 

1.74E+02  

3.34E+02 

+/∗ 

3 
 

6.96E+03  

2.19E+03 

+/∗ 

9 

7.61E+01 4.39E+01 

+/∗ 

4 

3.28E+00  

5.55E+00 

+/∗ 

5 
 

2.68E+03 

9.66E+02 

+/∗ 

7 

6.56E+03 

2.36E+03 

+/∗ 

8 

F10 

Mean 

Std 

MWU 

Rank 

2.64E+03 

5.52E+02 

 

5 

4.56E+03 

5.73E+02 

+/∗ 

6 
 

1.92E+03  

2.54E+02 

−/∗ 

2 

4.74E+02  

7.85E+02 

−/∗ 

1 
 

1.14E+05  

8.85E+04 

+/∗ 

9 
 

5.23E+03 

3.34E+02 

+/∗ 

8 
 

2.62E+03  

5.22E+02 

≈ 

4 
 

2.55E+03 

4.81E+02 

−/∗ 

3 

4.89E+03 

7.76E+02 

+/∗ 

7 

F11 

Mean 

Std 

MWU 

Rank 

1.20E+03 

1.85E+01 

 

1 

1.35E+03 

4.05E+01 

+/∗ 

2 

3.16E+01  

2.57+E01 

+/∗ 

8 
 

1.26E+02  

5.15E+01 

+/∗ 

4 

1.44E+09  

3.56E+10 

+/∗ 

9 

5.86E+01 2.87E+01 

+/∗ 

6 

3.41E+01  

2.84E+01 

+/∗ 

7 
 

1.18E+02 

3.00E+01 

+/∗ 

5 

3.86E+02 

9.75E+01 

+/∗ 

3 

F12 

Mean 

Std 

MWU 

Rank 

2.91E+04 

1.30E+04 

 

4 

1.41E+06 

8.30E+05 

+/∗ 

7 

1.37E+03  

9.43E+02 

−/∗ 

1 

2.17E+04  

1.43E+04 

−/∗ 

2 

3.32E+09  

5.04E+09 

−/∗ 

9 

2.86E+04 

1.37E+04 

≈ 

3 

5.61E+05  

5.01E+05 

+/∗ 

5 
 

9.30E+05 

7.21E+05 

+/∗ 

6 

4.19E+07 

2.95E+07 

+/∗ 

8 

F13 

Mean 

Std 

MWU 

Rank 

1.97E+03 

1.31E+03 

 

2 

2.31E+04 

2.75E+04 

+/∗ 

4 

4.80E+01  

3.27E+01 

+/∗ 

3 

9.33E+03  

9.62E+03 

+/∗ 

5 

4.98E+06  

3.77E+07 

+/∗ 

9 

1.09E+03 

1.07E+03 

−/∗ 

1 
 

1.24E+04 

1.22E+04 

+/∗ 

6 

3.16E+04 

2.54E+04 

+/∗ 

7 

1.54E+05 

8.71E+04 

+/∗ 

8 

F14 

Mean 

Std 

MWU 

Rank 

4.85+03 

2.35E+03 

 

4 

3.73E+03 

4.20E+03 

−/∗ 

3 

2.73E+03  

5.19E+03 

−/∗ 

2 

1.54E+03  

4.49E+02 

−/∗ 

1 

1.50E+09  

1.21E+09 

+/∗ 

9 

5.95E+03  

8.67E+03 

+/∗ 

5 

1.03E+04  

1.49E+04 

+/∗ 

6 

5.45E+04 

4.29E+04 

+/∗ 

7 

8.10E+05 

8.21E+05 

+/∗ 

8 

F15 

Mean 

Std 

MWU 

Rank 

1.79E+03 

1.43E+03 

 

1 

1.92E+03 

1.61E+03 

+/∗ 

2 

1.79E+02  

1.02E+03 

+/∗ 

5 

1.94E+03  

2.75E+02 

+/∗ 

3 

8.24E+03  

4.21E+03 

+/∗ 

7 

5.47E+02  

6.97E+02 

+/∗ 

4 

5.49E+03  

7.03E+03 

+/∗ 

6 
 

1.90E+04 

1.63E+04 

+/∗ 

8 

7.65E+04 

5.17E+04 

+/∗ 

9 

F16 

Mean 

Std 

MWU 

Rank 

1.08E+03 

3.75E+02 

 

1 

2.87E+03 

2.27E+02 

+/∗ 

7 

4.57E+02  

1.59E+02 

+/∗ 

5 

2.87E+03  

2.43E+02 

+/∗ 

8 

4.06E+04  

1.27E+06 

+/∗ 

9 
 

6.38E+02  

2.13E+02 

+/∗ 

4 

3.71E+02  

1.59E+02 

+/∗ 

6 
 

1.06E+03 

3.74E+02 

≈ 

2 

1.87E+03 

4.15E+02 

+/∗ 

3 

F17 

Mean 

Std 

MWU 

Rank 

1.86+03 

1.08E+02 

 

1 

1.91E+03 

1.13E+02 

+/∗ 

2 

7.42E+01  

2.67E+01 

+/∗ 

8 

1.92E+03  

9.40E+02 

+/∗ 

3 

1.24E+07  

5.13E+07 

+/∗ 

9 

1.99E+02  

1.04E+02 

+/∗ 

6 

1.22E+02  

6.87E+01 

+/∗ 

7 
 

4.64E+02 

1.62E+02 

+/∗ 

5 

8.58E+02 

2.87E+02 

+/∗ 

4 

F18 

Mean 

Std 

MWU 

Rank 

2.48E+03 

3.72E+04 

 

1 

3.32E+03 

2.25E+04 

+/∗ 

2 

6.72E+03  

3.52E+04 

+/∗ 

4 

3.77E+03  

2.18E+02 

+/∗ 

3 

1.53E+08  

6.09E+08 

+/∗ 

9 

1.04E+05  

8.99E+04 

+/∗ 

5 

1.71E+05  

1.39E+05 

+/∗ 

6 
 

2.40E+05 

2.17E+05 

+/∗ 

7 

2.79E+06 

2.17E+06 

+/∗ 

8 

F19 

Mean 

Std 

6.39E+02 

2.04E+03 

1.25E+05 

8.04E+04 

3.05E+02  

2.02E+03 

2.12E+03  

1.04E+02 

2.01E+03  

4.99E+01 

8.23E+02  

1.46E+03 

9.52E+03  

1.05E+04 

1.81E+04 

2.05E+04 

2.31E+06 

2.15E+06 
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MWU 

Rank 

 

4 

+/∗ 

8 

+/∗ 

5 

−/∗ 

2 

−/∗ 

1 

−/∗ 

3 
 

+/∗ 

7 
 

+/∗ 

6 

+/∗ 

9 

F20 

Mean 

Std 

Rank 

2.12E+03 

1.08E+02 

 

1 

2.21E+03 

1.05E+02 

+/∗ 

2 

1.14E+02  

5.43E+01 

+/∗ 

9 

2.24E+03  

8.36E+01 

+/∗ 

3 

3.050E+03  

8.21E+01 

+/∗ 

4 

2.18E+02 

1.27E+02 

+/∗ 

7 

1.62E+02  

8.01E+01 

+/∗ 

8 
 

4.83E+02 

1.62E+02 

+/∗ 

6 

7.14E+02 

2.08E+02 

+/∗ 

5 

F21 

Mean 

Std 

MWU 

Rank 

2.54E+03 

1.06E+01 

 

1 

2.95E+03 

8.49E+01 

+/∗ 

3 

2.26E+02  

3.97E+00 

+/∗ 

8 

2.59E+03  

1.81E+01 

−/∗ 

2 

2.18E+04  

1.66E+03 

+/∗ 

9 

2.54E+02 3.09E+01 

+/∗ 

6 

2.44E+02  

1.12E+01 

+/∗ 

7 
 

3.19E+02 

3.60E+01 

+/∗ 

5 

4.54E+02 

6.92E+01 

+/∗ 

4 

F22 

Mean 

Std 

MWU 

Rank 

3.60E+03 

1.15E+03 

 

3 

5.80E+03 

1.74E+03 

+/∗ 

9 

1.00E+02  

1.00E−13 

+/∗ 

7 

2.38E+03  

5.63E+02 

−/∗ 

1 
 

4.11E+03  

1.38E+02 

+/∗ 

4 

1.42E+02 2.99E+02 

+/∗ 

5 

1.01E+02  

1.39E+00 

+/∗ 

6 
 

2.97E+03 

8.91E+02 

≈ 

2 

4.37E+03 

1.97E+03 

+/∗ 

8 

F23 

Mean 

Std 

MWU 

Rank 

2.49E+03 

3.43E+01 

 

2 

2.77E+03 

8.29E+01 

+/∗ 

3 

3.73E+02  

5.24E+00 

+/∗ 

9 
 

2.79E+03  

5.07E+01 

+/∗ 

4 

2.38E+03  

7.61E+01 

−/∗ 

1 

4.09E+02 1.44E+01 

+/∗ 

7 

3.95E+02  

1.19E+01 

+/∗ 

8 
 

4.59E+02 

2.23E+01 

+/∗ 

6 

7.52E+02 

9.65E+01 

+/∗ 

5 

F24 

Mean 

Std 

Rank 

2.66E+03 

3.73E+01 

 

1 

2.93E+03 

5.38E+01 

+/∗ 

2 
 

4.42E+02  

4.76E+00 

+/∗ 

7 
 

2.94E+03  

4.21E+01 

+/∗ 

3 
 

1.24E+04  

1.06E+04 

+/∗ 

9 
 

4.81E+025.76E+01 

+/∗ 

6 
 

4.61E-02  

1.54E+01 

+/∗ 

8 
 

5.95E+02 

5.37E+01 

+/∗ 

5 

7.70E+02 

8.25E+01 

+/∗ 

4 

F25 

Mean 

Std 

MWU 

Rank 

2.74E+03 

1.34E+01 

 

1 

2.89E+03 

1.06E+01 

+/∗ 

2 

3.87E+02  

5.35E-01 

+/∗ 

6 

2.90E+03  

1.96E+01 

+/∗ 

3 

2.06E+04  

2.45E+03 

+/∗ 

8 

3.87E+02  

1.61E+00 

+/∗ 

7 

3.93E+02  

1.16E+01 

+/∗ 

5 
 

3.87E+02 

2.53E+00 

+/∗ 

9 

4.46E+02 

3.15E+01 

+/∗ 

4 

F26 

Mean 

Std 

MWU 

Rank 

1.22E+03 

8.22E+03 

 

4 

6.27E+03 

1.52E+03 

+/∗ 

9 

1.20E+03 

8.20E+01 

≈ 

3 

4.61E+03  

1.14E+03 

+/∗ 

8 

4.09E+03  

1.09E+03 

+/∗ 

5 

7.23E+02  

7.03E+02 

+/∗ 

6 

1.55E+03  

2.35E+02 

−/∗ 

2 
 

2.19E+03 

5.72E+02 

−/∗ 

1 

4.57E+03 

1.21E+03 

+/∗ 

7 

F27 

Mean 

Std 

MWU 

Rank 

3.01E+03 

2.08E+01 

 

3 

3.22E+03 

1.95E+01 

−/∗ 

1 
 

5.04E+02 

8.10E+00 

+/∗ 

8 

3.25E+03  

3.82E+01 

−/∗ 

2 
 

6.13E+03  

4.83E+01 

+/∗ 

9 
 

5.16E+02  

8.72E+00 

+/∗ 

6 
 

5.08E+02 

5.62E+00 

+/∗ 

7 
 

5.24E+02 

1.30E+01 

+/∗ 

5 

6.72E+02 

1.04E+02 

+/∗ 

4 

F28 

Mean 

Std 

MWU 

Rank 

2.91E+03 

1.75E+01 

 

1 

3.14E+03 

2.37E+01 

+/∗ 

2 
 

3.34E+02  

5.50E+01 

+/∗ 

8 
 

3.47E+03  

5.75E+01 

+/∗ 

4 
 

3.42E+03  

1.42E+01 

+/∗ 

3 
 

3.31E+02  

5.10E+01 

+/∗ 

9 
 

4.81E+02 

2.26E+01 

+/∗ 

6 
 

4.12E+02 

3.91E+01 

+/∗ 

7 

4.94E+02 

2.21E+01 

+/∗ 

5 

F29 

Mean 

Std 

MWU 

Rank 

3.65E+03 

1.04E+02 

 

2 

3.70E+03 

1.95E+02 

+/∗ 

3 
 

4.78E+02  

2.32E+01 

+/∗ 

8 
 

3.64E+03  

1.67E+02 

≈ 

1 
 

3.04E+05  

4.68E+04 

+/∗ 

9 
 

6.12E+02  

8.88E+01 

+/∗ 

6 
 

5.45E+02  

9.28E+01 

+/∗ 

7 
 

8.62E+02 

1.97E+02 

+/∗ 

5 

1.80E+03 

3.80E+02 

+/∗ 

4 
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Total ranking 1 3 8 2 9 5 7 6 4 

Total MWU +/≈/− 22/2/3 24/1/3 15/4/9 25/0/3 25/1/2 25/2/1 24/2/2 28/0/0 

Table 4. Results of Friedman test per function categories of CEC2017. 

  Functions 

  all Unimodal Multimodal Hybrid Composition 

p-value 9.01E-22 2.14E-03 1.95E-03 4.64E-07 4.24E-10 

Chi-square 117.90 25.57 24.42 44.47 60.21 

 

Figure 10. Ranking of each algorithm for the unimodal, the multimodal, the hybrid, and the composition 

functions of CEC2017, and overall. 

5.2. Convergence Velocity and Fitness Landscape Analyses 

The convergence velocity and fitness landscape analyses were conducted to compare the 

performance of FLA-OBL with baseline FLA and the two most competitive algorithms (EBO and 

HTLBO) from subsection 5.1 on 7 functions of CEC 2017 benchmark where FLA-OBL presented high 

and low performance: 1 unimodal, 2 multimodal, 2 hybrid and 2 composition functions. Table 5 

presents the average results for both convergence velocity and DFLA of FLA-OBL and competed 

algorithms (FLA, EBO and HTLBO).  

Table 5. Convergence and DFLA mean results on functions of CEC2017. 

  Algorithms  

Function           Metrics FLA-OBL EBO HTLBO FLA 

F1 

EQG  

EC  

EVP 

0.36 

0.48 

0.77 

0.37 

0.45 

0.64 

2.46E-03 

2.23E-03 

0.23 

1.76E-03 

2.08E-03 

0.28 

F5 

EQG  

EC  

EVP 

0.34 

0.37 

0.66 

0.40 

0.49 

0.71 

0.38 

0.46 

0.70 

9.13E-02 

9.28E-02 

0.31 

F7 

EQG   

EC  

EVP 

0.38 

0.47 

0.71 

0.27 

0.31 

0.52 

0.35 

0.43 

0.69 

2.05E-03 

2.41E-03 

0.21 

F16 

EQG   

EC  

0.33 

0.47 

2.25E-03 

2.42E-03 

1.05E-03 

1.68E-03 

9.46E-02 

9.84E-02 
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EVP 0.62 0.23 0.19 0.28 

F19 

EQG  

EC  

EVP 

0.28 

0.36 

0.53 

2.34E-03 

2.76E-03 

0.21 

0.38 

0.44 

0.74 

3.66E-03 

3.87E-03 

0.22 

F21 

EQG  

EC  

EVP 

0.44 

0.48 

0.73 

0.39 

0.42 

0.62 

0.41 

0.47 

0.68 

9.38E-02 

9.41E-02 

0.25 

F26 

EQG  

EC  

EVP 

0.29 

0.38 

0.57 

6.23E-02 

6.56E-02 

0.20 

9.32E-02 

9.84E-02 

0.22 

0.46 

0.51 

0.73 

Total Average 

EQG  

EC  

EVP 

0.35 

0.43 

0.66 

0.21 

0.25 

0.45 

0.23 

0.27 

0.49 

0.11 

0.12 

0.33 

In this subsectin the results from the multi-objective path planning case study are presented. In 

Table 6 the results of FLA and FFLA-OBL for 3 UAV path planning scenarios with increasing 

complexity are shown with respect to the evalulation criteria. Error! Reference source not found.-

 REF _Ref202798808 \h  \* MERGEFORMAT Error! Reference source not found. depict the paths 

derived from the competed algorithms, FFLA-OBL and FLA, for Scenario 1, 2 and 3 respectively. 

Table 6. Results of FLA and FFLA-OBL for 3 UAV path planning scenarios with increasing complexity. 

Scenarios Evaluation criteria FLA FFLA-OBL 

Scenario 1 

(7 obstacles) 

Traveled distance 

Path deviations 

Penalty (collision risk) 

Path quality 

RPD (%) 

13.64 

5 

0.11 

0.75 

15 

10.97 

3 

0 

0.88 

0 

Scenario 2 

(12 obstacles) 

Traveled distance 

Path deviations 

Penalty (collision risk) 

Path quality 

RPD (%) 

15.72 

3 

0.46 

0.62 

23 

11.73 

3 

0.08 

0.77 

0 

Scenario 3 

(18 obstacles) 

Traveled distance 

Path deviations 

Penalty (collision risk) 

Path quality 

RPD (%) 

16.43 

8 

0.37 

0.52 

27 

13.89 

4 

0 

0.71 

0 
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Figure 11. Optimal path and convergence plots generated by (a,c) FLA and (b,d) FFLA-OBL for a scenario with 

few (7) obstacles. 
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(b) 

 
(c) 

 
(d) 
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Figure 12. Optimal path and convergence plots generated by (a,c) FLA and (b,d) FFLA-OBL for a scenario with 

12 obstacles. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. Optimal path and convergence plots generated by (a,c) FLA and (b,d) FFLA-OBL for a scenario with 

many (18) obstacles. 

6. Discussion 

The performance analysis across the 28 benchmark functions of CEC2017 reveals notable 

differences among the tested algorithms in terms of accuracy, stability, and overall effectiveness. The 

FLA-OBL algorithm consistently achieved the lowest average ranks and demonstrated a strong 

balance between mean performance and stability, indicating superior accuracy and reliability across 

diverse problem landscapes. Similarly, EBO also exhibited competitive results, often ranking just 

behind FLA-OBL, though with slightly higher variability. In contrast, algorithms such as HTLBO and 

CJADE showed more fluctuating performance; while occasionally achieving top ranks on certain 

functions, their inconsistency suggests sensitivity to problem characteristics. Algorithms HSSAHHO 

and EPSO generally underperformed, with higher average mean values and standard deviations, 

reflecting less precise and less stable outcomes. Overall, the study indicates that FLA-OBL offers a 

robust and efficient approach suitable for a broad range of optimization problems, while other 

methods may be more specialized or require further tuning to achieve comparable performance. 

The evaluation of algorithm performance across different types of benchmark functions 

provides deeper insights into their strengths and weaknesses. For the unimodal function F1, which 

primarily tests exploitation ability, algorithms like FLA-OBL and EBO demonstrated superior 

performance with lower mean values and stable results, indicating strong convergence capabilities. 

When considering simple multimodal functions (F3 to F9), which challenge an algorithm’s ability to 

escape local optima, the performance gap widened. While FLA-OBL and remained the most 

competitive, algorithms such as HTLBO and CJADE exhibited more variable results, suggesting 

potential difficulties in balancing exploration and exploitation. Hybrid functions (F10 to F19), 

combining features of unimodal and multimodal landscapes, further tested algorithm adaptability. 
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Here, the best-performing methods still maintained robust performance, but the increased 

complexity led to higher standard deviations for most algorithms, reflecting challenges in 

consistently navigating complex search spaces. However, FLA-OBL remained the most effective 

algorithm also in this category. Finally, the composition functions (F20 to F29), designed to simulate 

real-world optimization problems with intricate and diverse landscapes, proved the most 

challenging. In this category, FLA-OBL showed relative resilience, when most of the competed 

algorithms presented an increase in mean errors and rank variability highlighted the difficulty of 

maintaining high performance across multifaceted environments. These observations emphasize that 

while some algorithms excel in simpler or more structured problems, only a few maintain robust 

performance across increasingly complex and realistic function types, underlining the effectiveness 

of FLA-OBL’s adaptive mechanisms and balanced search strategies.  

Based on the statistical analysis using MWU tests, FLA-OBL demonstrated significantly superior 

performance in 178 cases, exhibited statistically equivalent performance in 12 cases, and was 

significantly outperformed in only 23 cases (Table 3). Furthermore, FLA-OBL achieved statistically 

significant improvements across all categories of benchmark functions, including unimodal, simple 

multimodal, hybrid, and composition functions (Table 4). Post-hoc comparisons further confirmed 

that FLA-OBL consistently outperformed all competing algorithms in each function category, as 

illustrated in Figure 10. 

Further analysis evaluates FLA-OBL with the most competitive algorithms EBO, HTLBO, and 

baseline FLA, across seven benchmark functions (F1, F5, F7, F16, F19, F21, F26) using three dynamic 

performance metrics: EQG, EC and EVP (Table 5). FLA-OBL demonstrated the strongest convergence 

performance, with the highest EQG (0.346) and highest EC (0.430) across all functions. This suggests 

that FLA-OBL not only converges effectively (high quality gain), but also maintains healthy 

population movement, avoiding premature stagnation. It balances exploitation and exploration 

dynamically, enabling it to escape local optima and reach better-quality solutions. EBO and HTLBO 

follow, with moderate EQG (0.214 and 0.231) and EC (0.249 and 0.272), respectively. HTLBO showed 

a slightly better convergence profile than EBO in terms of EQG but was slightly slower in EC, 

suggesting that it improves solution quality with a more stable (less erratic) search pattern. FLA 

presented the lowest EQG (0.107) and lowest EC (0.115), indicating slow convergence and limited 

search progression.  

In terms of fitness landscape analysis, FLA-OBL again leads with the highest EVP (0.656), 

indicating that its population maintains high adaptability. This is particularly valuable in complex or 

rugged landscapes, where adaptability can help discover global optima despite misleading gradients 

or deceptive valleys. HTLBO and EBO show competitive EVP values (0.493 and 0.447), suggesting 

that both algorithms retain reasonable diversity and mutation capacity, especially on multimodal or 

deceptive functions (like F7, F16, and F19). FLA performs weakest in terms of EVP (0.326), confirming 

its low adaptability in dynamic landscapes. Low EVP implies reduced diversity and a high risk of 

premature convergence, likely a result of overly greedy or static search dynamics. These findings 

suggest that FLA-OBL is more effective in navigating complex search spaces and achieving high-

quality solutions more efficiently than its counterparts. 

In the context of multi-objective UAV path planning for real-world applications such as 

autonomous delivery, FFLA-OBL demonstrated superior effectiveness compared to the baseline 

FLA. The enhanced performance of FFLA-OBL indicates its improved capability in handling the 

trade-offs between multiple conflicting objectives, making it more suitable for complex, real-world 

UAV mission planning scenarios. 

Specifically, in Scenario 1 of path planning with 7 Obstacles, the algorithms were tasked with 

finding the optimal path while avoiding 7 static obstacles. The FLA algorithm achieved a traveled 

distance of 13.64 units (Euclidean distance), with a path deviation of 5 brut turns and a collision risk 

penalty of 0.11. The path quality was rated at 0.75, and the relative performance deviation (RPD%) 

was 15%. In contrast, FFLA-OBL demonstrated superior performance, with a traveled distance of 

10.97 units, significantly shorter than FLA. It had a lower path deviation of 3 and achieved no penalty 
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in terms of collision risk (0), reflecting a highly efficient path planning process. The path quality 

improved to 0.88. 

For the second scenario with 12 Obstacles, which involved a more complex environment with 

12 obstacles, FLA resulted in a traveled distance of 15.72 units, a path deviation of 3 brut turns, and 

a penalty (collision risk) of 0.46. The path quality was measured at 0.62, and the RPD% was 23%, 

showing a noticeable drop in efficiency when compared to the previous scenario. On the other hand, 

FFLA-OBL excelled in this scenario as well, with a traveled distance of 11.73 units, a path deviation 

of 3 brut turns, and a minimal collision risk penalty of 0.08, significantly lower than FLA. The path 

quality was rated at 0.77, and the RPD% was 0, indicating that FFLA-OBL achieved the optimal 

solution. 

In the most complex scenario, involving 18 obstacles, FLA resulted in a traveled distance of 16.43 

units, a path deviation of 8 brut turns, and a penalty (collision risk) of 0.37, reflecting a higher 

complexity of path planning. The path quality decreased to 0.52, and the RPD% was 27%, which was 

the highest among the three scenarios, indicating a considerable deviation from the optimal solution. 

FFLA-OBL, however, performed more efficiently in this challenging scenario, with a traveled 

distance of 13.89 units, a path deviation of 4 brut turns, and no penalty (collision risk) (0). The path 

quality was 0.71, and the RPD% was 0, again indicating that FFLA-OBL achieved the optimal 

solution, even in a highly cluttered environment. 

The results across all three scenarios clearly demonstrate the effectiveness of the FFLA-OBL 

algorithm in comparison to FLA. The FFLA-OBL consistently outperformed FLA in all evaluation 

criteria, particularly in terms of traveled distance, collision risk, and path quality in obstacle-rich 

environments. The absence of any collision penalties in FFLA-OBL in all scenarios suggests that the 

integration of Opposition-Based Learning (OBL) and Fuzzy Logic significantly improves the 

algorithm's ability to explore the search space and avoid obstacles more efficiently making it suitable 

for UAV path planning tasks, especially in complex, multi-objective scenarios. 

7. Conclusions 

This study presents a comprehensive evaluation of the FLA-OBL and FFLA-OBL algorithms 

across standardized benchmark functions and real-world UAV path planning scenarios. The results 

from the CEC2017 benchmark suite clearly demonstrate the superior performance of FLA-OBL in 

terms of accuracy, stability, and adaptability. It consistently achieved the lowest average ranks across 

various function categories, outperforming state-of-the-art algorithms such as EBO and HTLBO. 

Statistical validation through the Mann–Whitney U test confirmed the significance of these findings, 

with FLA-OBL exhibiting superior performance in the vast majority of test cases. Further analysis 

revealed that its enhanced convergence acceleration, evolvability, and exploration-exploitation 

balance, attributed to the Opposition-Based Learning (OBL) mechanism, make it robust across both 

simple and complex optimization problems. Extending these findings to a real-world application, the 

FFLA-OBL variant demonstrated marked improvements over the baseline FLA in multi-objective 

UAV path planning. Across multiple increasingly complex scenarios involving obstacle avoidance, 

FFLA-OBL consistently achieved more optimal paths, lower collision risk, and higher path quality, 

underscoring its effectiveness in practical, dynamic environments. Overall, the integration of OBL 

and fuzzy logic significantly enhances the performance and adaptability of the base algorithm, 

making FLA-OBL and its fuzzy-enhanced variant promising tools for both theoretical optimization 

challenges and real-world autonomous systems. 

Despite the promising results, the current work has several limitations. The evaluation primarily 

relies on synthetic benchmark functions and a limited set of static UAV path planning scenarios, 

which may not fully capture the complexity of dynamic real-world environments. Additionally, the 

study does not explore the computational cost of the proposed algorithms in high-dimensional 

settings. Future work should address these aspects to further validate and extend the utility of FLA-

OBL and FFLA-OBL in diverse and real-time applications. 
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