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Abstract: Background: The skin prick test (SPT) is used to diagnose sensitization to antigens. This
study proposes a deep learning approach to infer wheal dimensions, aiming to reduce dependence
on human interpretation. Methods: A dataset of SPT images (n=5844) was used to infer a
convolutional neural network for wheal segmentation (ML model). Three methods for inferring
wheal dimensions were evaluated: the ML model; the standard protocol (MA1); and approximation
of the area as an ellipse using diameters measured by an allergist (MA2). The results were compared
with assisted image segmentation (AIS), the most accurate method. Bland-Altman, distribution
analyses, and correlation tests were applied to compare the methods. The study also compared the
percentage deviation among these methods in determining the area of wheals with regular
geometric shapes (n = 150) and with irregular shapes (n=150). Results: The Bland-Altman analysis
showed that the difference between methods was not correlated with the absolute area. The ML
model achieved a segmentation accuracy of 85.88% and a strong correlation with the AIS method
(0=0.88), outperforming all other methods. Additionally, MA1 showed significant error
(13.44+13.95%) for pseudopods. Conclusions: The ML protocol can potentially automate the reading
of SPT, offering greater accuracy than the standard protocol.

Keywords: deep learning applied to diagnosis; prick test; measurement of wheal area; IgE response;
sensitization to antigens

1. Introduction

The skin prick test (SPT) is a relatively simple and easy-to-perform immediate reading test for
immunoglobulin E (IgE)-mediated reactions, but its accuracy can be limited by the need for human
interpretation [1,2]. The measurements of the wheal dimensions appearing on the skin after the
puncture are made manually, which can cause different types of errors due parallax, instrument
resolution and human error. In this way, the evaluation of the allergic reaction depends on the
examiner [3]. Since the wheal area is proportional to the degree of sensitization (i.e., the stronger the
immune response, the larger the wheal), this parameter is considered the main indicator for
diagnosing an SPT [4,5]. A positive diagnosis is typically based on a wheal diameter 3 mm larger than
the negative control and greater than half the diameter of the histamine response [6].

Subjectivity in wheal assessment arises from variations in its geometric contour, leading to
inconsistent readings by different examiners or even by the same examiner at different times [3]. As
illustrated in Figure 1, wheals can exhibit irregular geometric contours, further contributing to
interpretation challenges [7]. Skin pigmentation presents another complication, making it difficult to
identify the reaction outline [8]. Additionally, wheal location (e.g., volar vs. infrascapular region) can
influence the result [9].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Prick Test photography illustrating different wheal areas.

Standardized methods are necessary to address subjectivity in wheal assessment and improve
diagnostic consistency. Several approaches have been proposed utilizing cameras, thermographic
cameras, and computer-aided color analysis [7,8,10-14]. However, all these proposed techniques
require specialized high-cost equipment, limiting their widespread adoption in clinical practice.

Machine learning techniques and deep learning algorithms have emerged as powerful tools for
image-based clinical diagnostics. Studies have shown that machine learning-generated classifier
models outperform human evaluators in determining geometric parameters from images, such as
area, radius, perimeter, and measures of shape complexity (compactness, smoothness, concavity)
[15,16]. Semantic image segmentation is a machine learning technique utilizing deep learning
algorithms (specifically artificial neural networks), which is particularly suitable for this application.
It infers models to identify patterns in the image and classify pixels into predefined segments (or
labels), allowing an accurate segmentation of the wheal area, which is a crucial requirement in SPT
diagnosis [17].

This work aimed to develop a computational protocol based on deep learning to apply the image
segmentation technique in test reading to improve SPT measurement techniques.

2. Methods
2.1. Acquisition of Skin Prick Test Photos

SPT photos, used to compose the training/testing dataset, were acquired from volunteer patients
who agreed to participate in this research after signing informed consent. 1461 photos were acquired
using smartphones of different brands/models, camera configurations, or operating systems. The SPT
was performed according to the established method by European Academy of Allergy and Clinical
Immunology [6]. Immediately after 15 minutes of puncture application: i) a square-shaped tag in
chroma key color, named as reference tag (RT) and with known dimensions (3 cm x 3 cm), was placed
on the forearm or upper back near the formed wheals; ii) the smartphone was positioned in parallel
to test region at a distance which varied between 10 cm to 30 cm; 7ii) the focus set-up was performed
and then; iv) the photo was captured. Figure 2(a) illustrates a sample of photo acquired using this
method.


https://doi.org/10.20944/preprints202408.1932.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 doi:10.20944/preprints202408.1932.v1

Figure 2. Illustration of: (a) the original photograph and (b) the respective labeled image (manually
segmented).

2.2. Dataset Standardization

The SPT photos were edited using Corel Photo-Paint and Inkscape software to create segments
(or labels) in magenta color (R =255, G =0, B =255) for the pixels corresponding to the wheal area, in
black (R=0, G =0, B =0) for the pixels corresponding to the RT and in red (R =255, G =0, B =0) for
the other pixels of the image. Figure 2(b) shows an example of labeled SPT. In addition, ImageMagic
software [18] was used to resize the images to a size of (640 x 480) pixels in order to standardize the
dataset and reduce the computational cost of image processing.

In machine learning models, overfitting occurs when a model becomes too specialized to the
training data and performs poorly on unseen data. To enrich the dataset further and potentially
reduce the overfitting of the deep learning model, a technique called data augmentation was
employed using the ImageMagic software [18-20]. Geometric transformations were applied to the
SPT images to make deep learning model independent to changes in images position and orientation.
For this purpose, each image underwent a sequential transformation process: i) horizontal mirroring,
if) 180° rotation, and finally, iii) another horizontal mirroring. This process effectively quadrupled the
dataset size, resulting in 5844 images used for model training.

2.3. Machine Learning Model Training and Wheal Clustering

A generic and extensible fully convolutional neural network (CNN) developed by [21] was used
to train the ML model for wheals segmentation. The CNN was implemented in Python environment
using the TensorFlow library [19] and this network is based on the VGG-16 architecture [20]. A
Python algorithm was developed using Open Source Computer Vision Library (OpenCV) [21] to
determine the area of each wheal after the segmentation. The algorithm first performs the pixel
clustering of the instances classified as wheal by the ML model. Finally, the clustered pixels are used
to estimate the individual wheal area using a simple proportion between the number of pixels of a
wheal and the number of pixels of the RT, which has known area.

2.4. Evaluation of the Machine Learning Model Performance

An independent validation dataset consisting of 30 images containing 150 wheals was
established to evaluate the performance of the proposed computational protocol. The images were
obtained and segmented following the same procedures described in sections 2.1 and 2.2, with one
key difference: a qualified allergist marked the contours of the wheal with a pen, which was used as
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a guide for the images manually labeling. This process, here referred to as assisted image
segmentation (AIS), provided a reliable reference for assessing the ML model performance.

Two types of accuracy were determined for the deep learning model evaluation: Detection
accuracy and Segmentation accuracy. Detection accuracy was determined using equation (1). In equation
(1), the Type I error means the detection of non-existing wheals. The Segmentation accuracy was
evaluated from the variables of a confusion matrix determined by a cluster of pixels around the wheal
(described in section 2.3). The expected labels used in these analyses are those generated by the AIS
method. The choice of a cluster evaluation (and not for the whole image) was due to the large number
of non-wheal pixels in the images, leading to overestimating the ML model segmentation accuracy.
The model’s segmentation performance was determined as the mean of the segmentation accuracies
of the 144 correctly detected wheals.

Correct detection

Detection accuracy (%) =

= x 100 1
Expected detection + Type I errors M

The agreement between the inferred model (ML) and the standard medical method (largest
diameter of the wheal, Medical LD, and its perpendicular diameter, Medical PD, measured by a
professional) was evaluated based on the concordance analysis proposed by Bland and Altman [22].
In order to compare the methods, we estimated the wheal area values from the Medical LD and
Medical PD using equation (2) and equation (3), where, MA1 and MA2 are two different ways to
compute the wheal area. Paired Wilcoxon signed rank tests [23] and correlation tests were also
performed between the area values obtained by each method. Finally, the cumulative distribution
function was determined for the areas estimated using the four methods (ML, AIS, MA1 and MA2).

, . 2
MA1(em?) = 1 ((Medlcal LD (cm) +2Medlcal PD (cm))/2 ) @)
MA2(cm?) = 1 % Medical LD (cm) 9 Medical PD (cm) 3

2 2

All these analyses were performed using the R software (version 4.2.2, R Foundation for
Statistical Computing, Vienna, Austria) [24] and Python3 (version 3.9, Python Software Foundation)
[25].

2.5. Comparison of Area Estimates for Reqular and Irregular Geometric Shapes Using Different Methods

Previous studies have demonstrated that computationally assisted methods can deviate from
the standard protocol for measuring wheal dimensions, particularly when dealing with irregularly
shaped wheals [26]. To evaluate these potential divergences, two distinct groups of segmented
images were created. The first group (Group 1 — Regular Shapes) consists solely of shapes with
regular outlines, which can be approximated by circles or ellipses. The second group (Group 2 -
Irregular Shapes) is comprised exclusively of shapes with highly irregular geometric contours. Figure
3 presents a sample of each group here described. In all images, a square with known dimensions (3
cm x 3 cm), similar to the RT, was inserted to provide a scale for determining the shapes diameters
and areas.

The image files from Group 1 — Regular Shapes and Group 2 — Irregular Shapes contain 10
different segmented shapes (as shown in Figure 3). Each group was comprised a total of 15 images
files, resulting in 150 shapes for Group 1 and 150 shapes for Group 2. The shape pixels in each image
were clustered using the protocol proposed in this study (see section 2.3). This procedure allowed us
to estimate the shape areas in a similar way to ML and AIS methods. Additionally, the largest
diameter (Computational LD) and diameter perpendicular to the largest diameter (Computational PD)
were computationally determined. With these parameters, the shape areas were also estimated by
the mean diameter (similar to equation (2)) and the product of half the diameters (similar to equation
(3)). We also assessed the area of the figures using the function “pixel distribution histogram”,
available in Corel Photo-Paint software, here referred to as Corel Area. The percentage deviation
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between the methods was calculated and used to evaluate their performance in predicting the areas
of shapes with regular and irregular geometric contours.

Figure 3. Sample of a segmented image containing only: (a) shapes with regular geometric contour;

(b) shapes with irregular geometric contour. The shapes are colored magenta and the RT is colored
black.

3. Results

The proposed ML protocol was able to segment and cluster wheals in SPT images. The area of
each wheal was estimated using a simple proportion between the number of pixels from RT (with a
known area) and from the segmented wheal. ML protocol generated an image containing the
segmented wheals, each one identified with a number, accompanied by a report in the upper left
corner summarizing the wheal areas in cm? Figure 4 shows an example of an SPT image
segmentation performed by the ML protocol.

Figure 4. An example of an image containing the segmented wheals identified by a number and a
report in the upper left subtitle containing the wheal areas in cm?.

The ML model for wheals segmentation had its performance measured on a validation dataset
with 30 different images and 150 wheals. In this dataset, 9 wheals were not correctly detected, with 3
detections of non-existing wheals (Type I error) and 6 wheals that existed but were not detected (Type
IT error), which resulted in a Detection accuracy of 94.12%. Segmentation accuracy on the remaining 144
wheals was determined using the confusion matrix variables, and the average accuracy measured for
the validation dataset was 85.88%.

The paired Wilcoxon signed rank test showed a statistically significant difference between the
areas MA1, MA2, AIS, and ML (p-value < 0.001 in all tests). Despite this result, the Bland-Altman
analyses (Figure 5) indicated that the difference between the measurement methods is concentrated
around a bias (mean difference), indicating no correlation between the difference obtained between
the measurement methods and the magnitude of the variable area.
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Figure 5. Bland-Altman analyzes for: (a) ML x MA2, (b) ML x AIS, and (c) MA2 x AIS. Correlation
plots between: (d) ML and MA2, (e) ML and AIS, and (f) MA2 and AIS. It should be noted that the
slope of the lines is close to 1.0 while the intercepts are close to the Bland-Altman bias value, especially
in the line relating the AIS and ML methods. The results for MAI and MA2 are similar and, for
simplicity, the graphs for MA1 are not presented in this figure.

We also determined the cumulative distribution function of the areas estimated by the four
methods ML, AIS, MA1 and MA2 (Figure 6). This analysis confirmed the statistically significant
difference observed in the paired Wilcoxon signed rank test, also clarified that the distributions can
be superimposed by shifting the curves in the bias value. Thus, biases can be used to relate the areas
obtained by different methods. Furthermore, the different methods can also be related using linear

equations.
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Figure 6. Cumulative distribution functions for the areas estimated by the four methods for the: (a)
original data, and (b) adding the bias between ML, AIS, MA1 and MA2.

It can be noted in Figure 5 and Figure 6 that there is a uniform pattern in the scatter of points in
all analysis performed for MAI or MA2, and it should be clarified that this does not represent a bias
in the dataset. This pattern occurred because the MAI and MA2 were determined using a measuring
instrument with precision of 1 mm. As a result, the graphical representation of these values (or the
direct analyses performed with them) tends to show a pattern of points discretization. However, this
pattern was not observed for the ML and AIS methods. This difference can be explained by the fact
that the computational variables used to determine the area of the wheals were declared as floating
types (i.e., real numbers), which have a precision of 10-%. This precision is relatively high, so the graphs
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for the results from ML and AIS methods did not show point discretization This consideration is
important because it highlights that the conventional method of determining wheal dimensions has
an accuracy limited by the precision of the measuring instrument used for the SPT (not to mention
other possible sources of error). In contrast, the computational method performs a pixel-by-pixel
analysis, in which the accuracy is limited by the image resolution. Generally, any current smartphone
can capture images with sufficient resolution to surpass the accuracy obtained using the MA1 and
MA2 methods.

The following results show the performance of the methods evaluated in this study to determine
the PD, LD and area of shapes with regular geometric contours (circles or ellipses) and irregular
geometric contours (corresponding to pseudopods). The proposed method for determining
Computational LD and Computational PD values yielded results that closely matched the
mathematically expected LD and PD values for the regular images. Figure 7 illustrates an example of
an image from each group (regular shapes and irregular shapes) where Computational LD and
Computational PD were calculated. For the regular shapes in Figure 7(a), the mean percentage
deviations Computational LD and Computational PD were 0.3754% and 0.5410%, respectively. The
minor deviations observed in the regular shapes are likely due to the fact that the images represent
circles and ellipses rather than ideal mathematical objects. Since our computational method for
determining the diameter is invariant to the geometric shape and relies solely on the estimate of the
geometric center (easily determined by averaging the coordinates of the shape), we believe that this
method provides accurate estimates of Computational LD and Computational PD for the irregular
dataset. This accuracy is further confirmed visually.

Figure 7. Computational LD and Computational PD determined for the (a) regular and (b) irregular
geometric shapes of the segmented images presented in Figure 3. This figure demonstrates that the
computationally determined diameters serve as reliable estimates of LD and PD.

The LD and PD are required parameters for evaluating the accuracy of the standard medical
protocol (MAI) used to infer wheal dimensions. MAI assumes that the wheal contour can be
approximated as an ellipse, where LD represents the major axis and PD represents the minor axis.
Thus, the area of the wheal can be estimated as describe in the equation (2). In cases where LD = PD,
the ellipse then has approximately the shape of a circle and the area can be calculated by the equation
A = *(LD/2)~ However, in this study, we propose that approximating wheal area as an ellipse may
be inaccurate, particularly for wheals with irregular contours. Instead, we suggest that using a simple
proportion between the pixels count from RT and pixels count from wheal may provide more
accurate results regardless of the shape of the wheal. To support the proposed statement, the results
for two distinct groups of shapes are presented below: Group 1 — Regular shapes and Group 2 -
Irregular shapes. The cumulative distribution of the area values estimated by the different methods
and the boxplots of the percentage deviation values between the methods were determined for both
groups, and the analyses are shown in Figures 8 and 9.
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1-Regular shapes; in (b) Group 2 — Irregular shapes. The Expected Area was calculated from the axes
defined to create the ellipses and circles, the Corel Area was determined using the pixel distribution
histogram function available in the Corel Photo-Paint software and similar to the AIS Area, MA1 and
MA2 were calculated similarly to the AIS (or also to the ML area), MAI and MA2, respectively. Note
that for similar to MAI and similar to MA2 the computationally determined diameter was used.
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Figure 9. Boxplot for percentage deviations of area values between different methods for: (a) Group
1 — Regular shapes and (b) Group 2 — Irregular shapes. In (a) the values obtained by the different
methods were compared with the Expected Area. The boxplot for Similar to MAI was omitted for
clarity; its minimum, mean, and maximum values were 0.02%, 5.65% + 13.04%, and 96.10%,
respectively. In (b) the boxplot names were coded for better illustration, and their meanings are: (1)
similar to AIS x Corel Area; (2) similar to AIS x similar to MA2; (3) similar to AIS x similar to MAI; (4)
Corel Area x similar to MA2; (5) Corel Area x similar to MAI; and (6) similar to M A2 x similar to MAI.

In Group 1 - Regular Shapes, the mean percentage deviations of the Corel Area, Similar to AIS,
and Similar to MA2 values relative to the Expected Area were 3.82% * 1.97%, 1.38% + 0.64%, and
1.18% + 0.94%, respectively. It is noteworthy that although the mean deviation of values calculated
similarly to AIS is slightly higher than that calculated similarly to MA2, the maximum deviation for
values similar to MA2 is greater (4.31% compared to 3.33%). Overall, all methods performed well in
estimating the area of regular shapes, among them the least effective were Corel Area and similar to
MAL.

The area calculation method similar to AIS (simple proportion using an RT) is invariant to the
geometric shape of the figure and showed low deviations from the expected areas in Group 1 —
Regular Shapes. Therefore, we used this method as a reference for analyzing irregular figures, as we
had no mathematical means of determining their expected areas. In Figure 9-(b), it can be seen that
the order of adherence to the area values calculated similarly to AIS was in decreasing order: Corel
Area, Similar to MA2, and Similar to MA1 (boxplots (1), (2), and (3)). This result is consistent because,
although the areas calculated using Corel Photo-Paint pixel distribution histogram function exhibited
larger deviations than methods similar to AIS and similar to MA2 in regular figures, this method is
also invariant to geometric shape and seems to have maintained the magnitude of its deviations
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relative to values calculated similarly to AIS. In contrast, MAI and MA2 are approximations highly
dependent on the geometric shape of the figure, resulting in larger deviations from the expected area
values. What should be emphasized in these results is that for figures with irregular contours, the
standard medical protocol can lead to large deviations from the expected area values, thus
compromising the quality of the diagnosis.

4. Discussion

Regarding the three instances that presented type I errors in the validation dataset, it was
observed that two puncture marks in the negative control were detected as wheals. The third type I
error is shown in Figure 10 and refers to a small reddish mole on the patient’s arm that was segmented
by the ML model. The light conditions used to take the picture, the patient’s skin color, or the small
size of the wheal were possible causes of type II errors. Although the detection accuracy was
considered satisfactory, both error types tend to decrease with the increment of the number of
instances (images) in the training dataset, which can be performed and evaluated in future studies.
In addition, for clinical uses of the ML approach, it is expected that the wheal segmentation performed
by the ML model will always be interpreted and validated by a health professional since the developed
protocol aims to provide a tool to support humans to perform a faster and more accurate diagnosis,
and not replace them.

Figure 10. (a) Patient’s arm 15 minutes after the punctures. (b) ML model segmentation where a type

I error was identified.

The cumulative distribution functions confirm that the ML method produces measures closer to
the AIS distribution than the MAI and MA2. Moreover, the values obtained by the ML method have
a more continuous distribution than those obtained by the Medical Diameters, which may indicate a
higher analysis resolution. This characteristic probably occurred because the Medical Diameters has
its resolution linked to the graduation of the instrument used to measure the wheal diameter (usually
a ruler or caliper). In contrast, the ML and AIS methods perform a pixel-by-pixel analysis.

The Pearson correlation coefficients between the measurement methods are shown in Figure 5.
A strong correlation was found between the areas inferred through the ML and AIS methods (0=0.88),
which was considerably more significant than the correlation between the AIS and MA1 (0=0.80) and
MA2? (0=0.82) and was consistent with the results of Bland-Altman’s analysis. In previous studies
carried out by our group [26], we determined a statistically significant Pearson correlation coefficient
between skin temperature variation in the wheal (during the SPT) and the area determined by a
similar AIS method. Since the ML method had a strong correlation with the AIS method, it is
reasonable to assume that the ML method is also associated with the wheal temperature during the
skin sensitization reaction, which is a characteristic known to be proportional to the intensity of
sensitivity to the antigen.

Some patients with high levels of sensitization to an antigen may be more susceptible to
developing wheals with irregular contours and the formation of pseudopods [27]. In these cases,
approaches that use medical diameters to infer sensitization may not be the most appropriate. These
methods approximate wheal areas using only the values of LD and PD (or by calculating the mean
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of both diameters) [4,6]. In other words, the method for determining the area of the wheals
approximates the sensitization area by assuming an elliptical shape, in which the major axis
corresponding to LD and the minor axis to PD, or alternatively, by using a circle with a diameter
equal to the average of LD and PD. However, for irregular shapes, such as pseudopods, this
approximation may differ significantly from the real area of the wheals, as our results suggest.
Moreover, the standard protocol to infer skin sensitization can be associated with other problems,
such as parallax error, which may further reduce diagnostic accuracy.

It should be highlighted that the standard medical protocol for inferring the area of skin
sensitization was developed based on the measurement tools that were available and feasible at the
time the protocol was defined. These instruments are essentially tools for measuring linear
dimensions, such as rulers or calipers. However, our results, along with findings from other studies,
indicate that new technologies can be used to more accurately determine the area of skin
sensitization. All of exposed here points to the need to review and update the standard prick test
protocol to improve diagnostic accuracy.

In this study we propose that segmentation techniques using deep learning or other
computationally assisted methods can be applied to determine the wheal areas. These techniques can
be fully automated, making the prick test diagnosis entirely objective and independent of the
professional’s experience or interpretation when measuring the wheal dimensions. Additionally, the
need for manual measurement using tools such as rulers or calipers is eliminated, saving time for
both the professional and the patient. The proposed methodology can also expedite patient care,
potentially leading to significant cost savings for healthcare services performing the SPT.
Furthermore, it can be easily integrated into hospital information systems, facilitating the generation
of reports and medical records that include SPT images and patient history.

5. Conclusions

The results show that the measurements performed by the developed ML method were
consistent with those from the other evaluated methods (AIS and Medical Diameters). Specifically,
for figures with irregular contours, the proposed method for calculating the area provides more
accurate estimates compared to methods based on medical diameters. These findings suggest that
the proposed protocol has the potential to automate the reading of the SPT reaction and can be used
objectively in clinical practice. However, further extensive studies are needed, primarily to
standardize the use of area values for diagnosing antigen sensitization during the SPT. These results
highlight the need to review the prick test protocol in light of the new technological tools currently
available.

6. Patents

The method presented in this paper resulted in a computer program registered at Brazil's
National Institute of Industrial Property (INPI) (Process No.: BR512021000570-8).
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