Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

DATA DRIVEN SOLUTIONS AND DISCOVERIES IN MECHANICS
USING PHYSICS INFORMED NEURAL NETWORK *

QI ZHANGT, YILIN CHEN f, AND ZIYI YANGH

Abstract. Deep learning has achieved remarkable success in diverse computer science appli-
cations, however, its use in other traditional engineering fields has emerged only recently. In this
project, we solved several mechanics problems governed by differential equations, using physics in-
formed neural networks (PINN). The PINN embeds the differential equations into the loss of the
neural network using automatic differentiation. We present our developments in the context of solv-
ing two main classes of problems: data-driven solutions and data-driven discoveries, and we compare
the results with either analytical solutions or numerical solutions using the finite element method.
The remarkable achievements of the PINN model shown in this report suggest the bright prospect
of the physics-informed surrogate models that are fully differentiable with respect to all input co-
ordinates and free parameters. More broadly, this study shows that PINN provides an attractive
alternative to solve traditional engineering problems.

Key words. Conservation laws, Data inference, Data discovery, Dimensionless form, PINN

1. Introduction. It is well-known that many mechanics phenomenons are gov-
erned by conservation laws which can be converted to differential equations for most
of the applications. Solving these differential equations and obtaining parameter
estimations from given observations are always intriguing topics, and significant re-
search has been done to develop many advanced (semi-)analytical or numerical algo-
rithms. While in the last decade, machine learning especially neural networks have
yielded revolutionary results across diverse disciplines, including image and pattern
recognition, natural language processing, genomics, and material constitutive model-
ing [15,23,26,34], among which a fair amount of research has also been done related
to differential equations [1,9,12,13,17-19,22,24,25,27-33,35,36,38], owing to the dra-
matic increase in the computing resources. Therefore, it will be interesting to adopt
neural networks as an important alternative to traditional mathematical methods to
approximate the solutions to differential equations through iterative update of the
network weights and biases.

2. Related work. Early researches that use neural network in scientific com-
puting could date back to [12,22], in which a single hidden layer neural network is
adopted

n

H
(2.1) N=i+» wvoi [Y wija;+ui |,
i=1 j=1

where N is the network output which is assumed to be a scalar for illustration pur-
poses, H is the width of the hidden layer, and n is the dimension of the input vector
z € R", w;; and v; are called weights while u; and @ are always denoted as the bi-
ases, 0; (+) is called activation function. More recently, the development of automatic
differentiation [2] has led to emerging literature on the use of deep neural networks
to solve differential equations [17, 33,38, 39] even in complex geometries, and Berg

*Stanford CS229 project final report, category of physical sciences

TDepartment of Civil and Environmental Engineering, Stanford University, CA 94305
(qzhang94@stanford.edu, yilinc2@stanford.edu).

tDepartment of Mechanical Engineering, Stanford University, CA 94305 (zy99@stanford.edu).

1

0 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:qzhang94@stanford.edu
mailto:yilinc2@stanford.edu
mailto:zy99@stanford.edu
https://doi.org/10.20944/preprints202006.0258.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

et al. [3] provides details of this back propagation algorithm for advection and diffu-
sion equations. Unlike traditional machine learning methods, deep neural networks
sometimes can overcome the curse of dimensionality [17]. In the work done by Raissi
et al [30-32], they named such strong form approach for differential equation as the
physics-informed neural network (PINN) for the first time. Today, the PINN becomes
more and more popular in many engineering fields such as hydrogeology [7, 18, 35],
geomechanics [19], cardiovascular system [21] and so on. One attractive feature of
PINN is that it is fully differentiable with respect to all the input coordinates and
free parameters, in other words, the trial solution (via the trained PINN) represents
a smooth approximation that can be evaluated and differentiated continuously on the
domain [9]. Another important feature of PINN is that it can be used to solve inverse
(data discovery) problems [16] with minimum change of the code from the forward
problems [24].

It is also worth to mention that there are also other machine learning methods
that didn’t rely on the neural network to solve differential equations [28,29], but in
this report, we will focus on the PINN.

3. Methods. In this section, we will give a very brief overview of PINN in order
to demonstrate how the loss function £ is defined in such context. We refer interested
readers to look at [32] for more details. Consider a system of differential equations
defined on the domain 2 with boundary 9%:

(3.1) D(u(x))=0 zeQ,

(3.2) B(u(x))=0 x €00,

where u is the unknown solution vector, D denotes the abstract (non-linear) differ-
ential operator (e.g., /0x, w o d/0x, x o J/0x, higher order derivatives, non-linear
functions of u or x, their combinations, etc.), and the operator B expresses arbitrary
boundary conditions (e.g., Dirichlet, Neumann, Robin, etc.) associated with the prob-
lem. Note here for time-dependent problems, we consider ¢ as a special component
of x, i.e., the) contains the temporal domain. The initial condition can be sim-
ply treated as a special type of Dirichlet boundary condition on the spatio-temporal
domain [24].

Now we construct a neural network with L layers, or L — 1 hidden layers to
approximate u (), the input to neural network is @, and we will denote the output
of the neural network as @ (z;0) (we want @ (x;0) ~ w(x)), where 6 represents
the collection of weight matrix W1 € R™>*™~-* and bias vector b/ € R™ for each
layer [with n; neurons. In the inverse or data discovery problems, there are some
unknown parameters vy in the original differential equations, thus we will rewrite our
approximation as @ (x;6,v). Now we can define the physics-informed loss £ as

where wy is the weight for the loss due to mismatch with the governing equations

ﬁ S D (a(@:0,7)3

xzel';CQ

(3.4) Ly (0,7) =

and wy is the weight for the loss due to mismatch with the boundary conditions

1 .
(3.5) £ (6.7 = 15 ST lIB (a(;0,7)3
b xel, CON
2

https://doi.org/10.20944/preprints202006.0258.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

and wy is the weight for the loss due to mismatch with the given data observations
u” (z)

1 N X
(3.6) La(0,7) = Tl > (s 0,9) — ut ()] -
al zeryco

In practice, I'y and I'y are always known as the set of locations of the “residual”
points, and ['y is known as the set of measurement locations. We then optimize 6 and
v together, and our solution is

(3.7) 0*,~* = argmin £ (6,7) .
0,y

Above process is approximately summarized in Fig. 1. Due to the network architecture
and incorporation of differential equations, the loss will be highly non-linear and
also non-convex, thus we will need some gradient-based optimizers, such as steepest
descent [4], Newton’s method [4], Adam [20], and L-BFGS (limited-memory quasi-
Newton method) [5]. In this report, we will adopt purely Adam or Adam combined
with L-BFGS optimizers (i.e., we first use Adam for a certain number of iterations,
and then switch to L-BFGS until convergence).

PDE: L(u(x,t),8) = g
NN(w, b) Y N

Fic. 1. Two schematics of the physics-informed neural network (PINN) [24, 25].

For estimation of the test error, we will evaluate the loss £; on a given test set
Tiest € Q. In addition, if the true solution is available, we will also calculate the mean
square error (similar to the form of £4) on the same test set.

3

https://doi.org/10.20944/preprints202006.0258.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

4. Experiments, results and discussions.

4.1. One dimensional consolidation problem. In soil mechanics, one of the
most important processes is the consolidation process, while under some specific as-
sumptions made by Prof. Terzaghi and Prof. Biot [6,8,37], we can mathematically
quantify this process as a one dimensional diffusion problem [14] with specific bound-
ary conditions and initial conditions. Suppose our problem domain is 0 < z < L
where L can be understood as the thickness of the aquifer that rests on a rigid imper-
meable base, at time ¢ = 0, surface load pg is applied on the top of the aquifer which
will lead to an initial pore pressure field p* = v;pg at t = 0% where ~; is called loading
efficiency [37]. As time goes on, the pressure p will gradually decrease due to the
effect of the drainage boundary at x = 0, and it satisfies following partial differential
equation

o

=0,

with boundary conditions p = 0 at + = 0 and dp/Ox = 0 at x = L. The initial
condition is just p = p" as mentioned before. In above Eq. (4.1), the ¢ is called
generalized consolidation coefficient [11] which has the unit of length squared divided
by time.

However, the order of magnitudes of different physical quantities x (order of
meters), ¢ (order of months) and p (order of kPa) could cast great difficulty on the
training of the neural networks [21], and to overcome this problem, we employ a non-
dimensionalization technique with the purpose of scaling the input and the output
of the neural network in proper scales (e.g., O (1)). As a result, we will introduce
characteristic values for x and p, and for this problem an obvious choice would be
characteristic length L and characteristic pressure p". At this point we define the

dimensionless quantities as
N p
p = N

x
4.2 T=—
(42) . .

For the time ¢, the dimensionless time £ is given as

. ct
(4.3) t= I3
Now all the variables take values with O (1) magnitude and we will rewrite Eq. (4.1)
using dimensionless variables, the result is shown as follows

op 0% ~ N
= - = 1
9 92 0<z< >0
5=0 F=0 t>0
(4.4) It ’ -
P_o 221 i>o0
o0z

4 mn m2x2i
4.5 p = g —sin | — a
(4.5) P sin (5) e

m=1,3,5,7,...

https://doi.org/10.20944/preprints202006.0258.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

For the PINN hyper-parameters, we assume tp.c = 0.5, and we draw 500, 250,
125 “residual” points randomly from (0, 1) x (0, fmax), boundary of & and boundary
of t respectively to form T ¢ and I'p. The test set I'test will have 10011 points. The
loss weights are assigned as wy = w, = 1/4 (wq is not used in this problem). For
the architecture of the neural network, it will contain 5 hidden layers with 50 neurons
each, and we will use hyperbolic tangent tanh as our activation function in hidden
layers, the output activation will be linear activation but we will multiply the network
output with & as our final output, because in this way our output will automatically
satisfy the second expression in Eq. (4.4). For the optimization procedure, we will
run Adam for 50000 epochs with learning rate 0.001 and then run L-BFGS until
convergence. For the network initialization, we will use the Glorot normal initializer.

The convergence history, reference solution, PINN solution, and the absolute error
is shown in the Fig. 2, from which we can see a perfect match is achieved, and the
locations with highest error is close to the origin due to sharp gradient. Note in Fig. 2,
we have enforced all the output values are between 0 and 1, and initial condition is
strictly satisfied.

Reference solution Network solution

0.9 0.9
0.8 0.8
0.7 0.7
10.6 10.6
10.5
0.4
0.3
0.2

0.1

R Absolute error 10° r
B ——PDE train loss]
0.045 ——PDE test loss 1
Observations mean square error | |
0.04 {
0.035 -]
E 10.03 i]
Q i I
. 2 []
0.025 & LR |
0.02 B ; A
2]
0.015 I]
0.01
0.005 I 1
0 10*
0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5
& # Iterations x10*

F1G. 2. PINN training results for the one dimensional consolidation problem.

4.2. Steady state heat conduction problem. Our second example is a time-
independent problem on 2D. In the steady state heat transfer problem with constant
heat conduction coefficient, constant heat source and constant boundary temperature
(Dirichlet boundary condition), the T" will satisfy Poisson’s equation [14]. Without
loss of generality and to avoid the scaling differences, we will solve following PDE on

5

https://doi.org/10.20944/preprints202006.0258.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

Q=[-1,1] x [-1,1]

0*°T 90T
(4.6) — +

02 87y2+1:0 —-l<z<l1 71<y<1,

(4.7) T=0 (z,y) € 00.

Even though the analytical solution for this problem doesn’t exist, the finite element
solution with high accuracy is available in deal.Il finite element library tutorial 3, thus
it will be interesting to compare these two numerical solutions.

For the PINN hyper-parameters, we choose 1500 and 500 random points to form
I'y and I'y, respectively. The test set I'ieqy Will have 10000 points. The loss weights are
assigned as wy = wp = 1/2 (wq is not used in this problem). For the architecture of
the neural network, it will contain 4 hidden layers with 50 neurons each, and we will
not apply any transform for the network output. The learning rate for this problem
is 0.0005. For the network initialization, we will use the Glorot uniform initializer.
The remaining settings are the same as the first example.

The training results are shown in the Fig. 3, where the two numerical solutions
are consistent with each other. Note in Fig. 3, we have enforced all the output values
are larger than 0. The largest absolute error happens near the Dirichlet boundary
because Eq. (4.7) is not regarded as a hard constrain in the construction of the loss
L. A feasible way to handle this problem would be to introduce a smooth distance
function d (x) that gives the distance for & € Q to 9 [3], and then we multiply d with
the original network output to get our new improved output, which will automatically
satisfy Eq. (4.7).

4.3. Inverse problem for simple structural dynamic system. The last
example comes from the dynamic response of the single degree of freedom system
[10] and we want to use this example to illustrate the capability of PINN in the
inverse modeling or data discovery process. In structural dynamics, the free vibration
equation with viscous damping for single mass point is obtained through D’Alembert
principle [10]

d?u du fou —
(4.8) m@vLcE—k u =10 t>0
with u (0) = wg and % (0) = vg. In above equation, m > 0 is the mass, ¢ > 0 is
the damping coefficient, k > 0 is the stiffness, u is the displacement, ug is the initial
displacement and vg is the initial velocity. The analytical solution to this ODE is
given as

Vg + Ewn g

(4.9) u (t) = e~ nt g cos (wpt) +
Wp

sin (wpt)| ,

where w,, = \/k/m is known as the natural frequency, £ = ¢/ (2mw,,) is known as
the damping ratio, wp = wp+/1 — £2. In this problem, we will assume & < 1 which is
known as the underdamped system.

Now suppose m = ug = vg = 1, ¢ and k are the two parameters to be identified
from the observations at certain times. The observations are produced with the un-
derlying true parameters ¢ = 0.4 and k = 4 using Eq. (4.9). We choose 50 equispaced
points to form I'y, 100 random points to form I'¢, 50 random points to form I'y and

6

https://www.dealii.org/current/doxygen/deal.II/step_3.html
https://doi.org/10.20944/preprints202006.0258.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

Reference FE solution Network solution

10° . ,
——PDE train loss| |
——PDE test loss |

100

10-6

0 1 2 3 4
T # Tterations

F1c. 3. PINN training results for the steady state heat conduction problem.

10000 points to form I'yes;. The loss weights are assigned as wy = wy = wq = 1/4.
For the architecture of the neural network, it will contain 3 hidden layers with 32
neurons each, and we will not apply any transform for the network output. For the
optimization procedure, we will only run Adam for 100000 epochs with learning rate
0.0005. For the network initialization, we will use the Glorot uniform initializer.

The evolution trajectories of ¢ and k are presented in Fig. 4, with final values of
k = 3.9933197 and ¢ = 0.40125215, which agree with their true values.

5. Conclusions. In this project, we have adopted PINN, a new class of univer-
sal function approximators that is capable of encoding any underlying conservation
laws which can be described by differential equations. Compared to the traditional
numerical methods, PINN employs automatic differentiation to handle differential op-
erators, and thus are mesh-free. We use PINN as a data driven algorithm for inferring
solutions and parameter identifications of differential equations. A series of promising
results for a diverse collection of problems in mechanics are presented and discussed,
which opens the path for endowing deep learning with the powerful capacity of math-
ematical physics to model the world around us. We hope this project could benefit
future practitioners across a wide range of scientific domains who want to incorporate
deep learning methods in modeling physics-related problems.

For the future work, it is worth to try a group of coupled differential equations
such as Egs. (5.1)(5.2) in poromechanics [40] to see the PINN’s performance, and
develop some training points selection strategy similar to the adaptive re-meshing in

7

https://doi.org/10.20944/preprints202006.0258.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

o Observations
True solution 4=
—-—- Prediction
3.5
s 3
=
3 f— 3
-3 True l\
5 Identified k
- S 2 —-=-True ¢
g —— Identified ¢
=
A 15
10
0.5
0 0 L L
. s 0 5 0 2 4 6 8 10
t # Iterations x10°

,
——ODE train loss

——ODE test loss]
—— Observations mean square error

Tterations x10*

F1c. 4. PINN training results for the parameter identification problem, the identified values
converge to the true values during the training process.

the mesh-based methods to achieve better accuracy.

1ap ko, OV - u
'1 h— frd
(5.1) M ot ufvp““ a0

(5.2) GV%u +

1_2VV(V-u) —aVp+ppg=0.

Acknowledgement. The authors deeply appreciate the deep learning library
DeepXDE which facilitates the code implementation through its built-in modules.
The suggestions from Dr. Lu Lu are also well-acknowledged.

https://github.com/lululxvi/deepxde
https://lululxvi.github.io/
https://doi.org/10.20944/preprints202006.0258.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

REFERENCES

[1] Y. BAR-SINAL S. HOYER, J. HICKEY, AND M. P. BRENNER, Learning data-driven discretizations
for partial differential equations, Proceedings of the National Academy of Sciences, 116
(2019).

[2] A. G. BaYpIN, B. A. PEARLMUTTER, A. A. RADUL, AND J. M. SISKIND, Automatic differ-
entiation in machine learning: a survey, The Journal of Machine Learning Research, 18
(2017).

[3] J. BERG AND K. NYSTROM, A unified deep artificial neural network approach to partial differ-
ential equations in complex geometries, Neurocomputing, 317 (2018).

. BoyD AND L. VANDENBERGHE, Convex optimization, Cambridge university press, 2004.

[5] R. H. ByrD, P. Lu, J. NOCEDAL, AND C. ZHU, A limited memory algorithm for bound con-
strained optimization, SIAM Journal on scientific computing, 16 (1995), pp. 1190-1208.

[6] N. CASTELLETTO, J. A. WHITE, AND H. A. TCHELEPI, Accuracy and convergence properties of
the fized-stress iterative solution of two-way coupled poromechanics, International Journal
for Numerical and Analytical Methods in Geomechanics, 39 (2015).

[7] X. CHEN, J. DuaN, AND G. E. KARNIADAKIS, Learning and meta-learning of sto-
chastic advection-diffusion-reaction systems from sparse measurements, arXiv preprint
arXiv:1910.09098, (2019).

[8] A. H. D. CHENG, Poroelasticity, Springer, 2016.

[9] M. CHIARAMONTE AND M. KIENER, Solving differential equations using neural networks, CS229
Project, (2013).

[10] A. K. CHOPRA, Dynamics of structures: theory and applications to earthquake engineering,
Prentice Hall, 1995.

[11] E. DETOURNAY AND A. H. D. CHENG, Fundamentals of poroelasticity, in Analysis and design
methods, Elsevier, 1993, pp. 113—171.

[12] M. W. M. G. DISSANAYAKE AND N. PHAN-THIEN, Neural-network-based approzimations for
solving partial differential equations, Communications in Numerical Methods in Engineer-
ing, 10 (1994), pp. 195-201.

[13] T. DOCKHORN, A discussion on solving partial differential equations using neural networks,
arXiv preprint arXiv:1904.07200, (2019).

[14] L. C. EvANS, Partial differential equations, American Mathematical Society, 2010.

[15] J. GHABousSI, J. H. GARRETT JR, AND X. WU, Knowledge-based modeling of material behavior
with neural networks, Journal of engineering mechanics, 117 (1991).

[16] E. HAGHIGHAT, M. Raissl, A. MoURE, H. GOMEZ, AND R. JUANES, A deep learning frame-
work for solution and discovery in solid mechanics: linear elasticity, arXiv preprint
arXiv:2003.02751, (2020).

. HAN, A. JENTZEN, AND E. WEINAN, Solving high-dimensional partial differential equations
using deep learning, Proceedings of the National Academy of Sciences, 115 (2018).

[18] Q. HE, D. BARAJAS-SOLANO, G. TARTAKOVSKY, AND A. M. TARTAKOVSKY, Physics-informed
neural networks for multi-physics data assimilation with application to subsurface trans-
port, Advances in Water Resources, (2020), p. 103610.

. KapeEeTHUM, T. M. JORGENSEN, AND H. M. NICK, Physics-informed neural networks for
solving nonlinear diffusivity and biot’s equations, PloS one, 15 (2020), p. e0232683.

[20] D. P. KINGMA AND J. Ba, Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980, (2014).

[21] G. Kissas, Y. YaNg, E. HwuanGg, W. R. WITSCHEY, J. A. DETRE, AND P. PERDIKARIS,
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from
non-invasive 4d flow mri data using physics-informed neural networks, Computer Methods
in Applied Mechanics and Engineering, 358 (2020).

[22] I. E. LAaGARIS, A. LikAS, AND D. I. FOTIADIS, Artificial neural networks for solving ordinary
and partial differential equations, IEEE transactions on neural networks, 9 (1998).

(23] M. LEFIK, D. P. Boso, AND B. A. SCHREFLER, Artificial neural networks in numerical model-
ling of composites, Computer Methods in Applied Mechanics and Engineering, 198 (2009).

[24] L. Lu, X. MENG, Z. Mao, AND G. E. KARNIADAKIS, DeepXDE: A deep learning library for
solving differential equations, arXiv preprint arXiv:1907.04502, (2019).

[25] X. MENG, Z. L1, D. ZHANG, AND G. E. KARNIADAKIS, Ppinn: Parareal physics-informed neural
network for time-dependent pdes, arXiv preprint arXiv:1909.10145, (2019).

[26] M. MOZAFFAR, R. BOSTANABAD, W. CHEN, K. EHMANN, J. CAO, AND M. A. BESSA, Deep learn-
ing predicts path-dependent plasticity, Proceedings of the National Academy of Sciences,
116 (2019).

[27] M. Raissl, Deep hidden physics models: Deep learning of nonlinear partial differential equa-

=
95}

=
=
o

=
L
=

https://doi.org/10.20944/preprints202006.0258.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2020 d0i:10.20944/preprints202006.0258.v1

tions, The Journal of Machine Learning Research, 19 (2018), pp. 1-24.

(28] M. Raissi AND G. E. KARNIADAKIS, Hidden physics models: Machine learning of nonlinear
partial differential equations, Journal of Computational Physics, 357 (2018), pp. 125-141.

[29] M. Raissi, P. PERDIKARIS, AND G. E. KARNIADAKIS, Machine learning of linear differential
equations using gaussian processes, Journal of Computational Physics, 348 (2017), pp. 683~
693.

[30] M. Raissi, P. PERDIKARIS, AND G. E. KARNIADAKIS, Physics informed deep learning (part
1): data-driven solutions of nonlinear partial differential equations, arXiv preprint
arXiv:1711.10561, (2017).

[31] M. Raissi, P. PERDIKARIS, AND G. E. KARNIADAKIS, Physics informed deep learning (part
#): data-driven discovery of monlinear partial differential equations, arXiv preprint
arXiv:1711.10566, (2017).

[32] M. Raissl, P. PERDIKARIS, AND G. E. KARNIADAKIS, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics, 378 (2019), pp. 686-707.

[33] J. SIRIGNANO AND K. SPILIOPOULOS, Dgm: A deep learning algorithm for solving partial dif-
ferential equations, Journal of Computational Physics, 375 (2018), pp. 1339-1364.

[34] Y. SuN, W. ZENG, Y. ZHAO, X. ZHANG, Y. SHU, AND Y. ZHOU, Modeling constitutive relation-
ship of ti40 alloy using artificial neural network, Materials & Design, 32 (2011).

[35] A. TARTAKOVSKY, C. O. MARRERO, P. PERDIKARIS, G. TARTAKOVSKY, AND D. BARAJAS-
SOLANO, Physics-informed deep neural networks for learning parameters and constitutive
relationships in subsurface flow problems, Water Resources Research, 56 (2020).

[36] J. TomMPSON, K. SCHLACHTER, P. SPRECHMANN, AND K. PERLIN, Accelerating eulerian fluid
stmulation with convolutional networks, in Proceedings of the 34th International Confer-
ence on Machine Learning, 2017.

[37] H. F. WANG, Theory of linear poroelasticity with applications to geomechanics and hydrogeol-
ogy, Princeton University Press, 2000.

[38] E. WEINAN, J. HAN, AND A. JENTZEN, Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential
equations, Communications in Mathematics and Statistics, 5 (2017), pp. 349-380.

[39] E. WEINAN AND B. YU, The deep ritz method: a deep learning-based numerical algorithm for
solving variational problems, Communications in Mathematics and Statistics, 6 (2018),
pp. 1-12.

[40] Q. ZHANG, J. CHOO, AND R. I. BORJA, On the preferential flow patterns induced by transverse
isotropy and non-darcy flow in double porosity media, Computer Methods in Applied Me-
chanics and Engineering, 353 (2019), pp. 570-592.

10

https://doi.org/10.20944/preprints202006.0258.v1

