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Abstract: We formulate the statistics of the discrete multicomponent fragmentation event using a 
methodology borrowed from statistical mechanics. We generate the ensemble of all feasible distributions 
that can be formed when a single integer multicomponent mass is broken into fixed number of 
fragments and calculate the combinatorial multiplicity of all distributions in the set. We define random 
fragmentation by the condition that the probability of distribution be proportional to its multiplicity and 
obtain the partition function and the mean distribution in closed form. We then introduce a functional 
that biases the probability of distribution to produce in a systematic manner fragment distributions 
that deviate to any arbitrary degree from the random case. We corroborate the results of the theory by 
Monte Carlo simulation and demonstrate examples in which components in sieve cuts of the fragment 
distribution undergo preferential mixing or segregation relative to the parent particle.
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References 1829

1. Introduction30

Objects disintegrate into fragments via impact, detonation, degradation of structure or cleavage of31

the bonds that hold the structure together. Objects may range from molecules and cells to macroscopic32

masses to celestial bodies and the physical mechanisms by which fragmentation occurs are as diverse.33

This diversity of scale and physics is united by a common mathematical description based on the size34

distribution of the fragments that are produced. Fragmentation has been studied extensively in particular35

with respect to modeling the evolution of the size distribution [1], a problem that commonly arises in36

polymeric, colloidal and granular materials as well as in biological populations where fragmentation37

refers to the splitting of groups of animals, for example [2]. It is a rich mathematical subject that in38

addition to its practical relevance to scientific and engineering problems exhibits under certain conditions39

a remarkable transition, shattering, a process akin to a phase transition [3–6]. Several analytic results have40

been given in the literature in the context of population balances under various models in the discrete and41

continuous domain [7–13]. In these studies fragmentation is nearly always binary and the particle consists42

of a single component. In one-component fragmentation the distribution of fragments is a function of a43

single variable, “size,” which usually refers to the mass of the fragment. A multidimensional case was44

considered by Krapivsky and Ben-Naim [14] who considered the fragmentation of objects in d-dimensional45

space. A treatment of multi-nary fragmentation was given by Simha [89] who studied fragmentation in46

the context of polymer degradation. With the exception of Simha who used combinatorial arguments to47

obtain the distribution of fragments in linear [7] and branched [9] chains, most studies adopt either binary48

random aggregation, which produces a uniform distribution of fragments, or some empirical distribution49

of fragments that allows arbitrary number of fragments and non-random distribution of sizes (see for50

example Ziff [13], Austin et al. [15]).51

Multicomponent fragmentation with no limitation on the number of fragments is the rule rather than52

the exception in most problems of practical interest. This cannot be obtained by simple extension of the53

one-component problem. In addition to the size distribution of the fragments we must also tackle the54

distribution of components and provide rules (a “model”) for apportioning components to the fragments.55

We must offer a definition of what is meant by “random fragmentation” when both size and composition56

are distributed and provide the means for constructing models that deviate from the random case to any57

desired extent.58

The purpose of this paper is to formulate the statistics of a single fragmentation event in the discrete59

domain for arbitrary number of fragments and components and to provide the means of connecting this60

mathematical formalism to physics. The main idea is this: We start with a multicomponent particle that61

contains discrete units of multiple components, subject it to one fragmentation event into fixed number of62

fragments and construct the set of all fragment distributions that can be obtained. We calculate the partition63

function of this ensemble of random fragments, assign probabilities in proportion to the multiplicity of64

each distribution and obtain the mean distribution in terms of the partition function. We then introduce a65

bias functional that biases the distribution away from that of random fragmentation. We present results66

from Monte Carlo simulations to corroborate the theory and show that components may preferentially67

mix or unmix in the fragments depending on the choice of the bias functional.68
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2. Random fragmentation69

2.1. One-component random fragmentation70

In discrete fragmentation, a particle composed of m integer units breaks up into N fragments,
{ f1, f2 · · · fN} that satisfy the mass balance conditions

N

∑
i=1

fi = m. (1)

We construct the distribution of fragments n = (n1, n2 · · · ), such that ni is the number of fragments that
contain i units of mass. We suppose that N is fixed but n is not; that is, if the fragmentation event is repeated
with an identical parent particle the distribution of fragments may be different but the total number of
fragments is always N. We refer to this process as N-nary fragmentation. All fragment distributions
produced by this mechanism satisfy the following two conditions:

∞

∑
i=1

ni = N, (2)

∞

∑
i=1

ini = m. (3)

The first condition states that the number of fragments is N; the second that their mass is equal to the71

mass of the parent particle. Conversely, any distribution that satisfies the above two equations is a feasible72

distribution of fragments by N-nary fragmentation of mass m. Thus the set Em,N of all distributions that73

satisfy Eqs. (2) and (2) forms the ensemble of fragment distributions produced from m.74

We will call the process random fragmentation if all ordered lists of N fragments produced by the same75

mass are equally probable. This views the ordered list of fragments, which we call configuration, as the76

primitive stochastic variable in this problem.77

2.1.1. Probability of random fragment distribution78

Proposition 1. The probability of distribution n produced by random N-nary fragmentation of mass m is

P(n) =
n!(

m− 1
N − 1

) , (4)

where n! is the multinomial coefficient of n = (n1, n2 · · · )

n! =
(∑i ni)!
∏i ni!

=
N!

n1!n2! · · · . (5)

Proof. First we note that the number of ordered lists (in all permutations) that can be formed by breaking
integer m into N fragments is

Ω(1)
m;N =

(
m− 1
N − 1

)
. (6)

This is the number of ways to partition integer m into N parts and can be shown easily as follows [16]:79

thread m balls into a string and partition them into N pieces by cutting the string at N − 1 points (Fig. 1).80
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Figure 1. Random fragmentation of integer mass m into N pieces is equivalent to breaking a string with m
beads at N − 1 random points. If the mass is made up of two colors (components) every permutation of the
beads is equally probable.

There are m− 1 points where we can cut and must choose N − 1 of them. The number of ways to do this81

is the binomial factor on the RHS of Eq. (6).82

If all ordered lists of fragments are equally probable, the probability of ordered list m =

(m1, m2 · · ·mN) is

P(m) =
1

Ω(1)
m;N

. (7)

There are n! ordered lists with the same distribution of fragments n. Accordingly, the probability of n is

P(n) = n!P(m) =
n!

Ω(1)
m;N

. (8)

where n is the fragment distribution in m. This proves the proposition.83

The multinomial factor n! represents the multiplicity of distribution n, namely, the number of
configurations (ordered lists of fragments) represented by n. Using ω(n) = n! to notate the multiplicity of
distribution, the probability of distribution is expressed as

P(n) =
ω(n)

Ω(1)
m;N

, (9)

and Ω(1) satisfies

∑
n

ω(n) = Ω(1)
m;N . (10)

The summation over all distributions n ∈ Em,N, namely, all distributions that satisfy Eqs. (2) and (3).84

Accordingly, Ω(1)
m;N is the total multiplicity in the ensemble, equal to the number of ordered configurations85

of fragments that can be produced from integer mass m breaking into N fragments. We refer to Ω(1)
m;N as86

the partition function of the one-component ensemble of fragments.87

2.1.2. Mean fragment distribution88

Each distribution n appears in the ensemble of fragment distributions with probability P(n); the
mean distribution of fragments is their ensemble average:

〈n〉 = ∑
n

n P(n) (11)

with P(n) from Eq. (4) and with the summation going over all distributions that are produced by N-nary89

fragmentation of integer mass m.90

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 September 2020                   



Proposition 2. The mean distribution in N-nary random fragmentation is

〈nk〉
N

=

(
m− k− 1

N − 1

)/(
m− 1
N − 1

)
. (12)

with k = 1, · · ·m− N + 1.91

Proof. First we write the probability of distribution in the form

P(n) =
N!

Ω(1)
m;N

∞

∏
i=1

α
ni
i

ni!
(13)

with αi > 0 and note that this reverts to Eq. (4) when αi = 1. We will retain the factors αi and will set them
equal to 1 at the end. The normalization condition on the probability P(n) reads

Ω(1)
m;N = N! ∑

n

∞

∏
i=1

α
ni
i

ni!
. (14)

The derivative of log Ω(1)
m;N with respect to nk is

d log Ω(1)
m;N

dαk
=

αk N!

Ω(1)
m;N

∑
n

nk ∏
i

(
α

ni
i

n!
i

)
= αk〈nk〉, (15)

where 〈nk〉 is the mean value of nk in the ensemble of fragments. We also have

dΩ(1)
m;N

dαk
= N

{
(N − 1)! ∑

n

(
· · ·

α
nk−1
i

(nk − 1)!
· · ·
)}

= NΩ(1)
m−k;N−1. (16)

The summand in the expression in the middle amounts to removing one fragment of mass k from all92

distributions of the ensemble; accordingly, the quantity in braces is the partition function Ω(1)
m−k;N−1.93

Combining Eqs. (15) and (16) and setting αk = 1 we obtain Eq. (12).94

Equation (12) was previously obtained by Montroll and Simha [7] via a combinatorial derivation.
Notably it is the same distribution as in discrete binary aggregation (the reverse process of binary
fragmentation) with constant kernel, derived by Hendriks et al. [17] who also credit older unpublished
work by White. For large m the fragment distribution becomes

nk →
N(N − 1)

m

(
1− k

m

)N−2
. (17)

This is the continuous limit of random fragmentation of a straight line into N segments and is an elementary95

result that has been derived multiple times in the literature. The earliest report known to us is by Feller96

[18] who corrected an earlier approximation by Ruark [19].97
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2.2. Two-component random fragmentation98

2.2.1. Representations of bicomponent populations99

We now consider a particle that is made of two components. The particle contains mA units of
component A, mB units of component B and its mass is m = mA + mB. The distribution of fragments is
given by the two dimensional vector n = {na,b} where na,b is the number of fragments that contain a units
of A and b units of B. This distribution satisfies the conditions

∞

∑
a=0

∞

∑
b=0

na,b = N, (18)

∞

∑
a=0

∞

∑
b=0

ana,b = mA, (19)

∞

∑
a=0

∞

∑
b=0

bna,b = mB. (20)

The set EmA ,mB ;N of all distributions that satisfy the above conditions constitutes the set of feasible100

distributions in bicomponent fragmentation.101

The color-blind size distribution or simply “size distribution” nA+B = {nk} is the distribution of the
mass of the fragments k = ab regardless of composition:

nk =
k

∑
a=0

na,k−a, k = 1, 2 · · · (21)

and satisfies the conditions

∞

∑
k=1

ni = N, (22)

∞

∑
k=1

ini = mA + mB = m. (23)

These are the same as Eqs. (2) and (3) in the one-component case for a particle with mass mA + mB.102

Accordingly, the feasible set of the color-blind distribution is EmA+mB ;N .103

The sieve-cut distribution nA|k = {na|k} is the number of fragments with size k that contains a units
of component A:

na|k = na,k−a, (a = 1 · · · k, k = 1 · · ·∞). (24)

and satisfies the normalizations

k

∑
a=0

∞

∑
k=1

na|k = N,

k

∑
a=0

∞

∑
k=1

ana|k = mA,

k

∑
a=0

∞

∑
k=1

kna|k = mA + mB.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 September 2020                   



Normalizing the sieve-cut distribution by the number of fragments of size k we obtain the compositional
distribution of component A within fragments of fixed size k,

ca|k =
na|k
nk

. (25)

The compositional distribution is normalized to unity and may be interpreted as a conditional probability:
it is the probability to obtain a fragment with a units of A given that the fragment has mass k. The
bicomponent distribution may now be expressed in terms of the color-blind distribution nA+B and the
compositional distribution ca|k in the form

na,k−a = nkca|k. (26)

If we divide both sides by the total number of fragments the result reads as a joint probability: The104

probability na,k−a/N to obtain a fragment with mass k that contains a units of component A is equal to the105

probability nk/N to obtain a fragment of mass k times the probability ca|k to obtain a fragment with a units106

of component A given that the mass of the fragment is k.107

2.2.2. The ensemble of random fragment distributions108

Random fragmentation in implemented by analogy to the one-component case: we line up the unit109

masses in the particle into a string and cut at N − 1 places. Every cut is equally probable and so is every110

permutation in the order of the beads.111

Proposition 3. The probability of fragment distribution n is

P(n) =
n!

Ω(2)
mA ,mB ;N

∞

∏
a=0

∞

∏
b=0

(
a + b

a

)na,b

. (27)

where n! is the multinomial coefficient of the bicomponent distribution,

n! =
N!

∏∞
a=0 ∏∞

b=0 na,b!
(28)

and Ω(2)
mA ,mB ;N is the two-component partition function, given by

Ω(2)
mA ,mB ;N =

(
mA + mB

mA

)
Ω(1)

mA+mB ;N . (29)

Proof. First we count the number of ordered sequences of fragments (configurations). Configurations are112

distinguished by the order the fragments and by the order of components within fragments (Fig. 1). We113

color the components and place them in a line in some order. There are mA A’s and mB B’s; the number of114

permutations is (mA+mB
mA

). Each permutation produces Ω(1)
mA+mB ;N configurations with Ω(1) given in Eq. (6).115

The total number of configurations therefore is their product and proves Eq. (29).116

Since all configurations are equally probable the probability of fragment distribution n is proportional
to the number of configurations with that distribution. This is equal to the number of permutations in the
order of the fragments and in the order of components within fragments. The number of permutations
in the order of fragments is given by the multinomial factor of bicomponent distribution in Eq. (28). The
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number of permutations of components within a fragment that contains a units of A and b units of B is
(a+b

a ) and since there are na,b such fragments, the total number of internal permutations in distribution n is

∞

∏
a=0

∞

∏
b=0

(
a + b

a

)na,b

. (30)

The probability of distribution n is equal to the product of Eqs (28) and (30) divided by the total number of
configurations, given by Eq. (29):

P(n) =
n!

Ω(2)
mA ,mB ;N

∞

∏
a=0

∞

∏
b=0

(
a + b

a

)na,b

. (31)

This proves the Proposition.117

As a corollary we obtain the multiplicity of the bicomponent distribution,

ω(n) = n!
∞

∏
a=0

∞

∏
b=0

(
a + b

a

)na,b

. (32)

Thus we write

P(n) =
ω(n)

Ω(2)
mA ,mB ;N

(33)

with Ω(2) = ∑n ω(n).118

An alternative equation for P(n) is obtained by expressing the bicomponent distribution n in terms
of the color-blind distribution nA+B and all sieve-cut distributions nA|k. The result is

P(n) =
nA+B!

Ω(2)
mA ,mB ;N

∞

∏
k=0

{
nA|k!

k

∏
a=0

(
k
a

)na|k
}

(34)

and is based on the identity

n!
∞

∏
a=0

∞

∏
b=0

(
k
a

)na,b

= nA+B!
∞

∏
k=0

{
nA|k!

k

∏
a=0

(
k
a

)na|k
}

(35)

where nA+B! is the multinomial coefficient of the color-blind distribution,

nA+B! =
N!

n1!n2! · · · (36)

and nA|k! is the multinomial coefficient of the sieve-cut distribution,

nA|k! =
nk!

n0|k!n1|k! · · · nk|k!
. (37)
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2.2.3. Mean fragment distribution119

Proposition 4. The mean distribution of fragments in random bicomponent fragmentation is

〈na,b〉
N

=

(
a + b

a

)Ω(2)
mA−a,mB−b;N−1

Ω(2)
mA ,mB ;N

(38)

Proof. The proof follows in the steps of the one-component problem. We express the multiplicity and the
partition function in the form

ω(n) = N!
∞

∏
a=0

∞

∏
a=b

α
na,b
a,b

na,b!
, (39)

Ω(2)
mA ,mB ;N = N! ∑

n

∞

∏
a=0

∞

∏
a=b

α
na,b
a,b

na,b!
(40)

With αa,b = (a+b
a ) we recover the result for random fragmentation but for the derivation we treat αa,b as a

variable. Following the same procedure that led to Eq. (12) we now obtain

〈na,b〉
N

= αa,b
ΩmA−a,mB−a;N−1

ΩmA ,mB ;N
. (41)

To arrive at this result we note that differentiation of the partition function with respect to αa,b by analogy120

to Eq. (16) amounts to removing one cluster that contains a units of A and b units of B, thus producing the121

partition function ΩmA−a,mB−b;N−1 in the numerator of Eq. (41). Setting αa,b = (a+b
a ) we obtain Eq. (38).122

Here in an alternative proof. The mean distribution can be obtained by a mean-field argument
beginning with the observation that the mean color-blind distribution is the same as in the one-component
case. This follows from the fact that the choice of the points at which the string o beads is cut is independent
of the compositional makeup of the particle (Fig. 1). Thus 〈nk〉 is given by Eq. (12) with m = mA + mB:

〈nk〉
N

=
Ω(1)

mA+mB−a−b;N−1

Ω(1)
mA+mB ;N

(42)

We obtain the compositional distribution by the following construction. Imagine that all possible
distributions are stacked vertically to form a table so that column 1 contains the first fragment in all
distributions, column 2 contains all second fragments and so on. All columns are permutations of each
other (this follows from the construction of the fragments illustrated in Fig. 1) and since all permutations
are equally likely (this follows from the condition of random fragmentation), all columns have the same
fragment and compositional distribution, therefore we only need to consider one of them. The equivalent
problem now is this: count the number of ways to select a beads from a pool of mA A’s and k− a beads
from a pool of mB B’s and take its ratio over the total number of ways to pick k beads:

〈ca|k〉 =
(

mA
a

)(
mB

k− a

)/(
mA + mB

k

)
. (43)

The mean distribution then is the product of the size and compositional distributions:

〈na|k〉 = 〈nk〉〈ca|k〉, (44)
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Figure 2. The compositional distribution 〈ca|k〉 of bicomponent particle with mA = 4, mB = 3 into N = 4
fragments. Distributions are shown for sieve-cut sizes k = 2, 3 and 4. Lines are from Eq. (38) and points are
from MC simulation after 20, 000 fragmentation events.
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or

〈na,b〉
N

=
(mA

a )(mB
b )

(mA+mB
a+b )

Ω(1)
mA+mB−a−b;N−1

Ω(1)
mA+mB ;N

(45)

It is straightforward algebra to show that this is equivalent to Eq. (38). For mA, mB � 1, a + b� mA + mB
the compositional distribution goes over to the binomial:

(mA
a )(mB

b )

(mA+mB
a+b )

→
(

k
a

)
φa

Aφb
B, (46)

with φA = mA/(mA + mB), φB = 1− φA. Figure (2) shows compositional distributions for a bicomponent123

particle with mA = 4 units of A and mB = 3 units of B. As a means of a demonstration we show the124

results of a Monte Carlo simulation, which are seen to be in excellent agreement with theory. The binomial125

distribution, also shown for comparison, is only in qualitative agreement because the fragment masses are126

small and the conditions for asymptotic behavior are not met in this case.127

2.3. Any number of components128

Extension to any number of components follows in a straightforward manner from the bicomponent
case. Suppose the parent particle consists of K components A, B · · · and contains mA units of A, mB units
of B and so on. The distribution of fragments is now expressed by the K-dimensional vector n = {na,b···}
that gives the number of fragments that contain a units of component A, b units of B etc. This distribution
satisfies

∑
a,b···

na,b··· = N (47)

∑
a,b···

zna,b··· = mZ; z = a, b · · · (48)

where mZ is the mass of component z = a, b · · · in the parent particle. The set all distributions that satisfy129

the above conditions constitutes the ensemble of all distributions that are produced by the fragmentation130

of the parent particle into N integer fragments.131

Random fragmentation is once again implemented as shown in Fig. 1: Given a string of colored beads
we cut it at N − 1 random points to produce N fragments. All permutations of the beads are equally
probable. Accordingly, all ordered lists of fragments (configurations) are equally probable. The number of
configurations is

Ω(K)
m;N = m! Ω(1)

m;N =

(
m!

mA!mB! · · ·

)(
m− 1
N − 1

)
, (49)

where m = mA + mB + · · · is the total mass of the particle and m! is the multinomial coefficient of the
compositional vector m = (mA, mB · · · ) of the parent. The multinomial coefficient of the compositional
vector is the number of permutations of the string of beads and the binomial factor is the number of ways
to cut it into N pieces. The multiplicity ω(n) of distribution n is the number of configurations with that
distribution and is given by the number of permutations in the order of fragments and in the order of
components within each fragment:

ω(n) = n! ∏
a,b···

(
(a + b + · · · )!

a!b! · · ·

)na,b···
= n! ∏

c
(c!)nc (50)
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where c! is the multinomial factor of the compositional vector c = (a, b, c · · · ) of the fragment. The
probability of distribution n is its multiplicity normalized by the total number of configurations

P(n) =
→(n)

Ω(K)
m;N

(51)

with
Ω(K)

m;N = ∑
n

ω(n). (52)

The normalizing factor Ω(K)
mA ,mB ··· ;N is the partition function of the ensemble of distributions that satisfy the132

constraints in Eqs. (47) and (48).133

The mean distribution of fragments is

〈nc〉
N

= c!
Ω(K)

m−c;N−1

Ω(K)
m;N

(53)

and is the generalization of (38). Alternatively, the mean distribution can be expressed by analogy to Eq.
(44) as the product of the color blind distribution with a mean compositional distribution:

〈nc〉
N

=
〈nk〉

N
〈cc|k〉. (54)

The mean color-blind size distribution 〈nk/N〉 is the same as in one-component fragmentation,

〈nk〉
N

=
Ω(1)

m−k;N−1

Ω(1)
m;N

, k = a + b + · · · , (55)

with m = mA + mB + · · · and 〈ca,b···|k〉 is the conditional probability that the compositional vector of
fragment size k is c = (a, b · · · ):

cc|k =

(
mA

a

)(
mB
b

)
· · ·
/(

m
a + b + · · ·

)
. (56)

This is the generalization of Eq. (43).134

3. Non random fragmentation135

In random fragmentation we produce permutations of the configuration of fragments at random and
accept them with uniform probability 1. We now bias the acceptance of the permutation by a functional
W(n) of the fragment distribution such that the probability of fragment distribution n in is

P(n) =
ω(n)W(n)

Ω̃(K)
mA ,mB ;N

(57)

with
Ω̃(K)

mA ,mB ;N = ∑
n

ω(n)W(n). (58)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 September 2020                   



with ω(n) from Eq. (50). These are the general forms of Eqs. (51) and (52) in the bicomponent case and are136

easily extended to any number of components. Here ω(n) is the intrinsic multiplicity of n in the ensemble137

of fragments, while the product ω(n)W(n) .
= ω̃(n) is its apparent (biased) multiplicity as weighted by the138

bias functional and distinguished by the tilde. Similarly, the partition function Ω̃ is the summation of the139

apparent (biased) multiplicities of all distributions in EmA ,mB ;N . With W = 1 we recover the random case.140

In this sense “random” and “unbiased” both refer to the case of uniform bias.141

3.1. Linear ensemble142

The bias functional W will remain unspecified. This allows us to choose the bias so as to produce any
desired distribution of fragments. A special but important case is when W is of the factorizable form

W(n) = ∏
a

∏
b
(wa,b)

na,b , (59)

where wa,b depend on a and b but not on the fragment distribution itself. The log of the bias is then a linear
function of n:

log W(n) = ∑
a

∑
b

log wa,bna,b. (60)

The result states that the log of the bias is homogeneous functional of n with degree 1, i.e. log(λn) =143

λ log W(n) for any λ > 0. We refer to this case as linear bias with the understanding that linearity actually144

refers to the log of W.145

Proposition 5. The mean distribution of fragments under the bias in Eq. (59) is

〈na,b〉
N

= wa,b

(
a + b

a

) Ω̃(2)
mA−a,mB−b;N−1

Ω̃(2)
mA ,mB ;N

(61)

with

Ω̃(2)
mA ,mB ;N = N! ∑

n

∞

∏
a=0

∞

∏
b=0

wna,b
a,b

na,b!

(
k
a

)na,b

. (62)

Proof. Using Eq. (59) the apparent multiplicity ω̃(n) of distribution n is

ω̃(n) = N!
∞

∏
a=0

∞

∏
a=b

(αa,b)
na,b

na,b!
, (63)

with

αa,b = wa,b

(
k
a

)
. (64)

The result then follows directly from Proposition 4.146

3.2. Composition-independent bias147

If the bias factors are of the form wa,b = g(a + b), where g(x) is a function of a single variable, the
acceptance probability of a configuration of fragments depends on the mass k = a + b of the fragment
but not on its composition. This leads to a simple expression for the mean distribution by the following
argument. With reference to Fig. 1, fix the points where the string is cut; this amounts to fixing the size
distribution of the fragments. All permutations of the colored beads are equally probable because they
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Table 1. Closed form results for three composition-independent bias functionals

wa,k−a Ω(1)
m;N

Case 1 1
(

m− 1
N − 1

)

Case 2
2(2k)k−2

k!
mm−N N!

m!

(
m− 1
N − 1

)

Case 3‡ 2(2k)k−2

k!

(
mm−N N!

m!

)2 (m− 1
N − 1

)

‡asymptotically for m, N � 1, m/N < 2

have the same value of W. Accordingly, the compositional distribution is the same as in the random case
and is given by Eq. (43). The size distribution on the other hand is biased and is the same as when the
same bias is applied to one-component distribution. The final result is

〈na,b〉
N

=
(mA

a )(mB
k−a)

(mA+mB
k )

〈nk〉
N

, (65)

where 〈nk〉 is the one-component size distribution under bias wa,b = g(a + b),

〈nk〉
N

= g(k)
Ω̃(1)

mA+mB−k;N−1

Ω̃(1)
mA+mB ;N

(66)

with

Ω̃(1)
mA+mB ;N = N! ∑

n

∞

∏
k=1

g(k)nk

nk!
. (67)

Except for special forms of g(k) the partition function will not be generally available in closed form.148

Table 1 summarizes three cases for which exact results are possible. All three cases are associated with149

distributions encountered in binary aggregation [20]. The partition functions in cases 1 and 2 refer to the150

constant and sum kernels, respectively, and are exact; Case 3 is associated with the product kernel and151

gives the asymptotic limit of the partition function for m, N � 1, m/N < 2, conditions that refer to the152

pre-gel state [21].153

In the general case wa,b depends on both a and b explicitly and affects both the size and compositional154

distributions. This case will be demonstrated by simulation in the next section.155

4. Simulation of biased fragmentation156

Except for certain special forms of the bias the mean fragment distribution cannot be calculated157

analytically and the only recourse is stochastic simulation. Here we describe a Monte Carlo (MC) algorithm158

for sampling the ensemble of distributions. We will then use this method to demonstrate result for two159

cases of biased bicomponent fragmentation.160
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4.1. Monte Carlo sampling by exchange reaction161

Suppose C = ((a1, b1), · · · (aN , bN)) is a configuration of N fragments such that fragment i contains ai
units of component A and bi units of component B. Since all configurations with the same distribution
have the same probability, given in Eq. (57), the probability of configuration is

P(C) = W(C)
Ω(2)

mA ,mB ;N

(68)

where W(C) = W(n) and n is the distribution of the configuration. If the bias functional is of the linear
form in Eq. (59), its value on C is

W(C) =
N

∏
i=1

wai ,bi
. (69)

Suppose that two fragments i and j exchange mass according to the reaction

(ai, bi) + (aj, bj)→ (a′i, b′i) + (a′j, b′j) (70)

under the conservation conditions ai + aj = a′i + a′j and bi + bj = b′i + b′j. This amounts to a transition
between configurations, C → C ′, with equilibrium constant

KC→C ′ =
P(C ′)
P(C) =

W(C ′)
W(C) =

wa′i ,b
′
i
wa′j ,b

′
j

wai ,bi
waj ,bj

. (71)

This has the form of a chemical equilibrium constant for the exchange reaction in (70) with w playing162

the role of the activity of the species. The ensemble of fragment distributions may then be sampled via163

Monte Carlo by direct analogy to chemical reactions [22]. Given a configuration of fragments, pick two164

at random and implement an exchange of mass by a random amount. The resulting configuration is165

accepted by the Metropolis criterion: accept if rnd ≤ KC→C ′ , where rnd is a random number uniformly166

distributed in (0, 1); otherwise reject. With W = 1 every exchange reaction is accepted, which amounts to167

random fragmentation. We implement the random exchange between fragments as follows. We represent168

fragments as a list of 1’s (representing component A) and 0’s (component B). We pick two clusters i and j169

and random. We merge them into a single list, randomize the order of components, and break into two170

new fragments by picking a break point at random. The randomization of the order of components in the171

merged list ensures that all permutations are considered with equal probability.172

4.2. Two examples173

In random fragmentation (wa,b = 1) the compositional distribution is given by Eq. (43). We may174

choose the bias functional so as to produce deviations in either direction relative to the random case. It is175

possible to produce positive deviations (preferential segregation of components in the fragments relative176

to random mixing) or negative deviations (more intimate mixing than in random mixing). We demonstrate177

both behaviors using the two examples below:178

1. Case I (positive deviations)
wa,b = (a + 1)α + (b + 1)α (72)

2. Case II (negative deviations)
wa,b = (a + 1)α(b + 1)α (73)
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Figure 3. Size and compositional distributions at fragment sizes k = 2, 4 and 8 for two bias functionals:
(a)–(d): wa,b = (1 + a)4(1 + b)4; (e)–(h): wa,b = (1 + a)4 + (1 + b)4. In both cases the particle contains
mA = 18 units of A, mB = 18 units of B and breaks into N = 4 fragments.
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In Case I the fragment bias wa,b is an additive function of the amounts of the two components.179

Considering that a + b is constrained by mass balance, the fragment bias is large for fragments that are rich180

in either component but small for fragments that are relatively mixed. This ought to favor the formation of181

fragments in which the components are relative segregated. The fragment bias in Case II is a multiplicative182

function of the amounts of the two components. It is large in fragments that contain both components but183

quite small if one component is present in excess of the other. This form ought to produce fragments that184

are better mixed than fragments produced by random fragmentation.185

We test these behaviors in Fig. 3 which shows results for α = 4. In this example the particle contains an186

equal number of units of each component, mA = mB = 18, and breaks into N = 4 pieces. In both cases the187

size distribution deviates from that in random fragmentation. Indeed the bias influences both the size and188

the compositions distribution unless its is of the special form wa,b = g(a + b). Compositional distributions189

are shown for sieve-cut masses k = 2, 4 and 8. The additive bias (Case I) produces distributions that are190

more spread out relative to the random case. For k = 2, in particular, the compositional distribution is191

inverted relative to the random case, indicating strong segregation as the majority of fragments contains192

pure component A or B and only few fragments in this size contain both components. As the fragment193

size increases the separation of components is less strong but always present, as indicated by the fact that194

the random distribution is always narrower. The opposite behavior is observed in Case II: distributions195

are narrower than those in random fragmentation, especially at the smaller fragment sizes.196

As a general trend in both cases, small fragments are less mixed while large fragments progressively197

approach the distribution of random fragmentation. This is because there are not enough units of each198

component to produce large fragments that consist predominantly of one component. This limitation is199

not present when the fragment size is small.200

5. Discussion and Conclusions201

We have presented a treatment of multicomponent fragmentation on the basis of random202

fragmentation in combination with an appropriate functional that biases the ensemble of feasible203

distributions. The two key notions in this treatment are the set of feasible distributions and the multiplicity204

of distribution within this set as established by the rules that define “random” fragmentation. In the205

random-fragmentation ensemble distributions are proportional to their multiplicity. This problem is206

analytically tractable and we have presented its solution for any number of component and number of207

fragments. A third key notion is that of the bias functional that modulates the probability of distributions208

of feasible distributions and allows us to obtain fragment distributions other than that of random209

fragmentation.210

It should be pointed out that the random case is not endowed with universal physical significance211

but applies in certain cases such as the linear chain in Fig. 1. In this particular case selecting the bonds to212

break at random might be a reasonable physical model, as Montroll and Simha [7] explain. The primary213

significance of random fragmentation is mathematical. Similar to the “fair coin” or the “ideal solution,”214

it provides an analytically solvable baseline (“reference state”) from which to calculate deviations. The215

mathematical tool that quantifies these deviations is the bias functional. This functional permits the216

systematic construction of distributions that exhibit any degree of deviation from the random case. This is217

main result of this formulation. The fragment distribution per fragmentation event is one of two elements218

required in order to build a population balance model of a fragmentation process. The other element is the219

rate at which particles break up. This question is not addressed here beyond the generic observation that220

this rate must be a function of the compositional vector m = (mA, mB · · · ) of the particle.221

In single-component fragmentation the quantity of interest is the mean size distribution of the222

fragments. In multicomponent systems we are additionally concerned with the compositional distribution.223
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This introduces a new dimension to the problem and raises questions of mixing and unmixing of224

components. Do fragments inherit the compositional characteristics of the parent particle? Do they225

become progressively more well mixed or less? Both behaviors are possible and are quantified via the226

bias functional W. This functional is where the mathematical theory of fragmentation presented here227

makes contact with the physical mechanisms that lead to the disintegration of material particles. To make228

this connection quantitatively, one must begin with the a physical model of fragmentation that assigns229

probabilities to all possible distributions of fragments that can be generated. This is a major undertaking230

and is specific to the particular problem that is being considered. The point we wish to make is that the231

formulation presented here offers an entry point to physics via the bias functional.232

Lastly, the connection to statistical mechanics should not be lost. We have constructed an ensemble233

whose fundamental element (“microstate”) is a the ordered configuration of fragments; its total number234

in the ensemble is the partition function. The higher-level stochastic variable (the observable) is the235

distribution of fragments and its probability is determined by its multiplicity in the ensemble. The form236

of the probability in Eq. (13), also known as Gibbs distribution [23], is encountered in time reversible237

processes as well as in population balances of aggregation and breakup [17,23–26]. The derivation of the238

mean distribution in the random case follows in the steps of the Darwin-Fowler method [27]. Additionally,239

the compositional distribution in random breakup is given asymptotically by the binomial distribution in240

Eq. (46). This establishes a reference for compositional interactions analogous to that of the ideal solution241

in thermodynamics. In fact, the Shannon entropy of the binomial distribution is the ideal entropy of mixing242

when two pure components coalesce into a single particle that contains mass fraction φA of component A.243

These connections are not coincidental. Biased sampling from a distribution generates a probability space244

of distributions and when the base distribution is exponential, this ensemble obeys thermodynamics [22].245

In fragmentation the base distribution is a multicomponent exponential: the size distribution in Eq. (12)246

goes over to the exponential distribution when m, N � 1. In this limit the ensemble of fragments becomes247

mathematically equivalent to a thermodynamic ensemble of two components with interactions that lead248

to positive or negative deviations relative to ideal solution.249
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