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Abstract: Model-based fault diagnosis serves as a powerful technique for addressing fault detection
and isolation issues in control systems. However, diagnosing faults in closed-loop control systems
is more challenging due to their inherent robustness. This paper aims to detect and isolate actuator
and sensor faults in the cascade electro-hydraulic control system of a turbofan engine. Based on the
fault characteristics, we design a robust unknown perturbation decoupling residual generator and
an optimal fault observer specifically for the inner and outer control loops to detect potential faults.
To locate the faults, we analyze the steady-state propagation laws of actuator and sensor faults
within the loops using the final value theorem. Based on this, we establish the minimal-dimensional
fault influence distribution matrix specific to the cascade turbofan engine control system.
Subsequently, we construct the normalized residual vectors and monitor its vector angles against
each row of the fault influence distribution matrix to isolate faults. Experiments conducted on an
electro-hydraulic test bench demonstrate that our proposed method can accurately locate four
typical faults of actuators and sensors within the cascade electro-hydraulic control system. This
study enriches the existing fault isolation methods for complex dynamic systems, and lays the
foundation for guiding component repair and maintenance.

Keywords: Fault Diagnosis; Electro-hydraulic Control System; Fault Propagation Characteristics;
Turbofan engine

1. Introduction

Closed-loop control systems are widely adopted in industrial fields to improve stability, reduce
system sensitivity, and enhance robustness against external disturbances in the process[1]. The safety
and reliability of control systems are crucial to the operation of the whole system. Therefore, some
core components of these control systems, such as controllers, key actuators, and sensors are usually
designed with dual or multiple redundancy, especially for safety—critical systems[2—4]. In general,
the important prerequisite for fault-tolerant control is effective fault diagnosis and isolation (FDI).
Hence, it is paramount to investigate the FDI techniques|[5,6].

Over the past few decades, fault diagnosis of control systems has been widely investigated in
various research fields, yielding numerous results, for example, in aerospace systems[7,8], wind
energy conversion systems[9,10], chemical processes[11], and robotic systems[12]. The existing
model-based fault diagnosis methods mainly consist of observer-based[13], parameter identification-
based[14], and parity space-based[15,16] approaches, most of which are designed based on the first
principle model of open-loop system parameterization without considering the impact of feedback
control on the diagnostic system. However, it was found in [17] that there is a trade-off between
controller robustness and the sensitivity of the detection filter in closed-loop control systems.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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According to [18], a numerical example of a closed-loop three-tank system was used to demonstrate
the inability of open-loop fault diagnosis approaches to detect system faults in the proposed closed-
loop system. Therefore, dedicated methods should be developed to address fault diagnosis and
isolation in closed-loop systems.

Closed-loop controller degrades diagnosis performance due to the following reasons: (1) The
feedback controller makes the system more robust against internal and external disturbances[19], but
at the same time it reduces the system sensitivity to the residual signal of the diagnostic system; (2)
Abnormal signals of a faulty system will be fed back to the system input, causing deviations in
multiple signals throughout the control loop[20]. Although this may improve the detectability of
faults to some extent, it increases the difficulty of fault isolation. As discussed in [21], the authors
examined how a certain implemented controller would impact the diagnostic system and how such
performance can be further improved. Sun proposed a fault identification method to improve the
performance of deep neural networks when fault magnitude and fault characteristics differences are
insignificant in closed-loop systems[22]. Cheng used a combined model-based method to enhance
diagnostic performance in closed-loop control systems based on the observer-based method and the
artificial neural networks (ANNs) modeling approach [23]. Grehan proposed an SVM data-driven
fault diagnosis method to detect and identify faults in an aircraft closed-loop flight control actuation
system, which uses information from previously collected data to identify the characteristics of
faults[24]. Zhang used a data-driven and mixed approach to detect specific faults for autonomous
underwater vehicles. These diagnosis methods can essentially be viewed as pattern recognition,
without any particular physical model of the system [25]. In recent years, some researchers have also
focused on the active fault diagnosis of closed-loop systems, for example, the active fault diagnosis
problem for a class of discrete-time closed-loop systems with stochastic noise was addressed in [26].
Niemann proposed a double residual generator that derives from the Bezout equation and it can be
applied to active fault detection in closed-loop systems [27]. We investigated the closed-loop
performance deviation caused by system additive or multiplicative faults, in [28], and proposed a
control performance requirements-based fault diagnosis scheme for the first time. This research work
is an extension and continuation of that study. However, to the best of our knowledge, the existing
research mainly focuses on the fault detection of the single closed-loop system using data-driven
methods. Furthermore, few research efforts have been made to the fault isolation for closed-loop
control systems, especially for cascade control systems.

Motivated by the above observations, we propose a novel fault diagnosis scheme for the cascade
electro-hydraulic control system of a turbofan engine. The main contributions of this study are as
follows: (1) The steady-state characteristic variations of critical signals in a cascade control system are
employed as evaluation indices for fault impact. Theoretically, the steady-state propagation laws of
actuator faults and sensor faults in both the inner and outer loops are derived. Additionally, a method
for establishing the fault influence distribution matrix within the loops of the cascade control system
is presented. (2) A minimal-dimensional steady-state residual vector representing the operating state
of the cascade control system is constructed, transforming the fault localization problem into a
straightforward mathematical problem of calculating the angle between two vectors. By sequentially
calculating the angles between the normalized residual vector and each row vector of the fault
influence distribution matrix, the fault corresponding to the row vector with the smallest angle is
identified as the isolated fault.

The remainder of this paper is organized as follows: In Section 2, the cascaded electro-hydraulic
control system of a turbofan engine is introduced. In Section 3, the fault diagnosis and isolation
schemes based on the steady-state propagation characteristics of faults are proposed. Section 4
presents the experimental results, and the discussion and conclusions are given in Section 5.

2. Cascade Electro-Hydraulic Control System of Turbofan Engine

2.1. Cascade Electro-Hydraulic Control System of Turbofan Engine

Cascade control is an effective way to enhance the control performance of dynamic processes. A
cascade control system typically consists of two main control loops: the outer loop and the inner loop.
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By leveraging the strengths of dual-loop architecture, these systems achieve superior disturbance
rejection, enhanced control accuracy, and increased stability.

Figure 1 illustrates a typical electro-hydraulic cascade control system of a turbofan engine, which
comprises two primary control loops: the outer loop for fan speed control and the inner loop for fuel
metering control.

_ Inner-loop Feedback =
DPV
Outer C D Inner Torque |
Controller Controller B Motor Wﬂw
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Figure 1. Cascaded electro-hydraulic control system of a turbofan engine.

The outer loop involves a controller that regulates the fan speed based on the desired fan-speed
setpoint given by the power lever angle (PLA) and the rotary variable differential transformer
(RVDT). This controller adjusts the torque motor reference input of the inner-loop electro-hydraulic
servo valve (EHSV), which in turn modulates the fuel flow to control the fan speed. The inner loop
focuses on the precise metering of fuel delivered to the engine. The inner controller receives feedback
from the linear variable differential transformer (LVDT) mounted on the fuel metering valve (FMV),
and adjusts the measured fuel flow with the aid of difference pressure valve (DPV).

2.2. Fault Analysis of Turbofan Engine Control System

As can be seen from Figure 1, the inner-loop actuator is the EHSV-controlled FMV, the outer-
loop actuator is the DPV, and LVDT and RVDT are the feedback sensors within the inner- and outer-
loop, respectively. These core components are crucial to the safe and reliable operation of the entire
cascade control system.

The fuel metering unit (FMU) includes the FMV and the EHSV, and the torque motor can be
regarded as part of the EHSV. Due to the harsh operational environment, the FMU is susceptible to
various faults. For instance, the valve spool can wear out over time due to continuous operation and
high pressures with symptoms of increased internal leakage and degraded fuel flow control. The
torque motor within the EHSV can fail due to short circuits, insulation breakdown, or external
damage, which results in inaccurate fuel metering or even loss of control signals.

The function of the PDV is to ensure that the pressure differential before and after the fuel
metering valve is maintained at a certain constant value so that the fuel flow rate can be controlled
simply by controlling the displacement of the metering valve. Although differential valve spring
fatigue or seal leakage is a multiplicative fault to the dynamics of the valve itself, the effects of DPV
common faults and disturbances can be viewed as a gain fault with respect to the engine fuel output.

LVDT and RVDT are utilized to monitor the FMV openings and the fan speed, when they
operate for extended periods under high temperatures and strong vibration conditions, they may
experience coil breakage, changes in resistance, or even alterations in structural parameters, which
can subsequently affect the related performance parameters. For example, bias and drift of sensors
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caused by aging, temperature changes, or calibration errors lead to persistent offset in sensor readings,
leading to incorrect control responses.

3. Fault Diagnosis Scheme

In the cascade electro-hydraulic control system, the residual generators for fault detection in its
two loops can be designed independently and specifically, tailored to the unique requirements of
each control loop.

3.1. Optimal Fault Detection Filter Design for the Outer Loop System

Consider the following dynamic control system that incorporates additive disturbances and
faults:

{xl (t)=A,x, () +Byu, () +E, d,(t)+E ,, f,(t)
)

1 (O=C\x,(t) + D, (1) + F, d, () +F,, f,()

where, x1 is the state vector of outer-loop control system, y1 signifies outer-loop output vector, A1, B,
C1, and D1 are system matrices, u1 is the control input, di(t) represents the unknown disturbance input
vector of the system, fi(t) denotes the fault vector of the system, Ea, Ep, Fa, and Fn are the
corresponding disturbance and fault matrices with appropriate dimensions.

To generate fault residuals of the outer-loop control system, the following state observer is
designed:

%,(0=A% (B, ()L, [ 3, ()= ,(0)]

W (=€, x(6) + Dy, (1)

)

where, X, and j, are the estimated x1 and y1, respectively. Lo is the observer gain matrix that

stabilizes the eigenvalues of the matrix (Ai-LasC1) stable, ensuring that the designed observer can
achieve an unbiased estimate of the system state.
Define the observation residuals eds: as follows

€1 (1) = X, (1) =%, (1) ®)
The dynamic characteristics of the residual generator can be described as

E(t)=AE)+E ., d,()+E ,, f,(1)

. o 4
n()=W[C&n+Fd0)+F, £,0)] @)

where, Wis a pre-filter to be designed, r1 is the generated system residual,

)= » d(1)= » A= » E, =
evbsl (t) dl (t) O Al - Lobs Cl O Edl -L Fdl

‘0bs

N E,, . . y
» E, = E, 1 F, » C=[0 ], F,=[0 F,], F,=F,.
1

‘obs

According to Equation (1), the transfer functions from system disturbances d, and system

faults fito r, are as follows, respectively

Grlzil (S) = W|:Fd1 + C~'1 (SI - A1 +LobsC1 )(Edl _Lobstl )J (5)

G, (s)=W [ﬁﬂ +C,(s1 -4 +1L,C)(E, ~L,F, )J ©6)
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To achieve the optimal balance between the robustness of system disturbances and the
sensitivity to system faults, we can solve the following optimal design problem using the theorem
presented in [29] to obtain the optimal solution.

7(G,, )

ity B 0= |6, G,

L

‘obs

, we[0,0) @)
where, o,(*) is the i-th non-zero singular value, j is imaginary unit, @ is the angular frequency.

The matrices Lois and W that satisfies the solution of the above optimization problem could make
the observer robust to disturbances while being as sensitive to faults as possible.

To detect faults, the root mean square (RMS) of the residual signal is utilized to evaluate the
energy of the residual signal:

IOl =+~ [ 5 @) ®)
T t

where, represents the average energy of the residual signal within the specified time interval

RMS
(t, ++T) and it can be determined based on the maximum energy value observed in the system's
historical data under fault-free conditions.
s = 5[5 Ol g
By monitoring the RMS value of the residual signal and comparing it against a predetermined
threshold Jmi,rus, the fault detection logic of the outer-loop control system is given by

"rl (t)"RMS > Jth],RMS = fault "
5Ol ass < s = fault-free (10)

3.2. Robust Unknown Disturbance Decoupled Residual Generator for the Inner-Loop System

The inner-loop dynamic system can be described as
{xz (O)=A,x, (1) +Byu, () +E ;,d , (1)
Y,=C,x,(1)+ D,u,(t)

where, x2 is state vector of the inner-loop control system, y2 is inner-loop output, Az, Bz, C2, and D:
are system matrices, u2 is control input, d«(t) represents the unknown external disturbance, and Eax
is disturbance distribution matrix.

For the inner loop fuel control system dominated by multiplicative faults, an unknown
disturbance decoupling observer is established as follows:

{z(t) = Fabxz(t) + ]:)b.tBZuZ + Kobsyz (t)

. (11)
x,O)=z(O)+H, 1)

where, z(¢) is the state vector of the unknown disturbance decoupling observer, x,(¢)is the
estimated state vector of the inner loop, Foss, Tors, Kobs, and Hobs are the observer matrices that need to
be designed to achieve decoupling of additive perturbation and state estimation.

Fig. 2 shows the structure of the unknown disturbance decoupling observer.
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Figure 2. Structure of robust unknown disturbance decoupled residual generator.

A

The estimated state error e is
€, (1) = X, (1) = X, (¥) (12)
The error control equation can be described as

éasz (t) = (Az -H CzAz _KobSICZ)eZ (t)_[Fobs _(Az _HobsCZAZ _Kobs1C2 )]z(t)

obs
- [Kabx2 - (AZ - Habx CZAZ - KobSICZ )Hohs ]yz (t) (13)
-[T,,-(I-H,C)]B,x, (t)-(H,C,—Ed ()

obs

where, Kovs=Kovsi+Kobs2.
When system input and output are decoupled, the state estimation error of the system can be
simplified to:

éosz (t) = FobseobSZ (t): (AZ - Hobs C2A2 - Kobs] C2 )eobSZ (t) (14)

If all eigenvalues of the matrix F, are stable, it can be ensured that the estimation error

obs

gradually approaches zero and the estimated system states approach the true values.
According to the output of the observer and the actual output of the system, the residuals of the
system can be obtained

n() =y, () -C,x,()=(I-C,H ;) y,(1) - C,z(t) (15)

where, I is an identity matrix with appropriate dimensions.
Similarly, RMS index is utilized to evaluate the change of the residual signal, i.e.,

Ol =y =[5 @) (16)
T t

The maximum energy value of historical data recorded under fault-free conditions is used as the
threshold of the residual signal

Jir.rus = f:lr_gee"rz (t)"RMS (17)
If the RMS value exceeds this threshold, a fault condition is declared. Therefore, the fault
detection logic of the outer loop is
||r2 (t)||RMS > J s = fault

(18)
""2 (f)"RMS < J o pus = fault-free
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3.3. Steady-State Propagation Characteristics of Faults in Cascade Control Systems

To analyze the propagation characteristics of actuator and sensor faults in the cascade control
system, it is first necessary to derive the fault propagation characteristics of the single-loop control
system shown in Figure 3.

Jaz

Y, € | Tnner u, V)
— PID FMV >
S §
Vo LVDT |«

Figure 3. Inner-loop actuator and feedback sensors faults.

To simplify the derivation process, multiplicative faults can be equivalently converted into
additive faults, and the system dynamics of the inner loop can be described as:

{xz =A,x,+Bu,+E . f,,

(19)
Vo = Cyx, +Ff2 52

where, E ,, is the actuator fault matrix, f., is the actuator fault vector, F /, 1is the sensor fault

matrix, f,, issensor fault vector.

The system matrices of the inner-loop electro-hydraulic FMV are

0 1 0 0
KB4 0 Ks 00
A, = m, m, m, , B, = , C,= 0 00
o A, HK.+GCB, 48K, 0 00

Vi 4 4

t

where, Kt is load stiffness of FMV, mt is mass of the FMV, A, is the area of the FMV control chamber,
By is damping coefficient of FMV, Ci is the internal leakage coefficient, f. is elastic modulus of the
fuel, K2 is the pressure gain coefficient of EHSV, Ky flow gain coefficient of EHSV, Vi is volume of
the FMV control chamber, and Ks is the LVDT gain.

The closed-loop transfer matrix from system input v2 to output yzn is:

562 = (Az _Bzcsz )xz +B2K2V2 _Bzﬁf'ziszK2+E~‘,/'2 ~az (20)

where, Kz is inner-loop controller.
Then the transfer function from system input v2 to output y2 is

~K K, [V,m,s2 +(4B.K.m +V,B,)s+ 4ﬂeA;]

e

Vims®+(4B.K m +V,B,)s’ +4p8 As+48,4,K KK,

G, s, (5)=C, [SI'(AZ - Bzcsz)]_l B,K,= (21)

From equation (21), it can be observed that feedback sensor gain K« and controller K> have direct
impacts on the system output under the closed-loop control situation.
Similarly, the transfer functions of the actuator faults to the specific signals in the loop G, , ,

G , and G,

rs’ Ovgnr Gugyr G, can be obtained.

2
The steady-state outputs of the derived system transfer functions can be calculated respectively
using the final value theorem, and results are as follows.
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lim[s7,,(5)G,, ,,(9)]=0  tim[sF,,(9)G, , ]=0 lim[5F,,()G,, ., ]=0
F
lim| s, ()G, ,, |=0 15i£13|:sF;2 ()G, ,. J - —KL: lim[ sF, ()G, ,. |=0

It can be seen from the above calculation results that, for a single-loop closed-loop control system,
feedback sensor faults will affect the steady-state control accuracy of the closed-loop control system,
and the control error is directly related to the faulty sensor gain. In contrast, actuator faults usually
do not affect the actual steady-state output of the system. Furthermore, neither actuator faults nor
sensor faults affect the steady-state values of the measured output y2» and the control input u2within
the loop.

The fault propagation characteristics of a single closed-loop system are summarized in Table 1.

Table 1. Steady-state propagation characteristics of inner-loop typical faults of a turbofan engine.

Fault/Disturbance Control input Actual output Measured output
FMV disturbance N N N
FMV Leakage N N N
LVDT gain bias N Y N

Note: symbol ‘N’ indicates that when a fault occurs, the steady-state residual signal quickly
approaches zero after a short adjustment period, while the symbol Y’ signifies that the steady-state
residual signal converges to a non-zero value.

As evident from Table 1, additive disturbances in the system do not affect the final steady-state
control characteristics of the system. This underscores the robustness of the closed-loop control
system, which is capable of mitigating the effects of process disturbances in the system, except in
cases of feedback sensor faults or other disturbances.

Nonetheless, when considering the presence of the external control loop as depicted in Figure 4,
the conclusion changes. In this scenario, the steady-state error of the inner loop system's actual output
is further corrected by the outer controller, thereby altering the steady-state outputs of multiple
signals within the loop.

@ Outer Inner _
PID PID = FMV

Figure 4. Outer-loop actuator and feedback sensors faults.

The analytical derivation method can be employed to obtain the transfer functions between
different signals in the cascade control system. Additionally, the steady-state propagation
characteristics of faults within the cascade fuel control system are presented in Table 2.

Table 2. Steady-state propagation characteristics of faults in a turbofan cascade control system.

Faults/Disturbance

ui yl ylm 02 uz yZ yZm
FMV leakage N N N Y Y N N
LVDT gain bias N N N Y N N Y
DPV fault N N N Y N Y Y
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RVDTgain bias Y Y N Y N Y Y

According to the previous analysis, when the feedback sensor in the inner loop experiences a
gain failure, it results in a deviation in the control input command of the fuel servo mechanism. This,
in turn, leads to changes in the actual outputs of the fuel metering valve, fuel flow, and engine rotor
speed. However, the outer-loop controller corrects the deviations by adjusting the command of the
inner-loop actuator, effectively eliminating the engine speed deviation and maintaining the
measured rotation speed at the reference value.

3.4. Fault Isolation Scheme Based on Steady-State Fault Propagation Characteristics

To isolate the fault, define the minimum dimension residual vector rsys(t) the cascade control
system :

1 O =[[Au, @), A @), [, @), [A, )], A, 0]

:|:|u1(t)_”1o|s |V2(t)_vzo|’ |u2(t)—u20|, |J’2(t)_yzo

(22)

5 |yzm(t)_yzm0|]

where, u1 represents the nominal value of fuel flow, v is the nominal output of the outer-loop
controller, which also serves as the nominal command value for the inner loop. Additionally, u20
denotes the nominal output of the inner-loop controller, y20 represents the nominal output of the
inner-loop servo actuator, and yzmo is the nominal measurement output of the inner-loop feedback
Sensor.

These nominal status values can all be derived from the system's fault-free historical operating
data, which has been collected under different working conditions. Based on real-time monitoring
data or offline data, the signal residual vector of the fuel-speed cascade control system can be
calculated.

Assuming that the system can experience four distinct faults: inner-loop actuator failure, inner-
loop feedback sensor failure, outer-loop actuator failure and, outer-loop feedback sensor failure, with
no more than one fault occurring simultaneously, then the fault influence distribution matrix M is
obtained by analyzing the steady-state propagation characteristics of actuator and sensor faults
within the cascade control system:

- o o o
—_ = e
c o o ~
—_—- o o
=)

4x5

To prevent the occurrence of ill-conditioned matrices, which can arise due to significant
differences in the magnitudes of various residuals, and to enhance the accuracy of fault isolation, it
is necessary to normalize each residual vector using the following formula:

q q
rsys (t) - ’Ty‘ys (t) |min

rsfis (t) |max _rsfis (t) |min

MOE (4=1,2,3,4,5)
where, g represents the g-th column in the residual vector r«s(t), the maximum and minimum values
of the residual vector can be obtained from the fault-free historical operation data of the system in
the past period.

Assume that the p-th row vector of fault influence distribution matrix M» (p =1,2,3,4) represents
four typical fault modes: fx, f, fn, and f«1, then calculate the vector angles between the normalized
residual vector 7, and each row vector of fault influence distribution matrix M. The value of p that

minimizes the vector angle value is the result of fault isolation, i.e.,

arg me {COS <Mp ’—‘Syqs>}’ (P = 1727394) (23)
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4. Experiments

To validate the effectiveness of the proposed fault isolation scheme, experiments are conducted
on an electro-hydraulic servo system test bench. This test bench is capable of simulating the cascade
control system of a turbofan engine, as shown in Figure 5. Given the constraints imposed by
experimental conditions, the turbofan engine has been virtually simulated using a first-order
mathematical model with a time constant of 4.0 seconds.

Figure 5. Test bench of the electro-hydraulic control system.

In the experiment, the system pressure was set to 21MPa, and the sampling time was 0.001s.
Both the two loop controllers employed are simple proportional controllers. The servo valve-
controlled cylinder serves to simulate the FMV with a total stroke of 30 mm. Within the host computer
software, deviation faults were artificially injected into the outputs of the actuators and sensors,
respectively. Subsequently, all output signals in the cascade control system, namely u1, y1, yim, v2, u2,
Y2, and y2m were collected.
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Figure 6. Inner-loop propagation characteristics of different fault conditions.
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It can be observed from Figure 6 that the four typical faults have different effects on the inner-
loop signals within the cascade control system. Referring to Figure 6 (a) and (b), upon injecting
deviation faults at 1.0 s, the reference input v2 and control input u: gradually stabilize after
approximately four seconds of adjustment. However, compared to the fault-free system, there exists
a noticeable steady-state error, particularly evident in the case of RVDT gain deviation fault
references.

Comparing Figures 6(c) and 6(d), the primary difference lies in the significant deviation
between the actual and measured outputs of the metering valve when the LVDT is faulty. This
deviation is unacceptable for the entire engine control system in practical applications. Furthermore,
it is evident that when a deviation fault occurs in the FMYV, the actual and measured output signals
of the metering valve gradually converge to a stable value after three seconds of dynamic adjustment,
exhibiting almost no steady-state error compared to the fault-free system. In contrast, DPV and RVDT
faults significantly impact the actual and measured outputs of the metering valve, resulting in
substantial steady-state errors.

As shown in Table 2, when a deviation fault occurs in the FMYV, the steady-state residuals of the
signals vz, u2, 2, and y2m ultimately approach zero after a brief adjustment period, as demonstrated in
Figure 6. However, during the dynamic adjustment process, an interesting phenomenon arises. The
initial change direction of the system's actual output and measured output signal residuals aligns
with the deviation fault direction, whereas the initial change direction of the system's control input
residual is the opposite. This is due to the closed-loop controller's corrective action; upon detecting a
deviation in the measured output by the feedback sensor, the system's control input adjusts in the
opposite direction to mitigate the impact of the deviation fault on the output. Conversely, when a
deviation fault occurs in the feedback sensor LVDT, the initial change direction of the measured
output aligns with the deviation fault direction. However, both the initial change directions of the
system's control input and actual output residuals are opposite to this, indicating a corrective
response by the system to counteract the fault effects.

500 : ‘ ‘ ‘ ‘ x104
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Figure 7. Outer-loop propagation characteristics of different fault conditions.

It can be observed from Figure 7 that for the outer-loop control system, among the four typical
fault modes, only the RVDT fault has the most significant impact on the outer-loop signals. The effects
of the other three faults are mitigated under the correction provided by the closed-loop controller.
This finding is consistent with the theoretically derived results in the previous section and lays the
foundation for the subsequent fault isolation scheme, which is based on steady-state propagation
characteristics. It should be noted that due to the first-order engine model and the difference between
the two cascade controllers, some signals exhibit significant noise while others appear filtered. For
example, the signal noise of the measured output from the inner-loop feedback sensor is greatly
reduced after passing through the engine model.

According to the experimental data, the steady-state residual values of each signal under four

different fault conditions and fault-free conditions were calculated. The results are summarized in
Table 3.

Table 3. Steady-state residuals under different fault conditions.

Fault location U1 Y Yim 02 12 2 1/2m
FMV 0.33458 1.45745 1.45745 -1.45745 -0.00049 0.00418 0.00418
LVDT -0.16846 -7.08437 -7.08437 7.08437 0.00232 -0.00211 0.49730
DPV -0.02578 -1.73491 -1.73491 1.73492 0.00065 -0.83297 -0.83297
RVDT -37.486500  -941.745 -36.4096 36.40957 0.01218 -0.46858 -0.46858

Based on the data presented in Table 3, we can obtain the normalized residual matrix as follows:

0.2230 1.0000 0.9975 0.1254 0.1254
_ 10.0075 0.3259 0.3192 0.0042 1.0000
fos ™ 0.0007 0.0477 0.0532 1.0000 1.0000
1.0000 1.0000 1.0000 0.5625 0.5625

The fault isolation results can be determined by computing the vector angles between each
fault’s normalized residual vector and each row vector of the fault influence distribution matrix M.
The results are shown in Table 4.

Table 4. Fault isolation results of the proposed method in this study.

Vector angle M' M’ M M' Isolation results
accos(M' -F.) 11.40° 31.72° 38.72° 39.91° p=1
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ac cos<M2 Fj) 65.48° 31.46° 45.68° 52.52° p=2
ac cos<M3 Fj) 87.11° 58.45° 33.39° 43.67° p=3
ac cos<M“ -z;;) 42.10° 54.57° 49.93° 34.94° p=4

From Table 4, it can be seen that the minimum angles between the four residual vectors and each
row vector of fault influence distribution matrix M are 11.40°, 31.46°, 33.39°, and 34.94°, representing
FMV fault, LVDT fault, DPV fault, and RVDT fault, respectively. In practical applications, targeted
maintenance can be performed based on the isolation results obtained from the minimum and sub-
minimum angle values to improve the reliability of diagnostic results and improve maintenance
efficiency.

5. Discussion and Conclusions

This study deals with the fault diagnosis of the cascade electro-hydraulic control system of a
turbofan engine. We proposes a novel fault isolation scheme based on the steady-state propagation
characteristics within the control loops. Conclusions are drawn as follows:

In a single closed-loop control system, the feedback controller can result in the steady-state
effects of actuator disturbances and faults being transferred, attenuated, or even completely mitigated
within the control loops, except for the feedback sensor fault. In a cascade control system, the inner-
loop sensor fault effects can be compensated via the outer-loop sensor and controller. Similarly, the
impact of the outer-loop actuator faults can be mitigated by adjusting the reference command of the
inner loop. Only the health status of the outer-loop sensor directly influences the final controlled
variable of the entire system. This influence cannot be mitigated by the closed-loop correction effect
inherent to the cascade control system. Considering the steady-state propagation effects of these
faults, the proposed method for constructing a minimum dimensional residual vector and a fault
influence distribution matrix to characterize the health state of the cascade control system simplifies
fault isolation to a straightforward mathematical problem of calculating vector angles. Experimental
results demonstrate that this method effectively locates faults within the cascade control system,
which provides a solid foundation for subsequent repair and maintenance activities.

The novel fault isolation method proposed in this paper is not only applicable to single closed-
loop control systems, but also to cascade or even multi-loop feedback control systems. The essence
of this method lies in acquiring the steady-state propagation characteristics of different faults within
the cascade control system, whether through analytical methods or simulated experiments, and
thereby determining the fault influence distribution matrix of the system. As more fault modes are
considered, an increased number of characteristic signals within the loop are required, leading to a
higher-dimensional fault influence distribution matrix. Consequently, this matrix is not unique, but
there exists a matrix with minimal dimension. The smaller the matrix dimension, the less computing
resources are required for calculation, which is essential for both online real-time or offline fault
diagnosis. Additionally, by leveraging the linear combination of the row vectors of the fault influence
distribution matrix, the behavior of signals within the loop under simultaneous multiple faults can
be discerned. Therefore, this method shows considerable promise in multi-fault diagnosis. Our future
work will concentrate on multi-fault isolation schemes and the demand-driven optimization of
sensor redundancy layouts.

Author Contributions: Conceptualization, Y.Z.; methodology, Y.Z. and ].S.; software, ].S.; validation, Y.Z., L.M.
and K.B.; formal analysis, R.Z.; investigation, L.M.; resources, R.Z.; data curation, K.B.; writing—original draft
preparation, Y.Z.; writing—review and editing, L.M; visualization, K.B.; supervision, R.Z. and ].S.; project
administration, Y.Z.; funding acquisition, Y.Z. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Youth Natural Science Foundation of Tiandi Science and Technology,
grant number 2023-TD-QNO005.


https://doi.org/10.20944/preprints202408.0336.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2024 d0i:10.20944/preprints202408.0336.v1

14

Data Availability Statement: The experimental data presented in this study are available on request from the
corresponding author due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ba, KX, Chen, CH,, Ma, G.L, Song, Y.H., Wang, Y., Yu, B., Kong, X.D. A compensation strategy of end-
effector pose precision based on the virtual constraints for serial robots with RDOFs. Fundamental Research,
2024.

2. Zhang, Y.; Wang, S.P; Shi, ]J.; Wang, X. Evaluation of thermal effects on temperature-sensitive operating
force of flow servo valve for fuel metering unit. Chinese Journal of Aeronautics 2020, 33, 1812-1823.

3.  Kim, D.; Park, H.J.; Kim, S.S.; Kim, D.H.; Kim, S.B.; Lee, J.; Choi, J.Y. Position control of dual redundant
asymmetric tandem electro-hydrostatic actuator for aircraft based on backstepping technique. Journal of
Aerospace System Engineering 2021, 15, 1-10.

4. Chommuangpuck, P.; Wanglomklang, T.; Tantrairatn, S.; Srisertpol, J. Fault tolerant control based on an
observer on pi servo design for a high-speed automation machine. Machines 2020, 8, 22.

5. Fourlas, GK; Karras, G.C. A survey on fault diagnosis and fault-tolerant control methods for unmanned
aerial vehicles. Machines 2021, 9, 197.

6. Deng, M.C; Tanaka, Y.; Li, X.M. Experimental study on support vector machine-based early detection for
sensor faults and operator-based robust fault tolerant control. Machines 2022, 10, 123.

7. Lu, C.Q,; Wang, S.P.; Wang, X.J. A multi-source information fusion fault diagnosis for aviation hydraulic
pump based on the new evidence similarity distance. Aerospace Science and Technology 2017, 71, 392—401.

8.  Fentaye, A.D.; Zaccaria, V.; Kyprianidis, K. Aircraft engine performance monitoring and diagnostics based
on deep convolutional neural networks. Machines 2021, 9, 337.

9.  Habibi, H.; Howard, L; Simani, S. Reliability improvement of wind turbine power generation using model-
based fault detection and fault tolerant control: A review. Renewable Energy 2019, 135, 877-896.

10. Simani, S.; Farsoni, S.; Castaldi, P. Residual generator fuzzy identification for wind turbine benchmark fault
diagnosis. Machines 2014, 2, 275-298.

11. Wang, Y.L; Pan, Z.F,; Yuan, X.F,; Yang, C.H.; Gui, W.H. A novel deep learning based fault diagnosis
approach for chemical process with extended deep belief network. ISA Transactions 2020, 96, 457-467.

12. Yang, B, Xin, L.; Long, Z.Q. An improved residual-based detection method for stealthy anomalies on
mobile robots. Machines 2022, 10, 446.

13.  Abbaspour, A.; Aboutalebi, P.; Yen, K.K.; Sargolzaei, A. Neural adaptive observer-based sensor and
actuator fault detection in nonlinear systems: Application in UAV. ISA Transactions 2017, 67, 317-329.

14. Poon, J.;Jain, P.; Konstantakopoulos, I.C.; Spanos, C.; Panda, S.K.; Sanders, S.R. Model-based fault detection
and identification for switching power converters. IEEE Transactions on Power Electronics 2016, 32, 1419-
1430.

15. Rodriguez-Blanco, M.A.; Golikov, V.; Vazquez-Avila, J.L.; Samovarov, O.; Sanchez-Lara, R.; Osorio-
Sanchez, R.; Pérez-Ramirez, A. Comprehensive and simplified fault diagnosis for three-phase induction
motor using parity equation approach in stator current reference frame. Machines 2022, 10, 379.

16. Song, H.; Han, P.Q.; Zhang, ].X.; Zhang, C.H. Fault diagnosis method for closed-loop satellite attitude
control systems based on a fuzzy parity equation. International Journal of Distributed Sensor Networks 2018,
14, 1550147718805938.

17.  Du, Y,; Budman, H.; Duever, T.A. Integration of fault diagnosis and control based on a trade-off between
fault detectability and closed loop performance. Journal of Process Control 2016, 38, 42-53.

18. Safaeipour, H.; Forouzanfar, M.; Casavola, A. A survey and classification of incipient fault diagnosis
approaches. Journal of Process Control 2021, 97, 1-16.

19. Sun, B.W.; Wang, ].Q.; He, ZM.; Qin, Y.R;; Wang, D.Y.; Zhou, H.Y. Fault detection for closed-loop control
systems based on parity space transformation. IEEE Access 2019, 7, 75153-75165.

20. Kong, X.D.; Cai, B.P.; Liu, Y.H.; Zhu, HM.; Yang, C.; Gao, C.T.; Liu, Y.Q.; Liu, Z.K,; Ji, R.J. Fault diagnosis
methodology of redundant closed-loop feedback control systems: Subsea blowout preventer system as a
case study. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2022, 53, 1618-1629.

21. Liu, Y,; Wang, Z.D.; He, X.; Zhou, D.H. A class of observer-based fault diagnosis schemes under closed-
loop control: performance evaluation and improvement. IET Control Theory & Applications 2017, 11, 135-
141.


https://doi.org/10.20944/preprints202408.0336.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2024 d0i:10.20944/preprints202408.0336.v1

15

22. Sun, BW.; Wang, ].Q.; He, ZM.; Zhou, H.Y.; Gu, E.S. Fault identification for a closed-loop control system
based on an improved deep neural network. Sensors 2019, 19, 2131.

23. Cheng, Y.; Wang, R.X,; Xu, M.Q. A combined model-based and intelligent method for small fault detection
and isolation of actuators. IEEE Transactions on Industrial Electronics 2015, 63, 2403-2413.

24. Grehan J.; Ignatyev D.; Zolotas A. Fault detection in aircraft flight control actuators using support vector
machines. Machines 2023, 11, 211.

25. Zhang Z.T.; Zhang X.F.; Yan T.H.; Gao, S.; Yu, Z. Data-driven fault detection of AUV rudder system: A
mixture model approach. Machines 2023, 11, 551.

26. Jia, F.L.; Cao, F.F.; Guo, Y.Q.; He, X. Active fault diagnosis for a class of closed-loop systems via parameter
estimation. Journal of the Franklin Institute 2022, 359, 3979-3999.

27.  Niemann, H.; Poulsen, N.K. Fault detection in closed-loop systems using a double residual generator. In
Proceedings of the 2022 11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical
Processes, Pafos, Cyprus, 8-10 June 2022.

28. Zhang, Y.; Wang, S.P.; Shi, J.; Yang, X.Y.; Zhang, ].R.; Wang, X. SAR performance-based fault diagnosis for
electro-hydraulic control system: A novel FDI framework for closed-loop system. Chinese Journal of
Aeronautics 2022, 35, 381-392.

29. Ding S.X. Advanced methods for fault diagnosis and fault-tolerant control, 1st ed.; Springer: Berlin, Germany,
2021; pp. 91-95.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202408.0336.v1

