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Abstract: Over 400 articles on the pathophysiology of brain aging, neuroaging and
neurodegeneration were reviewed, with a particular focus on epigenetic mechanisms and numerous
non-coding RNAs, in particular microRNAs, the discovery of whose pivotal role in gene regulation
was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process
that can be easily modeled and described. Instead, multiple temporal processes occur during aging,
and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a
combination of external and internal factors and can be boosted in accelerated aging. The rate can
decrease in decelerated aging due to individual structural and functional reserves created by
cognitive, physical training or pharmacological interventions. Neuroaging can be caused by genetic
changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental
factors, which is especially noticeable in space environments where adaptive changes can trigger
aging-like processes. Numerous candidate molecular biomarkers specific for neuroaging need to be
validated to develop diagnostics and countermeasures.
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1. Introduction

Traditionally, both the passage of time and aging have been viewed as uniformly occurring
processes, independent of any conditions and circumstances. Accordingly, the rate of aging was
assumed to be constant over time. In the last century, physics has undergone fundamental
changes, providing a new universal understanding of the unification of space and time into
space-time. As suggested by theories of relativity, the speed of time differs on the ground and in
low Earth orbit (LEO), which has anumber of practical applications, such as the need to adjust GPS
satellite clocks daily by subtracting 38 microseconds [1].

In 1888 and 1895, H. Wells’ fiction novels introduced the idea of traveling in time. In 1911,
physicists formulated the Twin Paradox that took hold of minds since it illustrated time dilation
and decelerated aging. In this paradox, one of two twins takes the spaceflight at near-light speed
to a distant star and later returns to Earth. Upon return, he will be younger than the twin
brother (Figure 1A) according to Einstein’s special relativity [2].

However, biomedical observations have not supported the idea that spaceflight can slow down
the aging processes; in fact, it has been found to accelerate aging (Figure 1B) [3-16].

In vitro models [17-20] and in vivo simulators [21-23] showed that artificial microgravity (MG)
also revealed the phenomena of accelerated aging (AA). These results suggest the need for further

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202502.0493.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2025 d0i:10.20944/preprints202502.0493.v1

2 of 39

research into the effects of AA and its prevention [24-28]. The necessity of countermeasures and
the prophylactics of AA in future space missions serves as motivation for further studies.

Time A

Figure 1. Aging scenarios of future interstellar space travel (see text for details). A. Relativistic Twin Paradox

scenario; B. More realistic scenario.

The process of aging is linked to alterations in both structure and function, leading to heightened
susceptibility to diseases and mortality [29-31]. Various factors contribute to aging including the
accumulation of damage due to mutations, epigenetic changes, oxidative stress, and inflammation
[32,33]. Physiological or biological age (BA) is defined as the current state of an individual as a
biological system. The state of such a system is determined by a combination of biological parameters
that affect life expectancy. These parameters include the current profile of genomic DNA methylation,
age-associated structural changes in the brain, metabolic parameters, etc.

In normal aging (NA), BA is equal to chronological age. If aging is accelerated, as in cases of
pathological aging, then biological age surpasses chronological age. In decelerated aging, BA
becomes lower than the official age [34-36]. While AA shares common features with NA, AA
stands out due to distinct characteristics like protein aggregation and excitotoxicity that are
exclusive to pathological aging [37-39]. Understanding mechanisms of aging opens opportunities
for targeted treatment of the diseases that occur late in life [37].

AA represents a research field characterized by lingering challenges, including inconsistent
terminology and poorly understood mechanisms [40,41]. Researchers have not reached an agreement
on whether neurodegeneration (ND) is a type of AA or its outcome.

An alternative view suggests that particular biomarkers (BMs) are specific to ND and do not
recognize AA [42—46]. In practice, no diagnostic BMs can prognosticate AA reliably [47-58].

Certain discrepancies between AA theories need to be addressed. Some hold that senile
plaques are common neuropathological features in both healthy aging and ND, and that cerebral
amyloid deposition is not necessarily associated with clinically apparent cognitive dysfunction.
The development of cognitive deterioration requires additional factors, such as neuronal or
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synaptic loss or widespread cytoskeletal aberrations [59]. According to these studies, mesial and
inferior temporal lobe structures are quite often affected by the formation of neurofibrillary tangles
in NA of the brain [60]. Other authors have presented evidence to support the opposite theory,
suggesting that the early pathological changes associated with the disease represent the onset of ND
and cerebrovascular disease rather than normal concomitants of aging [61]. In this way,
neurofibrillary tangles formation may precede the emergence of the neuropsychological deficits
typical of Alzheimer’s disease (AD) [60,61] therefore the understanding of the sequence of brain aging
processes and their rates can be updated.

2. Objectives

Main objectives of this review are:

- to pinpoint several groups of promising molecular biomarkers of aging with a special
emphasis on various non-coding RNAs (Section 3);

- to draw a parallel between aging in spaceflight and on Earth and to consider the rates of
aging through the lens of space biomedicine (Section 4);

- to discuss the applicability of the AA concept in the field of aging neuroscience, taking into
consideration its limitations (Section 5);

- tooutline a roadmap for the future of aging neuroscience (Section 6).

3. Biomarkers of Aging

Fields of research on aging and ND are closely related as aging is the primary risk for the
development of brain ND, especially AD, however, these diseases are not part of normal aging.
Many theories claim to explain the etiology of AD (Table 1) including neurocentric and
neurovascular hypotheses. At first, the research was primarily concentrated on neurons. Later,
the importance of non-neural cells in higher brain functions was recognized. Particularly, the
hypothesis refers to a neurovascular unit (NVU) which is a dynamic multicellular structure
mediating functional interactions between blood vessels and brain tissues [62]. The neural cells in
the NVU and circulating immune cells secrete proinflammatory mediators contributing to
inflammaging and endothelial disfunction. These changes disrupt molecular networks, induce
BBB damage and lead to NVU degeneration [63-69]. However, the exact role of an NVU in ND
remains to be elucidated and reliable ND-associated biomarkers to be found due to the puzzling
complexity of the NVU signaling and metabolic pathways [70-73].

Table 1. Top 10 traditional and alternative hypotheses for AD etiology.

Hypothesis Evidence References
1 Ap cascade Extracellular deposits of Af [74]
2 Tau Tau aggregation in NFTs [75]

Pro-inflammatory cytokines secretion in

3 Inflammation [76-78]
plaque zone
4 Excitotoxicity Excitotoxicity promote_s Ce'll death and [79,80]
neurodegeneration in AD

5 Cholinergic  Damage of cholinergic neurons associated [81-83]

system with dementia in AD

Dopaminergic Decreased levels of dopaminergic neuro- [84,85]

6 . . .

system mediators linked with AD

. ; lati
7 Oxidative stress Oxidative stress increases accumulation [86-88]
of AB

8 APOE / TREM2 Impacts of APOE and TREM2 are [89-91]

significant risk factors of AD
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NVU dysfunction plays crucial role in [92,93]

? NV Unit AD pathogenesis

Gut microbiome affects neurogenesis,
10 Gut microbiome blood-brain barrier, glia formation, and [94-96]
can mediate AD

Aging molecular biomarkers (MBMs) are biomolecules or their derivatives characterized by
measurable parameters that can be used to estimate the progression of aging [97]. Aging MBMs
include mRNA transcripts, proteins [98], telomere length, serum markers molecules [99], DNA
methylation parameters [100,101], modifications of histones [102-113], differentially expressed
genes [73,114] or non-coding RNAs [115-118].

Recent research has questioned whether age affects different cell types in the NVU. The study
resulted in candidate biomarker genes related to AA (AAG): IGFIR, MXI1, RB1, PPARA,
NFE2L2, STAT5B, FOS, PRKCD, YWHAZ, HTT, MAPK9, HSPA9, SDHC, PRKDC and PDPK1.
Differential expression of IGFIR, MXI1, PPARA, YWHAZ and MAPKY9 correlated with ND
progression though, it was not possible to justify AAGs as MBMs due to an insufficient sample
size [73].

ND is a consequence of various structural alterations occurring across distinct genetic sites
over a span of time [119,120]. High risk of developing AD is associated with alterations in certain
genes that predispose to ND (NDG): GBA1, APP, PSEN1, MAPT, GRN, SETX, SPAST, CSFIR,
CY9orf72 [121], TET2 [122], TBK1 [123], TOMM40, APOC1 [124], APOE [124,125] and TREM2 [126-132].
Nevertheless, the gene sets do not overlap across the studies on AAGs and NDGs. In addition, the
APOE e4 allele and mutation spectrum for TREM2 gene were found to be the risk factors for developing
dementia with Lewy bodies, multi-cognitive decline and corticobasal degeneration [132-141].

DNA methylation level reflects the rate of aging. Approximately 1.5% of genomic DNA contains
5-methylcytosine (5-mC), and the level decreases during ontogenesis [142]. The level of 5-mC is the
highest in embryos, and then it reduces gradually across life [143,144]. In aging, global genomic
DNA hypomethylation proceeds along with hypermethylation of CpG islands (“epigenetic drift”)
whereas 60% of them associated with gene promoters and transcriptional regulome [145,146].

In NA, age-predictive models demonstrate gradual linear changes in the DNA methylation
profile, but environmental or genetic risk factors can accelerate aging [147]. In monozygotic twins,
the divergence of the methylome increases at different rates [148].

Change of the DNA methylation profile was proposed as a mechanism of an epigenetic clock
[149-151] by analogy with a biological clock [152,153]. Monitoring deviation between biological and
chronological age helps to study development and aging across the lifespan [154]. Horvath [155],
Hannum [147] and PhenoAge [156] epigenetic clocks serve as markers of ND [156-160], with the first
of these showing the strongest correlation between epigenetic and chronological age [160].

Histone modifications can serve as potential MBMs of aging, however, the heterogeneity of
animal models used to develop the biomarkers limits their applicability. For example, a drop in
highly abundant transcription activation mark H3K4me3 [102] correlated with an extended lifespan
in Caenorhabditis elegans [103]. Contrarily, an increase in the H3K4me3 level was linked with AA in
Drosophila  melanogaster [104]. The level of heterochromatin-associated histone transcription
repression mark H3K9me3 gradually decreases during aging in hematopoietic stem cells of humans
and mice [105]. In C. elegans and other models of senescence, the most significant loss of H3K9me3
occurs in repressive regions [106,107]. H3K27me3 is associated with transcriptional silencing in aging
[108]. The role of H3K27me3 is controversial, as studies showed its bidirectional lifelong changes
[109-113]. Increased levels of H4K20me3 and H3K4me3 and decreased levels of H3K9mel and
H3K27me3 are common age-associated epigenetic marks [161-163]. Research showed an increase
in H3K4me3 promoter methylation in a CK-p25 tauopathy mouse model and hippocampus of
AD patients [164,165]. The following histone methylation marks can also be found in an
Alzheimer brain: H4K20me2, H3K4me2, H3K27me3, H3K79mel, H3K79me2, H3K36me2,
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H4K20me3, H3K27mel and H3K56mel [166,167]. Besides, histone acetylation marks H3K9ac,
H3K14ac and H4Kl6ac are associated with normal and accel- erated aging [163,164,166,167].
Histone phosphorylation marks H4547p and H3S10p and histone ubiquitination mark H2BK120ub
are observed in AD [167,169,170]. Further systematic research should elucidate the regulatory
mechanisms of histone modifications, their interaction, and the interplay between histone marks
and other factors.

Non-coding RNAs (ncRNAs) could be used as aging MBMs (Table 2) [171-204].

Table 2. Non-coding RNAs involved in normal brain aging and neurodegeneration.

neltNA class Molecular species Cite
(acronym)
17A, GASS, GDNFOS,
1 Longnon- BACE1-AS, NAT-Rad18, 51A, [171-173,175-178]
coding RNA HOTAIR, MALATI1, NaPINK1, AS Uchll
[IncRNA)
miR-106a, miR-520c,
miR-20a, miR-19, miR-106a/h,
miR-101,
miR-433, miR-145, mik-375, miR-939, [179-187)
" MicroRNA miR-20a, miR-17, miR-147,
(miRNA) miR-323-3p, miR-644, miR-153,
miR-144,
over 20 exosomal miEMAs in C5F,
miR-34
. ) APP-siRNA,
Small interfering ) P
3 RNA(siRNA)  SIBACE1 [186-190]
_ CIRS-7,
g4 Circular RNA List of 1167 circRNAs in rat brain, [191-194]
(circRNA) cirC_0000400, cirC_0D0D331,
cirC_0000406, cirC_0000798
c Enhancer RNA Bdni-Enhgl, Bdnf-Enhg2, [195-197]
(2RNA) AANCR,
Evif2
BCYRNI1,

6 Long intergenic
non-coding RNA  Xist
(lincRNA)

[198-200]

Piwi piR-hsa-1281, piR-hsa-1280,
intéracting piR-hsa-1282, piR-hsa-27492 [201,202]
7 BRMNA [ leNﬁ] List of 1251 brain ijN.ﬂ.S

Y RNA nELAVL/Y RNA complex,

B (vRNA) hY1, hY4, hYs [203,204]

Long non-coding RNAs (IncRNAs), e.g., the growth-arrest-specific transcript 5 (GAS5) play a
significant role in cell proliferation and apoptosis [205-207]. Its down-regulation leads to
phosphorylation of the tau protein in ND [208,209]. Long intergenic brain cytoplasmic RNA 1
(BCYRNT) expressed in the dendritic domains of neurons is down-regulated in aging [198].

MicroRNAs (miRNAs) impact neuronal plasticity, influence tau protein metabolism and
mediate brain aging through regulation of gene expression [210-219]. Regulation of miR- 145a and
miR-375 depends on age in mouse brains [183,220,221]. The MIR29 family, MIR339- 5p, MIR195 and
MIR107 modulate expression of beta-secretase 1 involved in cleaving the amyloid precursor
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protein [181,222-226]. Interestingly, miR-34 plays a protective role in Drosophila [187] and
MIR144/MIR451 regulates ADAM metallopeptidase domain 10 in AD [227]. More than 20
miRNAs are secreted into the cerebrospinal fluid by hypothalamic stem cells. These miRNAs
control the aging rate in mice [186], which should also be relevant to human brain [228]. Future
studies should verify miRNA as MBMs in humans [229].

Circular RNAs (circRNAs) are abundant in the brain, and their expression changes with age
in skeletal muscles [230,231]. CircRNAs contribute to ND via interactions with miRNAs. For
example, ciRS-7 potentially functions as a sponge for MIR7-1 [232], and its level is reduced
dramatically in an AD brain [191]. Cerebral circRNAs are linked with neuronal maturation,
neuroplasticity, neurotransmitter and synaptic activities. They target specific age-related mRNAs in
the brain affecting their expression and availability. At least four circRNAs are involved in
postoperative neurocognitive disorders [193]. Another study revealed nearly 1200 cerebral circRNAs
in a rat model of aging [192]. Various ncRNA biomarker candidates, await validation in the clinical
arena [194].

4. Accelerated Aging in Space

The space environment affects various organs and systems, causing different, sometimes
unpredictable, rates of change. Space conditions induce changes similar to age-related changes on
Earth: noticeable alterations in the structure and functioning of the brain [233-240] as well as
loss of bone mass, muscle atrophy, immune system impairment [241-249]. However, these
deteriorations can occur in space at a fairly fast pace.

It is becoming increasingly clear that the rate of brain aging may be influenced by the space
exposome factors including MG, exposure to radiations, intense workload, circadian rhythms
perturbation, isolation and confinement [250,251].

In particular, spaceflight appears to accelerate brain aging. The potential for cognitive
impairment and cognitive changes commonly associated with aging, such as inflammatory
responses, changes in brain metabolism, depression, and memory impairment during deep space
missions, is a serious concern [233]. In spaceflight like in aging, volumetric gray matter decreases
[234,235] and changes occurs in white matter [236-239]. Furthermore, in spaceflight like in age-
related declines, the deteriorations of the condition are partially offset by concomitant
neuroplastic and neural compensatory processes [240].

Similarly, exposure to MG causes sarcopenia, a syndrome characterized by loss of muscle mass
and strength due to skeletal muscle unloading, resulting in senile phenotypes similar to those
observed in older humans on Earth. Muscle atrophy is one of the most critical aging-like side effects
of MG and a common problem in the geriatric population [252]. As expected, NASA had concerns
about the inability of astronauts to perform normal everyday tasks in MG conditions [253]. One of
consequences, a common problem of orthostatic intolerance has been observed in both astronauts
and hospitalized aged patients [254].

Likewise, bone cells respond and adapt to altered gravity conditions by changing their
morphology and function. Microgravity-associated bone density loss is due to an imbalance in
bone remodeling caused by changes in osteoblasts, osteoclasts, osteocytes, and mesenchymal
stem cells [255]. Bone loss in astronauts during spaceflight is a risk factor for premature
osteoporosis, fractures, and kidney stones, and use of the intense strength training cannot
completely inhibit the increase in bone resorption biomarkers [256]. A recent examination of
fractures recorded in the medical histories of all astronauts indicates a higher occurrence of hip
and spine fractures among astronauts after long-term space missions in comparison to shorter
spaceflights [257]. Comparison of quantitative CT-derived femoral trabecular bone loss in long-
duration spaceflight astronauts with terrestrial cohorts suggests that accelerated rates of
trabecular bone mineral density loss during spaceflight are comparable with accelerated skeletal
loss rates in aging women in menopause [257].
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Last not least, chronic activation of the immune system, inflammaging and
immunosenescence are major contributing factors to several age-related pathologies [258-260].
Prolonged exposure to space exposome may trigger maladaptation responses, promote chronic
inflammation and stress responses thus affecting various organ systems, exacerbating inflammaging
and induce AA that is a great apprehension of future spaceflights [261].

As part of adaptation or stress response to space exposome, various ncRNAs were identified
(Table 3) [262-277], which makes them attractive as candidate biomarkers or potential points of
pharmaceutical intervention in the development of countermeasures to space exposures. It remains to
be seen whether these ncRNA-associated effects are specific to the response to cosmic factors or are also
involved in aging on Earth.

Table 3. Non-coding RNAs involved in response to space environment.

Source/Model ncRNA molecules/effects Cite

1 Blood plasma of 27 differentially expressed exosomal IncRNAs (15 up-regulated;  [262]

three astronauts 12 down-regulated)

2 Dﬁfgi’ssfé)erﬁeLab 13 miRNA which are common in all studies and directly interact ~ [263]
with TGF-f1 being the most common regulator of response to
microgravity and/or space radiation

3 an. d%fgf?&gi?ﬂ Global transcriptomics analysis and other omics data indicate [264]

datasets mitochondrial stress as a consistent phenotype of spaceflight

4 Rodent serum; Shared circulating miRNA signatures observed in both rodents [265]

Immune cells of two and humans following simulated spaceflight of varying durations.
astronauts miR-125, miR-16, and let-7a regulate vascular damage caused by
simulated deep space radiation

5 Hindlimb unloaded Circulating plasma microRNAs involved in immune system [266]

mouse model and dysregulation in simulated deep spaceflight rodent model
astronauts’ datasets compared with astronauts” data

6 Angiogenesis 3D Inhibition of three specific miRNAs, namely miR-16-5p, miR-125b- [267]

human HUVEC cell 5p, and let-7a-5p, helped decrease cellular damage caused by
culture exposure to ionizing radiation

7 Human astrocytes 13 miRNAs significantly down-regulated after exposure to high-  [268]

treated with proton energy radiation. hsa-miR-762; let-7c-5p, let-7b-5p regulate
radiation (3 Gy) genes related to psychological issues,
motor and cognitive delays
8 Mouse proton 14 mouse testis, 8 liver, and 8 brain miRNAs dysregulated after ~ [269]
irradiated (2 irradiation including up-regulated in brain miR-409-5p, miR-205,
Gy) miR-100, miR-501-3p, miR99b, miR-674, miR-412-5p and down-
regulated miR3076-§p
9 C. elegans treated Intestinal linc-2, linc-46, linc-61, and linc-78 up-regulated and linc- [270]
by simulated 13, linc-14, linc-50, and linc-125 down-regulated by simulated
microgravity microgravity (SMG) treatment

10  C.elegansin space levels of miR-52, miR-84, miR-124 found changed in both SMG [271]

and simulated and space mission
microgravity Expression altered for 7 neuromuscular genes (unc-27, nlp-22, fp-
1, egl-5, fp-4, mgl-3, unc-94)

11 C. elegans in 12 miRNAs in 4-days spaceflight regulating 4 DNA repair genes  [272]

spaceflights (ddb-1, Y73F8A.24, TO5H10.1, wrn-1); 4 miRNAs in 8-days

spaceﬂi§ht (cel-miR-58%, cel-miR-65%, cel-miR-84%, and cel-

miR238%) regulating 2 HR and NHE] repair genes (rad-50, him-6)
12 C.elegans in space 126 ncRNAs (mostly snoRNA and lincRNA) induced and 16 [273]
and simulated ncRNA molecules lost during SMG and for 12 days after.
microgravity asRNAs anr-33, K12G11.14, and ZK822.8 induced whereas anr-

2, anr-9, and Y49A3A.6 silenced during and 12 days after SMG
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13 Blood T cells from 8 Subset of IncRNAs is affected during dry immersion simulated [274]
(10) humans in dry =~ microgravity exposure:

immersion bed HCG11 and LINC00861 upregulated; MALAT1, PRANCR, DLEU2,
CHASERR, PVT1
and PDCD4-AS1 downregulated in dry immersion
14  Mouse osteoblasts 427 differentially expressed circRNAs identified in [275]
in simulated osteoblast-differentiating murine MC3T3-E1 cells were exposed to
microgravity SMG
15 Da}?ﬁiﬁ)gg?@ A Analysis of InmPort small-for-gestational-age (SGA) fetuses and [276]
and NASA’s GeneLab murine datasets for hindlimb unloading SMG
ASA’
Gene?abs s model; simulated Galactic Cosmic Radiation (GCR) beam at 0.5
Gy; simulated Solar Particle Event (SPE) radiation at 1 Gy
identified 13 miRNAs involved in potential SGA risk during
spaceflight
16  Rat simulated miR-455-3p, miR-206-3p, miR-132-3p, and miR-16-5p were [277]
microgravit

E observed to be increased in resphonse to depressive behavior
in SCSE model induced by simulated spaceflight

The space exposome appears to act as an accelerator of the biological aging showing multiple
interconnections between the biological aspects of spaceflight and the hallmarks of aging [278].
Space travel presents extraordinary circumstances and the neurological hazards, caused by
microgravity and exposure to space radiation. In a weightless environment, the vestibular system is
affected, leading to issues like spatial disorientation, sensorimotor deficits, and space motion sickness
(SMS). There are worries about increased risks of ND conditions such as AD and PD, as well as
accelerated cognitive decline resembling premature aging. To address these challenges, it is crucial
to develop further the countermeasures: pharmacological agents, diagnostics, and protective
shielding from radiation [279].

5. Concept of Accelerated Aging

NA can be defined as a conditional balance between AA and DA with a compromise
combination of relevant factors (see Figure 2). Factors accelerating aging include excitotoxicity,
inflammation, oxidative stress, genetic mutations, epigenetic changes, protein aggregation, traumas
and infections. Factors decelerating aging are a healthy lifestyle, a favorable environment, hygiene,
immunization, regenerative capacities of stem cells, internal resources of cell stocks, and some types

of drug therapy.

‘I‘ Aging Factors accelerating

| rate or decelerating aging
I
= Excitotoxity

* Inflammation

* Oxidative stress

* Genetic mutations

= Epigenetic changes

* Protein aggregation
= Traumas and infections

I
I
|
I
I
I
I
I
I = Hygiene
I = Drug therapy
I * Immunization
I = Healthy lifestyle
* Favorable environment

: * Internal resources of cell stocks

« Stem cell regenerative capacities

Figure 2. Factors influencing the aging rate. AA - accelerated aging, DA - decelerated aging, NA - normal aging.
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The AA concept should be considered within the context of individual capacities and
personalized structure—functional reserve mechanisms. Aging and diseases lead to atrophy due
to a reduction in the number of cells and supracellular structures [280]. Physiological reserves
of an organ can be characterized as its total residual functional potential. In the context of brain
aging, physiological cognitive reserve reflects the level of education, occupational and
environmental attainments, and performance in cognitive tests [280]. Reversible forms of mild
cognitive impairment (MCI) and dementia represent clinical examples of restoring individual
reserve potential [281,282]. Neural compensation in the elderly leads to the formation of secondary
brain networks [283], which decelerate the aging of the brain [280,284]. In elderly patients, reversion
of MClI results from specific lifestyle activities and cognitive stimulation throughout life [285,286].

Age assessment requires an accurate estimation of multiple parameters that account for
biological and chronological age differences. In neuroscience, machine learning models forecasted
the lifetime spent in good health using brain-imaging data, with an error margin of 2.1 to 4.9 years
[287,288].

Individual brain age can also be calculated as a difference between chronological age and the
predicted BA [289]. Overall BA depends on the reserve capacities of individual systems and organs
[290,291]. Criteria for assessing AA of the brain are uncertain due to the absence of clear indicators
for NA [292]. Methods for BA assessment are not standardized and methodological discrepancies
lead to contradictory findings in different studies. For example, AD adds 1.5 years to brain age,
MCI adds 1.0 year, multiple sclerosis: 0.41 years, Parkinson’s disease (PD) — 3 years, and
schizophrenia — 5.5 years. The cognitive impact of the last two pathologies is less severe and
progresses at a slower pace compared to AD [293-295]. Another study on AD uncovered an
additional brain age ranging from 6 to 9 years [296].

In some cases, it is necessary to take into account certain methodological limitations. The
studies on age-related brain atrophy commonly have a cross-sectional design that is less accurate
compared to the longitudinal one [297]. Several studies are based on small non-representative
cohorts [298-300]; therefore, the applicability of the designed mathematical models is low. Certain
brain aging studies, that primarily focus on middle-aged and elderly individuals, often overlook the
potential impacts of individual prenatal conditions and childhood trauma on the brain health and
BA of the study participants [301]. Application of the concept of AA to localized degeneration
presents a challenge since different brain parts become older unevenly [302]. For example, in
localized ND, BA assessment reflects the level of damage to the most vulnerable brain parts (e.g.,
substancia nigra and nucleus ruber in PD) [303-305]; however, one should also consider the brain
resources that can minimize the atrophy effects [306]. In systemic ND, the brain ages faster than
in localized ND [307,308], and the difference in the pace of atrophic changes is apparent [309].

ND has a multifactorial nature, and contemporary neuroscience currently lacks a comprehensive
understanding of how these various factors interact. It is still unclear whether chronic diseases lead
to or result from ND [310,311] since the genetic, epigenetic and lifestyle factors interact in an
undefined way [312,313]. Several studies have revealed a misalignment between dementia risk,
cognitive performance, MBM levels and the impact of medications on study results [314-316].
Finally, yet importantly, AA represents a diagnostic but not the pathognomonic signature in ND and
psychiatric diseases such as schizophrenia, bipolar disorder, and major depressive disorder
[295,317,318]. The diverse symptoms seen in these patients cannot be solely attributed to the
aging of the brain [295,319,320].

6. Roadmap for the Future of Neuroaging Science

Statistical criteria and parameters include sample size, age range and data normalization. The
statistical method selection will improve diagnostic models based on specific MBMs. Studies can
benefit from the integration of epigenetics, exploration of additional epigenomic markers of aging,
and generation of data in robust non-human aging models.
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Molecular clocks could be useful for investigating aging in specific organs and tissues. Organ- and
tissue-specific clocks will unravel the complexity of aging in a multicellular biological system.
Animal studies reported some powerful techniques that use the mutation rate of biomolecules to
deduce the time [321]. These include organ-specific clocks for liver [322-324], lungs [322,323],
blood [323,325], heart and cortex [322], adipose, kidney, muscle tissues [323], and multiple tissue
[326].

Single-cell epigenomics analysis provides a deep insight into aging [327,328]. For instance,
lifetime-dependent cell-to-cell variability in methylation, or so-called “epigenomic noise”, occurs
in human immune cells in blood and in mouse muscle stem cells [329,330]. Epigenomic noise results
in increased transcriptional heterogeneity, especially in stem cell niche genes [329]. A recent trend is
the construction of epigenetic clocks at a single-cell level by applying novel methods [331,332] and
deep-learning computer algorithms [333-335].

New epigenetic marks of aging is another challenge and represents interesting opportunities.
Links between aging and DNA modifications other than methylation are known but poorly
understood. In the mouse, senescence of hippocampus cells deregulated histone H4 acetylation
(H4K12) [336] and accumulated histone variant H2A.Z [337]. In the brain of AD patients,
researchers found acetylated histones H3 (H3K9%ac) and H4 (H4K16ac) [166,338]. Longevity in
mammals is linked to histone acetylation by SIRT6 HDAC, and this discovery unlocks the
potential for the development of senolytics [339-341].

Distinct aging phenotypes called “ageotypes” have been identified recently through
longitudinal profiling of multiple omics data. These personalized physiological subsets of aging
reflect the impact of various individual factors on the aging rate which depends on genetics,
epigenetic changes, lifestyle habits, and environmental exposure. Models reflecting age will
improve diagnostic accuracy as new information is added [98]. By integrating biomarkers of aging
into a model using ageotypes, the effectiveness of interventions in each subgroup can be monitored
[98,342,343].

Genetic predispositions associated with prototypical progeroid syndromes contribute to our
knowledge of mechanisms underlying aging. Genome instability disorders resulting from these
recessive mutations are categorized into three groups, which include conditions related to: sunlight
hypersensitivity, such as Xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy;
disorders associated with ionizing radiation hypersensitivity, including Ataxia telangiectasia and
Nijmegen breakage syndrome; and progeroid disorders [344-346]. Studies on the aforementioned
disorders can also lead to the discovery of anti-aging treatments.

Unique animal models used in aging science exhibit age-related features: accelerated senescence,
damage of nuclear envelope, increased accumulation of genomic lesions [347]. Interventions and
modulators are commonly tested with well-developed mouse aging models [346]. Mouse models
demonstrated epigenetic clock acceleration by a high-fat diet, effects of rapamycin and caloric
restriction [322,324]. The use of certain established AA models, for example, D-galactose (D-Gal)
administered rodent models, provides a solid basis for extensive search and validation of senolytics
(Table 4). In these models, D-gal induces AA via the production of reactive oxygen species (ROS) and
advanced glycation end-products. D-gal reduction by aldose reductase causes the accumulation of
galactitol. Once accumulated, galactitol depletes NADPH, decreases glutathione reductase activity,
and acts as a metabotoxin, neurotoxin, and hepatotoxin. Killifish (Nothobranchius furzeri) is a
vertebrate with the shortest captive lifespan, which makes the species suitable for modeling senescence
[348-354]. Certain animals can mimic aspects of human aging in longevity models and may provide
robust data in aging science: naked mole rats (Heterocephalus glaber, Fukomys mechowii) [355-357],
Brandt’s bat (Myotis brandtii) [358-360], olm (Proteus anguinus) [361-363], bivalve (Arctica islandica)
[364,365], Hydra (Hydra vulgaris/Hydra magnipapillata) [366-369] and Planaria (Schmidtea mediterranea)
[370-372].
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Table 4. Recent studies on D-Gal AA models and effects.
Model Effects Cite
1 Senescent Kupffer MicroRNA-7 deficiency ameliorated d-galactose-induced [373]
aging. miR-7 deficiency
cells in mice reduced IL-1B in liver tissue, and the inhibition of IL-1f in
vivo slowed down
aging in mice. KLF4 was found to be downregulated
in senescent Kupffer cells.
2 D-gal liver aging Multiple pharmacological agents used to reverse D-gal- [374]

model
3  CBM mice cells

4  Human erythrocytes

5 OLETF rat D-gal

aging model for AD

6  D. huoshanense
polysaccharide
(DHP) application to
D-gal
mouse aging model

7 D-gal-induced mouse
aging model and
senescent cells

8 Neuronal cells in the

hippocampus of D-

ga
mouse aging model

9  D-gal-induced Wistar

rat aging model

10 D-gal-induced aging

rat and senescent
PC12 cells

11 D-gal-induced
mouse brain
aging model

12 D-gal-induced

rat aging model

induced liver aging.

In the CBM of D-gal groups, the transmembrane potential
dropped and ATP level

decreased while the level of -galactosidase increased.

[375]

D-gal led to Hb glycation, produced substantial changes in
the endogenous

antioxidant system, and induced early aging in human
erythrocytes.

In rat models of AD, levels of p-IRS1, p-IRS2, IDE, and p-
GSK3p proteins

significantly elevated, while p-PI3K-p85« and p-Akt
decreased.

Electroacupuncture enhanced cognitive function and alleviated
insulin resistance.

DHP protected the antioxidant enzymes SOD, GSH-PX, and [378]
CAT from excessive

ROS, blocked the P53/P21 signaling pathway, and showed a
potential

neuroprotective effect on D-gal-mediated cognitive disorders.

[376]

[377]

Gliclazide regulated neuronal apoptosis in aging mouse [379]
model and in D-gal-induced senescent cells, showed
beneficial effect on D-gal-induced

neuronal injury, and selected as
a candidate drug for
inhibiting of age-related mental decline.

Phlorizin increased antioxidant enzyme activity, showed anti- [380]
inflammation

effects by regulating the IL-18/NF-kB pathways in the brain,

and alleviated

neuroapoptosis via Bax, Bcl-2, and caspase-3. Phlorizin was
suggested as a

potential anti-aging drug.

Folic acid partially reversed D-gal-caused oxidative damage [381]
to lipids in
and protein in the hippocampus and

prefrontal cortex.

A combination of lycopene and -NMN slowed down aging
more efficiently than monotherapy.

[382]

The combination down-regulated senescence-related p53, p21,
and p16 genes
and increased Nrf2 signaling in aging models.

Dihydromyricetin from Ampelopsis grossedentata showed strong [383]
neuroprotective effects, improved spatial cognition, and

inhibited

lipid peroxidation, malondialdehyde (MDA) and AGEs
production, and

P53, p21, pl6 genes expression.

The polysaccharide of Polygonatum sibiricum (PSP) significantly [384]
improved
learning and reversed kidneys’ pathological changes.

PSP up-regulated Klotho, down-regulated FOXO3a in renal
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tissue,
and femoral expression of FGF-23 protein.

Saponin (ginsenoside) Rg2 from Panax ginseng delayed brain  [385]
aging by

restoring D-gal-induced impaired memory function and

redox system balance

in mice

Skeels fruits extract (SDE) reduced acetylcholinesterase [386]
activity in the brain

and iNOS activity in serum, activated superoxide dismutase

(SOD)

and glutathione in the liver and brain.

SDE inhibited TNFa, NF-kB, IL-16, IL-6, p53 and induced
SIRT1 and Klotho in the brain and liver.

Vit D improved cardiac hypertrophy, elevated cardiac [387]
mitophagy
and reducing apoptosis.

In the D-Gal/melatonin co-treated group, melatonin [388]
treatment alleviated

mouse hepatocellular D-Gal-induced hepatocyte impairment and reduced the

aging model

Naturally aged

expression of
inflammatory genes (IL1-5, NF-«B, IL-6, TNFa, iNOS).

Methyltransferase-like protein 3 (METTL3) helped to N6- [389]
methyladenosine

mouse model, D-gal-  (m®A) modification involved in morbid changes. miR-181a-5p

induced mouse aging counteracted HK-2 senescence by targeting the NF-xB

pathway. METTL3

model, D-gal-induced promoted the maturation of miR-181a-5p and inhibited the

expression of NF-«xB

senescent human and IL-1a.
renal tubular
epithelial cells (HK-2)
18 D-gal-induced Metrnl expression significantly increased in the hippocampus. [390]

19

20

21

mouse aging
model

D-gal-induced

mouse aging
model

D-gal-induced

mouse aging
model

D-gal-induced

rat aging model

Metrnl knockout

aggravated cognitive impairment, reduced the levels of
hippocampal BDNF, TrkB,

and glial fibrillary acidic protein. Metrnl regulated cognitive
functions in aging,

and it was considered for the treatment of aging-related cognitive
dysfunction.

An ethyl acetate fraction of Physalis alkekengi (PAE) decreased the  [391]
activity of

senescence-associated S-galactosidase in the liver, spleen, and
hippocampus,

the oxidative stress in the liver, plasma, and brain. It can be used to
prevent

or treat aging-associated disorders.

An established vasoactive and angioprotective drug, Calcium [392]
dobesilate (CaD),
reversed the body weight loss and cognitive impairment of D-gal-
treated animals.
CaD inhibited the oxidative stress in the aging brain by
decreasing the MDA level
and increasing activity of SOD, glutathione peroxidase (GPx),and
catalase (CAT).
CaD was considered as a candidate drug against cognitive
impairment in aging.
Th mo(;luinone (TQ) and curcumin (Cur) suppressed D-gal- [393]
induced alterations in
the brain and heart. The TQ and Cur combination reduced the
necrosis in the brain
and heart by D-gal, the levels of brain caspase 3, BCL2, calbindin,
heart caspase 3, AND calcium-binding adapter molecule 1.
The combination also inhibited the expression of p53, p21, Bax,

d0i:10.20944/preprints202502.0493.v1
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CASP-3.
The combination may prevent aging
A bicyclic monoterpenoid camphorquinone (CQ) reduced [394]

senescence in mouse heart

tissues and human bone marrow mesenchymal stem cells (hBM-
MSCs). In both models,

CQ boosted AMPK/SIRT1 activation and autophagy.

Schisandra sphenanthera has been used in traditional Chinese
medicine for

thousands of years. The study reported the immunomodulatory
activity of

a monomer of S. sphenanthera lignans (Anwulignan) in aging.

[395]

A derivative from Piperlongumine - PL 1-3 - decreased the [396]
antioxidative stress in the

serum, liver, kidney and brain of aging mice. PL 1-3 upregulated
the expression of

sirtuin 1, downregulated the expressions of p53, p21, p16 genes. It
also

reversed damages induced by D-gal in the liver, kidney, and
spleen.

The mulberry leaf extract (MLE) significantly prolonged
nematodes’ average life

span and improved physiological indicators of C. elegans.

[397]

In the mice model, MLE protected against oxidative stress and
ameliorated

the decreased body weight and organ index. The extract up-
regulated total SOD

and total antioxidant capacity. It activated the MPK/SIRT1/PGC-
la pathways

and reduced ROS and MDA levels.

In a high-fat diet-fed rats, D-gal-induced aging elevated AGEs
significantly

impaired bone microarchitecture and increased bone inflammation
and resorption.

In obesity, D-gal-induced aging aggravated bone dyshomeostasis
in a time-dependent

manner.

[398]

Bifidobacterium longum T37a significantly decreased the spleen and
liver index.
It significantly increased HDL-C concentration and decreased
LDL-C and MDA levels
in the liver. T37a demonstrated antioxidant properties in the DPPH
assay and anti-lipid

eroxidation test, therefore it is a potential anti-aging and weight-
oss probiotic drug.
Geraniol (GNL), an acyclic isoprenoid monoterpene induced a
significant increase
in spatial learning and memory with spontaneously altered
behavior. It upregulated
Nrf2 and HO-1 and reduced oxidative stress and apoptosis.
Therefore, GNL was
suggested as a promising agent for treating neuroinflammation-
induced cognitive
impairment.

[399]

[400]

Recombinant IL-33 elevated osteogenic parameters, reduced
senescence markers, and

exerted neuroprotective potential in osteoblasts of aging mice
model. IL-33 can be

considered as a therapy for the treatment of aging-induced bone
loss and memory

impairment.

[401]

Quercetin potentially attenuated aging-related oxidative alterations [402]
of the

pancreas and kidneys. It downregulated aging, reduced the levels

of apoptotic

and inflammatory markers, and upregulated the antiapoptotic,
proliferative,
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antioxidant, and functional markers. Quercetin is considered as a
promising
natural protective compound that could be used to delay aging.

7. Conclusions

—  Various theories and hypotheses support a paradigm shift in the science of aging. The wealth of
data suggests that various processes, influenced by internal and external factors, result in
diverse mosaic changes in organisms occurring at different rates, rather than following a
uniform, gradual aging pattern.

— The concept of accelerated aging should be considered in the context of personalized
characteristics and methodological limitations should be taken into account. Applying the
concept to localized brain neurodegeneration is challenging since different brain regions and
structures age at different rates.

— A healthy lifestyle in a favorable environment, stimulation of regenerative processes, hygiene,
immunization, targeted drug therapy, and balanced metabolism are some of the key approaches
that can help slow down brain aging.

—  Certain molecular characteristics and substances, including epigenetic changes, differentially
expressed genes and non-coding RNAs, could serve as potential biomarkers and pharmaceutical
targets in space biomedicine and may have implications for aging in terrestrial conditions.

—  Future research could offer clinics and society new therapeutic possibilities to deal with the
neuroaging. Studying the connection between space travel and aging in different models and
humans can help to improve the safety of space exploration and develop new methods to

address neuroaging challenges on Earth.
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