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Abstract: We formulate the statistics of the discrete multicomponent fragmentation event using a
methodology borrowed from statistical mechanics. We generate the ensemble of all feasible distributions
that can be formed when a single integer multicomponent mass is broken into fixed number of
fragments and calculate the combinatorial multiplicity of all distributions in the set. We define random
fragmentation by the condition that the probability of distribution be proportional to its multiplicity and
obtain the partition function and the mean distribution in closed form. We then introduce a functional
that biases the probability of distribution to produce in a systematic manner fragment distributions
that deviate to any arbitrary degree from the random case. We corroborate the results of the theory by
Monte Carlo simulation and demonstrate examples in which components in sieve cuts of the fragment
distribution undergo preferential mixing or segregation relative to the parent particle.
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so 1. Introduction

31 Objects disintegrate into fragments via impact, detonation, degradation of structure or cleavage of
2 the bonds that hold the structure together. Objects may range from molecules and cells to macroscopic
s masses to celestial bodies and the physical mechanisms by which fragmentation occurs are as diverse.
s« This diversity of scale and physics is united by a common mathematical description based on the size
35 distribution of the fragments that are produced. Fragmentation has been studied extensively in particular
s with respect to modeling the evolution of the size distribution [1], a problem that commonly arises in
sz polymeric, colloidal and granular materials as well as in biological populations where fragmentation
se  refers to the splitting of groups of animals, for example [2]. It is a rich mathematical subject that in
ss addition to its practical relevance to scientific and engineering problems exhibits under certain conditions
s aremarkable transition, shattering, a process akin to a phase transition [3—6]. Several analytic results have
41 been given in the literature in the context of population balances under various models in the discrete and
a2 continuous domain [7-13]. In these studies fragmentation is nearly always binary and the particle consists
a3 of a single component. In one-component fragmentation the distribution of fragments is a function of a
« single variable, “size,” which usually refers to the mass of the fragment. A multidimensional case was
«s considered by Krapivsky and Ben-Naim [14] who considered the fragmentation of objects in d-dimensional
s space. A treatment of multi-nary fragmentation was given by Simha [89] who studied fragmentation in
a7 the context of polymer degradation. With the exception of Simha who used combinatorial arguments to
«s Obtain the distribution of fragments in linear [7] and branched [9] chains, most studies adopt either binary
a0 random aggregation, which produces a uniform distribution of fragments, or some empirical distribution
so of fragments that allows arbitrary number of fragments and non-random distribution of sizes (see for
s:  example Ziff [13], Austin et al. [15]).

52 Multicomponent fragmentation with no limitation on the number of fragments is the rule rather than
ss the exception in most problems of practical interest. This cannot be obtained by simple extension of the
s« one-component problem. In addition to the size distribution of the fragments we must also tackle the
ss distribution of components and provide rules (a “model”) for apportioning components to the fragments.
ss We must offer a definition of what is meant by “random fragmentation” when both size and composition
sz are distributed and provide the means for constructing models that deviate from the random case to any
s desired extent.

59 The purpose of this paper is to formulate the statistics of a single fragmentation event in the discrete
eo domain for arbitrary number of fragments and components and to provide the means of connecting this
e mathematical formalism to physics. The main idea is this: We start with a multicomponent particle that
sz contains discrete units of multiple components, subject it to one fragmentation event into fixed number of
es fragments and construct the set of all fragment distributions that can be obtained. We calculate the partition
e« function of this ensemble of random fragments, assign probabilities in proportion to the multiplicity of
es each distribution and obtain the mean distribution in terms of the partition function. We then introduce a
es bias functional that biases the distribution away from that of random fragmentation. We present results
ez from Monte Carlo simulations to corroborate the theory and show that components may preferentially
e mix or unmix in the fragments depending on the choice of the bias functional.
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2. Random fragmentation

2.1. One-component random fragmentation

In discrete fragmentation, a particle composed of m integer units breaks up into N fragments,
{f1, f2-- - fn} that satisfy the mass balance conditions

Y fi=m. 1)

We construct the distribution of fragments n = (ny, 15 - - - ), such that n; is the number of fragments that
contain i units of mass. We suppose that N is fixed but n is not; that is, if the fragmentation event is repeated
with an identical parent particle the distribution of fragments may be different but the total number of
fragments is always N. We refer to this process as N-nary fragmentation. All fragment distributions
produced by this mechanism satisfy the following two conditions:

e

n; = N, (2)
1

M

I
—

in; = m. 3)
1

The first condition states that the number of fragments is N; the second that their mass is equal to the
mass of the parent particle. Conversely, any distribution that satisfies the above two equations is a feasible
distribution of fragments by N-nary fragmentation of mass m. Thus the set &, 5 of all distributions that
satisfy Egs. (2) and (2) forms the ensemble of fragment distributions produced from m.

We will call the process random fragmentation if all ordered lists of N fragments produced by the same
mass are equally probable. This views the ordered list of fragments, which we call configuration, as the
primitive stochastic variable in this problem.

2.1.1. Probability of random fragment distribution
Proposition 1. The probability of distribution n produced by random N-nary fragmentation of mass m is
n!

@) "’

where n! is the multinomial coefficient of n = (ny,ny - - - )

P(n) =

(X n;)! N!
' p— =
n [T, 1! nilngl- - ©)

Proof. First we note that the number of ordered lists (in all permutations) that can be formed by breaking

integer m into N fragments is
a  (m-—1
Qm;N — (N—l) (6)

This is the number of ways to partition integer m into N parts and can be shown easily as follows [16]:
thread m balls into a string and partition them into N pieces by cutting the string at N — 1 points (Fig. 1).
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Figure 1. Random fragmentation of integer mass m into N pieces is equivalent to breaking a string with m
beads at N — 1 random points. If the mass is made up of two colors (components) every permutation of the
beads is equally probable.

There are m — 1 points where we can cut and must choose N — 1 of them. The number of ways to do this
is the binomial factor on the RHS of Eq. (6).

If all ordered lists of fragments are equally probable, the probability of ordered list m =
(my,my---my)is .

—
O

P(m) = @)

There are n! ordered lists with the same distribution of fragments n. Accordingly, the probability of n is

n!

.
Oy

P(n) =n!P(m) =

®)

where n is the fragment distribution in m. This proves the proposition. [

The multinomial factor n! represents the multiplicity of distribution n, namely, the number of
configurations (ordered lists of fragments) represented by n. Using w(n) = n! to notate the multiplicity of
distribution, the probability of distribution is expressed as

w(n
P = 27 ©)
m;N
and Q) satisfies
Y w(n) = Q. (10)

The summation over all distributions n € &, N, namely, all distributions that satisfy Eqgs. (2) and (3).
1)

Accordingly, (3, 1 is the total multiplicity in the ensemble, equal to the number of ordered configurations

)

of fragments that can be produced from integer mass m breaking into N fragments. We refer to (0, 3 as

the partition function of the one-component ensemble of fragments.

2.1.2. Mean fragment distribution

Each distribution n appears in the ensemble of fragment distributions with probability P(n); the
mean distribution of fragments is their ensemble average:

(n) =) nP(n) (11)

with P(n) from Eq. (4) and with the summation going over all distributions that are produced by N-nary
fragmentation of integer mass m.
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Proposition 2. The mean distribution in N-nary random fragmentation is
(ng) m—k—1 m—1
NG — : 12
N N-1 N-1 (12)

Proof. First we write the probability of distribution in the form

withk=1,---m— N+ 1.

i

44

(13)

Nt =)
Pn)=——]]+
Qf:;)N i=1 it

with a; > 0 and note that this reverts to Eq. (4) when a; = 1. We will retain the factors «; and will set them
equal to 1 at the end. The normalization condition on the probability P(n) reads

oo M

1 &;
Oy = METT a9

n ;=1 "t*

The derivative of log anl;)N with respect to 7y is

dlog Q!N N1
dack - Q(l) anU

n
m;N

n
&

> = ay(ng), (15)

i
n
i

where (1) is the mean value of 1y in the ensemble of fragments. We also have

) m—1
a0,y a; 1
- :N{(N—m!E(---(nk’_l)!m)} =N\, (16)

n

The summand in the expression in the middle amounts to removing one fragment of mass k from all

1)

distributions of the ensemble; accordingly, the quantity in braces is the partition function Q ;.

Combining Egs. (15) and (16) and setting oy = 1 we obtain Eq. (12). O

Equation (12) was previously obtained by Montroll and Simha [7] via a combinatorial derivation.
Notably it is the same distribution as in discrete binary aggregation (the reverse process of binary
fragmentation) with constant kernel, derived by Hendriks et al. [17] who also credit older unpublished
work by White. For large m the fragment distribution becomes

N-2
o MU (B @

This is the continuous limit of random fragmentation of a straight line into N segments and is an elementary
result that has been derived multiple times in the literature. The earliest report known to us is by Feller
[18] who corrected an earlier approximation by Ruark [19].
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2.2. Two-component random fragmentation

2.2.1. Representations of bicomponent populations

We now consider a particle that is made of two components. The particle contains m4 units of
component A, mp units of component B and its mass is m = m 4 + mp. The distribution of fragments is
given by the two dimensional vector n = {n,; } where 1, is the number of fragments that contain a units
of A and b units of B. This distribution satisfies the conditions

Z Z Ngp = N, (18)
a=0b=0
Z 2 anu,b =My, (19)
a=0b=0
2 Z bna,b — mg. (20)

)
Il
o
53
I
o

The set &, my;n of all distributions that satisfy the above conditions constitutes the set of feasible
distributions in bicomponent fragmentation.

The color-blind size distribution or simply “size distribution” ny 5 = {n;} is the distribution of the
mass of the fragments k = a;, regardless of composition:

k
ny = nu,kfar k= 1,2 s (21)
a=0
and satisfies the conditions
Y ni=N, (22)
k=1
in; =mu + mp = m. (23)
k=1

These are the same as Egs. (2) and (3) in the one-component case for a particle with mass m4 + mp.
Accordingly, the feasible set of the color-blind distribution is &, , 4 yu;N-

The sieve-cut distribution n 4, = {1} is the number of fragments with size k that contains a units
of component A:
(a=1--k, k=1---00).

nu|k = Ny k—as (24)

and satisfies the normalizations
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Normalizing the sieve-cut distribution by the number of fragments of size k we obtain the compositional
distribution of component A within fragments of fixed size k,

Mgk
nj )

Calk = (25)

The compositional distribution is normalized to unity and may be interpreted as a conditional probability:
it is the probability to obtain a fragment with a units of A given that the fragment has mass k. The
bicomponent distribution may now be expressed in terms of the color-blind distribution n 4 g and the
compositional distribution ¢,y in the form

Ngk—a = nkca\k' (26)

If we divide both sides by the total number of fragments the result reads as a joint probability: The
probability 1, ,_,/N to obtain a fragment with mass k that contains a units of component A is equal to the
probability 1 /N to obtain a fragment of mass k times the probability c,|; to obtain a fragment with a units
of component A given that the mass of the fragment is k.

2.2.2. The ensemble of random fragment distributions

Random fragmentation in implemented by analogy to the one-component case: we line up the unit
masses in the particle into a string and cut at N — 1 places. Every cut is equally probable and so is every
permutation in the order of the beads.

Proposition 3. The probability of fragment distribution n is

Pn) = — L. (“ + b) nub 7)

mAmBN” =0b=0

where n! is the multinomial coefficient of the bicomponent distribution,

N!
n= —(—x—— (28)
[Tazo ITo=o !
and Qﬁfl,mB;N is the two-component partition function, given by
2 _ [(ma+mB\ (1)
QmA,mB;N - < my )QmA-i-mB;N' (29)

Proof. First we count the number of ordered sequences of fragments (configurations). Configurations are
distinguished by the order the fragments and by the order of components within fragments (Fig. 1). We
color the components and place them in a line in some order. There are m4 A’s and mp B’s; the number of

1)

permutations is (mAm:mB) Each permutation produces (3, ., .\ configurations with Q1) given in Eq. (6).
The total number of configurations therefore is their product and proves Eq. (29).

Since all configurations are equally probable the probability of fragment distribution n is proportional
to the number of configurations with that distribution. This is equal to the number of permutations in the
order of the fragments and in the order of components within fragments. The number of permutations
in the order of fragments is given by the multinomial factor of bicomponent distribution in Eq. (28). The
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number of permutations of components within a fragment that contains a units of A and b units of B is
(’Hb) and since there are 1, , such fragments, the total number of internal permutations in distribution n is

()™

The probability of distribution n is equal to the product of Eqs (28) and (30) divided by the total number of
configurations, given by Eq. (29):

P = ™ I (“ + b) 1)

mAmBN” 0b=0

This proves the Proposition. [
As a corollary we obtain the multiplicity of the bicomponent distribution,
b Nap
—nvl‘[]‘[<“+ > (32)
a=0b=0

Thus we write
w(n)

ey

mp,mp;N

P(n) = (33)

with Q@ =¥ w(n).
An alternative equation for P(n) is obtained by expressing the bicomponent distribution n in terms
of the color-blind distribution n4 g and all sieve-cut distributions n 4. The result is

ny ., g! Malk
P(n) = Q(ZA;—JrB H {nAk' IT ( > } (34)

mp,mpg; N
and is based on the identity
o k k Mgk
n'HH ( ) =nap! [T {na! T (a> (35)
a=0b=0 k=0 a=0
where n 4 g! is the multinomial coefficient of the color-blind distribution,

N!

Nnap I = W (36)

and n4 ;! is the multinomial coefficient of the sieve-cut distribution,

le!
no‘k!nuk! tee le|k!

n | I = (37)
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2.2.3. Mean fragment distribution

Proposition 4. The mean distribution of fragments in random bicomponent fragmentation is

(2)
<”u,b> _ (11 + b) QmA—ﬂ,mB—b}N—l (38)

N a 0®

ma,mp;N

Proof. The proof follows in the steps of the one-component problem. We express the multiplicity and the
partition function in the form

0 ap
b

wn)=NTJ]] —n” ? (39)
a=0ga=b b

Ny p
o) ,
au,b

Oy = NV TTTT

(40)
n g=0g=b n“/b!

With &, ) = (“;b ) we recover the result for random fragmentation but for the derivation we treat &, }, as a

variable. Following the same procedure that led to Eq. (12) we now obtain

(Map) Oy —amp—a;N—1
4 e —a 2 7 - . 41
N O @)

To arrive at this result we note that differentiation of the partition function with respect to &, by analogy
to Eq. (16) amounts to removing one cluster that contains a units of A and b units of B, thus producing the
partition function Q0,, , 4, —p:N—1 in the numerator of Eq. (41). Setting &, ,, = (“;’b) we obtain Eq. (38). O

Here in an alternative proof. The mean distribution can be obtained by a mean-field argument
beginning with the observation that the mean color-blind distribution is the same as in the one-component
case. This follows from the fact that the choice of the points at which the string o beads is cut is independent
of the compositional makeup of the particle (Fig. 1). Thus (ny) is given by Eq. (12) with m = m4 + mp:

(1)
<nk> _ QmAwLmeafb;Nfl
= (42)
N NG
mp+mp;N

We obtain the compositional distribution by the following construction. Imagine that all possible
distributions are stacked vertically to form a table so that column 1 contains the first fragment in all
distributions, column 2 contains all second fragments and so on. All columns are permutations of each
other (this follows from the construction of the fragments illustrated in Fig. 1) and since all permutations
are equally likely (this follows from the condition of random fragmentation), all columns have the same
fragment and compositional distribution, therefore we only need to consider one of them. The equivalent
problem now is this: count the number of ways to select a beads from a pool of m4 A’s and k — a beads
from a pool of mp B’s and take its ratio over the total number of ways to pick k beads:

e = (") () () )

The mean distribution then is the product of the size and compositional distributions:

<na|k> = (mg) <Ca|k>r (44)
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Figure 2. The compositional distribution (c,;) of bicomponent particle with m4 = 4, mp = 3into N = 4
fragments. Distributions are shown for sieve-cut sizes k = 2,3 and 4. Lines are from Eq. (38) and points are
from MC simulation after 20,000 fragmentation events.
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1
<nu,b> _ (njzA)(n;;B> Qi(nierBfufb;Nfl (45)
N (mQIZ"B) oW

ma+mp;N

It is straightforward algebra to show that this is equivalent to Eq. (38). For m4,mp > 1,a +b < my + mp
the compositional distribution goes over to the binomial:

) () g

<mA+mB) - a ¢A4)B’ (46)
a+b

with ¢y =my/(my + mp), pp =1 — ¢ 4. Figure (2) shows compositional distributions for a bicomponent

particle with m4 = 4 units of A and mp = 3 units of B. As a means of a demonstration we show the

results of a Monte Carlo simulation, which are seen to be in excellent agreement with theory. The binomial

distribution, also shown for comparison, is only in qualitative agreement because the fragment masses are

small and the conditions for asymptotic behavior are not met in this case.

2.3. Any number of components

Extension to any number of components follows in a straightforward manner from the bicomponent
case. Suppose the parent particle consists of K components A, B - - - and contains 4 units of A, mp units
of B and so on. The distribution of fragments is now expressed by the K-dimensional vector n = {n,;...}
that gives the number of fragments that contain a units of component A, b units of B etc. This distribution
satisfies

Z na,b... = N (47)
ab--
Z ZNg p... = Mz, Z:a,b... (48)
ab--

where my is the mass of component z = 4,b - - - in the parent particle. The set all distributions that satisfy
the above conditions constitutes the ensemble of all distributions that are produced by the fragmentation
of the parent particle into N integer fragments.

Random fragmentation is once again implemented as shown in Fig. 1: Given a string of colored beads
we cut it at N — 1 random points to produce N fragments. All permutations of the beads are equally
probable. Accordingly, all ordered lists of fragments (configurations) are equally probable. The number of

configurations is
(K) a m! m—1
S, =mal = (2 ) (271), )

where m = my +mp + - - - is the total mass of the particle and m! is the multinomial coefficient of the
compositional vector m = (m4,mp - - - ) of the parent. The multinomial coefficient of the compositional
vector is the number of permutations of the string of beads and the binomial factor is the number of ways
to cut it into N pieces. The multiplicity w(n) of distribution n is the number of configurations with that
distribution and is given by the number of permutations in the order of fragments and in the order of
components within each fragment:

wim =t [T (552) ™ =T o
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where c! is the multinomial factor of the compositional vector ¢ = (a,b,c---) of the fragment. The
probability of distribution n is its multiplicity normalized by the total number of configurations

P(n) 01(113\1 (51)
with
Ol = Y w(n). (52)

The normalizing factor anK; mp--;N 1S the partition function of the ensemble of distributions that satisfy the

constraints in Egs. (47) and (48).
The mean distribution of fragments is

(K)
<nc> - 'Qm—c;N—l
N =c! Q(K%\, (53)

and is the generalization of (38). Alternatively, the mean distribution can be expressed by analogy to Eq.
(44) as the product of the color blind distribution with a mean compositional distribution:

re) _ Pl e . G4

The mean color-blind size distribution (1, /N) is the same as in one-component fragmentation,

(1)
ol
() _ DNt (55)
N N0
m;N

with m = ms +mp + -+ and (c,...[¢) is the conditional probability that the compositional vector of
fragment size kisc¢ = (a,b---):

(D)) ()

This is the generalization of Eq. (43).

3. Non random fragmentation

In random fragmentation we produce permutations of the configuration of fragments at random and
accept them with uniform probability 1. We now bias the acceptance of the permutation by a functional
W (n) of the fragment distribution such that the probability of fragment distribution n in is

n)W(n
pn) = UMW) 7)

mp,mp;N
with
~ (K
mewzzwmww. (58)
n
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with w(n) from Eq. (50). These are the general forms of Egs. (51) and (52) in the bicomponent case and are
easily extended to any number of components. Here w(n) is the intrinsic multiplicity of n in the ensemble
of fragments, while the product w(n)W(n) = @(n) is its apparent (biased) multiplicity as weighted by the
bias functional and distinguished by the tilde. Similarly, the partition function Q) is the summation of the
apparent (biased) multiplicities of all distributions in &, , y,.n. With W = 1 we recover the random case.
In this sense “random” and “unbiased” both refer to the case of uniform bias.

3.1. Linear ensemble

The bias functional W will remain unspecified. This allows us to choose the bias so as to produce any
desired distribution of fragments. A special but important case is when W is of the factorizable form

W(n) = Hl;[(wu,b)"ﬂfb, (59)

where w, ,, depend on a and b but not on the fragment distribution itself. The log of the bias is then a linear
function of n:

logW(n) =YY logw,ngp. (60)
a b

The result states that the log of the bias is homogeneous functional of n with degree 1, i.e. log(An) =
Alog W(n) for any A > 0. We refer to this case as linear bias with the understanding that linearity actually
refers to the log of W.

Proposition 5. The mean distribution of fragments under the bias in Eq. (59) is

~(2)
<n§}h> = W, (ll S b> QmAfa,meh;Nfl 61)

a A

ma,mp;N
with

_ 00 ©o wn“rb I\ Mab
Qﬁl,mB;N = N! ZH H et (a) : (62)

m a=0b=0 "ab’
Proof. Using Eq. (59) the apparent multiplicity @(n) of distribution n is

@(n) = N! ﬁ ﬁ (@)™ (63)

|
a=0a=p ab’

with

k
Kgbh = Wgp (ﬂ) . (64)

The result then follows directly from Proposition 4. O

3.2. Composition-independent bias

If the bias factors are of the form w,;, = g(a + b), where g(x) is a function of a single variable, the
acceptance probability of a configuration of fragments depends on the mass k = a + b of the fragment
but not on its composition. This leads to a simple expression for the mean distribution by the following
argument. With reference to Fig. 1, fix the points where the string is cut; this amounts to fixing the size
distribution of the fragments. All permutations of the colored beads are equally probable because they
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Table 1. Closed form results for three composition-independent bias functionals

Case 1 1 <Z”\1] : 1)
Case 2 2<2}’i¢ mTﬂ_N::(;;_i)
et () (R0

tasymptotically for m, N > 1, m/N < 2

have the same value of W. Accordingly, the compositional distribution is the same as in the random case
and is given by Eq. (43). The size distribution on the other hand is biased and is the same as when the
same bias is applied to one-component distribution. The final result is

<nmw __C@ﬂ(ﬁi)<”w

— , (65)
N (mA;(rmB) N
where (1) is the one-component size distribution under bias w,;, = g(a + b),
aw ‘
<nk> :g(k> mA*FmB*k,N*l (66)
N aw
ma+mp;N
with ®
= (1) _ o1 (k)™
Oy = N ;IE el (67)

Except for special forms of g(k) the partition function will not be generally available in closed form.
Table 1 summarizes three cases for which exact results are possible. All three cases are associated with
distributions encountered in binary aggregation [20]. The partition functions in cases 1 and 2 refer to the
constant and sum kernels, respectively, and are exact; Case 3 is associated with the product kernel and
gives the asymptotic limit of the partition function for m, N > 1, m/N < 2, conditions that refer to the
pre-gel state [21].

In the general case w, ;, depends on both a and b explicitly and affects both the size and compositional
distributions. This case will be demonstrated by simulation in the next section.

4. Simulation of biased fragmentation

Except for certain special forms of the bias the mean fragment distribution cannot be calculated
analytically and the only recourse is stochastic simulation. Here we describe a Monte Carlo (MC) algorithm
for sampling the ensemble of distributions. We will then use this method to demonstrate result for two
cases of biased bicomponent fragmentation.
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4.1. Monte Carlo sampling by exchange reaction

Suppose C = ((a1,b1),- - - (an, bn)) is a configuration of N fragments such that fragment i contains a;
units of component A and b; units of component B. Since all configurations with the same distribution
have the same probability, given in Eq. (57), the probability of configuration is

W(C)
e

mp,mp;N

P(C) = (68)

where W(C) = W(n) and n is the distribution of the configuration. If the bias functional is of the linear
form in Eq. (59), its value on C is

N
W(C) = [ [wa,p.- (69)
i=1
Suppose that two fragments i and j exchange mass according to the reaction
(a1, bi) + (aj, bj) — (a3, bi) + (4}, by) (70)

under the conservation conditions a; +a; = a; + a;- and b; + b; = b; + b;-. This amounts to a transition
between configurations, C — C’, with equilibrium constant
P(C) _ W(E) _ Pauay

Koo = = = . 71
CHC P(C) W(C) wll,',biwllj,bj ( )

This has the form of a chemical equilibrium constant for the exchange reaction in (70) with w playing
the role of the activity of the species. The ensemble of fragment distributions may then be sampled via
Monte Carlo by direct analogy to chemical reactions [22]. Given a configuration of fragments, pick two
at random and implement an exchange of mass by a random amount. The resulting configuration is
accepted by the Metropolis criterion: accept if rnd < K¢ _, ¢, where rnd is a random number uniformly
distributed in (0, 1); otherwise reject. With W = 1 every exchange reaction is accepted, which amounts to
random fragmentation. We implement the random exchange between fragments as follows. We represent
fragments as a list of 1’s (representing component A) and 0’s (component B). We pick two clusters i and j
and random. We merge them into a single list, randomize the order of components, and break into two
new fragments by picking a break point at random. The randomization of the order of components in the
merged list ensures that all permutations are considered with equal probability.

4.2. Two examples

In random fragmentation (w,; = 1) the compositional distribution is given by Eq. (43). We may
choose the bias functional so as to produce deviations in either direction relative to the random case. It is
possible to produce positive deviations (preferential segregation of components in the fragments relative
to random mixing) or negative deviations (more intimate mixing than in random mixing). We demonstrate
both behaviors using the two examples below:

1. Case I (positive deviations)
Wop = (a+1)" + (b+1)° (72)

2. Case II (negative deviations)
Wep = (a+1)%(b+1)" (73)
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Figure 3. Size and compositional distributions at fragment sizes k = 2,4 and 8 for two bias functionals:
(@)~(d): wyp = (1+a)4(1+b)% (e)~(h): w,p = (1+a)* + (1+ b)% In both cases the particle contains
my = 18 units of A, mp = 18 units of B and breaks into N = 4 fragments.
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170 In Case I the fragment bias w, is an additive function of the amounts of the two components.
10 Considering that a + b is constrained by mass balance, the fragment bias is large for fragments that are rich
11 in either component but small for fragments that are relatively mixed. This ought to favor the formation of
12 fragments in which the components are relative segregated. The fragment bias in Case Il is a multiplicative
13 function of the amounts of the two components. It is large in fragments that contain both components but
12a  quite small if one component is present in excess of the other. This form ought to produce fragments that
s are better mixed than fragments produced by random fragmentation.

186 We test these behaviors in Fig. 3 which shows results for & = 4. In this example the particle contains an
1z equal number of units of each component, m4 = mp = 18, and breaks into N = 4 pieces. In both cases the
s size distribution deviates from that in random fragmentation. Indeed the bias influences both the size and
10 the compositions distribution unless its is of the special form w, ;, = g(a + b). Compositional distributions
10 are shown for sieve-cut masses k = 2, 4 and 8. The additive bias (Case I) produces distributions that are
11 more spread out relative to the random case. For k = 2, in particular, the compositional distribution is
102 inverted relative to the random case, indicating strong segregation as the majority of fragments contains
13 pure component A or B and only few fragments in this size contain both components. As the fragment
10s  size increases the separation of components is less strong but always present, as indicated by the fact that
15 the random distribution is always narrower. The opposite behavior is observed in Case II: distributions
106 are narrower than those in random fragmentation, especially at the smaller fragment sizes.

197 As a general trend in both cases, small fragments are less mixed while large fragments progressively
s approach the distribution of random fragmentation. This is because there are not enough units of each
199 component to produce large fragments that consist predominantly of one component. This limitation is
20 not present when the fragment size is small.

2010 5. Discussion and Conclusions

202 We have presented a treatment of multicomponent fragmentation on the basis of random
203 fragmentation in combination with an appropriate functional that biases the ensemble of feasible
20 distributions. The two key notions in this treatment are the set of feasible distributions and the multiplicity
20 of distribution within this set as established by the rules that define “random” fragmentation. In the
206 random-fragmentation ensemble distributions are proportional to their multiplicity. This problem is
20z analytically tractable and we have presented its solution for any number of component and number of
20 fragments. A third key notion is that of the bias functional that modulates the probability of distributions
200 Of feasible distributions and allows us to obtain fragment distributions other than that of random
210 fragmentation.

211 It should be pointed out that the random case is not endowed with universal physical significance
212 but applies in certain cases such as the linear chain in Fig. 1. In this particular case selecting the bonds to
213 break at random might be a reasonable physical model, as Montroll and Simha [7] explain. The primary
z1a significance of random fragmentation is mathematical. Similar to the “fair coin” or the “ideal solution,”
x5 it provides an analytically solvable baseline (“reference state”) from which to calculate deviations. The
=6 mathematical tool that quantifies these deviations is the bias functional. This functional permits the
z7  systematic construction of distributions that exhibit any degree of deviation from the random case. This is
= main result of this formulation. The fragment distribution per fragmentation event is one of two elements
210 required in order to build a population balance model of a fragmentation process. The other element is the
220 rate at which particles break up. This question is not addressed here beyond the generic observation that
221 this rate must be a function of the compositional vector m = (n,4, mp - - - ) of the particle.

222 In single-component fragmentation the quantity of interest is the mean size distribution of the
223 fragments. In multicomponent systems we are additionally concerned with the compositional distribution.
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22 This introduces a new dimension to the problem and raises questions of mixing and unmixing of
22 components. Do fragments inherit the compositional characteristics of the parent particle? Do they
226 become progressively more well mixed or less? Both behaviors are possible and are quantified via the
227 bias functional W. This functional is where the mathematical theory of fragmentation presented here
22 makes contact with the physical mechanisms that lead to the disintegration of material particles. To make
220 this connection quantitatively, one must begin with the a physical model of fragmentation that assigns
230 probabilities to all possible distributions of fragments that can be generated. This is a major undertaking
21 and is specific to the particular problem that is being considered. The point we wish to make is that the
232 formulation presented here offers an entry point to physics via the bias functional.

233 Lastly, the connection to statistical mechanics should not be lost. We have constructed an ensemble
23s ' whose fundamental element (“microstate”) is a the ordered configuration of fragments; its total number
235 in the ensemble is the partition function. The higher-level stochastic variable (the observable) is the
236 distribution of fragments and its probability is determined by its multiplicity in the ensemble. The form
27 of the probability in Eq. (13), also known as Gibbs distribution [23], is encountered in time reversible
23s  processes as well as in population balances of aggregation and breakup [17,23-26]. The derivation of the
23 mean distribution in the random case follows in the steps of the Darwin-Fowler method [27]. Additionally,
2e0 the compositional distribution in random breakup is given asymptotically by the binomial distribution in
22 Eq. (46). This establishes a reference for compositional interactions analogous to that of the ideal solution
2a2  in thermodynamics. In fact, the Shannon entropy of the binomial distribution is the ideal entropy of mixing
2a3 ' when two pure components coalesce into a single particle that contains mass fraction ¢4 of component A.
2es  These connections are not coincidental. Biased sampling from a distribution generates a probability space
a5 of distributions and when the base distribution is exponential, this ensemble obeys thermodynamics [22].
26 In fragmentation the base distribution is a multicomponent exponential: the size distribution in Eq. (12)
2az  goes over to the exponential distribution when m, N >> 1. In this limit the ensemble of fragments becomes
2ee Mathematically equivalent to a thermodynamic ensemble of two components with interactions that lead
2e0  to positive or negative deviations relative to ideal solution.
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