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Article 
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*  Correspondence: youngbuaa@163.com 

Abstract: Model‐based fault diagnosis serves as a powerful technique for addressing fault detection 

and isolation issues in control systems. However, diagnosing faults in closed‐loop control systems 

is more challenging due to their inherent robustness. This paper aims to detect and isolate actuator 

and sensor faults in the cascade electro‐hydraulic control system of a turbofan engine. Based on the 

fault characteristics, we design a robust unknown perturbation decoupling residual generator and 

an optimal fault observer specifically for the inner and outer control loops to detect potential faults. 

To  locate  the  faults, we analyze  the steady‐state propagation  laws of actuator and sensor  faults 

within the loops using the final value theorem. Based on this, we establish the minimal‐dimensional 

fault  influence  distribution  matrix  specific  to  the  cascade  turbofan  engine  control  system. 

Subsequently, we construct the normalized residual vectors and monitor its vector angles against 

each row of the fault influence distribution matrix to isolate faults. Experiments conducted on an 

electro‐hydraulic  test  bench  demonstrate  that  our  proposed method  can  accurately  locate  four 

typical  faults of actuators and  sensors within  the cascade electro‐hydraulic control system. This 

study  enriches  the  existing  fault  isolation methods  for  complex dynamic  systems,  and  lays  the 

foundation for guiding component repair and maintenance. 

Keywords: Fault Diagnosis; Electro‐hydraulic Control System; Fault Propagation Characteristics; 

Turbofan engine 

 

1. Introduction 

Closed‐loop control systems are widely adopted in industrial fields to improve stability, reduce 

system sensitivity, and enhance robustness against external disturbances in the process[1]. The safety 

and reliability of control systems are crucial to the operation of the whole system. Therefore, some 

core components of these control systems, such as controllers, key actuators, and sensors are usually 

designed with dual or multiple redundancy, especially for safety–critical systems[2–4]. In general, 

the important prerequisite for fault‐tolerant control is effective fault diagnosis and isolation (FDI). 

Hence, it is paramount to investigate the FDI techniques[5,6]. 

Over the past few decades, fault diagnosis of control systems has been widely investigated in 

various  research  fields,  yielding  numerous  results,  for  example,  in  aerospace  systems[7,8], wind 

energy  conversion  systems[9,10],  chemical  processes[11],  and  robotic  systems[12].  The  existing 

model‐based fault diagnosis methods mainly consist of observer‐based[13], parameter identification‐

based[14], and parity space‐based[15,16] approaches, most of which are designed based on the first 

principle model of open‐loop system parameterization without considering the impact of feedback 

control on  the diagnostic system. However,  it was  found  in  [17]  that  there  is a  trade‐off between 

controller  robustness  and  the  sensitivity  of  the  detection  filter  in  closed‐loop  control  systems. 
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According to [18], a numerical example of a closed‐loop three‐tank system was used to demonstrate 

the inability of open‐loop fault diagnosis approaches to detect system faults in the proposed closed‐

loop  system. Therefore, dedicated methods  should  be developed  to  address  fault diagnosis  and 

isolation in closed‐loop systems. 

Closed‐loop controller degrades diagnosis performance due to  the  following reasons:  (1) The 

feedback controller makes the system more robust against internal and external disturbances[19], but 

at the same time it reduces the system sensitivity to the residual signal of the diagnostic system; (2) 

Abnormal  signals of a  faulty  system will be  fed back  to  the  system  input,  causing deviations  in 

multiple  signals  throughout  the control  loop[20]. Although  this may  improve  the detectability of 

faults to some extent,  it increases the difficulty of fault isolation. As discussed  in [21], the authors 

examined how a certain implemented controller would impact the diagnostic system and how such 

performance can be further  improved. Sun proposed a fault  identification method to  improve the 

performance of deep neural networks when fault magnitude and fault characteristics differences are 

insignificant  in closed‐loop systems[22]. Cheng used a combined model‐based method to enhance 

diagnostic performance in closed‐loop control systems based on the observer‐based method and the 

artificial neural networks (ANNs) modeling approach [23]. Grehan proposed an SVM data‐driven 

fault diagnosis method to detect and identify faults in an aircraft closed‐loop flight control actuation 

system, which  uses  information  from  previously  collected  data  to  identify  the  characteristics  of 

faults[24]. Zhang used a data‐driven and mixed approach to detect specific faults for autonomous 

underwater vehicles. These diagnosis methods  can  essentially  be  viewed  as pattern  recognition, 

without any particular physical model of the system [25]. In recent years, some researchers have also 

focused on the active fault diagnosis of closed‐loop systems, for example, the active fault diagnosis 

problem for a class of discrete‐time closed‐loop systems with stochastic noise was addressed in [26]. 

Niemann proposed a double residual generator that derives from the Bezout equation and it can be 

applied  to  active  fault  detection  in  closed‐loop  systems  [27]. We    investigated  the  closed‐loop 

performance deviation caused by system additive or multiplicative faults, in [28], and proposed a 

control performance requirements‐based fault diagnosis scheme for the first time. This research work 

is an extension and continuation of that study. However, to the best of our knowledge, the existing 

research mainly  focuses on  the  fault detection of  the single closed‐loop system using data‐driven 

methods. Furthermore,  few  research efforts have been made  to  the  fault  isolation  for closed‐loop 

control systems, especially for cascade control systems.   

Motivated by the above observations, we propose a novel fault diagnosis scheme for the cascade 

electro‐hydraulic control system of a turbofan engine. The main contributions of this study are as 

follows: (1) The steady‐state characteristic variations of critical signals in a cascade control system are 

employed as evaluation indices for fault impact. Theoretically, the steady‐state propagation laws of 

actuator faults and sensor faults in both the inner and outer loops are derived. Additionally, a method 

for establishing the fault influence distribution matrix within the loops of the cascade control system 

is presented. (2) A minimal‐dimensional steady‐state residual vector representing the operating state 

of  the  cascade  control  system  is  constructed,  transforming  the  fault  localization  problem  into  a 

straightforward mathematical problem of calculating the angle between two vectors. By sequentially 

calculating  the  angles  between  the  normalized  residual  vector  and  each  row  vector  of  the  fault 

influence distribution matrix,  the fault corresponding  to the row vector with  the smallest angle  is 

identified as the isolated fault. 

The remainder of this paper is organized as follows: In Section 2, the cascaded electro‐hydraulic 

control  system of a  turbofan  engine  is  introduced.  In Section 3,  the  fault diagnosis and  isolation 

schemes  based  on  the  steady‐state  propagation  characteristics  of  faults  are  proposed.  Section  4 

presents the experimental results, and the discussion and conclusions are given in Section 5. 

2. Cascade Electro‐Hydraulic Control System of Turbofan Engine 

2.1. Cascade Electro‐Hydraulic Control System of Turbofan Engine 

Cascade control is an effective way to enhance the control performance of dynamic processes. A 

cascade control system typically consists of two main control loops: the outer loop and the inner loop. 
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By  leveraging  the strengths of dual‐loop architecture,  these systems achieve superior disturbance 

rejection, enhanced control accuracy, and increased stability. 

Figure 1 illustrates a typical electro‐hydraulic cascade control system of a turbofan engine, which 

comprises two primary control loops: the outer loop for fan speed control and the inner loop for fuel 

metering control.   

From pump To tank

EHSV

FMV
LVDT

Inner 
Controller

Outer 
Controller

Torque 
Motor 

Inner-loop Feedback

RVDT

Fan

Pump

Combustor

PLA

Outer-loop
Feedback

DPV

From tank
 

Figure 1. Cascaded electro‐hydraulic control system of a turbofan engine. 

The outer loop involves a controller that regulates the fan speed based on the desired fan‐speed 

setpoint  given  by  the  power  lever  angle  (PLA)  and  the  rotary  variable  differential  transformer 

(RVDT). This controller adjusts the torque motor reference input of the inner‐loop electro‐hydraulic 

servo valve (EHSV), which in turn modulates the fuel flow to control the fan speed. The inner loop 

focuses on the precise metering of fuel delivered to the engine. The inner controller receives feedback 

from the linear variable differential transformer (LVDT) mounted on the fuel metering valve (FMV), 

and adjusts the measured fuel flow with the aid of difference pressure valve (DPV). 

2.2. Fault Analysis of Turbofan Engine Control System 

As can be seen from Figure 1, the inner‐loop actuator is the EHSV‐controlled FMV,    the outer‐

loop actuator is the DPV, and LVDT and RVDT are the feedback sensors within the inner‐ and outer‐

loop, respectively. These core components are crucial to the safe and reliable operation of the entire 

cascade control system. 

The fuel metering unit (FMU) includes the FMV and the EHSV, and the torque motor can be 

regarded as part of the EHSV. Due to the harsh operational environment, the FMU is susceptible to 

various faults. For instance, the valve spool can wear out over time due to continuous operation and 

high pressures with symptoms of  increased  internal  leakage and degraded  fuel  flow control. The 

torque motor within  the EHSV  can  fail  due  to  short  circuits,  insulation  breakdown,  or  external 

damage, which results in inaccurate fuel metering or even loss of control signals.   

The  function of  the PDV  is  to  ensure  that  the pressure differential before and  after  the  fuel 

metering valve is maintained at a certain constant value so that the fuel flow rate can be controlled 

simply by controlling  the displacement of  the metering valve. Although differential valve spring 

fatigue or seal leakage is a multiplicative fault to the dynamics of the valve itself, the effects of DPV 

common faults and disturbances can be viewed as a gain fault with respect to the engine fuel output. 

LVDT  and RVDT  are utilized  to monitor  the  FMV openings  and  the  fan  speed, when  they 

operate  for extended periods under high  temperatures and strong vibration conditions,  they may 

experience coil breakage, changes in resistance, or even alterations in structural parameters, which 

can subsequently affect the related performance parameters. For example, bias and drift of sensors 
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caused by aging, temperature changes, or calibration errors lead to persistent offset in sensor readings, 

leading to incorrect control responses. 

3. Fault Diagnosis Scheme 

In the cascade electro‐hydraulic control system, the residual generators for fault detection in its 

two  loops can be designed  independently and specifically, tailored  to the unique requirements of 

each control loop. 

3.1. Optimal Fault Detection Filter Design for the Outer Loop System 

Consider  the  following dynamic  control  system  that  incorporates  additive disturbances  and 

faults: 

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

( )= ( )+ ( )+ ( )+ ( )

( )= ( ) ( ) ( )+ ( )

d f

d f

t t u t t t

t t u t t t




 

x A x B E d E f

y C x D F d F f


  (1) 

where, x1 is the state vector of outer‐loop control system, y1 signifies outer‐loop output vector, A1, B1, 

C1, and D1 are system matrices, u1 is the control input, d1(t) represents the unknown disturbance input 

vector  of  the  system,  f1(t)  denotes  the  fault  vector  of  the  system,  Ed1,  Ef1,  Fd1,  and  Ff1  are  the 

corresponding disturbance and fault matrices with appropriate dimensions. 

To  generate  fault  residuals  of  the  outer‐loop  control  system,  the  following  state  observer  is 

designed: 

1 1 1 1 1 1 1

1 1 1 1

ˆ ˆ ˆ( )= ( )+ ( )+ ( ) ( )

ˆ ˆ( )= ( ) ( )

obst t u t t t

t t u t

    

 

x A x B L y y

y C x D


  (2) 

where,  1x̂

  and  1ŷ are  the  estimated  x1  and  y1,  respectively. Lobs  is  the  observer  gain matrix  that 

stabilizes  the eigenvalues of  the matrix  (A1‐LobsC1) stable, ensuring  that  the designed observer can 

achieve an unbiased estimate of the system state. 

Define the observation residuals eobs1 as follows 

1 1 1ˆ( ) ( ) ( )obs t t t e x x   (3) 

The dynamic characteristics of the residual generator can be described as 

1 1 1 1 1

1 1 1 1 1 1

( )= ( )+ ( )+ ( )

( ) ( ) ( ) ( )

d f

d f

t t t t

t t t t




     

ξ A ξ E d E f

r W C ξ F d F f

   

     (4) 

where, W is a pre‐filter to be designed, r1 is the generated system residual, 

1

1

( )
( )

( )obs

t
t

t

 
  
 

x
ξ

e
， 1

1
1

( )
( )

( )

u t
t

t

 
  
 

d
d

， 1
1

1 1

0

0 obs

 
   

 A
A

A L C
， 1 1

1
1 10

d
d

d obs d

 
   

 B E
E

E L F

， 1

1
1 1

f

f
f obs f

 
   

 E
E

E L F
，  1 10C C ，  1 10d dF F ， 1 1f fF F . 

 

According  to  Equation  (1),  the  transfer  functions  from  system  disturbances  1
d   and  system 

faults f1
 
to  1r   are as follows, respectively 

   
1 1

1 1 1 1 1 1( ) d obs d obs dr d
G s s      

   W F C I A L C E L F   (5) 

  
1 1 1 1 1 1 1 1( )r f f obs f obs fG s s      

  W F C I A L C E L F   (6) 
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To  achieve  the  optimal  balance  between  the  robustness  of  system  disturbances  and  the 

sensitivity to system faults, we can solve the following optimal design problem using the theorem 

presented in [29] to obtain the optimal solution. 

 
1 1

1 1

,

( j )
max ( , ) , 0,

( j )obs

i r f

obs

r d

G
J

G

 





  L W
L W



  (7)

where,  ( )i    is the i‐th non‐zero singular value, j is imaginary unit,  is the angular frequency.   
The matrices Lobs and W that satisfies the solution of the above optimization problem could make 

the observer robust to disturbances while being as sensitive to faults as possible. 

To detect faults, the root mean square (RMS) of the residual signal  is utilized to evaluate the 

energy of the residual signal: 

T
1 1 1RMS

1
( ) ( ) ( )d

t T

t
r t r r

T
  


    (8)

where, 
RMS
   represents the average energy of the residual signal within the specified time interval 

(t,  t+T)  and  it  can be determined based on  the maximum  energy value observed  in  the  systemʹs 

historical data under fault‐free conditions. 

1, 1 RMS
fault-free
sup ( )th RMSJ r t   (9) 

By monitoring the RMS value of the residual signal and comparing it against a predetermined 

threshold Jth1,RMS, the fault detection logic of the outer‐loop control system is given by 

1 1,RMS

1 1,RMS

( ) fault

( ) fault-free

th RMS

th RMS

r t J

r t J

  


 
  (10) 

3.2. Robust Unknown Disturbance Decoupled Residual Generator for the Inner‐Loop System 

The inner‐loop dynamic system can be described as 

2 2 2 2 2 2 2

2 2 2 2 2

( )= ( )+ ( )+ ( )

= ( ) ( )

d at t u t t

t u t






x A x B E d

y C x D


 

where, x2 is state vector of the inner‐loop control system, y2 is inner‐loop output, A2, B2, C2, and D2 

are system matrices, u2 is control input, da2(t) represents the unknown external disturbance, and Ed1 

is disturbance distribution matrix. 

For  the  inner  loop  fuel  control  system  dominated  by  multiplicative  faults,  an  unknown 

disturbance decoupling observer is established as follows: 

2 2 2

2 2

( ) ( ) ( )

ˆ ( ) ( ) ( )

obs obs obs

obs

t t u t

t t t





z = F z +T B + K y

x = z + H y


  (11) 

where,  ( )tz is  the  state  vector  of  the  unknown  disturbance  decoupling  observer,  2
ˆ ( )tx is  the 

estimated state vector of the inner loop, Fobs, Tobs, Kobs, and Hobs are the observer matrices that need to 

be designed to achieve decoupling of additive perturbation and state estimation. 

Fig. 2 shows the structure of the unknown disturbance decoupling observer. 
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Figure 2. Structure of robust unknown disturbance decoupled residual generator. 

The estimated state error eobs2 is 

2 2 2
ˆ( ) ( ) ( )obs t t t e x x   (12)

The error control equation can be described as 

2 2 2 2 1 2 2 2 2 2 1 2

2 2 2 2 1 2 2

2 2 2 2 2

( ) ( ) ( ) [ ( )] ( )

[ ( ) ] ( )

[ ( )] ( ) ( ) ( )

obs obs obs obs obs obs

obs obs obs obs

obs obs sv obs d a

t t t

t

x t t

      

   

    

e A H C A K C e F A H C A K C z

K A H C A K C H y

T I H C B H C I E d



  (13) 

where, Kobs=Kobs1+Kobs2. 

When system input and output are decoupled, the state estimation error of the system can be 

simplified to: 

 2 2 2 2 2 1 2 2( ) ( )= ( )obs obs obs obs obs obst t t  e F e A H C A K C e   (14) 

If  all  eigenvalues  of  the matrix  obsF   are  stable,  it  can  be  ensured  that  the  estimation  error 

gradually approaches zero and the estimated system states approach the true values. 

According to the output of the observer and the actual output of the system, the residuals of the 

system can be obtained 

2 2 2 2 2 2 2
ˆ( ) ( ) ( ) ( ) ( ) ( )obst t t t t    r y C x I C H y C z   (15) 

where, I is an identity matrix with appropriate dimensions. 

Similarly, RMS index is utilized to evaluate the change of the residual signal, i.e., 

T
2 2 2RMS

1
( ) ( ) ( )d

t T

t
t r r

T
  


 r   (16)

The maximum energy value of historical data recorded under fault‐free conditions is used as the 

threshold of the residual signal 

2, 2 RMS
fault-free
sup ( )th RMSJ t r   (17)

If  the RMS  value  exceeds  this  threshold,  a  fault  condition  is  declared.  Therefore,  the  fault 

detection logic of the outer loop is 

2 2,RMS

2 2,RMS

( ) fault

( ) fault-free

th RMS

th RMS

t J

t J

  


 

r

r
  (18)
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3.3. Steady‐State Propagation Characteristics of Faults in Cascade Control Systems 

To analyze the propagation characteristics of actuator and sensor faults in the cascade control 

system, it is first necessary to derive the fault propagation characteristics of the single‐loop control 

system shown in Figure 3. 

FMV

LVDT

Inner 
PID

2af

2sf

2u2v 2e

-

2my

2y

 

Figure 3. Inner‐loop actuator and feedback sensors faults. 

To  simplify  the  derivation  process, multiplicative  faults  can  be  equivalently  converted  into 

additive faults, and the system dynamics of the inner loop can be described as: 

2 2 2 2 2 2 2

2 2 2 2 2

f a

m f s

  


 

x A x B u E f

y C x F f


  (19) 

where,  2f
E   is  the actuator  fault matrix,  2a

f   is  the actuator  fault vector,  2f
F   is  the  sensor  fault 

matrix,  2s
f   is sensor fault vector. 

The system matrices of the inner‐loop electro‐hydraulic FMV are 

2

2
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4 4( )
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V


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 

  
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  

B , 
2

2

0 0

0 0 0

0 0 0

sK 
   
  

C  

where, KL is load stiffness of FMV, mt is mass of the FMV, Ap is the area of the FMV control chamber, 

Bp is damping coefficient of FMV, Cip is the internal leakage coefficient, βe is elastic modulus of the 

fuel, Kc2 is the pressure gain coefficient of EHSV, Kq2 flow gain coefficient of EHSV, Vt is volume of 

the FMV control chamber, and Ks2 is the LVDT gain. 

The closed‐loop transfer matrix from system input v2 to output y2m
 
is: 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2( ) +f s f aK K v K      x A B C x B B F f E f   (20)

where, K2 is inner‐loop controller. 

Then the transfer function from system input v2 to output y2 is 

 
 

 2 2

2 2
2 2 2-1

, 2 2 2 2 2 2 2 3 2 2
2 2 2 2

4 4
( )= -( ) =

4 4 4

s t t e c t t p e p

v y

t t e c t t p e p e p s q

K K V m s K m V B s A
G s s K K

V m s K m V B s A s A K K K

 

  

     
   

C I A B C B   (21)

From equation (21), it can be observed that feedback sensor gain Ks2 and controller K2 have direct 

impacts on the system output under the closed‐loop control situation. 

Similarly, the transfer functions of the actuator faults to the specific signals in the loop 
2 2, au fG , 

2 2, ay f
G , 

2 2,m ay fG , 
2 2, su fG , 

2 2, sy f
G , and 

2 2,m sy fG   can be obtained. 

The steady‐state outputs of the derived system transfer functions can be calculated respectively 

using the final value theorem, and results are as follows. 
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It can be seen from the above calculation results that, for a single‐loop closed‐loop control system, 

feedback sensor faults will affect the steady‐state control accuracy of the closed‐loop control system, 

and the control error is directly related to the faulty sensor gain. In contrast, actuator faults usually 

do not affect the actual steady‐state output of the system. Furthermore, neither actuator faults nor 

sensor faults affect the steady‐state values of the measured output y2m and the control input u2 within 

the loop.   

The fault propagation characteristics of a single closed‐loop system are summarized in Table 1. 

Table 1. Steady‐state propagation characteristics of inner‐loop typical faults of a turbofan engine. 

Fault/Disturbance  Control input  Actual output  Measured output 

FMV disturbance  N  N  N 

FMV Leakage  N  N  N 

LVDT gain bias  N  Y  N 

Note:  symbol  ‘N’  indicates  that  when  a  fault  occurs,  the  steady‐state  residual  signal  quickly 

approaches zero after a short adjustment period, while the symbol ‘Y’ signifies that the steady‐state 

residual signal converges to a non‐zero value. 

As evident from Table 1, additive disturbances in the system do not affect the final steady‐state 

control  characteristics  of  the  system.  This  underscores  the  robustness  of  the  closed‐loop  control 

system, which  is capable of mitigating the effects of process disturbances  in the system, except  in 

cases of feedback sensor faults or other disturbances. 

Nonetheless, when considering the presence of the external control loop as depicted in Figure 4, 

the conclusion changes. In this scenario, the steady‐state error of the inner loop systemʹs actual output 

is  further  corrected by  the outer  controller,  thereby  altering  the  steady‐state outputs of multiple 

signals within the loop. 
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DPV
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1sf

1e
2u1v 2v 2e

- -
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Figure 4. Outer‐loop actuator and feedback sensors faults. 

The  analytical derivation method  can be  employed  to obtain  the  transfer  functions between 

different  signals  in  the  cascade  control  system.  Additionally,  the  steady‐state  propagation 

characteristics of faults within the cascade fuel control system are presented in Table 2. 

Table 2. Steady‐state propagation characteristics of faults in a turbofan cascade control system. 

Faults/Disturbance  u1  y1  y1m  v2  u2  y2  y2m 

FMV leakage  N  N  N  Y  Y  N  N 

LVDT gain bias  N  N  N  Y  N  N  Y 

DPV fault  N  N  N  Y  N  Y  Y 
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RVDTgain bias  Y  Y  N  Y  N  Y  Y 

According to the previous analysis, when the feedback sensor in the inner loop experiences a 

gain failure, it results in a deviation in the control input command of the fuel servo mechanism. This, 

in turn, leads to changes in the actual outputs of the fuel metering valve, fuel flow, and engine rotor 

speed. However, the outer‐loop controller corrects the deviations by adjusting the command of the 

inner‐loop  actuator,  effectively  eliminating  the  engine  speed  deviation  and  maintaining  the 

measured rotation speed at the reference value. 

3.4. Fault Isolation Scheme Based on Steady‐State Fault Propagation Characteristics 

To  isolate  the  fault, define  the minimum dimension residual vector rsys(t)
 
the cascade control 

system : 

1 2 2 2 2

1 10 2 20 2 20 2 20 2 2 0

( ) ( ) , ( ) , ( ) , ( ) , ( )

( ) , ( ) , ( ) , ( ) , ( )

sys m

m m

t u t v t u t y t y t

u t u v t v u t u y t y y t y

        

        

r
  (22)

where, u10  represents  the nominal value of  fuel  flow,  v20  is  the nominal output of  the outer‐loop 

controller, which also serves as  the nominal command value  for  the  inner  loop. Additionally, u20 

denotes  the nominal output of  the  inner‐loop controller, y20 represents  the nominal output of  the 

inner‐loop servo actuator, and y2m0 is the nominal measurement output of the inner‐loop feedback 

sensor.   

These nominal status values can all be derived from the systemʹs fault‐free historical operating 

data, which has been collected under different working conditions. Based on real‐time monitoring 

data  or  offline  data,  the  signal  residual  vector  of  the  fuel‐speed  cascade  control  system  can  be 

calculated.   

Assuming that the system can experience four distinct faults: inner‐loop actuator failure, inner‐

loop feedback sensor failure, outer‐loop actuator failure and, outer‐loop feedback sensor failure, with 

no more than one fault occurring simultaneously, then the fault influence distribution matrix M is 

obtained  by  analyzing  the  steady‐state  propagation  characteristics  of  actuator  and  sensor  faults 

within the cascade control system: 

4 5

0 1 1 0 0

0 1 0 0 1

0 1 0 1 1

1 1 0 1 1


 
 
 
 
 
 

M

 

To  prevent  the  occurrence  of  ill‐conditioned  matrices,  which  can  arise  due  to  significant 

differences in the magnitudes of various residuals, and to enhance the accuracy of fault isolation, it 

is necessary to normalize each residual vector using the following formula: 

 min

max min

( ) ( ) |
( ) 1,2,3,4,5

( ) | ( ) |

q q
sys sysq

sys q q
sys sys

t t
t q

t t


 



r r
r

r r

 where, q represents the q‐th column in the residual vector rsys(t), the maximum and minimum values 

of the residual vector can be obtained from the fault‐free historical operation data of the system in 

the past period. 

Assume that the p‐th row vector of fault influence distribution matrix Mp ( 1,2,3,4)p    represents 

four typical fault modes: fa2, fs2, fa1, and fs1, then calculate the vector angles between the normalized 

residual vector  syjsr   and each row vector of fault influence distribution matrix M. The value of p that 

minimizes the vector angle value is the result of fault isolation, i.e., 

 arg max cos , ( 1, 2,3, 4)p q
syjs

p
p M r   (23)
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4. Experiments 

To validate the effectiveness of the proposed fault isolation scheme, experiments are conducted 

on an electro‐hydraulic servo system test bench. This test bench is capable of simulating the cascade 

control  system  of  a  turbofan  engine,  as  shown  in  Figure  5.  Given  the  constraints  imposed  by 

experimental  conditions,  the  turbofan  engine  has  been  virtually  simulated  using  a  first‐order 

mathematical model with a time constant of 4.0 seconds. 

 

Figure 5. Test bench of the electro‐hydraulic control system. 

In the experiment, the system pressure was set to 21MPa, and the sampling time was 0.001s. 

Both  the  two  loop  controllers  employed  are  simple  proportional  controllers.  The  servo  valve‐

controlled cylinder serves to simulate the FMV with a total stroke of 30 mm. Within the host computer 

software, deviation  faults were  artificially  injected  into  the outputs of  the actuators  and  sensors, 

respectively. Subsequently, all output signals in the cascade control system, namely u1, y1, y1m, v2, u2, 

y2, and y2m were collected. 
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(a) Inner‐loop reference input. 
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(b) Inner‐loop control input. 
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(c) Inner‐loop actual output. 
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(d) Inner‐loop measured output. 

Figure 6. Inner‐loop propagation characteristics of different fault conditions. 
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It can be observed from Figure 6 that the four typical faults have different effects on the inner‐

loop  signals within  the  cascade  control  system. Referring  to Figure  6  (a)  and  (b), upon  injecting 

deviation  faults  at  1.0  s,  the  reference  input  v2  and  control  input  u2  gradually  stabilize  after 

approximately four seconds of adjustment. However, compared to the fault‐free system, there exists 

a  noticeable  steady‐state  error,  particularly  evident  in  the  case  of  RVDT  gain  deviation  fault 

references. 

 Comparing  Figures  6(c)  and  6(d),  the  primary  difference  lies  in  the  significant  deviation 

between  the  actual  and measured outputs of  the metering valve when  the LVDT  is  faulty. This 

deviation is unacceptable for the entire engine control system in practical applications. Furthermore, 

it is evident that when a deviation fault occurs in the FMV, the actual and measured output signals 

of the metering valve gradually converge to a stable value after three seconds of dynamic adjustment, 

exhibiting almost no steady‐state error compared to the fault‐free system. In contrast, DPV and RVDT 

faults  significantly  impact  the  actual  and measured  outputs  of  the metering  valve,  resulting  in 

substantial steady‐state errors. 

As shown in Table 2, when a deviation fault occurs in the FMV, the steady‐state residuals of the 

signals v2, u2, y2, and y2m ultimately approach zero after a brief adjustment period, as demonstrated in 

Figure 6. However, during the dynamic adjustment process, an interesting phenomenon arises. The 

initial change direction of the systemʹs actual output and measured output signal residuals aligns 

with the deviation fault direction, whereas the initial change direction of the systemʹs control input 

residual is the opposite. This is due to the closed‐loop controllerʹs corrective action; upon detecting a 

deviation in the measured output by the feedback sensor, the systemʹs control input adjusts in the 

opposite direction to mitigate the impact of the deviation fault on the output. Conversely, when a 

deviation  fault occurs  in  the  feedback sensor LVDT,  the  initial change direction of  the measured 

output aligns with the deviation fault direction. However, both the initial change directions of the 

systemʹs  control  input  and  actual  output  residuals  are  opposite  to  this,  indicating  a  corrective 

response by the system to counteract the fault effects. 
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(c) Measured output of outer-loop Engine. 

Figure 7. Outer‐loop propagation characteristics of different fault conditions. 

It can be observed from Figure 7 that for the outer‐loop control system, among the four typical 

fault modes, only the RVDT fault has the most significant impact on the outer‐loop signals. The effects 

of the other three faults are mitigated under the correction provided by the closed‐loop controller. 

This finding is consistent with the theoretically derived results in the previous section and lays the 

foundation  for  the subsequent  fault  isolation scheme, which  is based on steady‐state propagation 

characteristics. It should be noted that due to the first‐order engine model and the difference between 

the two cascade controllers, some signals exhibit significant noise while others appear filtered. For 

example,  the  signal noise of  the measured output  from  the  inner‐loop  feedback  sensor  is greatly 

reduced after passing through the engine model. 

According to the experimental data, the steady‐state residual values of each signal under four 

different fault conditions and fault‐free conditions were calculated. The results are summarized in 

Table 3. 

Table 3. Steady‐state residuals under different fault conditions. 

Fault location  u1  y1  y1m  v2  u2  y2  y2m 

FMV  0.33458  1.45745  1.45745  ‐1.45745  ‐0.00049  0.00418  0.00418 

LVDT  ‐0.16846  ‐7.08437  ‐7.08437  7.08437  0.00232  ‐0.00211  0.49730 

DPV  ‐0.02578  ‐1.73491  ‐1.73491  1.73492  0.00065  ‐0.83297  ‐0.83297 

RVDT  ‐37.486500  ‐941.745  ‐36.4096  36.40957  0.01218  ‐0.46858  ‐0.46858 

Based on the data presented in Table 3, we can obtain the normalized residual matrix as follows: 
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The  fault  isolation  results  can be determined by  computing  the vector  angles between  each 

fault’s normalized residual vector and each row vector of the fault influence distribution matrix M. 

The results are shown in Table 4. 

Table 4. Fault isolation results of the proposed method in this study. 

Vector angle          Isolation results 
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2 2accos syjsM r   65.48°  31.46°  45.68°  52.52°  p=2 

3 3accos syjsM r 87.11°  58.45°  33.39°  43.67°  p=3 

4 4accos syjsM r   42.10°  54.57°  49.93°  34.94°  p=4 

From Table 4, it can be seen that the minimum angles between the four residual vectors and each 

row vector of fault influence distribution matrix M are 11.40°, 31.46°, 33.39°, and 34.94°, representing 

FMV fault, LVDT fault, DPV fault, and RVDT fault, respectively. In practical applications, targeted 

maintenance can be performed based on the isolation results obtained from the minimum and sub‐

minimum angle values  to  improve  the  reliability of diagnostic  results and  improve maintenance 

efficiency. 

5. Discussion and Conclusions 

This study deals with the fault diagnosis of the cascade electro‐hydraulic control system of a 

turbofan engine. We proposes a novel fault isolation scheme based on the steady‐state propagation 

characteristics within the control loops. Conclusions are drawn as follows: 

In  a  single  closed‐loop  control  system,  the  feedback  controller  can  result  in  the  steady‐state 

effects of actuator disturbances and faults being transferred, attenuated, or even completely mitigated 

within the control loops, except for the feedback sensor fault. In a cascade control system, the inner‐

loop sensor fault effects can be compensated via the outer‐loop sensor and controller. Similarly, the 

impact of the outer‐loop actuator faults can be mitigated by adjusting the reference command of the 

inner  loop. Only  the health status of  the outer‐loop sensor directly  influences  the  final controlled 

variable of the entire system. This influence cannot be mitigated by the closed‐loop correction effect 

inherent  to  the  cascade  control  system. Considering  the  steady‐state propagation  effects of  these 

faults,  the proposed method  for constructing a minimum dimensional residual vector and a  fault 

influence distribution matrix to characterize the health state of the cascade control system simplifies 

fault isolation to a straightforward mathematical problem of calculating vector angles. Experimental 

results demonstrate  that  this method  effectively  locates  faults within  the  cascade  control  system, 

which provides a solid foundation for subsequent repair and maintenance activities. 

The novel fault isolation method proposed in this paper is not only applicable to single closed‐

loop control systems, but also to cascade or even multi‐loop feedback control systems. The essence 

of this method lies in acquiring the steady‐state propagation characteristics of different faults within 

the  cascade  control  system, whether  through  analytical methods  or  simulated  experiments,  and 

thereby determining the fault influence distribution matrix of the system. As more fault modes are 

considered, an increased number of characteristic signals within the loop are required, leading to a 

higher‐dimensional fault influence distribution matrix. Consequently, this matrix is not unique, but 

there exists a matrix with minimal dimension. The smaller the matrix dimension, the less computing 

resources are  required  for calculation, which  is essential  for both online  real‐time or offline  fault 

diagnosis. Additionally, by leveraging the linear combination of the row vectors of the fault influence 

distribution matrix, the behavior of signals within the loop under simultaneous multiple faults can 

be discerned. Therefore, this method shows considerable promise in multi‐fault diagnosis. Our future 

work will  concentrate  on multi‐fault  isolation  schemes  and  the  demand‐driven  optimization  of 

sensor redundancy layouts. 
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