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Abstract:  Over  400  articles  on  the  pathophysiology  of  brain  aging,  neuroaging  and 

neurodegeneration were reviewed, with a particular focus on epigenetic mechanisms and numerous 

non‐coding RNAs, in particular microRNAs, the discovery of whose pivotal role in gene regulation 

was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process 

that can be easily modeled and described. Instead, multiple temporal processes occur during aging, 

and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a 

combination of external and internal factors and can be boosted in accelerated aging. The rate can 

decrease  in  decelerated  aging  due  to  individual  structural  and  functional  reserves  created  by 

cognitive, physical training or pharmacological interventions. Neuroaging can be caused by genetic 

changes,  epigenetic  modifications,  oxidative  stress,  inflammation,  lifestyle,  and  environmental 

factors, which  is especially noticeable  in space environments where adaptive changes can  trigger 

aging‐like processes. Numerous candidate molecular biomarkers specific for neuroaging need to be 

validated to develop diagnostics and countermeasures. 

Keywords:  brain  aging;  neuroaging;  neurodegeneration;  accelerated  aging;  space  exposome; 

space motion sickness; spaceflight; Alzheimer’s  disease; Parkinson’s disease; age‐related diseases; 

biomarkers; non‐coding RNAs 

 

1. Introduction 

Traditionally, both the passage of time and aging have been viewed as uniformly occurring 

processes, independent of any conditions and circumstances. Accordingly, the rate of aging was 

assumed  to  be  constant  over  time.  In  the  last  century, physics has undergone  fundamental 

changes, providing a new universal understanding of  the unification of  space and  time  into 

space‐time. As suggested by theories of relativity, the speed of time differs on the ground and in 

low Earth orbit (LEO), which has a number of practical applications, such as the need to adjust GPS 

satellite clocks daily by subtracting 38 microseconds [1]. 

In 1888 and 1895, H. Wells’ fiction novels introduced the idea of traveling in time. In 1911, 

physicists formulated the Twin Paradox that took hold of minds since it illustrated time dilation 

and decelerated aging.  In this paradox, one of two twins takes the spaceflight  at  near‐light  speed 

to  a  distant  star  and  later  returns  to  Earth.  Upon  return,  he will be younger than the twin 

brother (Figure 1A) according to Einstein’s special relativity [2]. 

However, biomedical observations have not supported the idea that spaceflight can slow down 

the aging processes; in fact, it has been found to accelerate aging (Figure 1B) [3–16].   

In vitro models [17–20] and in vivo simulators [21–23] showed that artificial microgravity (MG) 

also revealed the phenomena of accelerated aging (AA). These results suggest the need for further 
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research into the effects of AA and its prevention [24–28]. The necessity of countermeasures and 

the prophylactics of AA in future space missions serves as motivation for further studies. 

 

Figure 1. Aging scenarios of future interstellar space travel (see text for details). A. Relativistic Twin Paradox 

scenario; B. More realistic scenario. 

The process of aging is linked to alterations in both structure and function, leading to heightened 

susceptibility  to diseases and mortality  [29–31]. Various  factors contribute  to aging  including  the 

accumulation of damage due to mutations, epigenetic changes, oxidative stress, and inflammation 

[32,33].  Physiological or biological age  (BA)  is defined as  the  current  state of an  individual as a 

biological system. The state of such a system is determined by a combination of biological parameters 

that affect life expectancy. These parameters include the current profile of genomic DNA methylation, 

age‐associated structural changes in the brain, metabolic parameters, etc. 

In normal aging (NA), BA is equal to chronological age.  If aging is accelerated, as in cases of 

pathological  aging,  then  biological  age  surpasses  chronological  age.  In  decelerated  aging,  BA 

becomes  lower  than  the official age [34–36]. While AA  shares common features with NA, AA 

stands  out due  to distinct  characteristics  like protein  aggregation  and  excitotoxicity  that  are 

exclusive to pathological aging [37–39]. Understanding mechanisms of aging opens opportunities 

for targeted treatment of the diseases that occur late in life [37]. 

AA  represents  a  research  field  characterized  by  lingering  challenges,  including  inconsistent 

terminology and poorly understood mechanisms [40,41]. Researchers have not reached an agreement 

on whether neurodegeneration (ND) is a type of AA or its outcome.   

An alternative view suggests that particular biomarkers (BMs) are specific to ND and do not 

recognize AA [42–46]. In practice, no diagnostic BMs can prognosticate AA reliably  [47–58]. 

Certain discrepancies between AA  theories need  to be addressed.  Some hold  that senile 

plaques are common neuropathological features in both healthy aging and ND, and that cerebral 

amyloid deposition is not necessarily associated with clinically apparent cognitive dysfunction. 

The  development  of  cognitive  deterioration  requires  additional  factors,  such  as neuronal  or 
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synaptic loss or widespread cytoskeletal aberrations [59]. According to these studies, mesial and 

inferior temporal lobe structures are quite often affected by the formation of neurofibrillary tangles 

in NA of  the brain  [60]. Other authors have presented evidence  to  support  the opposite  theory, 

suggesting that the early pathological changes associated with the disease represent the onset of ND 

and  cerebrovascular  disease  rather  than  normal  concomitants  of  aging  [61].  In  this  way, 

neurofibrillary tangles formation may precede the emergence of the neuropsychological deficits 

typical of Alzheimer’s disease (AD) [60,61] therefore the understanding of the sequence of brain aging 

processes and their rates can be updated. 

2. Objectives 

Main objectives of this review are:   

– to  pinpoint  several  groups  of  promising molecular  biomarkers  of  aging with  a  special 

emphasis on various non‐coding RNAs (Section 3); 

– to draw a parallel between aging in spaceflight and on Earth and to consider the rates of 

aging through the lens of space biomedicine (Section 4); 

– to discuss the applicability of the AA concept in the field of aging neuroscience, taking into 

consideration its limitations (Section 5); 

– to outline a roadmap for the future of aging neuroscience (Section 6). 

3. Biomarkers of Aging 

Fields of research on aging and ND are closely related as aging is the primary risk for  the 

development of brain ND, especially AD, however, these diseases are not part of normal aging. 

Many  theories  claim  to  explain  the  etiology  of  AD  (Table  1)  including  neurocentric  and 

neurovascular hypotheses. At first, the research was primarily concentrated on neurons. Later, 

the  importance of non‐neural cells  in higher brain functions was recognized. Particularly,  the 

hypothesis  refers  to  a  neurovascular  unit  (NVU) which  is  a  dynamic  multicellular  structure 

mediating functional interactions between blood vessels and brain tissues [62]. The neural cells in 

the  NVU  and  circulating  immune  cells  secrete  proinflammatory  mediators  contributing  to 

inflammaging and endothelial disfunction. These changes disrupt molecular networks, induce 

BBB damage and lead to NVU degeneration [63–69]. However, the exact role of an NVU in ND 

remains to be elucidated and reliable ND‐associated biomarkers to be found due to the puzzling 

complexity of the NVU signaling and metabolic pathways [70–73]. 

Table 1. Top 10 traditional and alternative hypotheses for AD etiology. 

  Hypothesis  Evidence  References 

1  Aβ cascade  Extracellular deposits of Aβ  [74] 

2  Tau  Tau aggregation in NFTs  [75] 

3  Inflammation
  Pro‐inflammatory  cytokines  secretion in 

plaque zone 
[76–78] 

4  Excitotoxicity 
Excitotoxicity promotes cell death and 

neurodegeneration in AD 
[79,80] 

5 
Cholinergic 

system 

Damage of cholinergic neurons associated 

with dementia in AD 

[81–83] 

 

6 
Dopaminergic 

system 

Decreased levels of dopaminergic neuro‐ 

mediators linked with AD 

[84,85] 

 

7  Oxidative  stress 
Oxidative stress increases accumulation 

of Aβ 
[86–88] 

8  APOE / TREM2 
Impacts of APOE and TREM2 are 

significant risk factors of AD 
[89–91] 
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9  NV Unit 
NVU dysfunction plays crucial role in 

AD pathogenesis 

[92,93] 

 

10  Gut microbiome 

Gut microbiome affects neurogenesis, 

blood‐brain barrier, glia formation, and 

can mediate AD 

[94–96] 

Aging molecular biomarkers (MBMs) are biomolecules or their derivatives characterized by 

measurable parameters that can be used to estimate the progression of aging [97]. Aging MBMs 

include mRNA transcripts, proteins [98], telomere length, serum markers molecules [99], DNA 

methylation  parameters  [100,101],    modifications  of  histones  [102–113],  differentially  expressed 

genes [73,114] or non‐coding RNAs [115–118]. 

Recent research has questioned whether age affects different cell types in the NVU. The study 

resulted  in  candidate  biomarker  genes  related  to  AA  (AAG):  IGF1R, MXI1,  RB1,  PPARA, 

NFE2L2, STAT5B, FOS, PRKCD, YWHAZ, HTT, MAPK9, HSPA9, SDHC, PRKDC and PDPK1.   

Differential  expression  of  IGF1R, MXI1,  PPARA,  YWHAZ  and MAPK9  correlated with ND 

progression though, it was not possible to justify AAGs as MBMs due to an insufficient sample 

size [73].   

ND is a consequence of various structural alterations occurring across distinct genetic sites 

over a span of time [119,120]. High risk of developing AD is associated with alterations in certain 

genes  that predispose  to ND  (NDG): GBA1, APP, PSEN1, MAPT, GRN, SETX, SPAST, CSF1R, 

C9orf72 [121], TET2 [122], TBK1 [123], TOMM40, APOC1 [124], APOE [124,125] and TREM2 [126–132].   

Nevertheless, the gene sets do not overlap across the studies on AAGs and NDGs. In addition, the 

APOE e4 allele and mutation spectrum for TREM2 gene were found to be the risk factors for developing 

dementia with Lewy bodies, multi‐cognitive decline and corticobasal degeneration [132–141]. 

DNA methylation level reflects the rate of aging. Approximately 1.5% of genomic DNA contains 

5‐methylcytosine (5‐mC), and the level decreases during ontogenesis [142]. The level of 5‐mC is the 

highest in embryos, and then it reduces gradually across life [143,144].  In  aging,  global  genomic 

DNA hypomethylation proceeds  along with hypermethylation of CpG islands (“epigenetic drift”) 

whereas 60% of them associated with gene promoters and transcriptional regulome [145,146].   

In NA,  age‐predictive models  demonstrate  gradual  linear  changes  in  the DNA methylation 

profile, but environmental or genetic risk factors can accelerate aging [147].  In monozygotic twins, 

the divergence of the methylome increases at different rates [148].   

Change of  the DNA methylation profile was proposed as a mechanism of an epigenetic clock 

[149–151] by analogy with a biological clock [152,153]. Monitoring deviation between biological and 

chronological age helps to study development and aging across the lifespan [154].  Horvath [155], 

Hannum [147] and PhenoAge [156] epigenetic clocks serve as markers of ND [156–160], with the first 

of these showing the strongest correlation between epigenetic and chronological age [160].   

Histone modifications can  serve  as  potential MBMs  of  aging,  however,  the  heterogeneity  of 

animal  models  used to develop  the biomarkers  limits  their applicability.  For example, a drop  in 

highly abundant transcription activation mark H3K4me3 [102] correlated with an extended lifespan 

in Caenorhabditis elegans [103]. Contrarily, an increase in the H3K4me3 level was linked with AA in 

Drosophila  melanogaster  [104].  The  level  of  heterochromatin‐associated  histone  transcription 

repression mark H3K9me3 gradually decreases during aging in hematopoietic stem cells of humans 

and mice  [105]. In C. elegans and other models of senescence, the most significant loss of H3K9me3 

occurs in repressive regions [106,107]. H3K27me3 is associated with transcriptional silencing in aging 

[108].  The role of H3K27me3  is controversial, as studies showed  its bidirectional  lifelong changes 

[109–113]. Increased levels of H4K20me3 and H3K4me3 and decreased levels of H3K9me1 and 

H3K27me3 are common age‐associated epigenetic marks [161–163]. Research showed an increase 

in H3K4me3 promoter methylation in a CK‐p25 tauopathy mouse model and hippocampus of 

AD  patients  [164,165].  The  following  histone methylation marks  can  also  be  found  in  an 

Alzheimer  brain:  H4K20me2,  H3K4me2,  H3K27me3,  H3K79me1,  H3K79me2,  H3K36me2, 
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H4K20me3,  H3K27me1  and  H3K56me1  [166,167].  Besides,  histone  acetylation marks H3K9ac, 

H3K14ac  and H4K16ac  are  associated with  normal  and  accel‐  erated  aging  [163,164,166,167]. 

Histone phosphorylation marks H4S47p and H3S10p and histone ubiquitination mark H2BK120ub 

are observed in AD [167,169,170]. Further              systematic research should elucidate the regulatory 

mechanisms of histone modifications, their interaction, and the interplay between histone marks 

and other factors. 

Non‐coding RNAs (ncRNAs) could be used as aging MBMs (Table 2) [171–204]. 

Table 2. Non‐coding RNAs  involved  in normal brain aging and neurodegeneration. 

 

Long non‐coding RNAs (lncRNAs), e.g., the growth‐arrest‐specific transcript 5 (GAS5) play a 

significant  role  in  cell  proliferation  and  apoptosis  [205–207].  Its  down‐regulation  leads  to 

phosphorylation of the tau protein in ND [208,209].  Long intergenic brain cytoplasmic RNA 1 

(BCYRN1) expressed in the dendritic domains of neurons is down‐regulated in aging [198]. 

MicroRNAs  (miRNAs)  impact  neuronal  plasticity,  influence  tau  protein  metabolism  and 

mediate brain aging through regulation of gene expression [210–219]. Regulation of miR‐ 145a and 

miR‐375 depends on age in mouse brains [183,220,221]. The MIR29 family, MIR339‐ 5p, MIR195 and 

MIR107 modulate expression of beta‐secretase 1  involved  in  cleaving  the  amyloid precursor 
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protein  [181,222–226].  Interestingly, miR‐34  plays  a  protective  role  in  Drosophila  [187]  and 

MIR144/MIR451  regulates ADAM metallopeptidase  domain  10  in AD  [227].  More  than  20 

miRNAs are secreted  into  the cerebrospinal  fluid by hypothalamic stem cells. These miRNAs 

control  the aging rate  in mice  [186], which should also be relevant  to human brain  [228]. Future 

studies should verify miRNA as MBMs in humans [229]. 

Circular RNAs  (circRNAs)  are  abundant  in  the  brain,  and  their  expression  changes with  age 

in  skeletal  muscles  [230,231].  CircRNAs  contribute  to  ND  via  interactions with  miRNAs.  For 

example,  ciRS‐7  potentially  functions  as  a  sponge  for  MIR7‐1  [232], and  its  level  is reduced 

dramatically  in  an  AD  brain  [191].  Cerebral  circRNAs  are  linked  with  neuronal maturation, 

neuroplasticity, neurotransmitter and synaptic activities. They target  specific age‐related mRNAs in 

the  brain  affecting  their  expression  and  availability.  At  least  four  circRNAs  are  involved  in 

postoperative neurocognitive disorders [193]. Another study revealed nearly 1200 cerebral circRNAs 

in a rat model of aging [192]. Various ncRNA biomarker candidates,  await validation  in  the  clinical 

arena  [194]. 

4. Accelerated Aging in Space 

The space environment affects various organs and systems, causing different, sometimes 

unpredictable, rates of change. Space conditions induce changes similar to age‐related changes on 

Earth: noticeable alterations  in the structure and functioning of the brain [233–240] as well as 

loss  of  bone  mass,  muscle  atrophy,  immune  system  impairment  [241–249].  However,  these 

deteriorations can occur in space at a fairly fast pace. 

It  is becoming  increasingly clear  that  the rate of brain aging may be  influenced by  the space 

exposome  factors  including MG,  exposure  to  radiations,  intense  workload,  circadian  rhythms 

perturbation, isolation and confinement [250,251]. 

In  particular,  spaceflight  appears  to  accelerate  brain  aging.  The  potential  for  cognitive 

impairment  and  cognitive  changes  commonly  associated  with  aging,  such  as  inflammatory 

responses, changes  in brain metabolism, depression, and memory  impairment during deep space 

missions, is a serious concern [233]. In spaceflight like in aging, volumetric gray matter decreases 

[234,235] and changes occurs in white matter [236–239]. Furthermore, in spaceflight like in age‐

related  declines,  the  deteriorations  of  the  condition  are  partially  offset  by  concomitant 

neuroplastic and neural compensatory processes [240]. 

Similarly, exposure to MG causes sarcopenia, a syndrome characterized by loss of muscle mass 

and  strength  due  to  skeletal muscle  unloading,  resulting  in  senile  phenotypes  similar  to  those 

observed in older humans on Earth. Muscle atrophy is one of the most critical aging‐like side effects 

of MG and a common problem in the geriatric population [252]. As expected, NASA had concerns 

about the inability of astronauts to perform normal everyday tasks in MG conditions [253]. One of 

consequences, a common problem of orthostatic  intolerance has been observed  in both astronauts 

and hospitalized aged patients [254]. 

Likewise,  bone  cells  respond  and  adapt  to  altered  gravity  conditions  by  changing  their 

morphology and function. Microgravity‐associated bone density loss is due to an imbalance in 

bone remodeling caused by changes  in osteoblasts, osteoclasts, osteocytes, and mesenchymal 

stem  cells  [255].  Bone  loss  in  astronauts  during  spaceflight  is  a  risk  factor  for premature 

osteoporosis,  fractures,  and  kidney  stones,  and  use  of  the  intense  strength  training  cannot 

completely  inhibit  the  increase  in bone  resorption biomarkers  [256]. A  recent examination of 

fractures recorded in the medical histories of all astronauts indicates a higher occurrence of hip 

and spine fractures among astronauts after long‐term space missions in comparison to shorter 

spaceflights [257]. Comparison of quantitative CT‐derived femoral trabecular bone loss in long‐

duration  spaceflight  astronauts  with  terrestrial  cohorts  suggests  that  accelerated  rates  of 

trabecular bone mineral density loss during spaceflight are comparable with accelerated skeletal 

loss rates in aging women in menopause [257]. 
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Last  not  least,  chronic  activation  of  the  immune  system,  inflammaging  and 

immunosenescence are major contributing factors to several age‐related pathologies [258–260]. 

Prolonged  exposure  to  space  exposome may  trigger maladaptation  responses,  promote  chronic 

inflammation and stress responses thus affecting various organ systems, exacerbating inflammaging 

and induce AA that is a great apprehension of future spaceflights [261]. 

As part of adaptation or stress response to space exposome, various ncRNAs were  identified 

(Table  3)  [262–277], which makes  them  attractive  as  candidate  biomarkers  or  potential  points  of 

pharmaceutical intervention in the development of countermeasures to space exposures. It remains to 

be seen whether these ncRNA‐associated effects are specific to the response to cosmic factors or are also 

involved in aging on Earth.   

Table 3. Non‐coding RNAs  involved  in response to space environment. 

              Source/Model  ncRNA molecules/effects  Cite 

1  Blood plasma of   
three astronauts 

27 differentially expressed exosomal lncRNAs (15 up‐regulated; 
12 down‐regulated) 
   
 

[262] 

2           Datasets from   
               NASA’s GeneLab 

13 miRNA which are common in all studies and directly interact 

with TGF‐β1 being the most common regulator of response to 

microgravity and/or space radiation   

 

[263] 

3            59 astronauts’ data 
and NASA’s GeneLab 
datasets   

Global  transcriptomics analysis and other omics data  indicate 

mitochondrial    stress as a consistent phenotype of spaceflight   

 

[264] 

4  Rodent serum; 
Immune cells of    two 
astronauts   

Shared circulating miRNA signatures observed in both rodents 
and humans following simulated spaceflight of varying durations. 
miR‐125, miR‐16, and let‐7a regulate vascular damage caused by 
simulated deep space radiation 

[265] 

5  Hindlimb unloaded 
mouse model and 
astronauts’ datasets   

Circulating plasma microRNAs involved in immune system 
dysregulation in simulated deep spaceflight rodent model 
compared with astronauts’ data 
 

[266] 

6           Angiogenesis 3D   
human HUVEC cell 
culture 

 

Inhibition of three specific miRNAs, namely miR‐16‐5p, miR‐125b‐
5p, and let‐7a‐5p, helped decrease cellular damage caused by 
exposure to ionizing radiation 

[267] 

7           Human astrocytes 
treated with proton 
radiation (3 Gy) 

13 miRNAs significantly down‐regulated after exposure to high‐
energy radiation.              hsa‐miR‐762; let‐7c‐5p, let‐7b‐5p regulate 
genes related to psychological issues,   
motor and cognitive delays 

[268] 

8           Mouse proton 
irradiated                (2 
Gy) 

14 mouse testis, 8 liver, and 8 brain miRNAs dysregulated after 
irradiation including up‐regulated in brain miR‐409‐5p, miR‐205, 
miR‐100, miR‐501‐3p, miR99b, miR‐674, miR‐412‐5p and down‐
regulated miR3076‐3p 

[269] 

9           C. elegans treated 
by simulated 
microgravity   

Intestinal linc‐2, linc‐46, linc‐61, and linc‐78 up‐regulated and linc‐
13, linc‐14, linc‐50, and linc‐125 down‐regulated by simulated 
microgravity (SMG) treatment 
 

[270] 

10       C. elegans in space 
and simulated 
microgravity   

levels of miR‐52, miR‐84, miR‐124 found changed in both SMG 
and space mission 
Expression altered for 7 neuromuscular genes (unc‐27, nlp‐22, fp‐
1, egl‐5, fp‐4, mgl‐3, unc‐94) 

[271] 

11       C. elegans in 
spaceflights 

12 miRNAs in 4‐days spaceflight regulating 4 DNA repair genes 
(ddb‐1, Y73F8A.24, T05H10.1, wrn‐1); 4 miRNAs in 8‐days 
spaceflight (cel‐miR‐58*, cel‐miR‐65*, cel‐miR‐84*, and cel‐
miR238*) regulating 2 HR and NHEJ repair genes (rad‐50, him‐6) 

[272] 

12       C. elegans in space 
and simulated 
microgravity   

126 ncRNAs (mostly snoRNA and lincRNA) induced and 16 
ncRNA molecules lost during SMG and for 12 days after. 
asRNAs anr‐33, K12G11.14, and ZK822.8 induced whereas anr‐
2, anr‐9, and Y49A3A.6 silenced during and 12 days after SMG 

[273] 
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13      Blood T cells from 8 
(10) humans in dry 
immersion bed   

Subset of lncRNAs is affected during dry immersion simulated 
microgravity exposure:   
HCG11 and LINC00861 upregulated; MALAT1, PRANCR, DLEU2, 
CHASERR, PVT1 
and PDCD4‐AS1 downregulated in dry immersion 

[274] 

14       Mouse osteoblasts 
in simulated 
microgravity 

427 differentially expressed circRNAs identified in 
osteoblast‐differentiating murine MC3T3‐E1 cells were exposed to 
SMG 
 

[275] 

15       Datasets from 
                  ImmPort SGA 

and   
                 NASA’s 

GeneLab   

Analysis of ImmPort small‐for‐gestational‐age (SGA) fetuses and 

NASA’s GeneLab murine datasets for hindlimb unloading SMG 

model; simulated Galactic Cosmic Radiation (GCR) beam at 0.5 

Gy; simulated Solar Particle Event (SPE) radiation at 1 Gy 

identified 13 miRNAs involved in potential SGA risk during 

spaceflight 

[276] 

16       Rat simulated 
microgravity   

                  in SCSE model 

miR‐455‐3p, miR‐206‐3p, miR‐132‐3p, and miR‐16‐5p were 
observed to be increased in response to depressive behavior 
induced by simulated spaceflight 

[277] 

                       

 

The space exposome appears to act as an accelerator of the biological aging showing multiple 

interconnections between the biological aspects of spaceflight and the hallmarks of aging [278]. 

Space  travel  presents  extraordinary  circumstances  and  the  neurological  hazards,  caused  by 

microgravity and exposure to space radiation. In a weightless environment, the vestibular system is 

affected, leading to issues like spatial disorientation, sensorimotor deficits, and space motion sickness 

(SMS). There are worries about  increased  risks of ND conditions  such as AD and PD, as well as 

accelerated cognitive decline resembling premature aging. To address these challenges, it is crucial 

to  develop  further  the  countermeasures:  pharmacological  agents,  diagnostics,  and  protective 

shielding from radiation [279]. 

5. Concept of Accelerated Aging 

NA  can  be  defined  as  a  conditional  balance  between  AA  and  DA  with  a  compromise 

combination  of  relevant  factors  (see  Figure  2).  Factors  accelerating  aging  include  excitotoxicity, 

inflammation, oxidative stress, genetic mutations, epigenetic changes, protein aggregation, traumas 

and infections. Factors decelerating aging are a healthy lifestyle, a favorable environment, hygiene, 

immunization, regenerative capacities of stem cells, internal resources of cell stocks, and some types 

of drug therapy. 

 

Figure 2. Factors influencing the aging rate. AA ‐ accelerated aging, DA ‐ decelerated aging, NA ‐ normal aging. 
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The AA  concept  should  be  considered within  the  context  of  individual  capacities  and 

personalized structure–functional reserve mechanisms. Aging and diseases lead to atrophy due 

to a reduction in the number of cells and supracellular structures [280]. Physiological reserves 

of an organ can be characterized as its total residual functional potential. In the context of brain 

aging,  physiological  cognitive  reserve  reflects  the  level  of  education,  occupational  and 

environmental  attainments,  and  performance  in  cognitive  tests  [280]. Reversible  forms  of mild 

cognitive  impairment  (MCI) and dementia  represent  clinical  examples of  restoring  individual 

reserve potential [281,282]. Neural compensation in the elderly leads to the formation of secondary 

brain networks [283], which decelerate the aging of the brain [280,284]. In elderly patients, reversion 

of MCI results from specific lifestyle activities and cognitive stimulation throughout life [285,286]. 

Age  assessment  requires  an  accurate  estimation  of  multiple  parameters  that  account  for 

biological and chronological age differences. In neuroscience, machine learning models forecasted 

the lifetime spent in good health using brain‐imaging data, with an error margin of 2.1 to 4.9 years 

[287,288].   

Individual brain age can also be calculated as a difference between chronological age and the 

predicted BA [289]. Overall BA depends on the reserve capacities of individual systems and organs 

[290,291]. Criteria for assessing AA of the brain are uncertain due to the absence of clear indicators 

for NA [292]. Methods for BA assessment are not standardized and methodological discrepancies 

lead to contradictory findings in different studies. For example, AD adds 1.5 years to brain age, 

MCI  adds  1.0  year,  multiple  sclerosis:  0.41  years,  Parkinson’s  disease  (PD)  –  3  years,  and 

schizophrenia  –  5.5  years.  The  cognitive  impact  of  the  last  two  pathologies  is  less  severe  and 

progresses  at  a  slower  pace  compared  to  AD  [293–295].  Another  study  on  AD  uncovered  an 

additional brain age ranging from 6 to 9 years [296]. 

In some cases, it is necessary to take into account certain methodological limitations. The 

studies on age‐related brain atrophy commonly have a cross‐sectional design that is less accurate 

compared  to  the  longitudinal one  [297].  Several  studies are based on small non‐representative 

cohorts [298–300]; therefore, the applicability of the designed mathematical models is low. Certain 

brain aging studies, that primarily focus on middle‐aged and elderly individuals, often overlook the 

potential impacts of individual prenatal conditions and childhood trauma on the brain health and 

BA of  the study participants  [301].  Application of  the concept of AA  to  localized degeneration 

presents a challenge since different brain parts become older unevenly [302]. For example, in 

localized ND, BA assessment reflects the level of damage to the most vulnerable brain parts (e.g., 

substancia nigra and nucleus ruber in PD) [303–305]; however, one should also consider the brain 

resources that can minimize the atrophy effects [306]. In systemic ND, the brain ages faster than 

in localized ND [307,308], and the difference in the pace of atrophic changes is apparent [309]. 

ND has a multifactorial nature, and contemporary neuroscience currently lacks a comprehensive 

understanding of how these various factors interact. It is still unclear whether chronic diseases lead 

to  or  result  from ND  [310,311]  since  the  genetic,  epigenetic  and  lifestyle  factors  interact  in  an 

undefined way  [312,313]. Several  studies have  revealed  a misalignment between dementia risk, 

cognitive performance, MBM levels and the  impact of medications on study results [314–316]. 

Finally, yet importantly, AA represents a diagnostic but not the pathognomonic signature in ND and 

psychiatric  diseases  such  as  schizophrenia,  bipolar  disorder,  and  major  depressive  disorder 

[295,317,318]. The diverse  symptoms  seen  in  these patients  cannot be  solely attributed  to  the 

aging of the brain [295,319,320]. 

6. Roadmap for the Future of Neuroaging Science 

Statistical criteria and parameters  include sample size, age range and data normalization. The 

statistical method  selection will  improve diagnostic models based on  specific MBMs. Studies can 

benefit from the integration of epigenetics, exploration of additional epigenomic markers of aging, 

and generation of data in robust non‐human aging models. 
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Molecular clocks could be useful for investigating aging in specific organs and tissues. Organ‐ and 

tissue‐specific clocks will unravel the complexity of aging in a multicellular biological  system. 

Animal studies reported some powerful techniques that use the mutation rate of biomolecules to 

deduce the time [321]. These include organ‐specific clocks for liver [322–324],  lungs  [322,323], 

blood [323,325], heart and cortex [322], adipose, kidney, muscle tissues [323], and multiple tissue 

[326]. 

Single‐cell  epigenomics analysis  provides  a  deep  insight  into  aging  [327,328].  For  instance, 

lifetime‐dependent  cell‐to‐cell  variability  in  methylation,  or so‐called “epigenomic noise”, occurs 

in human immune cells in blood and in mouse muscle stem cells [329,330]. Epigenomic noise results 

in increased transcriptional heterogeneity, especially in stem cell niche genes [329]. A recent trend is 

the construction of epigenetic clocks at a single‐cell level by applying novel methods [331,332] and 

deep‐learning computer algorithms [333–335]. 

New epigenetic marks of aging is another challenge and represents interesting opportunities. 

Links between  aging  and DNA modifications other  than methylation are known but poorly 

understood. In the mouse, senescence of hippocampus cells deregulated histone H4 acetylation 

(H4K12)  [336]  and  accumulated  histone  variant H2A.Z  [337].  In  the  brain  of AD  patients, 

researchers found acetylated histones H3 (H3K9ac) and H4 (H4K16ac) [166,338].  Longevity in 

mammals  is  linked  to  histone  acetylation  by  SIRT6 HDAC,  and  this  discovery  unlocks  the 

potential for the development of senolytics  [339–341]. 

Distinct  aging  phenotypes  called  “ageotypes”  have  been  identified  recently  through 

longitudinal profiling of multiple omics data. These personalized physiological subsets of aging 

reflect  the  impact  of  various  individual  factors  on  the  aging  rate  which  depends  on  genetics, 

epigenetic  changes,  lifestyle  habits,  and  environmental  exposure. Models  reflecting  age will 

improve diagnostic accuracy as new information  is added [98].  By integrating biomarkers of aging 

into a model using ageotypes,  the effectiveness of  interventions  in each subgroup can be monitored 

[98,342,343]. 

Genetic  predispositions  associated  with  prototypical  progeroid  syndromes  contribute  to  our 

knowledge  of mechanisms  underlying  aging. Genome  instability  disorders  resulting  from  these 

recessive mutations are categorized into three groups, which include conditions related to: sunlight 

hypersensitivity, such as Xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy; 

disorders associated with  ionizing  radiation hypersensitivity,  including Ataxia  telangiectasia and 

Nijmegen breakage syndrome; and progeroid disorders  [344–346]. Studies on  the aforementioned 

disorders can also lead to the discovery of anti‐aging treatments. 

Unique animal models used in aging science exhibit age‐related  features:  accelerated  senescence, 

damage  of  nuclear  envelope,  increased  accumulation of genomic lesions [347]. Interventions and 

modulators are commonly tested with well‐developed mouse  aging models  [346]. Mouse models 

demonstrated  epigenetic  clock  acceleration  by  a  high‐fat  diet,  effects  of  rapamycin  and  caloric 

restriction [322,324]. The use  of  certain  established AA models,  for  example, D‐galactose  (D‐Gal) 

administered rodent models, provides a solid basis for extensive search and validation of senolytics 

(Table 4). In these models, D‐gal induces AA via the production of reactive oxygen species (ROS) and 

advanced glycation end‐products. D‐gal reduction by aldose reductase causes the accumulation  of 

galactitol. Once accumulated, galactitol depletes NADPH, decreases glutathione reductase activity, 

and  acts  as  a  metabotoxin,  neurotoxin,  and  hepatotoxin.  Killifish  (Nothobranchius  furzeri)  is  a 

vertebrate with the shortest captive lifespan, which makes the species suitable for modeling senescence 

[348–354]. Certain animals can mimic aspects of human aging in longevity models and may provide 

robust data  in  aging  science: naked mole  rats  (Heterocephalus  glaber, Fukomys mechowii) [355–357], 

Brandt’s bat (Myotis brandtii) [358–360], olm (Proteus anguinus)  [361–363], bivalve  (Arctica  islandica) 

[364,365], Hydra (Hydra vulgaris/Hydra magnipapillata) [366–369] and Planaria (Schmidtea mediterranea) 

[370–372].   
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Table 4. Recent studies on D‐Gal AA models and effects. 

Model  Effects  Cite 

1  Senescent Kupffer  MicroRNA‐7 deficiency ameliorated d‐galactose‐induced 
aging. miR‐7 deficiency 

[373] 

cells in mice  reduced IL‐1β in liver tissue, and the inhibition of IL‐1β in 
vivo slowed down 

 

  aging in mice.   KLF4 was found to be downregulated   

  in senescent Kupffer cells.   
2  D‐gal liver aging 
model 

Multiple pharmacological agents used to reverse D‐gal‐
induced liver aging. 

[374] 

3  CBM mice cells  In the CBM of D‐gal groups, the transmembrane potential 
dropped and   ATP level   

[375] 

  decreased while the level of β‐galactosidase increased.   
4  Human  erythrocytes  D‐gal led to Hb glycation, produced substantial changes in 

the endogenous 
[376] 

  antioxidant system, and induced early aging in human 
erythrocytes. 

 

5   OLETF rat D‐gal  In rat models of AD, levels of p‐IRS1, p‐IRS2, IDE, and p‐
GSK3β proteins 

[377] 

aging model  for AD  significantly elevated, while p‐PI3K‐p85α and p‐Akt 
decreased. 

 

  Electroacupuncture enhanced cognitive function and alleviated 
insulin resistance. 

 

6  D. huoshanense 
polysaccharide 

DHP protected the antioxidant enzymes SOD, GSH‐PX, and 
CAT from excessive 

[378] 

(DHP) application to 
D‐gal 

ROS, blocked the P53/P21 signaling pathway, and showed a 
potential 

 

mouse aging model  neuroprotective effect on D‐gal‐mediated cognitive disorders.   
7  D‐gal‐induced mouse 

aging model    and 
senescent cells 

Gliclazide regulated neuronal apoptosis  in aging mouse 
model and in D‐gal‐induced senescent cells, showed   
beneficial effect on   D‐gal‐induced   

[379] 

  neuronal injury, and    selected as     
        a candidate drug for       

  inhibiting of age‐related mental decline.   
8  Neuronal cells in the  Phlorizin  increased antioxidant enzyme activity, showed anti‐

inflammation 
[380] 

hippocampus of D‐
gal 

effects by regulating the IL‐1β/NF‐kB pathways in the brain, 
and alleviated 

 

mouse aging model  neuroapoptosis via Bax, Bcl‐2, and caspase‐3. Phlorizin was 
suggested as a 

 

  potential anti‐aging drug.   
9  D‐gal‐induced Wistar  Folic acid partially reversed D‐gal‐caused oxidative damage 

to lipids in 
[381] 

rat aging model  and protein in the    hippocampus and     

  prefrontal cortex.   
10  D‐gal‐induced aging  A combination of lycopene and β‐NMN slowed down aging  [382] 

rat and senescent  more efficiently than monotherapy.   
PC12 cells  The combination down‐regulated senescence‐related p53, p21, 

and p16 genes 
 

  and increased Nrf2 signaling in aging models.   
11  D‐gal‐induced  Dihydromyricetin from Ampelopsis grossedentata showed strong  [383] 

mouse brain  neuroprotective effects,  improved spatial cognition, and 
inhibited 

 

aging model  lipid peroxidation, malondialdehyde (MDA) and AGEs 
production, and   

 

  p53, p21, p16 genes expression.   
12  D‐gal‐induced  The polysaccharide of Polygonatum sibiricum (PSP) significantly 

improved 
[384] 

rat aging model  learning and reversed    kidneys’ pathological changes.     

  PSP up‐regulated Klotho, down‐regulated FOXO3a in renal   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2025 doi:10.20944/preprints202502.0493.v1

https://doi.org/10.20944/preprints202502.0493.v1


  12  of  39 

 

tissue, 

  and femoral expression of FGF‐23 protein.   
13  D‐gal‐induced  Saponin (ginsenoside) Rg2 from Panax ginseng delayed brain 

aging by 
[385] 

mouse brain  restoring D‐gal‐induced impaired memory function and 
redox system balance 

 

aging model  in mice   
14  D‐gal‐induced  Skeels fruits extract (SDE) reduced acetylcholinesterase 

activity in the brain 
[386] 

mouse model  and iNOS activity in serum, activated superoxide dismutase 
(SOD) 

 

  and glutathione in the liver and brain.   

  SDE inhibited TNFα, NF‐kB, IL‐1β, IL‐6, p53 and induced   

  SIRT1 and   Klotho in the brain and liver.   
15  D‐gal‐induced  Vit D improved cardiac hypertrophy , elevated cardiac 

mitophagy 
[387] 

Wistar rat model  and reducing apoptosis.   
16  D‐gal‐induced  In the D‐Gal/melatonin co‐treated group, melatonin 

treatment alleviated 
[388] 

mouse hepatocellular  D‐Gal‐induced hepatocyte  impairment and  reduced  the 
expression of 

 

aging model  inflammatory genes (IL1‐β, NF‐κB, IL‐6, TNFα, iNOS).   
17  Naturally  aged  Methyltransferase‐like protein 3 (METTL3) helped to N6‐

methyladenosine 
[389] 

mouse model, D‐gal‐  (m6A) modification  involved  in morbid changes. miR‐181a‐5p  
induced mouse aging  counteracted HK‐2 senescence by targeting the NF‐κB 

pathway. METTL3 
 

model, D‐gal‐induced  promoted the maturation of miR‐181a‐5p and inhibited the 
expression of NF‐κB 

 

senescent human  and IL‐1α.   
renal tubular     

epithelial cells (HK‐2)     

18  D‐gal‐induced  Metrnl expression significantly increased in the hippocampus. 
Metrnl knockout 

[390] 

mouse aging 
model 

aggravated cognitive impairment, reduced the levels of 
hippocampal BDNF, TrkB, 

 

  and glial fibrillary acidic protein. Metrnl regulated cognitive 
functions in aging, 

 

  and it was considered for the treatment of aging‐related cognitive 
dysfunction. 

 

19  D‐gal‐induced  An ethyl acetate fraction of Physalis alkekengi (PAE) decreased the 
activity of 

[391] 

mouse aging 
model 

senescence‐associated β‐galactosidase in the liver, spleen, and 
hippocampus, 

 

  the oxidative stress in the liver, plasma, and brain.  It can be used to 
prevent 

 

  or treat aging‐associated disorders.   
20  D‐gal‐induced  An established vasoactive and angioprotective drug, Calcium 

dobesilate (CaD), 
[392] 

mouse aging 
model 

reversed the body weight loss and cognitive impairment of D‐gal‐
treated animals. 

 

  CaD inhibited the oxidative stress in the aging brain by 
decreasing the MDA level 

 

  and increasing activity of SOD, glutathione peroxidase (GPx),and 
catalase (CAT). 

 

  CaD was considered as a candidate drug against cognitive 
impairment in aging. 

 

21  D‐gal‐induced  Thymoquinone (TQ) and curcumin (Cur) suppressed D‐gal‐
induced alterations in 

[393] 

rat aging model  the brain and heart. The TQ and Cur combination reduced the 
necrosis in the brain 

 

  and heart by D‐gal, the levels of brain caspase 3, BCL2, calbindin, 
heart caspase 3, AND calcium‐binding adapter molecule 1.   

 

        The combination also inhibited the expression of p53, p21, Bax,   
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CASP‐3. 

  The combination may prevent aging   
22  D‐gal‐induced 
mouse 

A bicyclic monoterpenoid camphorquinone (CQ) reduced 
senescence in mouse heart 

[394] 

aging model and  tissues and human bone marrow mesenchymal stem cells (hBM‐
MSCs). In both models, 

 

hBM‐MS cells  CQ  boosted AMPK/SIRT1  activation  and  autophagy.   
23  D‐gal‐induced  Schisandra sphenanthera has been used in traditional Chinese 

medicine for 
[395] 

mouse aging 
model 

thousands of years. The study reported the immunomodulatory 
activity of 

 

  a monomer of S. sphenanthera lignans (Anwulignan) in aging.   
24  D‐gal‐induced  A derivative from Piperlongumine ‐ PL 1‐3 ‐ decreased the 

antioxidative stress in the 
[396] 

mouse aging 
model 

serum, liver, kidney and brain of aging mice. PL 1‐3 upregulated 
the expression of 

 

  sirtuin 1, downregulated the expressions of p53, p21, p16 genes. It 
also 

 

  reversed damages induced by D‐gal in the liver, kidney, and 
spleen. 

 

25  C. elegans and D‐
gal‐ 

The mulberry  leaf extract  (MLE) significantly prolonged 
nematodes’ average  life 

[397] 

induced mouse  span and improved physiological indicators of C. elegans.   
aging model  In the mice model, MLE protected against oxidative stress and 

ameliorated 
 

  the decreased body weight and organ index. The extract up‐
regulated total SOD 

 

  and total antioxidant capacity. It activated the MPK/SIRT1/PGC‐
1α pathways 

 

  and reduced ROS and MDA levels.   
26  D‐gal‐induced  In a high‐fat diet‐fed rats, D‐gal‐induced aging elevated AGEs 

significantly 
[398] 

Wistar rat aging 
model 

impaired bone microarchitecture and increased bone inflammation 
and resorption. 

 

  In obesity, D‐gal‐induced aging aggravated bone dyshomeostasis 
in a time‐dependent 

 

  manner.   
27  D‐gal‐induced  Bifidobacterium longum T37a significantly decreased the spleen and 

liver index. 
[399] 

mouse aging 
model 

It significantly increased HDL‐C concentration and decreased 
LDL‐C and MDA levels 

 

  in the liver. T37a demonstrated antioxidant properties in the DPPH 
assay and anti‐lipid 

 

  peroxidation test, therefore it is a potential anti‐aging and weight‐
loss probiotic drug. 

 

28  D‐gal‐induced  Geraniol  (GNL), an acyclic  isoprenoid monoterpene  induced a 
significant  increase 

[400] 

mouse aging 
model 

in spatial learning and memory with spontaneously altered 
behavior. It upregulated 

 

  Nrf2 and HO‐1 and reduced oxidative stress and apoptosis. 
Therefore, GNL was 

 

  suggested as a promising agent  for  treating neuroinflammation‐
induced cognitive 

 

  impairment.   
29  D‐gal‐induced  Recombinant IL‐33 elevated osteogenic parameters, reduced 

senescence markers, and 
[401] 

mouse aging 
model 

exerted neuroprotective potential in osteoblasts of aging mice 
model.  IL‐33 can be 

 

  considered as a therapy for the treatment of aging‐induced bone 
loss and memory 

 

  impairment.   
30  D‐gal‐induced  Quercetin potentially attenuated aging‐related oxidative alterations 

of  the 
[402] 

Wistar rat aging 
model 

pancreas and kidneys. It downregulated aging, reduced the levels 
of apoptotic 

 

  and inflammatory markers, and upregulated the antiapoptotic, 
proliferative, 
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  antioxidant, and functional markers. Quercetin is considered as a 
promising 

 

  natural protective compound that could be used to delay aging.   

 

7. Conclusions 

– Various theories and hypotheses support a paradigm shift in the science of aging. The wealth of 

data  suggests  that  various  processes,  influenced  by  internal  and  external  factors,  result  in 

diverse mosaic  changes  in  organisms  occurring  at  different  rates,  rather  than  following  a 

uniform, gradual aging pattern. 

– The  concept  of  accelerated  aging  should  be  considered  in  the  context  of  personalized 

characteristics  and methodological  limitations  should  be  taken  into  account.  Applying  the 

concept  to  localized brain neurodegeneration  is challenging since different brain regions and 

structures age at different rates. 

– A healthy lifestyle in a favorable environment, stimulation of regenerative processes, hygiene, 

immunization, targeted drug therapy, and balanced metabolism are some of the key approaches 

that can help slow down brain aging. 

– Certain molecular characteristics and  substances,  including epigenetic changes, differentially 

expressed genes and non‐coding RNAs, could serve as potential biomarkers and pharmaceutical 

targets in space biomedicine and may have implications for aging in terrestrial conditions. 

– Future  research could offer clinics and society new  therapeutic possibilities  to deal with  the 

neuroaging. Studying the connection between space travel and aging in different models and 

humans  can  help  to  improve  the  safety  of  space  exploration  and  develop  new methods  to 

address neuroaging challenges on Earth. 

Abbreviations 

The following abbreviations are used in this manuscript: 

5‐mC  5‐methylcytosine 

AA  accelerated aging 

AAG  gene related to accelerated aging AD Alzheimer’s disease 

asRNA antisense RNA 

BA  biological  age 

BBB    blood–brain barrier 

BM                              biomarker   

circRNA  circular RNA 

DA  decelerated aging 

D‐gal  D‐galactose 

eRNA  enhancer RNA 

GCR    Galactic Cosmic Radiation 

HC  healthy control   

LEO  low Earth orbit 

lncRNA  long non‐coding RNA 

lincRNA  long intergenic non‐coding RNA   
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MBM  molecular biomarkers 

MCI  mild cognitive impairment   

MG  microgravity 

miRNA  microRNA 

ncRNA  non‐coding RNA   

NA  normal aging 

ND  neurodegeneration 

NDG  gene that predispose to neurodegeneration   

NV  neurovascular 

NVU  neurovascular unit 

PD  Parkinson’s disease   

piRNA Piwi‐interacting RNA   

ROS  reactive oxygen species   

siRNA  small interfering RNA 

snoRNA  small nucleolar RNA 

SMG  simulated microgravity 

SMS    space motion sickness 

SPE  Solar Particle Event 

Xist  X inactivation‐specific transcript   

yRNA Y RNA 
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